SI53019-A02AGMR [SILICON]

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72;
SI53019-A02AGMR
型号: SI53019-A02AGMR
厂家: SILICON    SILICON
描述:

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72

驱动 逻辑集成电路
文件: 总37页 (文件大小:675K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53019-A02A  
19-OUTPUT PCI  
E
G
EN  
3 AND QPI BUFFER  
Features  
Nineteen 0.7 V current-mode,  
HCSL PCIe Gen3 outputs  
100 MHz /133 MHz PLL  
operation, supports PCIe and  
QPI  
PLL bandwidth SW SMBUS  
programming overrides the latch  
value from HW pin  
PLL or bypass mode  
Spread spectrum tolerable  
50 ps output-to-output skew  
Fixed 0 ps input to output delay  
Low phase jitter (Intel QPI, PCIe  
Gen 1/2/3/4 common clock  
compliant)  
Gen 3 SRNS Compliant  
9 selectable SMBUS addresses  
Fixed internal feedback path  
8 dedicated OE pins  
100 ps input-to-output delay  
Ordering Information:  
Extended Temperature:  
–40 to 85 °C  
See page 32.  
Package: 72-pin QFN  
Applications  
Pin Assignments  
Server  
Data center  
Storage  
54  
53  
52  
51  
50  
49  
48  
47  
46  
OE11  
VDDA  
GNDA  
IREF  
1
2
DIF_11  
DIF_11  
OE10  
3
4
100M_133M  
DIF_10  
DIF_10  
5
HBW_BYPASS_LBW  
6
PWRGD / PWRDN  
GND  
Description  
OE9  
7
8
VDDR  
CLK_IN  
CLK_IN  
SA_0  
DIF_9  
DIF_9  
Si53019-A02A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
45 VDD  
GND  
44  
OE8  
DIF_8  
DIF_8  
OE7  
The Si53019-A02A is a 19-output, current mode HCSL differential clock  
buffer that meets all of the performance requirements of the Intel  
DB1900Z specification. The device is optimized for distributing reference  
43  
42  
41  
40  
39  
SDA  
SCL  
SA_1  
NC  
NC  
DIF_7  
38 DIF_7  
OE6  
FB_OUT  
FB_OUT  
37  
®
clocks for Intel QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/  
Gen 3/Gen 4, SAS, SATA, and Intel Scalable Memory Interconnect (Intel  
SMI) applications. The VCO of the device is optimized to support  
100 MHz and 133 MHz operation. Each differential output can be enabled  
Note: FB_OUT pins must be identically terminated to the other DIF outputs.  
Patents pending  
2
through I C for maximum flexibility and power savings.  
The Si53019-A02A features a fixed internal feedback path. Measuring  
PCIe clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter  
Tool. Download it for free at www.silabs.com/pcie-learningcenter.  
Rev. 1.2 2/16  
Copyright © 2016 by Silicon Laboratories  
Si53019-A02A  
Si53019-A02A  
Functional Block Diagram  
OE(5_12)  
8
FB_OUT  
SSC Compatible  
PLL  
DIF_[18:0]  
CLK_IN  
CLK_IN  
100M_133  
HBW_BYPASS_LBW  
SA_0  
SA_1  
Control  
Logic  
PWRGD / PWRDN  
SDA  
SCL  
IREF  
Note: FB_OUT pins must be identically terminated to the other DIF outputs.  
2
Rev. 1.2  
Si53019-A02A  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1. CLK_IN, CLK_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2. 100M_133M—Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.3. SA_0, SA_1—Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.4. CKPWRGD/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.5. HBW_BYPASS_LBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.6. Miscellaneous Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.1. Input Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.2. Termination of Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1. Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.2. Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Pin Descriptions: 72-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Power Filtering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6.1. Ferrite Bead Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9. Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.2  
3
Si53019-A02A  
1. Electrical Specifications  
Table 1. DC Operating Characteristics1  
VDD_A = 3.3 V ±5%, VDD = 3.3 V ±5%  
Parameter  
Symbol  
VDD/VDD_A  
Condition  
Min  
3.135  
2.0  
Max  
Unit  
V
3.3 V Core Supply Voltage  
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
3.3 V ±5%  
3.465  
V
V
V
+0.3  
DD  
V
IH  
DD  
V
VSS–0.3  
–5  
0.8  
+5  
+0.3  
V
IL  
2
Input Leakage Current  
I
0 < VIN < V  
µA  
V
IL  
DD  
3
3.3 V Input High Voltage  
V
V
0.7  
V
IH_FS  
DD  
DD  
3
3.3 V Input Low Voltage  
V
VSS–0.3  
0
0.35  
0.9  
V
IL_FS  
3.3 V Input Low Voltage  
3.3 V Input Med Voltage  
3.3 V Input High Voltage  
V
V
IL_Tri  
V
1.3  
1.8  
V
IM_Tri  
V
2.4  
V
V
IH_Tri  
DD  
4
3.3 V Output High Voltage  
V
I
= –1 mA  
= 1 mA  
OL  
2.4  
V
OH  
OH  
4
3.3 V Output Low Voltage  
V
I
0.4  
4.5  
4.5  
7
V
OL  
5
Input Capacitance  
C
2.5  
pF  
pF  
nH  
°C  
IN  
5
Output Capacitance  
C
2.5  
OUT  
Pin Inductance  
Ambient Temperature  
Notes:  
L
PIN  
T
No Airflow  
–40  
85  
A
1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.  
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state  
current requirements.  
3. Internal voltage reference is to be used to guarantee VIH_FS and VIL_FS thresholds levels over full operating range.  
4. Signal edge is required to be monotonic when transitioning through this region.  
5. Ccomp capacitance based on pad metalization and silicon device capacitance. Not including pin capacitance.  
4
Rev. 1.2  
 
 
 
 
 
 
Si53019-A02A  
Table 2. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
Max  
2
Clock Stabilization Time  
T
1.5  
1.8  
100  
ms  
ppm  
ns  
STAB  
3,4,5  
Long Term Accuracy  
L
ACC  
3,4,6  
3,4,6  
Absolute Host CLK Period (100 MHz)  
Absolute Host CLK Period (133 MHz)  
T
9.94900  
7.44925  
1.0  
10.05100  
7.55075  
4.0  
ABS  
T
ns  
ABS  
3,4,7  
Slew Rate  
Edge_rate  
3.0  
7
V/ns  
%
3,8,10,11  
Slew Rate Matching  
T
/
20  
RISE_MAT  
T
FALL_MAT  
3,8,9  
Rise Time Variation  
Trise  
Tfall  
125  
125  
850  
150  
1150  
ps  
ps  
3,8,9  
Fall Time Variation  
3,8,12  
Voltage High (typ 0.7 V)  
V
660  
–150  
750  
15  
mV  
mV  
mV  
mV  
HIGH  
3,8,13  
Voltage Low (typ 0.7 V)  
V
LOW  
8
Maximum Voltage  
V
850  
MAX  
Minimum Voltage  
V
–300  
MIN  
Notes:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the  
time that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , Rp = 49.9, 2 pF for 100 transmission line; Rs = 27 , Rp = 42.2, 2 pF for 85   
transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from  
–150 mV to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making  
most of the dynamic wiggles along the clock edge. Only valid for Rising clock and Falling CLOCK. Signal must be  
monotonic through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, averaging on. The difference between the rising edge rate (average) of clock verses the  
falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following: 2*(Trise – Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge  
is crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figures 3-4 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
Rev. 1.2  
5
 
 
 
 
 
 
 
 
 
 
Si53019-A02A  
Table 2. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)1 (Continued)  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
450  
14  
Max  
3,8,14,15, 16  
3,8,18  
Absolute Crossing Point Voltages  
Vox  
250  
550  
140  
mV  
mV  
ABS  
Total Variation of Vcross Over All Edges  
Total ∆  
Vox  
4
Vswing  
Vswing  
DC  
300  
45  
mV  
%
V
3,4  
Duty Cycle  
55  
3,8,19  
Maximum Voltage (Overshoot)  
V
V
+ 0.3  
High  
ovs  
3,8,20  
Maximum Voltage (Undershoot)  
V
V
– 0.3  
Low  
V
uds  
3,8  
Ringback Voltage  
V
0.2  
N/A  
V
rb  
Notes:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the  
time that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , Rp = 49.9, 2 pF for 100 transmission line; Rs = 27 , Rp = 42.2, 2 pF for 85   
transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 µs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from  
–150 mV to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making  
most of the dynamic wiggles along the clock edge. Only valid for Rising clock and Falling CLOCK. Signal must be  
monotonic through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, averaging on. The difference between the rising edge rate (average) of clock verses the  
falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following: 2*(Trise – Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge  
is crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figures 3-4 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
6
Rev. 1.2  
Si53019-A02A  
Table 3. SMBus Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
V
1
SMBus Input Low Voltage  
V
0.8  
ILSMB  
IHSMB  
1
SMBus Input High Voltage  
V
2.1  
V
V
DDSMB  
1
SMBus Output Low Voltage  
V
@ I  
0.4  
V
OLSMB  
DDSMB  
PULLUP  
PULLUP  
1
Nominal Bus Voltage  
V
@ V  
2.7  
4
5.5  
V
OL  
1
SMBus Sink Current  
I
3 V to 5 V ±10%  
(Max V – 0.15) to (Min V + 0.15)  
mA  
ns  
ns  
1
SCLK/SDAT Rise Time  
t
1000  
300  
RSMB  
IL  
IH  
1
SCLK/SDAT Fall Time  
t
(Min V + 0.15) to  
IH  
FSMB  
(Max V – 0.15)  
IL  
1,2  
SMBus Operating Frequency  
f
Minimum Operating Frequency  
100  
kHz  
MINSMB  
Notes:  
1. Guaranteed by design and characterization.  
2. The differential input clock must be running for the SMBus to be active.  
Table 4. Current Consumption  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
350  
15  
Unit  
mA  
mA  
Operating Current  
Power Down Current  
IDD  
100 MHz, CL = Full Load, Rs=33  
All differential pairs tri-stated  
310  
6
VDD  
IDD  
VDDPD  
Rev. 1.2  
7
 
 
Si53019-A02A  
Table 5. Clock Input Parameters  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Input High Voltage  
V
Differential Inputs  
600  
800  
1150  
mV  
IHDIF  
(singled-ended measurement)  
Input Low Voltage  
V
Differential Inputs  
(singled-ended measurement)  
VSS–300  
300  
0
300  
mV  
mV  
IHDIF  
Input Common Mode  
Voltage  
V
Common mode input voltage  
1000  
com  
Input Amplitude  
Input Slew Rate  
Input Duty Cycle  
V
Peak to Peak Value  
300  
0.4  
45  
1450  
8
mV  
V/ns  
%
swing  
dv/dt  
Measured differentially  
Measurement from differential wave  
form  
50  
55  
Input Jitter—Cycle to  
Cycle  
J
Differential measurement  
125  
ps  
DFin  
Input Frequency  
F
V
= 3.3 V, bypass mode  
DD  
33  
90  
150  
110  
147  
33  
MHz  
MHz  
MHz  
kHz  
ibyp  
F
V
= 3.3 V, 100 MHz PLL Mode  
100  
133.33  
31.5  
iPLL  
DD  
FiPLL  
V
= 3.3 V, 133.33 MHz PLL Mode  
Triangle Wave modulation  
120  
30  
DD  
Input SS Modulation  
Rate  
f
MODIN  
8
Rev. 1.2  
 
Si53019-A02A  
Table 6. Output Skew, PLL Bandwidth and Peaking  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Parameter  
Min  
TYP  
Max  
Unit  
CLK_IN, DIF[x:0]  
Input-to-Output Delay in PLL Mode  
–100  
10  
100  
ps  
1,2,3,4  
Nominal Value  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
DIF[18:0]  
Input-to-Output Delay in Bypass Mode  
2.5  
–50  
3.3  
15  
3
4.5  
50  
250  
75  
5
ns  
ps  
ps  
ps  
2,4,5  
Nominal Value  
Input-to-Output Delay Variation in PLL Mode  
2,4,5  
Over voltage and temperature  
Input-to-Output Delay Variation in Bypass Mode  
–250  
2,4,5  
Over voltage and temperature  
Random differential spread spectrum tracking  
error between 2 DB1900Z devices in Hi BW Mode  
Random differential tracking error between 2  
DB1900Z devices in Hi BW Mode  
ps  
(rms)  
Output-to-Output Skew across all Outputs  
0
20  
50  
ps  
1,2,3,4,5  
(Common to Bypass and PLL Mode)  
6
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
(HBW_BYPASS_LBW = 0)  
0.4  
0.1  
0.7  
2
2.0  
2.5  
1.4  
4
dB  
dB  
6
(HBW_BYPASS_LBW = 1)  
7
(HBW_BYPASS_LBW = 0)  
MHz  
MHz  
7
PLL Bandwidth  
(HBW_BYPASS_LBW = 1)  
Notes:  
1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the  
corresponding input.  
2. Measured from differential cross-point to differential cross-point.  
3. This parameter is deterministic for a given device.  
4. Measured with scope averaging on to find mean value.  
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created  
by it.  
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL  
jitter peaking.  
7. Measured at 3 db down or half power point.  
Rev. 1.2  
9
 
 
 
 
 
 
 
Si53019-A02A  
Table 7. Phase Jitter  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
1,2,3  
Phase Jitter  
PLL Mode  
PCIe Gen 1, Common Clock  
30  
86  
ps  
PCIe Gen2 Low Band, Common Clock  
1.0  
2.6  
3.0  
3.1  
1.0  
0.5  
0.71  
1.0  
0.3  
0.2  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen2 High Band, Common Clock  
ps  
(RMS)  
1,3,4,5  
1.5 MHz < F < Nyquist  
PCIe Gen 3, Common Clock  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
0.6  
ps  
(RMS)  
1,3,4,5  
®
Intel QPI & Intel SMI  
0.25  
0.42  
0.6  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
PCIe Gen 3 Separate Reference No Spread, SRNS  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
Intel QPI & Intel SMI  
(8 Gb/s, 100 MHz, 12 UI)  
0.17  
0.15  
ps  
(RMS)  
1,6  
Intel QPI & Intel SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
10  
Rev. 1.2  
 
 
 
 
 
Si53019-A02A  
Table 7. Phase Jitter (Continued)  
1,2,3  
Additive Phase Jitter  
Bypass Mode  
PCIe Gen 1  
4
ps  
PCIe Gen 2 Low Band  
0.08  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen 2 High Band  
1.5 MHz < F < Nyquist  
1.0  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 3  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
0.27  
0.27  
0.25  
0.08  
0.07  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel® SMI  
ps  
(RMS)  
1,6  
(8 Gb/s, 100 MHz, 12 UI)  
Intel QPI & Intel® SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.2  
11  
Si53019-A02A  
Table 8. Clock Periods Differential Clock Outputs with SSC Disabled  
SSC OFF  
Center  
Freq, MHz  
Measurement Window  
Units  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
-C-C Jitter  
AbsPer  
Min  
-SSC  
Short  
-ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
Term AVG Term AVG Nominal Term AVG Term AVG  
Min  
Min  
Max  
Max  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000 10.00100  
10.05100  
7.55075  
ns  
ns  
7.50000  
7.50075  
Table 9. Clock Periods Differential Clock Outputs with SSC Enabled  
SSC ON  
Center  
Freq, MHz  
Measurement Window  
Units  
1 Clock  
1 µs  
0.1 s  
0.1 s  
0.1 s  
1 µs  
1 Clock  
-C-C Jitter  
AbsPer  
Min  
-SSC  
Short  
–ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
Term AVG Term AVG Nominal Term AVG Term AVG  
Min  
Min  
Max  
Max  
99.75  
9.94906  
7.44930  
9.99906  
7.49930  
10.02406 10.02506 10.02607 10.05107 10.10107  
ns  
ns  
133.00  
7.51805  
7.51880  
7.51955  
7.53830  
7.58830  
Table 10. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
1
3.3 V Core Supply Voltage  
VDD/VDD_A  
4.6  
V
V
1,2  
3.3 V Input High Voltage  
VIH  
VIL  
V
+0.5V  
DD  
1
3.3 V Input Low Voltage  
0.5  
–65  
2000  
V
1
Storage Temperature  
t
150  
°C  
V
s
3
Input ESD protection  
ESD  
Notes:  
1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.  
2. Maximum VIH is not to exceed maximum VDD  
.
3. Human body model.  
12  
Rev. 1.2  
 
 
Si53019-A02A  
2. Functional Description  
OE(5_12)  
8
FB_OUT  
SSC Compatible  
PLL  
DIF_[18:0]  
CLK_IN  
CLK_IN  
100M_133  
HBW_BYPASS_LBW  
SA_0  
Control  
Logic  
SA_1  
PWRGD / PWRDN  
SDA  
SCL  
IREF  
Note: FB_OUT pins must be identically terminated to the other DIF outputs.  
Figure 1. Si53019-A02A Functional Block Diagram  
Table 11. Functionality at Powerup (PLL Mode)  
100M_133M  
CLK_IN (MHz)  
100  
DIF  
1
0
CLK_IN  
CLK_IN  
133.33  
Table 12. PLL Operating Mode Readback Table  
HBW_BYPASS_LBW  
Byte 0, Bit 7 Byte 0, Bit 6  
Mode  
Low  
0
0
1
0
1
1
PLL Low BW  
Bypass  
Mid (Bypass)  
High  
PLL High BW  
Rev. 1.2  
13  
Si53019-A02A  
Table 13. Tri-Level Input Thresholds  
Parameter  
Voltage  
Low  
Mid  
< 0.8 V  
1.2 < Vin < 1.8 V  
Vin > 2.2 V  
High  
Table 14. Power Connections  
Pin Number  
GND  
Description  
V
DD  
1
8
2
Analog PLL  
Analog Input  
DIF Outputs  
7
21,31,45,58,68  
26,44,63  
Table 15. SMBus Addressing  
Pin  
SMBus  
Address  
SMB_A1  
SMB_A0  
0
0
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
0
M
1
0
M
M
M
1
0
M
1
0
1
M
1
1
14  
Rev. 1.2  
Si53019-A02A  
2.1. CLK_IN, CLK_IN  
The differential input clock is expected to be sourced from a clock synthesizer or PCH.  
2.2. 100M_133M—Frequency Selection  
The Si53019-A02A is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz.  
100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs.  
Note that the CLK_IN frequency must be equal to the CLK_OUT frequency; meaning Si53019-A02A is operated in  
1:1 mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pull-  
down resistor is attached to this pin to select the input/output frequency. The functionality is summarized in  
Table 16.  
Table 16. Frequency Program Table  
100M_133M  
Optimized Frequency (DIF_IN = DIF_x)  
133.33 MHz  
0
1
100.00 MHz  
Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.  
2.3. SA_0, SA_1—Address Selection  
SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the Si53019-A02A. The two  
tri-level input pins can configure the device to nine different addresses.  
Table 17. SMBUS Address Table  
SA_1  
L
SA_0  
L
SMBUS Address  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
L
M
H
L
M
M
M
H
L
M
H
L
H
M
H
H
Rev. 1.2  
15  
 
Si53019-A02A  
2.4. CKPWRGD/PWRDN  
CKPWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to  
indicating a power-down condition. CKPWRGD (assertion) is used by the Si53019-A02A to sample initial  
configurations, such as frequency select condition and SA selections. After CKPWRGD has been asserted high for  
the first time, the pin becomes a PWRDN (Power Down) pin that can be used to shut off all clocks cleanly and  
instruct the device to invoke power-saving mode. PWRDN is a completely asynchronous active low input. When  
entering power-saving mode, PWRDN should be asserted low prior to shutting off the input clock or power to  
ensure all clocks shut down in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior  
to turning off the VCO. When PWRDN is deasserted high, all clocks will start and stop without any abnormal  
behavior and will meet all AC and DC parameters.  
Note: The assertion and deassertion of PWRDN is absolutely asynchronous.  
Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended.  
Operation in this mode may result in glitches, excessive frequency shifting, etc.  
Table 18. CKPWRGD/PWRDN Functionality  
CKPWRGD/  
PWRDN  
DIF_IN/  
DINF_IN#  
SMBus  
EN bit  
OE# Pin  
DIF(5:12)  
DIF(5:12)#  
Other DIF/  
DIF#  
FBOUT_NC/ PLL State  
FBOUT_NC#  
*
*
*
0
1
X
X
0
1
1
X
X
0
1
Hi-Z  
Hi-Z  
Hi-Z  
OFF  
ON  
ON  
ON  
*
*
Running  
Hi-Z  
Hi-Z  
Running  
Running  
Running  
Running  
Running  
Running  
*
Hi-Z  
*Note: Due to external pull down resistors, Hi-Z results in Low/Low on the True/Complement outputs.  
16  
Rev. 1.2  
Si53019-A02A  
2.4.1. PWRDN Assertion  
When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held Tri-  
state/Tri-state on the next DIF high-to-low transition. The device will put all outputs in high impedance mode, and  
all outputs will be pulled low by the external terminating resistors.  
PWRDWN  
DIF  
DIF  
Figure 2. PWRDN Assertion  
2.4.2. CKPWRGD Assertion  
The power-up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion  
of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs  
stopped in a Tri-state/Tri-state condition resulting from power down must be driven high in less than 300 µs of  
PWRDN deassertion to a voltage greater than 200 mV.  
Tstable  
<1.8 ms  
PWRGD  
DIF  
DIF  
Tdrive_Pwrdn#  
<300 µs; > 200 mV  
Figure 3. PWRDG Assertion (Pwrdown—Deassertion)  
Rev. 1.2  
17  
Si53019-A02A  
2.5. HBW_BYPASS_LBW  
The HBW_BYPASS_LBW pin is a tri-level function input pin (refer to Table 1 for VIL_Tri, VIM_Tri, and VIH_Tri  
signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In  
PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive  
cycle-to-cycle jitter (50 ps + input jitter) on the differential outputs. In the case of PLL mode, the input clock is  
passed through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be  
selected by asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 19.  
Table 19. PLL Bandwidth and Readback Table  
HBW_BYPASS_LBW Pin  
Mode  
LBW  
Byte 0, Bit 7  
Byte 0, Bit 6  
L
M
H
0
0
1
0
1
1
BYPASS  
HBW  
The Si53019-A02A has the ability to override the latch value of the PLL operating mode from hardware strap Pin 5  
via the use of Byte 0 and Bits 2 and 1. Byte 0 Bit 3 must be set to 1 to allow the user to change Bits 2 and 1,  
affecting the PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will  
have to be accomplished if the user changes these bits.  
2.6. Miscellaneous Requirements  
Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps)  
functionality is optional.  
Logic Levels: SMBus logic levels are based on a percentage of V  
for the controller and other devices on the  
DD  
bus. Assume all devices are based on a 3.3 V supply.  
Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock  
stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than  
this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all  
data transfers can be completed as specified without the use of clock/data stretching.  
General Call: It is assumed that the clock buffer will not have to respond to the “general call.”  
Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in  
Section 3 of the SMBus 2.0 specification.  
Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual  
datasheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board  
designer will use a single external pull-up resistor for each line and that these values are in the 5–6 krange.  
Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock  
driver plus one/two more SMBus devices on the platform for capacitive loading purposes.  
Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock  
buffer is specified as a standard mode device and is not required to support this feature. However, it is considered  
a good design practice to include the filters.  
PWRDN: If a clock buffer is placed in PWRDN mode, the SDATA and SCLK inputs must be Tri-stated and the  
device must retain all programming information. I current due to the SMBus circuitry must be characterized and  
DD  
in the data sheet.  
18  
Rev. 1.2  
 
Si53019-A02A  
3. Test and Measurement Setup  
3.1. Input Edge  
Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53019-  
A02A is guaranteed to meet all performance specifications.  
Table 20. Input Edge Rate  
Frequency  
100 MHz  
133 MHz  
Min  
0.35  
0.35  
Max  
N/A  
N/A  
Unit  
V/ns  
V/ns  
3.1.1. Measurement Points for Differential  
Slew_fall  
Slew_rise  
+150 mV  
+150 mV  
-150 mV  
0.0 V  
V_swing  
0.0 V  
-150 mV  
Diff  
Figure 4. Measurement Points for Rise Time and Fall Time  
Vovs  
VHigh  
Vrb  
Vrb  
VLow  
Vuds  
Figure 5. Single-ended Measurement Points for Vovs, Vuds, Vrb  
Rev. 1.2  
19  
Si53019-A02A  
TPeriod  
Low Duty Cycle %  
High Duty Cycle %  
Skew measurement  
point  
0.000 V  
Figure 6. Differential (CLOCK–CLOCK) Measurement Points (Tperiod, Duty Cycle, Jitter)  
3.2. Termination of Differential Outputs  
All differential outputs are to be tested into a 100 or 85 differential impedance transmission line. Source  
terminated clocks have some inherent limitations as to the maximum trace length and frequencies that can be  
supported. For CPU outputs, a maximum trace length of 10” and a maximum of 200 MHz are assumed. For SRC  
clocks, a maximum trace length of 16” and maximum frequency of 100 MHz is assumed. For frequencies beyond  
200 MHz, trace lengths must be restricted to avoid signal integrity problems.  
Table 21. Differential Output Termination  
Clock  
IREF ()  
475  
Board Trace Impedance  
Rs  
Rp  
Unit  
DIFF Clocks—50 configuration  
DIFF Clocks—43 configuration  
100  
85  
33+5%  
50  
412  
27+5% 42.2 or 43.2  
3.2.1. Termination of Differential Current Mode HCSL Outputs  
10 inches  
RS  
Differential Zo  
2pF  
2pF  
RP  
RP  
RS  
Figure 7. 0.7 V Configuration Test Load Board Termination  
20  
Rev. 1.2  
Si53019-A02A  
4. Control Registers  
4.1. Byte Read/Write  
Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register  
number.  
4.1.1. Byte Read  
The standard byte read is shown in Figure 8. It is an extension of the byte write. The write start condition is  
repeated; then the slave device starts sending data, and the master acknowledges it until the last byte is sent. The  
master terminates the transfer with a NAK, then a stop condition. For byte operation, the 2 x 7th bit of the  
command byte must be set. For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte  
must be the byte transfer count.  
1
7
1 1  
8
1 1  
7
1 1  
8
1 1  
r
Rd  
Data Byte 0  
Wr  
A
A
N
P
T Slave  
Command  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
Not ack  
Command  
starT  
Condition  
Byte Read Protocol  
repeat starT  
Acknowledge  
stoP  
Condition  
Master to  
Slave to  
Figure 8. Byte Read Protocol  
4.1.2. Byte Write  
Figure 9 illustrates a simple, typical byte write. For byte operation, the 2 x 7th bit of the command byte must be set.  
For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.  
The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.  
1
7
1 1  
8
1
8
1 1  
Wr  
A
P
A
T Slave  
Command  
A Data Byte 0  
Register # to  
write  
2 x 7 bit = 1  
Command  
starT Condition  
stoP Condition  
Acknowledge  
Master to  
Slave to  
Byte Write Protocol  
Figure 9. Byte Write Protocol  
Rev. 1.2  
21  
 
 
Si53019-A02A  
4.2. Block Read/Write  
4.2.1. Block Read  
After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The  
slave acknowledges the register index in the command byte. The master sends a repeat start function. After the  
slave acknowledges this, the slave sends the number of bytes it wants to transfer (> 0 and < 33). The master  
acknowledges each byte except the last and sends a stop function.  
1
7
1 1  
8
1 1  
7
1 1  
r
Rd  
Wr  
A
A
T Slave  
Command Code  
A
Slave  
Register # to  
read  
2 x 7 bit = 1  
repeat starT  
Acknowledge  
Command  
starT  
Condition  
Master to  
Slave to  
8
1
8
1
8
1 1  
Data Byte  
Data Byte 0  
A
A Data Byte 1 N P  
Not acknowledge  
stoP Condition  
Block Read Protocol  
Figure 10. Block Read Protocol  
4.2.2. Block Write  
After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The  
lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will  
be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the  
master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this  
byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte  
received. The transfer is terminated after the slave sends the ACK and the master sends a stop function.  
1
7
1 1  
8
1
A
Master to  
Slave to  
Wr  
Command  
A
T Slave Address  
Register # to  
write  
Command bit  
starT  
Acknowledge  
2 x 7 bit = 0  
Condition  
1
8
1
8
1 1  
8
A Data Byte 1 A P  
Byte Count = 2  
Data Byte 0  
A
stoP Condition  
Block Write Protocol  
Figure 11. Block Write Protocol  
22  
Rev. 1.2  
Si53019-A02A  
4.3. Control Registers  
Table 22. Byte 0: PLL Mode and Frequency Select Register  
Bit Pin #  
Name  
Control Function  
0
1
Type  
Default  
0
4
100M_133M#  
Frequency Select Read- 133MHz  
back  
100MHz  
R
Latch  
1
2
3
reserved  
reserved  
0
0
1
67/66 Output Enable DIF 16  
70/69 Output Enable DIF 17  
72/71 Output Enable DIF 18  
Output control, over-  
rides OE# pin  
4
5
6
7
Output control, over-  
rides OE# pin  
1
Output control, over-  
rides OE# pin  
1
5
5
PLL Mode 0  
PLL Mode1  
PLL operating mode  
readback 0  
See PLL operating  
mode readback table  
R
R
Latch  
Latch  
PLL operating mode  
readback 1  
Table 23. Byte 1: Output Enable Control Register  
Bit  
Pin #  
Description  
Control Functions  
If Bit = 0  
If Bit = 1  
Type Default  
0
19/20  
Output Enable DIF 0  
Output control,  
overrides OE# pin  
Hi-Z  
Enabled  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
1
1
2
3
4
5
6
7
22/23  
24/25  
27/28  
29/30  
32/33  
35/36  
39/38  
Output Enable DIF 1  
Output Enable DIF 2  
Output Enable DIF 3  
Output Enable DIF 4  
Output Enable DIF 5  
Output Enable DIF 6  
Output Enable DIF 7  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Rev. 1.2  
23  
Si53019-A02A  
Table 24. Byte 2: Output Enable Control Register  
Bit  
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
42/41  
Output Enable DIF 8  
Output control,  
Hi-Z  
Enabled  
RW  
1
overrides OE# pin  
1
2
3
4
5
6
7
47/46  
50/49  
53/52  
56/55  
60/59  
62/61  
65/64  
Output Enable DIF 9  
Output Enable DIF 10  
Output Enable DIF 11  
Output Enable DIF 12  
Output Enable DIF 13  
Output Enable DIF 14  
Output Enable DIF 15  
Output control,  
overrides OE# pin  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Table 25. Byte 3: Output Enable Pin Status Readback Register  
Bit  
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
34  
OE_RB5  
Real time readback OE# pin Low  
of OE5  
OE# pin  
High  
R
Real  
Time  
1
2
3
4
5
6
7
37  
40  
43  
48  
51  
54  
57  
OE_RB6  
OE_RB7  
OE_RB8  
OE_RB9  
OE_RB10  
OE_RB11  
OE_RB12  
Real time readback  
of OE6  
R
R
R
R
R
R
R
Real  
Time  
Real time readback  
of OE7  
Real  
Time  
Real time readback  
of OE8  
Real  
Time  
Real time readback  
of OE9  
Real  
Time  
Real time readback  
of OE10  
Real  
Time  
Real time readback  
of OE11  
Real  
Time  
Real time readback  
of OE12  
Real  
Time  
24  
Rev. 1.2  
Si53019-A02A  
Table 26. Byte 4: Reserved Control Register  
Bit  
0
Pin #  
Description  
Control Function  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Table 27. Byte 5: Vendor/Revision Identification Control Register  
Bit  
0
Pin #  
Description  
Vendor ID Bit 0  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Vendor ID  
1
0
1
Vendor ID Bit 1  
R
2
Vendor ID Bit 2  
R
0
3
Vendor ID Bit 3  
R
0
4
Revision Code Bit 0  
Revision Code Bit 1  
Revision Code Bit 2  
Revision Code Bit 3  
Revision ID  
–A01A = 0001  
–A02A = 0010  
R
X
X
X
X
5
R
6
R
7
R
Table 28. Byte 6: Device ID Control Register  
Bit  
0
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Device ID 0  
1
1
0
1
1
0
1
1
1
Device ID 1  
Device ID 2  
R
2
R
3
Device ID 3  
R
4
Device ID 4  
R
5
Device ID 5  
R
6
Device ID 6  
R
7
Device ID 7 (MSB)  
R
Rev. 1.2  
25  
Si53019-A02A  
Table 29. Byte 7: Byte Count Register  
Bit  
0
Pin #  
Description  
BC0  
Control Functions  
If Bit = 0  
If Bit = 1  
Type  
RW  
Default  
Writing to this register  
configures how many  
bytes will be read back. be read back by default.  
Default value is 8 hex,  
so 9 bytes (0 to 8) will  
0
0
1
BC1  
RW  
2
3
4
BC2  
BC3  
BC4  
RW  
RW  
RW  
0
1
0
5
6
7
Reserved  
Reserved  
Reserved  
0
0
0
26  
Rev. 1.2  
Si53019-A02A  
5. Pin Descriptions: 72-Pin QFN  
OE11  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
VDDA  
GNDA  
IREF  
1
2
DIF_11  
DIF_11  
OE10  
3
4
100M_133M  
DIF_10  
DIF_10  
OE9  
5
HBW_BYPASS_LBW  
6
PWRGD / PWRDN  
GND  
7
8
VDDR  
CLK_IN  
CLK_IN  
SA_0  
DIF_9  
DIF_9  
VDD  
GND  
OE8  
Si53019-A02A  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
SDA  
DIF_8  
DIF_8  
OE7  
SCL  
SA_1  
NC  
NC  
39 DIF_7  
38 DIF_7  
OE6  
37  
FB_OUT  
FB_OUT  
Note: FB_OUT pins must be identically terminated to the other DIF outputs.  
Rev. 1.2  
27  
Si53019-A02A  
Table 30. Si53019-A02A 72-Pin QFN Descriptions  
Pin #  
Name  
VDDA  
GNDA  
IREF  
Type  
Description  
3.3 V 3.3 V power supply for PLL.  
1
2
3
GND Ground for PLL.  
OUT This pin establishes the reference for the differential current mode output  
pairs. It requires a fixed precision resistor to ground. 475 is the standard  
value for 100 differential impedance. Other impedances require  
different values.  
I,SE 3.3 V tolerant inputs for input/output frequency selection. An external pull-  
4
5
100M_133M  
up or pull-down resistor is attached to this pin to select the input/output  
frequency.  
High = 100 MHz output  
Low = 133 MHz output  
I, SE Tri-Level input for selecting the PLL bandwidth or bypass mode.  
High = High BW mode  
HBW_BYPASS_LBW  
Med = Bypass mode  
Low = Low BW mode  
I
3.3 V LVTTL input to power up or power down the device.  
6
7
8
PWRGD/PWRDN  
GND  
GND Ground for outputs.  
VDD 3.3 V power supply for differential input receiver. This VDDR should be  
treated as an analog power rail and filtered appropriately.  
VDDR  
I, DIF 0.7 V Differential True clock input.  
9
CLK_IN  
CLK_IN  
SA_0  
SDA  
I, DIF 0.7 V Differential Complementary clock input.  
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
I/O Open collector SMBus data.  
10  
11  
12  
13  
14  
15  
16  
17  
I/O SMBus slave clock input.  
SCL  
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
SA_1  
NC  
Do not connect this pin to anything.  
Do not connect this pin to anything.  
NC  
I/O Complementary differential feedback output, providing the feedback  
signal to the PLL for synchronization to the input clock.  
FB_OUT  
I/O Truedifferentialfeedback output, providingthefeedback signalto the PLL  
for synchronization to the input clock.  
18  
FB_OUT  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
VDD Power supply for differential outputs.  
19  
20  
21  
22  
23  
DIF_0  
DIF_0  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
DIF_1  
DIF_1  
28  
Rev. 1.2  
Si53019-A02A  
Table 30. Si53019-A02A 72-Pin QFN Descriptions  
Pin #  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Name  
DIF_2  
DIF_2  
GND  
Type  
Description  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
3.3 V 3.3 V power supply  
DIF_3  
DIF_3  
DIF_4  
DIF_4  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
DIF_5  
DIF_5  
OE5  
IN  
Active low input for enabling DIF pair 5  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
35  
36  
37  
DIF_6  
DIF_6  
OE6  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 6  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
38  
39  
40  
DIF_7  
DIF_7  
OE7  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 7  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
41  
42  
43  
DIF_8  
DIF_8  
OE8  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 8  
1 = disable outputs, 0 = enable outputs  
GND Ground for outputs.  
3.3 V 3.3 V power supply  
44  
45  
46  
GND  
VDD  
O, 0.7 V Differential TRUE clock output.  
DIF  
DIF_9  
O, 0.7 V Differential Complimentary clock output.  
DIF  
47  
48  
49  
DIF_9  
OE9  
IN  
Active low input for enabling DIF pair 9  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
DIF_10  
Rev. 1.2  
29  
Si53019-A02A  
Table 30. Si53019-A02A 72-Pin QFN Descriptions  
Pin #  
50  
Name  
DIF_10  
OE10  
Type  
Description  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 10  
1 = disable outputs, 0 = enable outputs  
51  
O, DIF 0.7 V Differential TRUE clock output.  
52  
53  
54  
DIF_11  
DIF_11  
OE11  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 11  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
55  
56  
57  
DIF_12  
DIF_12  
OE12  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 12  
1 = disable outputs, 0 = enable outputs  
3.3 V 3.3 V power supply  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
DIF_13  
DIF_13  
DIF_14  
DIF_14  
GND  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
3.3 V 3.3 V power supply  
DIF_15  
DIF_15  
DIF_16  
DIF_16  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
DIF_17  
DIF_17  
DIF_18  
DIF_18  
GND  
30  
Rev. 1.2  
Si53019-A02A  
6. Power Filtering Example  
6.1. Ferrite Bead Power Filtering  
Recommended ferrite bead filtering equivalent to the following:  
Figure 12. Schematic Example of the Si53019-A02A Power Filtering  
Rev. 1.2  
31  
Si53019-A02A  
7. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53019-A02AGM  
Si53019-A02AGMR  
72-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
72-pin QFN—Tape and Reel  
32  
Rev. 1.2  
Si53019-A02A  
8. Package Outline  
Figure 13 illustrates the package details for the Si53019-A02A. Table 31 lists the values for the dimensions shown  
in the illustration.  
Figure 13. 72-Pin Quad Flat No Lead (QFN) Package  
Table 31. Package Diagram Dimensions1,2,3,4  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Dimension  
Min  
5.90  
0.30  
0.10  
0.10  
0.08  
0.10  
0.05  
Nom  
6.00  
0.40  
Max  
6.10  
0.50  
A
E2  
L
A1  
0.02  
b
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
D
10.00 BSC.  
6.00  
D2  
5.90  
6.10  
e
E
0.50 BSC.  
10.00 BSC.  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.2  
33  
 
 
 
 
 
Si53019-A02A  
9. Land Pattern  
Figure 14 illustrates the package details for the Si53019-A02A. Table 32 lists the values for the dimensions shown  
in the illustration.  
Figure 14. 72-Pin Quad Flat No Lead (QFN) Package  
34  
Rev. 1.2  
 
Si53019-A02A  
Table 32. Package Diagram Dimensions1,2,3,4  
Dimension  
mm  
9.90  
9.90  
0.50  
0.30  
0.85  
6.10  
6.10  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition  
(LMC) is calculated based on a Fabrication Allowance of 0.05mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask  
and the metal pad is to be 60?m minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to  
assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
4. A 3x3 array of 1.45mm square openings on a 2.00mm pitch should be used for the center  
ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small  
Body Components.  
Rev. 1.2  
35  
Si53019-A02A  
DOCUMENT CHANGE LIST  
Revision 0.9 to Revision 1.0  
Corrected specs in Table 7, “Phase Jitter,” on  
page 10.  
Revision 1.0 to Revision 1.1  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 7, “Phase Jitter,” on  
page 10.  
Revision 1.1 to Revision 1.2  
February 22, 2016  
Corrected specs in Table 1 on page 4.  
Updated operating characteristics in Table 4,  
Table 5, and Table 6.  
36  
Rev. 1.2  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY