SI5017-X-GM [SILICON]

OC-48/STM-16 SONET/SDH CDR IC WITH LIMITING AMPLIFIER; OC- 48 / STM - 16 SONET / SDH CDR IC限幅放大器
SI5017-X-GM
型号: SI5017-X-GM
厂家: SILICON    SILICON
描述:

OC-48/STM-16 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
OC- 48 / STM - 16 SONET / SDH CDR IC限幅放大器

ATM集成电路 SONET集成电路 SDH集成电路 电信集成电路 电信电路 放大器 CD 异步传输模式
文件: 总26页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5017  
OC-48/STM-16 SONET/SDH CDR IC WITH LIMITING AMPLIFIER  
Features  
High-speed clock and data recovery device with integrated limiting amplifier:  
Supports OC-48/STM-16 and Loss-of-signal level alarm  
2.7 Gbps FEC  
Data slicing level control  
DSPLL® technology  
Jitter generation 3.0 mUI  
10 mV differential sensitivity  
PP  
(typ)  
rms  
3.3 V supply  
Small footprint: 5 x 5 mm  
Reference and reference-less  
Ordering Information:  
operation supported  
See page 22.  
Applications  
SONET/SDH/ATM routers  
Add/drop multiplexers  
Digital cross connects  
Board level serial links  
SONET/SDH test equipment  
Optical transceiver modules  
SONET/SDH regenerators  
Pin Assignments  
Si5017  
Description  
28 27 26 25 24 23 22  
VDD  
VDD  
VDD  
21  
1
2
3
4
5
6
7
The Si5017 is a fully-integrated, high-performance limiting amplifier (LA)  
and clock and data recovery (CDR) IC for high-speed serial  
communication systems. It derives timing information and data from a  
serial input at OC-48 and STM-16 rates. Support for 2.7 Gbps data  
streams is also provided for OC-48/STM-16 applications that employ  
forward error correction (FEC). Use of an external reference clock is  
optional. Silicon Laboratories DSPLL® technology eliminates sensitive  
noise entry points, thus making the PLL less susceptible to board-level  
interaction and helping to ensure optimal jitter performance.  
20 REXT  
LOS_LVL  
SLICE_LVL  
REFCLK+  
REFCLK–  
LOL  
19 RESET/CAL  
GND  
Pad  
18  
17  
16  
15  
VDD  
DOUT+  
DOUT–  
TDI  
8
9
10 11 12 13 14  
The Si5017 represents a new standard in low jitter, low power, small size,  
and integration for high-speed LA/CDRs. It operates from a 3.3 V supply  
over the industrial temperature range (–40 to 85 °C).  
Functional Block Diagram  
LOS_LVL  
Signal  
Detect  
DSQLCH  
LOS  
2
DOUT+  
DOUT–  
Retimer  
BUF  
BUF  
2
DIN+  
DIN–  
Limiting  
Amp  
DSPLL  
BER  
Monitor  
2
CLKOUT+  
CLKOUT–  
CLK_DSBL  
REFCLK+  
REFCLK–  
(Optional)  
2
Lock  
Detection  
Reset/  
Calibration  
Bias Gen.  
BER_ALM  
REXT  
RESET/CAL  
BER_LVL  
SLICE_LVL  
LOL  
LTR  
Rev. 1.4 10/05  
Copyright © 2005 by Silicon Laboratories  
Si5017  
Si5017  
2
Rev. 1.4  
Si5017  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.1. Limiting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
®
4.2. DSPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.3. Operation Without an External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.4. Operation With an External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.5. Lock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.6. Lock-to-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.7. Loss-of-Signal (LOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.8. Bit-Error-Rate (BER) Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.9. Data Slicing Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.10. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.11. RESET/DSPLL Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.12. Clock Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.13. Data Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.14. Device Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.15. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.16. Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.17. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.18. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Pin Descriptions: Si5017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3
Rev. 1.4  
Si5017  
1. Detailed Block Diagram  
LTR  
LOS  
BER_LVL  
BER_ALM  
DSQLCH  
BER  
Monitor  
Signal  
Detect  
LOS_LVL  
DOUT+  
DOUT–  
Retime  
DIN+  
DIN+  
CLKOUT+  
CLKOUT–  
Limiting  
Amp  
Phase  
Detector  
CLK  
Dividers  
A/D  
DSP  
VCO  
n
CLKDSBL  
Slicing  
Control  
SLICE_LVL  
Lock  
Detection  
REFCLK±  
(optional)  
LOL  
Bias  
Generation  
REXT  
Calibration  
RESET/CAL  
4
Rev. 1.4  
Si5017  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Min  
Max  
85  
Ambient Temperature  
Si5017 Supply Voltage  
Notes:  
T
–40  
25  
°C  
V
A
2
V
3.135  
3.3  
3.465  
DD  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5017 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of the "Typical Application Schematic" on page 11.  
V
SIGNAL+  
SIGNAL–  
VIS  
t
A. Operation with Single-Ended Inputs  
V
SIGNAL+  
SIGNAL–  
0.5 VID  
(SIGNAL+) – (SIGNAL–)  
VID  
t
B. Operation with Differential Inputs and Outputs  
Figure 1. Differential Voltage Measurement (DIN, REFCLK, DOUT, CLKOUT)  
tCf-D  
tCr-D  
DOUT  
CLKOUT  
Figure 2. Clock to Data Timing  
Rev. 1.4  
5
Si5017  
80%  
20%  
DOUT,  
CLKOUT  
tF  
tR  
Figure 3. DOUT and CLKOUT Rise/Fall Times  
taq  
RESET/Cal  
LOL  
DATAIN  
LOL  
taq  
Figure 4. PLL Acquisition Time  
DATAIN  
LOS  
LOS Threshold  
Level  
tLOS  
Figure 5. LOS Response Time  
6
Rev. 1.4  
Si5017  
Table 2. DC Characteristics  
(VDD = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Supply Current1  
FEC (2.7 Gbps)  
OC-48  
IDD  
173  
170  
184  
180  
mA  
Power Dissipation  
FEC (2.7 Gbps)  
OC-48  
PD  
571  
561  
637  
623  
mW  
Common Mode Input Voltage (DIN)2  
Common Mode Input Voltage (REFCLK)2  
DIN Single-ended Input Voltage Swing2  
DIN Differential Input Voltage Swing2  
REFCLK Single-ended Input Voltage Swing2  
REFCLK Differential Input Voltage Swing2  
Input Impedance (DIN)  
VICM  
VICM  
VIS  
See Figure 11  
See Figure 10  
See Figure 1A  
See Figure 1B  
See Figure 1A  
See Figure 1B  
Line-to-Line  
1.30  
1.90  
10  
1.50  
2.10  
1.62  
2.30  
500  
V
V
mV  
mV  
mV  
mV  
VID  
10  
1000  
750  
VIS  
200  
200  
84  
VID  
1500  
116  
RIN  
100  
800  
Differential Output Voltage Swing  
(DOUT)  
VOD  
100 Load  
Line-to-Line  
700  
1000  
mVPP  
Differential Output Voltage Swing  
(CLKOUT)  
VOD  
100 Load  
Line-to-Line  
700  
1.6  
1.6  
800  
1.95  
1.80  
1100  
2.35  
2.35  
mVPP  
Output Common Mode Voltage (DOUT)  
VOCM  
VOCM  
100 Load  
Line-to-Line  
V
V
Output Common Mode Voltage (CLKOUT)  
100 Load  
Line-to-Line  
Output Impedance (DOUT,CLKOUT)  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Input Impedance (LVTTL Inputs)  
ROUT  
VIL  
VIH  
IIL  
Single-ended  
84  
2.0  
9
100  
116  
.8  
V
V
10  
10  
µA  
µA  
kΩ  
kΩ  
IIH  
RIN  
RIN  
LOS_LVL, BER_LVL, SLICE_LVL  
Input Impedance  
50  
100  
125  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
VOL  
VOH  
IO = 2 mA  
IO = 2 mA  
0.4  
V
V
2.0  
Notes:  
1. No load on LVTTL outputs.  
2. These inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input must be ac  
coupled to ground.  
7
Rev. 1.4  
Si5017  
Table 3. AC Characteristics (Clock and Data)  
(VDD = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
fCLK  
tR  
Test Condition  
Min  
2.4  
Typ  
Max  
2.7  
90  
Unit  
GHz  
ps  
Output Clock Rate  
Output Clock Rise Time  
Output Clock Fall Time  
Output Clock Duty Cycle  
Figure 3  
Figure 3  
70  
70  
50  
tF  
90  
ps  
48  
52  
% of  
UI  
Output Data Rise Time  
Output Data Fall Time  
tR  
tF  
Figure 3  
Figure 3  
Figure 2  
80  
80  
110  
110  
ps  
ps  
Clock to Data Delay  
FEC (2.7 Gbps)  
OC-48  
tCr-D  
190  
190  
230  
230  
265  
265  
ps  
ps  
Clock to Data Delay  
FEC (2.7 Gbps)  
OC-48  
tCf-D  
Figure 2  
–70  
–60  
–40  
–30  
–10  
0
Input Return Loss  
100 kHz–1.5 GHz  
1.5 GHz–4.0 GHz  
–15  
–10  
dB  
dB  
See Figure 8 on page 14.  
Slicing Level Offset  
(relative to the internally set input  
common mode voltage)  
VSLICE  
SLICE_LVL = 750 mV to  
2.25 V  
Loss-of-Signal Range*  
(peak-to-peak differential)  
VLOS  
tLOS  
LOS_LVL = 1.50 to 2.50 V  
Figure 5  
0
8
40  
25  
mV  
µs  
Loss-of-Signal Response Time  
20  
*Note: Adjustment voltage is calculated as follows: VLOS = (LOS_LVL – 1.50)/25.  
8
Rev. 1.4  
Si5017  
Table 4. AC Characteristics (PLL Characteristics)  
(VDD =3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
f = 600 Hz  
Min  
40  
4
Typ  
Max  
Unit  
UIPP  
UIPP  
UIPP  
Jitter Tolerance  
(OC-48)*  
JTOL(PP)  
f = 6000 Hz  
f = 100 kHz  
f = 1 MHz  
3
0.3  
3.0  
25  
5.0  
55  
UIPP  
mUI  
mUI  
MHz  
dB  
RMS Jitter Generation*  
JGEN(rms) with no jitter on serial data  
JGEN(PP) with no jitter on serial data  
Peak-to-Peak Jitter Generation*  
Jitter Transfer Bandwidth*  
Jitter Transfer Peaking*  
JBW  
JP  
OC-48  
2.0  
0.1  
2.2  
0.03  
1.6  
Acquisition Time  
(Reference clock applied)  
TAQ  
After falling edge of  
RESET/CAL  
ms  
From the return of valid  
data  
20  
100  
2.0  
2.5  
500  
5.5  
5.5  
µs  
ms  
ms  
Acquisition Time  
TAQ  
After falling edge of  
RESET/CAL  
(Reference-less operation)  
From the return of valid  
data  
1.5  
Reference Clock Range  
See Table 7 on page 13.  
f
CLK / 16  
155.52  
77.76  
19.44  
fCLK / 32  
fCLK / 128  
MHz  
Input Reference Clock Frequency  
Tolerance  
CTOL  
–500  
+500  
ppm  
ppm  
Frequency Difference at which  
Receive PLL goes out of Lock  
(REFCLK compared to the divided  
down VCO clock)  
±650  
*Note: As defined in Bellcore specifications: GR-253-CORE, Issue 3, September 2000. Using PRBS 223 – 1 data pattern.  
9
Rev. 1.4  
Si5017  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
VDD  
Value  
–0.5 to 3.5  
–0.3 to 3.6  
–0.3 to (VDD+ 0.3)  
±50  
Unit  
V
DC Supply Voltage  
LVTTL Input Voltage  
VDIG  
V
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
ESD HBM Tolerance (100 pf, 1.5 k)  
VDIF  
V
mA  
°C  
°C  
kV  
TJCT  
TSTG  
–55 to 150  
–55 to 150  
1
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
38  
°C/W  
JA  
10  
Rev. 1.4  
Si5017  
3. Typical Application Schematic  
BER Alarm  
Indicator  
LVTTL  
Control Inputs  
Loss-of-Signal  
Indicator  
Loss-of-Lock  
Indicator  
DIN+  
DOUT+  
DOUT–  
High-Speed  
Serial Input  
Recovered  
Data  
DIN–  
System  
Reference  
Clock  
Si5017  
REFCLK+  
REFCLK–  
CLKOUT+  
CLKOUT–  
Recovered  
Clock  
(Optional)  
100 pF x 4  
10 kΩ  
VDD  
(1%)  
0.1 µF  
Loss-of-Signal Data Slice  
Level Set  
Level Set  
Bit Error Rate  
Level Set  
Rev. 1.4  
11  
Si5017  
traditional methods, and it eliminates performance  
degradation caused by external component aging. In  
4. Functional Description  
The Si5017 integrates a high-speed limiting amplifier addition, because external loop filter components are  
with a CDR unit that operates between 2.4 and not required, sensitive noise entry points are eliminated,  
2.7 Gbps. No external reference clock is required for thus making the DSPLL less susceptible to board-level  
clock and data recovery. The limiting amplifier magnifies noise sources and making SONET/SDH jitter  
very low-level input data signals so accurate clock and compliance easier to attain in the application.  
data recovery can be performed. The CDR uses Silicon  
4.3. Operation Without an External Refer-  
®
Laboratories DSPLL technology to recover a clock  
ence  
synchronous to the input data stream. The recovered  
clock retimes the incoming data, and both are output  
synchronously via current-mode logic (CML) drivers.  
Silicon Laboratories’ DSPLL technology ensures  
superior jitter performance while eliminating the need  
for external loop filter components found in traditional  
phase-locked loop (PLL) implementations.  
The Si5017 can perform clock and data recovery  
without an external reference clock. Tying the  
REFCLK+ input to VDD and the REFCLK– input to  
GND configures the device to operate without an  
external reference clock. Clock recovery is achieved by  
monitoring the timing quality of the incoming data  
relative to the VCO frequency. Lock is maintained by  
continuously monitoring the incoming data timing quality  
and adjusting the VCO accordingly. Details of the lock  
detection and the lock-to-reference functions while in  
this mode are described in their respective sections  
below.  
The limiting amplifier includes a control input for  
adjusting the data slicing level and provides a loss-of-  
signal level alarm output. The CDR includes a bit-error-  
rate performance monitor which signals a high bit-error-  
rate condition (associated with excessive incoming  
jitter) relative to an externally adjustable bit-error-rate  
threshold.  
Note: Without an external reference the acquisition of data is  
dependent solely on the data itself and typically  
requires more time to acquire lock than when a refer-  
ence is applied.  
The optional reference clock minimizes the CDR  
acquisition time and provides a stable reference for  
maintaining the output clock when locking to reference  
is desired.  
4.4. Operation With an External Reference  
The Si5017 can also perform clock and data recovery  
with an external reference. The device’s optional  
external reference clock centers the DSPLL, minimizes  
the acquisition time, and maintains a stable output clock  
(CLKOUT) when lock-to-reference (LTR) is asserted.  
4.1. Limiting Amplifier  
The limiting amplifier accepts the low-level signal output  
from a transimpedance amplifier (TIA). The low-level  
signal is amplified to a usable level for the CDR unit.  
The minimum input swing requirement is specified in  
Table 2. Larger input amplitudes (up to the maximum  
input swing specified in Table 2) are accommodated  
without degradation of performance. The limiting  
amplifier ensures optimal data slicing by using a digital  
dc offset cancellation technique to remove any dc bias  
introduced by the amplification stage.  
When the reference clock is present, the Si5017 uses  
the reference clock to center the VCO output frequency  
so that clock and data are recovered from the input data  
stream. The device self configures for operation with  
one of three reference clock frequencies. This  
eliminates the need to externally configure the device to  
operate with a particular reference clock.  
®
4.2. DSPLL  
The reference clock centers the VCO for a nominal  
output between 2.5 and 2.7 GHz. The VCO frequency is  
centered at 16, 32, or 128 times the reference clock  
frequency. Detection circuitry continuously monitors the  
reference clock input to determine whether the device  
should be configured for a reference clock that is 1/16,  
1/32, or 1/128 the nominal VCO output. Approximate  
reference clock frequencies for some target applications  
are given in Table 7.  
The Si5017 PLL structure (shown in the "Detailed Block  
Diagram" on page 4) utilizes Silicon Laboratories'  
DSPLL technology to maintain superior jitter  
performance while eliminating the need for external loop  
filter  
components  
found  
in  
traditional  
PLL  
implementations. This is achieved using a digital signal  
processing (DSP) algorithm to replace the loop filter  
commonly found in analog PLL designs. This algorithm  
processes the phase detector error term and generates  
a digital control value to adjust the frequency of the  
voltage-controlled oscillator (VCO). This technology  
enables CDR with far less jitter than is generated using  
12  
Rev. 1.4  
Si5017  
of LTR forces the DSPLL to lock CLKOUT to the  
provided reference. If no external reference clock is  
used, LTR forces the DSPLL to hold the digital  
frequency control input to the VCO at the last value.  
This produces a stable output clock as long as supply  
and temperature are constant.  
Table 7. Typical REFCLK Frequencies  
OC-48 with Ratio of VCO  
15/14 FEC to REFCLK  
SONET/SDH  
19.44 MHz 20.83 MHz  
77.76 MHz 83.31 MHz  
155.52 MHz 166.63 MHz  
128  
32  
4.7. Loss-of-Signal (LOS)  
The Si5017 indicates a loss-of-signal condition on the  
LOS output pin when the input peak-to-peak signal level  
on DIN falls below an externally controlled threshold.  
The LOS threshold range is specified in Table 3 and is  
16  
4.5. Lock Detect  
The Si5017 provides lock-detect circuitry that indicates set by applying a voltage on the LOS_LVL pin. The  
whether the PLL has achieved frequency lock with the graph in Figure 6 illustrates the LOS_LVL mapping to  
incoming data. The operation of the lock-detector the LOS threshold. The LOS output is asserted when  
depends on the reference clock option used.  
the input signal drops below the programmed peak-to-  
peak value. If desired, the LOS function may be  
disabled by grounding LOS_LVL or by adjusting  
LOS_LVL to be less than 1 V.  
When an external reference clock is provided, the circuit  
compares the frequency of a divided-down version of  
the recovered clock with the frequency of the applied  
reference clock (REFCLK). If the recovered clock  
frequency deviates from that of the reference clock by  
the amount specified in Table 4 on page 9, the PLL is  
declared out of lock, and the loss-of-lock (LOL) pin is  
asserted. In this state, the PLL will periodically try to  
reacquire lock with the incoming data stream. During  
reacquisition, the recovered clock frequency (CLKOUT)  
drifts over a ±600 ppm range relative to the applied  
reference clock and the LOL output alarm may toggle  
until the PLL has reacquired frequency lock. Due to the  
low noise and stability of the DSPLL, there is the  
possibility that the PLL will not drift enough to render an  
out-of-lock condition, even if the data is removed from  
inputs.  
Note: The LOS circuit is designed to only work with pseudo-  
random, dc-balanced data.  
40 mV  
30 mV  
15 mV  
40mV/V  
LOS Limited by Device Noise  
0 mV  
0 V  
1.00 V  
1.50 V  
1.875 V  
2.25 V  
2.50 V  
In applications requiring a more stable output clock  
during out-of-lock conditions, the lock-to-reference  
(LTR) input can be used to force the PLL to lock to the  
externally supplied reference.  
LOS_LVL (V)  
Figure 6. LOS_LVL Mapping  
In the absence of an external reference, the lock detect  
circuitry uses a data quality measure to determine when  
frequency lock has been lost with the incoming data  
stream. During reacquisition, CLKOUT may vary by  
approximately ±10% from the nominal data rate.  
R1  
3
LOS_LVL  
Set LOS  
Level  
Si5017  
CDR  
R2  
10k  
4.6. Lock-to-Reference  
The LTR input is used to force a stable output clock  
when an alarm condition, like LOS, exists. In typical  
applications, the LOS output is tied to the LTR input to  
force a stable output clock when the input data signal is  
lost. When LTR is asserted, the DSPLL is prevented  
from acquiring the data signal present on DIN. The  
operation of the LTR control input depends on which  
reference clocking mode is used.  
9
LOS  
LOS Alarm  
Figure 7. LOS Signal Hysteresis  
When an external reference clock is present, assertion  
13  
Rev. 1.4  
Si5017  
In many applications it is desirable to produce a fixed of the expected event window are counted as bit errors.  
amount of signal hysteresis for an alarm indicator such The BER threshold is programmed by applying a  
as LOS, since a marginal data input signal could cause voltage to the BER_LVL pin between 500 mV and  
intermittent toggling, leading to false alarm status. 2.25 V corresponding to a BER of approximately 10–10  
When it is anticipated that very low-level DIN signals will and 10–6, respectively. The voltage present on  
be encountered, the introduction of an adequate BER_LVL maps to the BER as follows: log10(BER) = (4  
amount of LOS hysteresis is recommended to minimize x BER_LVL) – 13. (BER_LVL is in volts; BER is in bits  
any undesirable LOS signal toggling. Figure 7 illustrates per second.).  
a simple circuit that may be used to set a fixed level of  
LOS signal hysteresis for the Si5017 CDR. The value of  
4.9. Data Slicing Level  
R1 may be chosen to provide a range of hysteresis from The Si5017 provides the ability to externally adjust the  
3 to 8 dB where a nominal value of 800 adjusts the slicing level for applications that require bit-error-rate  
hysteresis level to approximately 6 dB. Use a value of (BER) optimization. Adjustments in slicing level of  
500 or 1000 for R1 to provide 3 dB or 8 dB of ±25 mV (typical, relative to the internally set input  
hysteresis, respectively.  
common mode voltage) are supported. The slicing level  
is set by applying a voltage between 0.75 and 2.25 V to  
the SLICE_LVL input. See Figure 8 for the operation  
levels of the slice circuit.  
Hysteresis is defined as the ratio of the LOS deassert  
level (LOSD) and the LOS assert level (LOSA). The  
hysteresis in decibels is calculated as 20log(LOSD/  
LOSA).  
When SLICE_LVL is driven below 500 mV, the slicing  
level adjustment is disabled, and the slicing level is set  
to the cross-point of the differential input signal.  
4.8. Bit-Error-Rate (BER) Detection  
The Si5017 uses a proprietary Silicon Laboratories  
algorithm to generate a bit-error-rate (BER) alarm on  
the BER_ALM pin if the observed BER is greater than a  
user programmable threshold. Bit error detection relies  
on the input data edge timing; edges occurring outside  
Note: The slice circuit is designed to only work with pseudo-  
random, dc-balanced data.  
40  
30  
20  
10  
0
10 mV  
-10  
-20  
-30  
-40  
10 mV  
Note: SLICE is a continuous curve. This chart shows  
the range of results from part-to-part.  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
Figure 8. Si5017 OC-48 Slice Specification  
14  
Rev. 1.4  
Si5017  
the DSPLL on powerup. Calibration may also be  
initiated by a high-to-low transition on the RESET/CAL  
pin. The RESET/CAL pin must be held high for at least  
1 µs. When RESET/CAL is released (set to low) the  
digital logic resets to a known initial condition,  
recalibrates the DSPLL, and begins to lock to the  
incoming data stream. For a valid reset to occur when  
4.10. PLL Performance  
The PLL implementation used in the Si5017 is fully  
compliant with the jitter specifications proposed for  
SONET/SDH equipment by Bellcore GR-253-CORE,  
Issue 3, September 2000 and ITU-T G.958.  
4.10.1. Jitter Tolerance  
The Si5017’s tolerance to input jitter exceeds that of the using Reference mode, a proper, external reference  
Bellcore/ITU mask shown in Figure 8. This mask clock frequency must be applied as specified in Table 7.  
defines the level of peak-to-peak sinusoid jitter that  
4.12. Clock Disable  
must be tolerated when applied to the differential data  
input of the device.  
The Si5017 provides a clock disable pin (CLK_DSBL)  
that is used to disable the recovered clock output  
(CLKOUT). When the CLK_DSBL pin is asserted, the  
positive and negative terminals of CLKOUT are tied to  
VDD through 100 on-chip resistors.  
4.10.2. Jitter Transfer  
The Si5017 exceeds all relevant Bellcore/ITU  
specifications related to SONET/SDH jitter transfer.  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter as a function of jitter frequency.  
These measurements are made with an input test signal  
that is degraded with sinusoidal jitter whose magnitude  
is defined by the mask in Figure 9.  
4.13. Data Squelch  
The Si5017 provides a data squelching pin (DSQLCH)  
that is used to set the recovered data output (DOUT) to  
binary zero. When the DSQLCH pin is asserted, the  
DOUT+ signal is held low and the DOUT– signal is held  
high. This pin can be is used to squelch corrupt data  
during LOS and LOL situations. Care must be taken  
when ac coupling these outputs; a long string of zeros  
or ones will not be held through ac coupling capacitors.  
Jitter  
Transfer  
0.1 dB  
20 dB/Decade  
Slope  
4.14. Device Grounding  
The Si5017 uses the GND pad on the bottom of the 28-  
pin micro leaded package (QFN) for device ground. This  
pad should be connected directly to the analog supply  
ground. See Figure 15 on page 19 and Figure 16 on  
page 23 for the ground (GND) pad location.  
Acceptable  
Range  
Fc  
4.15. Bias Generation Circuitry  
Frequency  
The Si5017 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption versus traditional  
implementations that use an internal resistor. The bias  
generation circuitry requires a 10 k(1%) resistor  
connected between REXT and GND.  
SONET  
Data Rate  
OC-48  
Fc  
(kHz)  
2000  
Figure 9. Jitter Transfer Specification  
4.10.3. Jitter Generation  
4.16. Voltage Regulator  
The Si5017 exceeds all relevant specifications for jitter  
generation proposed for SONET/SDH equipment. The  
jitter generation specification defines the amount of jitter  
that may be present on the recovered clock and data  
outputs when a jitter free input signal is provided. The  
The Si5017 operates from a 3.3 V external supply  
voltage. Internally the device operates from a 2.5 V  
supply. The Si5017 regulates 2.5 V internally down from  
the external 3.3 V supply.  
Si5017 typically generates less than 3.0 mUI  
when presented with jitter-free input data.  
of jitter  
rms  
In addition to supporting 3.3 V systems, the on-chip  
linear regulator offers better power supply noise  
rejection versus a direct 2.5 V supply.  
4.11. RESET/DSPLL Calibration  
The Si5017 achieves optimal jitter performance by  
automatically calibrating the loop gain parameters within  
15  
Rev. 1.4  
Si5017  
4.17. Differential Input Circuitry  
The Si5017 provides differential inputs for both the high-speed data (DIN) and the reference clock (REFCLK)  
inputs. An example termination for these inputs is shown in Figures 10 and 11, respectively. In applications where  
direct dc coupling is possible, the 0.1 µF capacitors may be omitted. (LOS operation is only guaranteed when ac  
coupled.) The data input limiting amplifier requires an input signal with a differential peak-to-peak voltage as  
–12  
specified in Table 2 on page 7 to ensure a BER of at least 10 . The REFCLK input differential peak-to-peak  
voltage requirement is also specified in Table 2.  
Si5017  
Clock source  
2.5 V (±5%)  
2.5 kΩ  
0.1 µF  
Zo = 50 Ω  
RFCLK +  
RFCLK –  
10 kΩ  
2.5 kΩ  
100 Ω  
Zo = 50 Ω  
0.1 µF  
10 kΩ  
GND  
Figure 10. Input Termination for REFCLK (ac coupled)  
Si5017  
TIA  
2.5 V (±5%)  
0.1 µF  
Zo = 50 Ω  
DIN+  
50 Ω  
50 Ω  
5 kΩ  
7.5 kΩ  
0.1 µF  
Zo = 50 Ω  
DIN–  
GND  
Figure 11. Input Termination for DIN (ac coupled)  
16  
Rev. 1.4  
Si5017  
Si5017  
2.5 V (±5%)  
Clock  
source  
2.5 kΩ  
0.1 µF  
Zo = 50 Ω  
RFCLK +  
RFCLK –  
10 kΩ  
2.5 kΩ  
50 Ω  
10 kΩ  
0.1 µF  
GND  
Figure 12. Single-Ended Input Termination for REFCLK (ac coupled)  
Si5017  
(±5%)  
2.5 V  
Signal  
source  
0.1 µF  
Zo = 50 Ω  
DIN+  
50 Ω  
50 Ω  
5 kΩ  
100Ω  
7.5 kΩ  
DIN–  
0.1 µF  
GND  
Figure 13. Single-Ended Input Termination for DIN (ac coupled)  
17  
Rev. 1.4  
Si5017  
4.18. Differential Output Circuitry  
The Si5017 utilizes a CML architecture to output both the recovered clock (CLKOUT) and data (DOUT). An  
example of output termination with ac coupling is shown in Figure 14. In applications in which direct dc coupling is  
possible, the 0.1 µF capacitors may be omitted. The differential peak-to-peak voltage swing of the CML  
architecture is specified in Table 2 on page 7.  
Si5017  
VDD  
50 Ω  
2.5 V (±5%)  
100 Ω  
DOUT+,  
CLKOUT+  
0.1 µF  
0.1 µF  
Zo = 50 Ω  
Zo = 50 Ω  
DOUT–,  
CLKOUT–  
100 Ω  
2.5 V (±5%)  
50 Ω  
VDD  
Figure 14. Output Termination for DOUT and CLKOUT (ac coupled)  
18  
Rev. 1.4  
Si5017  
5. Pin Descriptions: Si5017  
28 27 26 25 24 23 22  
VDD  
VDD  
VDD  
21  
1
2
3
4
5
6
7
20 REXT  
LOS_LVL  
SLICE_LVL  
REFCLK+  
REFCLK–  
LOL  
19 RESET/CAL  
GND  
Pad  
18  
17  
16  
15  
VDD  
DOUT+  
DOUT–  
TDI  
8
9
10 11 12 13 14  
Figure 15. Si5017 Pin Configuration  
Table 8. Si5017 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
1,2,11,14,18,  
21,25  
VDD  
3.3 V  
Supply Voltage.  
Nominally 3.3 V.  
3
LOS_LVL  
I
LOS Level Control.  
The LOS threshold is set by the input voltage level  
applied to this pin. Figure 6 on page 13 shows the  
input setting to output threshold mapping.  
LOS is disabled when the voltage applied is less  
than 1 V.  
4
SLICE_LVL  
I
Slicing Level Control.  
The slicing threshold level is set by applying a volt-  
age to this pin as described in the Slicing Level sec-  
tion of the data sheet. If this pin is tied to GND,  
slicing level adjustment is disabled, and the slicing  
level is set to the midpoint of the differential input  
signal on DIN. Slicing level becomes active when  
the voltage applied to the pin is greater than  
500 mV.  
5
6
REFCLK+  
REFCLK–  
I
See Table 2 Differential Reference Clock (Optional).  
When present, the reference clock sets the center  
operating frequency of the DSPLL for clock and  
data recovery. Tie REFCLK+ to VDD and REFCLK–  
to GND to operate without an external reference  
clock.  
See Table 7 on page 13 for typical reference clock  
frequencies.  
Rev. 1.4  
19  
Si5017  
Table 8. Si5017 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
7
O
LVTTL  
Loss-of-Lock.  
LOL  
This output is driven low when the recovered clock  
frequency deviates from the reference clock by the  
amount specified in Table 4 on page 9. If no exter-  
nal reference is supplied, this signal will be active  
when the internal PLL is no longer locked to the  
incoming data.  
8
I
LVTTL  
Lock-to-Reference.  
LTR  
When this pin is low, the DSPLL disregards the data  
inputs. If an external reference is supplied, the out-  
put clock locks to the supplied reference. If no  
external reference is used, the DSPLL locks the  
control loop until LTR is released.  
Note: This input has a weak internal pullup.  
9
O
LVTTL  
LVTTL  
Loss-of-Signal.  
LOS  
This output pin is driven low when the input signal is  
below the threshold set via LOS_LVL. (LOS opera-  
tion is guaranteed only when ac coupling is used on  
the DIN inputs.)  
10  
DSQLCH  
Data Squelch.  
When driven high, this pin forces the data present  
on DOUT+ to zero and DOUT– to one. For normal  
operation, this pin should be low. DSQLCH may be  
used during LOS/LOL conditions to prevent random  
data from being presented to the system.  
Note: This input has a weak internal pulldown.  
12  
13  
DIN+  
DIN–  
I
See Table 2 Differential Data Input.  
Clock and data are recovered from the differential  
signal present on these pins. AC coupling is  
recommended.  
15  
GND  
GND  
CML  
Production Test Input.  
This pin is used during production testing and must  
be tied to GND for normal operation.  
16  
17  
DOUT–  
DOUT+  
O
I
Differential Data Output.  
The data output signal is a retimed version of the  
data recovered from the signal present on DIN.  
19  
RESET/CAL  
LVTTL  
Reset/Calibrate.  
Driving this input high for at least 1 µs will reset  
internal device circuitry. A high to low transition on  
this pin will force a DSPLL calibration. For normal  
operation, drive this pin low.  
Note: This input has a weak internal pulldown.  
20  
REXT  
External Bias Resistor.  
This resistor is used to establish internal bias cur-  
rents within the device. This pin must be connected  
to GND through a 10 kΩ (1%) resistor.  
20  
Rev. 1.4  
Si5017  
Table 8. Si5017 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Differential Clock Output.  
22  
23  
CLKOUT–  
CLKOUT+  
O
CML  
The output clock is recovered from the data signal  
present on DIN except when LTR is asserted or the  
LOL state has been entered.  
24  
26  
27  
CLKDSBL  
BER_LVL  
BER_ALM  
I
I
LVTTL  
Clock Disable.  
When this input is high, the CLKOUT output drivers  
are disabled. For normal operation, this pin should  
be low.  
Note: This input has a weak internal pulldown.  
Bit Error Rate Level Control.  
The BER threshold level is set by applying a volt-  
age to this pin. When the BER exceeds the pro-  
grammed threshold, BER_ALM is driven low. If this  
pin is tied to GND, BER_ALM is disabled.  
O
LVTTL  
GND  
Bit Error Rate Alarm.  
This pin will be driven low to indicate that the BER  
threshold set by BER_LVL has been exceeded.  
There is no hysteresis.  
28  
NC  
No Connect.  
Leave this pin disconnected.  
GND Pad  
GND  
Supply Ground.  
Nominally 0.0 V. The GND pad found on the bottom  
of the 28-lead QFN (see Figure 16 on page 23)  
must be connected directly to supply ground.  
Minimize the ground path inductance for optimal  
performance.  
Rev. 1.4  
21  
Si5017  
6. Ordering Guide  
Part Number  
Package  
Voltage  
Lead-Free  
Temperature  
Si5017-X-GM  
28-Lead QFN  
3.3  
Yes  
–40 to 85 °C  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
22  
Rev. 1.4  
Si5017  
7. Package Outline  
Figure 16 illustrates the package details for the Si5017. Table 9 lists the values for the dimensions shown in the  
illustration.  
2X  
0.10 C  
A
A
D
D/2  
0.05 C  
A
b
M
D1  
0.10  
N
C
A
B
A1  
D1/2  
D2  
2X  
N
C
B
0.10  
1
2
3
1
2
3
E1/2  
E1  
E/2  
E
B
(Ne–1) Xe  
REF.  
E2  
L
θ
C
SEATING  
PLANE  
e
TOP VIEW  
(Nd–1) Xe  
REF.  
C
C
C
L
b
A1  
BOTTOM VIEW  
SECTION "C–C"  
e
SCALE: NONE  
Approximate device weight is 62.2 mg.  
Figure 16. 28-Lead Quad Flat No-Lead (QFN)  
Table 9. Package Diagram Dimensions  
Controlling Dimension: mm  
Symbol  
Millimeters  
Nom  
Min  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.85  
0.00  
0.18  
0.01  
0.23  
D
5.00 BSC  
4.75 BSC  
3.10  
D1  
D2  
E
2.95  
2.95  
3.25  
3.25  
5.00 BSC  
4.75 BSC  
3.10  
E1  
E2  
N
28  
Nd  
Ne  
e
7
7
0.50 BSC  
0.60  
L
0.50  
0.75  
12°  
θ
Rev. 1.4  
23  
Si5017  
Updated Figure 16, “28-Lead Quad Flat No-Lead  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
(QFN),” on page 23.  
Updated Table 9, “Package Diagram Dimensions,”  
on page 23.  
Added Figure 4, “PLL Acquisition Time,” on page 6.  
Table 2 on page 7  
Changed dimension A.  
Changed dimension E2.  
Added FEC (2.7 GHz) Supply Current  
Updated values: Supply Current  
Added FEC (2.7 GHz) Power Dissipation  
Updated values: Power Dissipation  
Updated values: Common Mode Input Voltage  
(REFCLK)  
Revision 1.2 to Revision 1.3  
Table 2 on page 7.  
Updated power consumption.  
Updated R .  
IN  
Table 3 on page 8.  
Updated values: Output Common Mode Voltage  
Updated clock to data delay.  
Updated slicing level accuracy.  
Table 4 on page 9.  
Updated tolerance.  
Updated acquisition time.  
Updated reference clock information.  
Updated "Ordering Guide" on page 22.  
Added “X” to part number.  
Table 3 on page 8  
Added separate Output Clock Rise Time  
Added separate Output Clock Fall Time  
Updated values: Output Clock Rise Time  
Updated values: Output Clock Fall Time  
Table 4 on page 9  
Updated values: Jitter Tolerance (OC-48) for f = 1 MHz  
Updated values: Acquisition Time  
(reference clock applied)  
Updated values: Acquisition Time  
(reference-less operation)  
Revision 1.3 to Revision 1.4  
Updated Table 2 on page 7.  
Added limits for V  
.
Updated values: Freq Difference at which Receive PLL  
goes out of Lock  
ICM  
Updated V  
.
OD  
Updated values: Freq Difference at which Receive PLL  
goes into Lock  
Updated Table 3 on page 8.  
Updated T  
Updated T  
.
Cr-D  
Removed “Hysteresis Dependency” Figure.  
.
Cf-D  
Added Figure 7, “LOS Signal Hysteresis,” on page  
Revised SLICE specification.  
Updated Table 4 on page 9.  
13.  
Corrected error: Table 8 on page 19—changed  
description for LOS_LVL from “LOS is disabled when  
the voltage applied is less than 500 mV” to “LOS is  
disabled when the voltage applied is less than  
1.0 V.”  
T min/max values updated.  
AQ  
Updated "Loss-of-Signal (LOS)" on page 13.  
Added note describing valid signal.  
Updated Figure 6, “LOS_LVL Mapping,” on page 13.  
Updated "Data Slicing Level" on page 14.  
Added Figure 8 on page 14.  
Revision 1.0 to Revision 1.1  
Revised text.  
Corrected “Revision 0.1 to Revision 1.0” Change  
List.  
Revision 1.1 to Revision 1.2  
Added Figure 5, “LOS Response Time,” on page 6.  
Updated Table 2 on page 7  
Added “Output Common Mode Voltage (DOUT)” with  
updated values.  
Added “Output Common Mode Voltage (CLKOUT)” with  
updated values.  
Table 3 on page 8.  
Added “Output Clock Duty Cycle”  
Added “Loss-of-Signal Response Time”  
Updated Table 8 on page 19  
Changed “clock input” to “DIN inputs” for Loss-of-Signal.  
24  
Rev. 1.4  
Si5017  
NOTES:  
Rev. 1.4  
25  
Si5017  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: HighSpeed@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Rev. 1.4  

相关型号:

SI5018

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC
SILICON

SI5018-B-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI5018-B-GMR

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI5018-BM

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC
SILICON

SI5018-BMR

Clock Recovery Circuit, 1-Func, 4 X 4 MM, MLP-20
SILICON

SI5018-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, LEAD FREE, MLP-20
SILICON

SI5018-X-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI502-EVB

USB plug-in board that allows for evaluation of the Si50x family of CMEMS oscillators.
SILICON

SI5020

SiPHY MULTI-RATE SONET/SDH CLOCK AND DATA RECOVERY IC
ETC

SI5020-B-GMR

Clock Recovery Circuit, 1-Func, QFN-20
SILICON

SI5020-BM

SiPHY MULTI-RATE SONET/SDH CLOCK AND DATA RECOVERY IC
ETC

SI5020-X-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON