SI5310-GM [SILICON]

PRECISION CLOCK MULTIPLIER/REGENERATOR IC; 精密时钟乘法器/再生器IC
SI5310-GM
型号: SI5310-GM
厂家: SILICON    SILICON
描述:

PRECISION CLOCK MULTIPLIER/REGENERATOR IC
精密时钟乘法器/再生器IC

ATM集成电路 SONET集成电路 SDH集成电路 电信集成电路 电信电路 异步传输模式 时钟
文件: 总26页 (文件大小:518K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5310  
PRECISION CLOCK MULTIPLIER/REGENERATOR IC  
Features  
Complete precision clock multiplier and clock regenerator device:  
„ Performs clock multiplication to one „ Regenerates a “clean”, jitter-  
of two frequency ranges:  
attenuated version of input clock  
150–167 MHz or 600–668 MHz  
„ DSPLL™ technology provides  
„ Jitter generation as low as  
superior jitter performance  
Ordering Information:  
0.5 psrms for 622 MHz output  
„ Small footprint: 4 x 4 mm  
„ Low power: 310 mW typical  
See page 21.  
„ Accepts input clock from  
9.4–668 MHz  
„ ROHS-compliant Pb-free  
packaging option available  
Pin Assignments  
Si5310  
Applications  
„ SONET/SDH systems  
„ Terabit routers  
„ Optical transceiver modules  
„ Gigabit Ethernet systems  
„ Fibre channel  
„ Digital cross connects  
20 19 18 17 16  
Description  
REXT  
VDD  
1
2
3
4
5
15  
14  
13  
12  
11  
PWRDN  
VDD  
The Si5310 is a fully integrated low-power clock multiplier and clock  
regenerator IC. The clock multiplier generates an output clock that is an  
integer multiple of the input clock. The clock regenerator operates  
simultaneously, creating a “clean” version of the input clock by using the  
clock synthesis phase-locked loop (PLL) to remove unwanted jitter and  
square up the input clock’s rising and falling edges. The Si5310 uses  
GND  
Pad  
GND  
CLKOUT+  
CLKOUT–  
VDD  
REFCLK+  
REFCLK–  
6
7
8
9
10  
®
Silicon Laboratories patented DSPLL architecture to achieve superior  
jitter performance while eliminating the analog loop filter found in  
traditional PLL designs with a digital signal-processing algorithm.  
The Si5310 represents a new standard in low jitter, small size, low power,  
and ease-of-use for clock devices. It operates from a single 2.5 V supply  
over the industrial temperature range (–40 to 85 °C).  
Functional Block Diagram  
2
CLKOUT+  
CLKOUT–  
Regeneration  
BUF  
BUF  
Calibration  
PWRDN/CAL  
DSPLL®  
Phase-Locked  
Loop  
2
CLKIN+  
CLKIN–  
2
MULTOUT+  
MULTOUT–  
BUF  
LOL  
Bias Gen  
2
REXT  
REFCLK+  
REFCLK–  
MULTSEL  
Rev. 1.2 8/06  
Copyright © 2006 by Silicon Laboratories  
Si5310  
Si5310  
2
Rev. 1.2  
Si5310  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
®
4.1. DSPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.2. Clock Multiplier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.3. 1x Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.4. Clock Regeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.5. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.6. DSPLL Lock Detection (Loss-of-Lock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.7. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.8. Device Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.9. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.10. Device Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.11. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.12. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.13. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
5. Pin Descriptions: Si5310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
7. Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
8. Package Outline: Si5310 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
9. 4x4 mm 20L MLP Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Rev. 1.2  
3
Si5310  
1. Detailed Block Diagram  
CLKOUT+  
CLKOUT–  
Regen  
c
CLKIN+  
Phase  
MULTOUT+  
MULTOUT–  
CLK  
Divider  
A/D  
VCO  
DSP  
c
Detector  
CLKIN–  
n
REFCLK+  
REFCLK–  
Lock  
Detector  
LOL  
MULTSEL  
REXT  
PWRDN/CAL  
Calibration  
Bias  
Generation  
4
Rev. 1.2  
Si5310  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
1
1
Test Condition  
Typ  
Unit  
Min  
Max  
85  
Ambient Temperature  
Si5310 Supply Voltage  
Notes:  
T
–40  
25  
°C  
V
A
2
V
2.375  
2.5  
2.625  
DD  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5310 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of "3. Typical Application Circuit" on page 11.  
V
SIGNAL +  
Differential  
VIS  
V
ICM, VOCM  
I/Os  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
t
VID,VOD  
Differential  
Voltage Swing  
Figure 1. Differential Voltage Measurement (CLKIN, REFCLK, CLKOUT, MULTOUT)  
CLKIN  
1/fMULT  
MULTOUT  
tCI-M  
tM-CO  
CLKOUT  
Figure 2. CLKIN to CLKOUT, MULTOUT Phase Relationship  
CLKIN,  
REFCLK,  
CLKOUT,  
MULTOUT  
80%  
20%  
tF  
tR  
Figure 3. Differential Clock Input and Output Rise/Fall Times  
Rev. 1.2  
5
Si5310  
Table 2. DC Characteristics, VDD = 2.5 V, 622 Mbps (MULTSEL = 0)  
(VDD = 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Supply Current  
MULTSEL = 0  
MULTSEL = 1  
I
DD  
117  
124  
127  
134  
mA  
Power Dissipation  
MULTSEL = 0  
MULTSEL = 1  
P
D
293  
310  
333  
352  
mW  
V
Common Mode Input Voltage  
(CLKIN, REFCLK)  
V
See Figure 1  
See Figure 1  
See Figure 1  
Line-to-Line  
.80 x V  
ICM  
DD  
Input Voltage Range*  
(CLKIN+, CLKIN–, REFCLK+, REFCLK–)  
V
200  
200  
750  
mV  
IS  
ID  
IN  
Differential Input Voltage Swing*  
(CLKIN, REFCLK)  
V
1500  
mV  
PP  
Input Impedance (CLKIN, REFCLK)  
R
84  
100  
970  
116  
Differential Output Voltage Swing  
(CLKOUT)  
V
100 Load  
Line-to-Line  
780  
1260  
mV  
OD  
PP  
Differential Output Voltage Swing  
(MULTOUT)  
V
100 Load  
Line-to-Line  
780  
970  
1260  
mV  
PP  
OD  
Output Common Mode Voltage  
(CLKOUT, MULTOUT)  
V
100 Load  
Line-to-Line  
V
DD  
V
OCM  
0.23  
100  
25  
Output Impedance (CLKOUT, MULTOUT)  
Output Short to GND (CLKOUT, MULTOUT)  
R
Single-ended  
84  
116  
31  
mA  
mA  
V
OUT  
SC(–)  
SC(+)  
I
I
Output Short to V (CLKOUT, MULTOUT)  
–17.5  
–14.5  
DD  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
Input Impedance (LVTTL Inputs)  
PWRDN/CAL Internal Pulldown Current  
V
.8  
IL  
V
I
2.0  
V
IH  
10  
10  
0.4  
µA  
µA  
V
IL  
I
IH  
V
I = 2 mA  
OL  
O
V
I = 2 mA  
2.0  
10  
V
OH  
O
R
kΩ  
µA  
IN  
PWRDN  
I
V
0.8 V  
15  
25  
45  
PWRDN  
*Note: The CLKIN and REFCLK inputs may be driven differentially or single-endedly. When driving single-endedly, the voltage  
swing of the signal applied to the active input must exceed the specified minimum Differential Input Voltage Swing (VID  
min) and the unused input must be ac-coupled to ground. When driving differentially, the difference between the  
positive and negative input signals must exceed VID min. (Each individual input signal needs to swing only half of this  
range.) In either case, the voltage applied to any individual pin (CLKIN+, CLKIN–, REFCLK+, or REFCLK–) must not  
exceed the specified maximum Input Voltage Range (VIS max).  
6
Rev. 1.2  
Si5310  
Table 3. AC Characteristics  
(VDD = 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
*
CLKIN Frequency Range  
CLKIN Duty Cycle  
9.375  
40  
50  
668  
60  
MHz  
%
*
REFCLK Range  
9.375  
40  
167  
60  
MHz  
%
REFCLK Duty Cycle  
C
DUTY  
REFCLK Frequency  
Tolerance  
C
–100  
100  
ppm  
TOL  
MULTOUT Clock Rate  
MULTOUT = 0  
MULTOUT = 1  
f
MULT  
600  
150  
668  
167  
MHz  
ps  
Output Rise/Fall Time  
(differential)  
(CLKOUT, MULTOUT)  
t t  
Figure 3  
Figure 3  
Figure 2  
80  
110  
R, F  
Input Rise/Fall Time  
(differential)  
(CLKIN, REFCLK)  
t t  
50  
ns  
R, F  
CLKIN to MULTOUT Delay  
MULTSEL = 0  
MULTSEL = 1  
t
CI-M  
–670  
2.4  
130  
3.4  
930  
4.4  
ps  
ns  
MULTOUT to CLKOUT Delay  
t
Figure 2  
M-CO  
MULTSEL = 0  
MULTSEL = 1  
1/fMULT + 180  
960  
1/fMULT + 100 1/f  
780  
+ 140  
870  
ps  
ps  
MULT  
Input Return Loss  
100 kHz–1 GHz  
20  
dB  
*Note: See Table 9.  
Rev. 1.2  
7
Si5310  
Table 4. AC Characteristics (PLL Performance Characteristics)  
(VDD = 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Tolerance  
J
See Table 5  
TOL(PP)  
(MULTSEL = 0,  
MULTOUT = 600 to 668 MHz)  
Jitter Tolerance  
J
See Table 6  
TOL(PP)  
(MULTSEL = 1,  
MULTOUT = 150 to 167 MHz)  
Jitter Generation (MULTOUT, CLKOUT)  
(MULTSEL = 0,  
MULTOUT = 600 to 668 MHz)*  
J
Clock Input (MHz) =  
37.500 to 41.750  
2.5  
5.4  
3.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
GEN(rms)  
rms  
rms  
rms  
rms  
rms  
rms  
rms  
rms  
rms  
rms  
Clock Input (MHz) =  
75.000 to 83.500  
1.6  
0.9  
0.6  
0.4  
8.5  
5.0  
3.7  
2.3  
1.1  
75  
(measurement BW = 12kHz to 1MHz)  
Clock Input (MHz) =  
150.000 to 167.000  
1.6  
Clock Input (MHz) =  
300.000 to 334.000  
1.3  
Clock Input (MHz) =  
600.000 to 668.000  
0.8  
Jitter Generation (MULTOUT, CLKOUT)  
(MULTSEL = 1,  
MULTOUT = 150 to 167 MHz)*  
J
Clock Input (MHz) =  
9.375 to 10.438  
34.0  
19.7  
15.2  
15.2  
3.0  
GEN(rms)  
Clock Input (MHz) =  
18.750 to 20.875  
(measurement BW = 12kHz to 1MHz)  
Clock Input (MHz) =  
37.500 to 41.750  
Clock Input (MHz) =  
75.000 to 83.500  
Clock Input (MHz) =  
150.000 to 167.000  
Jitter Transfer Bandwidth  
(MULTSEL = 0,  
MULTOUT = 600 to 668 MHz)*  
J
Clock Input (MHz) =  
37.500 to 41.750  
105  
210  
420  
840  
1680  
kHz  
kHz  
kHz  
kHz  
kHz  
BW  
Clock Input (MHz) =  
75.000 to 83.500  
150  
300  
600  
1200  
Clock Input (MHz) =  
150.000 to 167.000  
Clock Input (MHz) =  
300.000 to 334.000  
Clock Input (MHz) =  
600.000 to 668.000  
*Note: See PLL Performance section of this document for test descriptions.  
8
Rev. 1.2  
Si5310  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD = 2.5 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Transfer Bandwidth  
(MULTSEL = 1,  
J
Clock Input (MHz) =  
9.375 to 10.438  
19  
26  
kHz  
BW  
MULTOUT = 150 to 167 MHz)*  
Clock Input (MHz) =  
18.750 to 20.875  
38  
53  
105  
210  
420  
0.4  
kHz  
kHz  
kHz  
kHz  
dB  
Clock Input (MHz) =  
37.500 to 41.750  
75  
Clock Input (MHz) =  
75.000 to 83.500  
150  
300  
0.12  
0.06  
0.03  
0.02  
0.01  
0.12  
0.06  
0.03  
0.02  
0.01  
1.5  
Clock Input (MHz) =  
150.000 to 167.000  
Jitter Transfer Peaking  
(MULTSEL = 0,  
MULTOUT = 600 to 668 MHz)*  
J
Clock Input (MHz) =  
37.500 to 41.750  
P
Clock Input (MHz) =  
75.000 to 83.500  
0.2  
dB  
Clock Input (MHz) =  
150.000 to 167.000  
0.1  
dB  
Clock Input (MHz) =  
300.000 to 334.000  
0.066  
0.033  
0.4  
dB  
Clock Input (MHz) =  
600.000 to 668.000  
dB  
Jitter Transfer Peaking  
(MULTSEL = 1,  
MULTOUT = 150 to 167 MHz)*  
J
Clock Input (MHz) =  
9.375 to 10.438  
dB  
P
Clock Input (MHz) =  
18.750 to 20.875  
0.2  
dB  
Clock Input (MHz) =  
37.500 to 41.750  
0.1  
dB  
Clock Input (MHz) =  
75.000 to 83.500  
0.066  
0.033  
1.7  
dB  
Clock Input (MHz) =  
150.000 to 167.000  
dB  
Acquisition Time  
T
After falling edge of  
PWRDN/CAL  
1.45  
40  
450  
ms  
µs  
AQ  
From the return of valid  
CLKIN  
60  
150  
750  
Frequency Difference at which PLL goes  
out of Lock (REFCLK compared to the  
divided down VCO clock)  
LOL  
600  
ppm  
Frequency Difference at which PLL goes  
into Lock (REFCLK compared to the  
divided down VCO clock)  
LOCK  
150  
300  
450  
ppm  
*Note: See PLL Performance section of this document for test descriptions.  
Rev. 1.2  
9
Si5310  
Table 5. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL = 0, MULTOUT = 600 to 668 MHz)  
Frequency (Hz)  
37.5–41.75 MHz  
Clock Input  
75–83.5 MHz  
Clock Input  
150–167 MHz  
Clock Input  
300–334 MHz  
Clock Input  
< 300  
25K  
25.0  
1.6  
25.0  
3.2  
25.0  
6.5  
25.0  
16  
250K  
> 1M  
1.6  
3.2  
0.3  
3.0  
3.2  
0.5  
0.3  
0.5  
*Note: Measured using sinusoidal jitter at stated Test Condition frequency.  
Table 6. Minimum Jitter Tolerance in Nanoseconds* (MULTSEL = 1, MULTOUT = 150 to 167 MHz)  
Frequency (Hz)  
9.375–10.438 MHz  
Clock Input  
18.75–20.875 MHz  
Clock Input  
37.5–41.75 MHz  
Clock Input  
75–83.5 MHz  
Clock Input  
< 300  
6.5K  
65K  
66.7  
6.4  
1.2  
1.2  
1.2  
66.7  
13.0  
1.9  
66.7  
29.0  
1.9  
66.7  
33.3  
4.8  
325K  
> 1M  
1.9  
1.9  
2.6  
1.9  
1.9  
1.9  
*Note: Measured using sinusoidal jitter at stated Test Condition frequency.  
Table 7. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
V
DC Supply Voltage  
V
–0.5 to 2.8  
–0.3 to 3.6  
DD  
LVTTL Input Voltage  
V
V
DIG  
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
V
–0.3 to (V + 0.3)  
V
DIF  
DD  
±50  
mA  
°C  
°C  
T
–55 to 150  
–55 to 150  
JCT  
T
STG  
ESD HBM Tolerance (100 pf, 1.5 k)  
CLKIN+, CLKIN–, REFCLK+, REFCLK–,  
All other pins  
1
1.5  
kV  
kV  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 8. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
38  
°C/W  
JA  
10  
Rev. 1.2  
Si5310  
3. Typical Application Circuit  
LVTTL  
Control Inputs  
Loss-of-Lock  
Indicator  
CLKIN+  
CLKOUT+  
CLKOUT–  
Regenerated  
Clock Input  
Clock  
CLKIN–  
Si5310  
System  
Reference  
Clock  
REFCLK+  
REFCLK–  
MULTOUT+  
MULTOUT–  
Multiplied  
Clock  
0.1 µF  
2200 pF  
20 pF  
10 kΩ  
(1%)  
VDD  
Rev. 1.2  
11  
Si5310  
The MULTOUT output is configured to operate in either  
the 150–167 MHz or the 600–668 MHz frequency range  
4. Functional Description  
The Si5310 is an integrated clock multiplier and clock using the MULTSEL control input. A reference clock  
regenerator device based on SIlicon Laboratories input signal (REFCLK) is used by the DSPLL as a  
DSPLL™ technology. The DSPLL phase locks to the reference for determination of the PLL lock status. For  
clock input signal (CLKIN) and generates a phase- convenience, REFCLK can be provided at any one of  
locked output clock (MULTOUT) at a multiple of the five frequencies, each a multiple of the CLKIN  
input clock frequency. The DSPLL is also employed to frequency. The REFCLK rate is automatically detected,  
regenerate an output clock (CLKOUT) that is a jitter- so no control inputs are needed for configuration. The  
attenuated version of the input clock with clean rising REFCLK input can be synchronous or asynchronous  
and falling edges.  
with respect to the CLKIN input. The operating ranges  
for the CLKIN, CLKOUT, MULTOUT, and REFCLK  
signals are indicated in Table 9. Typical values for  
several applications are presented in Table 10.  
Table 9. CLKIN, CLKOUT, MULTOUT, REFCLK Operating Ranges  
n
MULTSEL  
CLKIN Range  
(MHz)  
CLKOUT  
MULTOUT  
REFCLK = 2 x CLKIN  
±100 ppm  
(See Note 1)  
37.500–41.750  
75.000–83.500  
150.000–167.000  
300.000–334.000  
600.000–668.000  
9.375–10.438  
n = –2, –1, 0, 1, 2  
n = –3, –2, –1, 0, 1  
n = –4, –3, –2, –1, 0  
n = –5, –4, –3, –2, –1  
n = –6, –5, –4, –3, –2  
n = 0, 1, 2, 3, 4  
1xCLKIN  
1xCLKIN  
1xCLKIN  
1xCLKIN  
See Note 2  
1xCLKIN  
1xCLKIN  
1xCLKIN  
1xCLKIN  
See Note 2  
16xCLKIN  
8xCLKIN  
4xCLKIN  
2xCLKIN  
1xCLKIN  
16xCLKIN  
8xCLKIN  
4xCLKIN  
2xCLKIN  
1xCLKIN  
0
(MULTOUT = 600–668 MHz)  
18.750–20.875  
37.500–41.750  
75.000–83.500  
150.000–167.000  
n = –1, 0, 1, 2, 3  
1
n = –2, –1, 0, 1, 2  
n = –3, –2, –1, 0, 1  
n = –4, –3, –2, –1, 0  
(MULTOUT = 150–167 MHz)  
Note:  
1. The REFCLK input can be set to any one of the five CLKIN multiples indicated. The REFCLK input can be  
asynchronous to the CLKIN input, but must be within ±100 ppm of the stated CLKIN multiple.  
2. The CLKOUT output is not valid for MULTOUT:CLKIN ratios of 1:1 (MULTOUT = 1 x CLKIN.)  
12  
Rev. 1.2  
Si5310  
Table 10. Clock Values for Typical Applications  
CLKIN (MHz)  
REFCLK Input (MHz) MULTSEL  
CLKOUT  
(MHz)  
MULTOUT output  
(MHz)  
SONET/SDH  
9.72  
19.44  
38.88  
9.72  
19.44  
38.88  
1
1
1
0
1
0
1
0
0
9.72  
19.44  
38.88  
38.88  
77.76  
77.76  
155.52  
155.52  
155.52  
622.08  
155.52  
622.08  
155.52  
622.08  
622.08  
77.76  
77.76  
155.52  
155.52  
155.52  
311.04  
311.04  
622.08  
9.72, 19.44, 38.88,  
77.76, or 155.52  
9.72, 19.44, 38.88,  
77.76, or 155.52  
0
622.08  
Gigabit Ethernet  
9.77  
19.53  
39.06  
9.77  
19.53  
39.06  
1
1
1
0
1
0
1
0
0
9.77  
19.53  
39.06  
39.06  
78.125  
78.125  
156.25  
156.25  
156.25  
625  
78.125  
156.25  
78.125  
156.25  
156.25  
625  
156.25  
625  
156.25  
312.5  
312.5  
625  
9.77, 19.53, 39.06,  
78.125, or 156.25  
625  
9.77, 19.53, 39.06,  
78.125, or 156.25  
0
625.00  
SONET/SDH FEC  
(15/14)  
10.41  
20.83  
41.66  
10.41  
20.83  
41.66  
1
1
1
0
1
0
1
0
0
10.41  
20.83  
41.66  
41.66  
83.31  
83.31  
166.63  
166.63  
166.63  
666.51  
166.63  
666.51  
166.63  
666.51  
666.51  
83.31  
83.31  
166.63  
166.63  
166.63  
333.26  
333.26  
666.51  
10.41, 20.83, 41.66,  
83.31, or 166.63  
10.41, 20.83, 41.66,  
83.31, or 166.63  
0
666.51  
Rev. 1.2  
13  
Si5310  
4.1. DSPLL®  
CLKOUT output is a resampled version of the CLKIN  
input with all CLKOUT transitions occurring  
synchronously with the rising edges of the MULTOUT  
output. The rising edges of CLKOUT are insensitive to  
the location of the falling edges of the CLKIN input.  
Thus the period of CLKOUT, measured rising edge to  
rising edge, is not affected by the CLKIN duty cycle or  
by jitter on the falling edge of CLKIN.  
The PLL structure (shown in Figure 1 on page 5) utilizes  
Silicon Laboratories' DSPLL technology to produce  
®
superior jitter performance while eliminating the need  
for external loop filter components found in traditional  
PLL implementations. This is achieved by using a digital  
signal processing (DSP) algorithm to replace the loop  
filter commonly found in analog PLL designs. This  
algorithm processes the phase detector error term and  
generates a digital control value to adjust the frequency  
of the voltage-controlled oscillator (VCO). The  
technology produces clocks with less jitter than is  
generated using traditional methods. In addition,  
because external loop filter components are not  
required, sensitive noise entry points are eliminated,  
thus making the DSPLL less susceptible to board-level  
noise sources.  
The falling edges of CLKOUT may be affected by the  
location of the CLKIN falling edges as follows: If the  
duty cycle error of CLKIN is significant relative to the  
period of MULTOUT, then  
1. The CLKOUT duty cycle may deviate from 50% (the falling  
edge of CLKOUT will be time quantized to the nearest  
rising edge of MULTOUT.)  
2. Jitter on the falling edges of CLKIN may result in a  
CLKOUT duty cycle that alternates between two discrete  
values.  
4.2. Clock Multiplier  
Note: When the Si5310 is configured as a 1:1 multiplier, the  
CLKOUT output is not valid.  
The DSPLL phase locks to the clock input signal  
(CLKIN) and generates an output clock (MULTOUT) at  
a multiple of the input clock frequency. The MULTOUT  
output is configured to operate in either the 150–  
167 MHz frequency range or in the 600–668 MHz  
frequency range using the MULTSEL control input as  
indicated in Table 9. Values for typical applications are  
given in Table 10.  
4.5. Reference Clock  
The Si5310 CMU requires an external reference clock  
applied to the REFCLK input for normal device  
operation. When REFCLK is absent, the LOL alarm will  
always be asserted when it has been determined that  
no activity exists on REFCLK, indicating the lock status  
of the PLL is unknown. Additionally, the reference clock  
input is used to center the DSPLL and also to act as a  
reference for determination of the PLL lock status.  
REFCLK is a multiple of the CLKIN frequency, and can  
be provided in any one of five frequency ranges (9.375–  
10.438 MHz, 18.78–20.875 MHz, 37.500–41.750 MHz,  
75.00–83.50 MHz, or 150–167.00 MHz). The REFCLK  
rate is automatically detected by the Si5310, so no  
control inputs are needed for REFCLK frequency  
selection. The REFCLK input may be synchronous or  
asynchronous with respect to the CLKIN input. The  
frequency relationship between REFCLK and CLKIN is  
indicated in Table 9. In many applications, it may be  
desirable to tie REFCLK and CLKIN together and drive  
them from the same clock source. The Si5310 is  
insensitive to the phase relationship between CLKIN  
and REFCLK, so these differential inputs may be driven  
in phase or 180° out of phase if this simplifies board  
layout. Values for typical applications are given in  
Table 10.  
The amount of jitter present in the MULTOUT output is a  
function of the DSPLL jitter transfer function and jitter  
generation characteristic. Details are provided in the  
PLL Performance section of this document. (See  
Figures 4 and 5.) The amount of jitter that the DSPLL  
can tolerate on the CLKIN input is specified in Tables 5  
and 6.  
The DSPLL implementation in the Si5310 is insensitive  
to the duty cycle of the CLKIN input. The MULTOUT  
output will continue to exhibit a very good duty cycle  
characteristic even when the CLKIN input duty cycle is  
degraded.  
4.3. 1x Multiplication  
The Si5310 Clock Multiplier function may also be  
utilized as a 1x multiplier in order to provide jitter  
attenuation and duty cycle correction without  
multiplication of the input clock frequency.  
Note: When the Si5310 is configured as a 1:1 multiplier, the  
CLKOUT output is not valid.  
4.6. DSPLL Lock Detection (Loss-of-Lock)  
4.4. Clock Regeneration  
The Si5310 provides lock-detect circuitry that indicates  
whether the DSPLL has achieved frequency lock with  
the incoming CLKIN signal. The circuit compares the  
frequency of a divided down version of the multiplier  
The DSPLL is used to regenerate a jitter-attenuated  
version of the CLKIN input, resulting in a “clean”  
CLKOUT output with sharp rising and falling edges. The  
14  
Rev. 1.2  
Si5310  
output with the frequency of the supplied reference MULTSEL setting and the input clock rate. Higher input  
clock. If the divided multiplier output frequency deviates clock rates produce higher bandwidth transfer functions  
from that of the reference clock by the amount specified with lower jitter peaking. Table 4 gives the 3 dB  
in Table 4 on page 8, the PLL is declared out of lock, bandwidth and peaking values for specified input clock  
and the loss-of-lock (LOL) pin is asserted high. In this rates and MULTSEL settings. Figures 4 and 5 show a  
state, the PLL will periodically try to reacquire lock with family of jitter transfer curves for different input clock  
the input clock (CLKIN). During reacquisition, the rates.  
multiplier output clock (MULTOUT) may drift over a  
4.7.3. Jitter Generation  
±600 ppm range relative to the applied reference clock  
Jitter generation is defined as the amount of jitter  
and the LOL output alarm may toggle until the PLL has  
produced at the output of the device with a jitter free  
reacquired frequency lock. Due to the low noise and  
input clock. Generated jitter arises from sources within  
stability of the DSPLL, under the condition where the  
the VCO and other PLL components. Jitter generation is  
input clock is removed from the inputs, there is the  
a function of MULTSEL setting and input clock  
possibility that the PLL will not drift enough to render an  
frequency. For clock multiplier applications, the higher  
out-of-lock condition.  
the multiplier ratio desired, the larger the jitter  
If REFCLK is removed, the LOL output alarm will always  
generation. Table 4 gives the jitter generation values for  
be asserted when it has been determined that no  
specified MULTSEL settings and input clock rates.  
activity exists on REFCLK, indicating the frequency lock  
status of the PLL is unknown.  
4.8. Device Powerdown  
Note: LOL is not asserted during PWRDN/CAL.  
The Si5310 PWRDN/CAL input can be used to hold the  
device in a power-down state when not in use. When  
the PWRDN/CAL input is asserted (set high), the  
CLKOUT and MULTOUT output drivers are disabled  
and the positive and negative terminals of the CLKOUT  
and MULTOUT outputs are each tied to VDD through  
100 on-chip resistors. This feature is useful in  
reducing power consumption in applications that  
employ redundant clock sources. When PWRDN/CAL is  
released (set to low) the digital logic is reset to a known  
initial condition and the DSPLL circuitry is recalibrated  
and will begin to lock to the incoming clock.  
4.7. PLL Performance  
The Si5310 DSPLL circuitry is designed to provide low  
jitter generation, high jitter tolerance, and a well-  
controlled jitter transfer function with low peaking. Each  
of these key performance parameters is described more  
fully in the following sections.  
4.7.1. Jitter Tolerance  
Jitter tolerance for the Si5310 is defined as the  
maximum peak-to-peak sinusoidal jitter that can be  
added to the incoming clock before the PLL exceeds its  
allowable operating range and loses lock. The tolerance  
is a function of the jitter frequency, the incoming clock  
rate, and the MULTSEL setting.  
4.9. PLL Self-Calibration  
Si5310 device provides an internal self-calibration  
function that optimizes the loop gain parameters within  
the internal DSPLL. Self-calibration is initiated by a  
high-to-low transition of the PWRDN/CAL signal while a  
valid reference clock is supplied to the REFCLK input.  
The jitter tolerance for specified jitter frequencies and  
input clock rates is given in Tables 5 and 6.  
4.7.2. Jitter Transfer  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter for a specified jitter frequency. The  
jitter transfer characteristic determines the amount of  
input clock jitter that will be passed on to the Si5310  
CLKOUT and MULTOUT outputs. The DSPLL  
technology used in the Si5310 provides a tightly  
controlled jitter transfer curve because many of the PLL  
gain parameters are determined by digital signal  
processing algorithms which do not vary over supply  
voltage, process, and temperature. In a system  
application, a well-controlled transfer curve minimizes  
the output clock jitter variation from board to board,  
providing more consistent system level jitter  
performance.  
For optimal jitter performance, the supply voltage  
should be stable at 2.5 V ±10% when calibration is  
initiated. The PWRDN/CAL signal should be held high  
for at least 1 µS after the supply has stabilized before  
transitioning low to initiate self-calibration. See Silicon  
Laboratories application note AN42 for suggested  
methods of generating the PWRDN/CAL signal for  
initiation of self-calibration.  
4.10. Device Grounding  
The Si5310 uses the GND pad on the bottom of the 20-  
pin micro leaded package (MLP) for device ground. This  
pad should be connected directly to the analog supply  
ground. See Figures 11 and 12 for the ground (GND)  
pad location.  
The jitter transfer characteristic is a function of the  
Rev. 1.2  
15  
Si5310  
4.11. Bias Generation Circuitry  
coupling is possible, the 0.1 µF capacitors may be  
omitted. The CLKIN and REFCLK input amplifiers  
require input signals with minimum differential peak-to-  
peak voltages as specified in Table 2 on page 6.  
The Si5310 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption compared with traditional  
implementations that use an internal resistor. The bias  
generation circuitry requires a 10 k(1%) resistor  
connected between REXT and GND.  
0
CLKIN=155MHz  
−1  
−2  
−3  
0
CLKIN=622MHz  
−4  
−1  
CLKIN=9.7MHz  
−5  
−2  
−3  
−6  
−7  
−8  
−9  
−4  
CLKIN=39MHz  
−5  
−6  
−7  
−8  
−9  
103  
104  
105  
106  
Figure 5. PLL Jitter Transfer Functions,  
MULTSEL = 1 (MULTOUT = 150–167 MHz)  
103  
104  
105  
106  
4.13. Differential Output Circuitry  
Figure 4. PLL Jitter Transfer Functions,  
MULTSEL = 0 (MULTOUT = 600–668 MHz)  
The Si5310 utilizes a current mode logic (CML)  
architecture to output both the regenerated clock  
(CLKOUT) and the multiplied clock (MULTOUT). An  
example of output termination with ac coupling is shown  
in Figure 10. For applications in which direct dc coupling  
is possible, the 0.1 µF capacitors may be omitted. The  
differential peak-to-peak voltage swing of the CML is  
listed in Table 2 on page 6.  
4.12. Differential Input Circuitry  
The Si5310 provides differential inputs for both the input  
clock (CLKIN) and the reference clock (REFCLK)  
inputs. An example termination for these inputs is  
shown in Figure 6. In applications where direct dc  
16  
Rev. 1.2  
Si5310  
Clock source  
Si5310  
VDD  
2.5 kΩ  
CLKIN +,  
RFCLK +  
0.1 µF  
0.1 µF  
Zo = 50 Ω  
Zo = 50 Ω  
10 kΩ  
2.5 kΩ  
102Ω  
CLKIN –,  
RFCLK –  
10 kΩ  
GND  
Figure 6. Input Termination for CLKIN and REFCLK (ac-coupled)  
Si5310  
Clock  
source  
VDD  
2.5 kΩ  
0.1  
µ
F
Zo = 50  
REFCLK +  
REFCLK –  
10 kΩ  
2.5 kΩ  
102  
100  
10 kΩ  
0.1 µF  
GND  
Figure 7. Single-Ended Input Termination for REFCLK (ac-coupled)  
Si5310  
Clock  
source  
VDD  
2.5 kΩ  
0.1  
µ
F
Zo = 50  
CLKIN +  
CLKIN –  
10 kΩ  
2.5 kΩ  
102  
100  
10 kΩ  
0.1 µF  
GND  
Figure 8. Single-Ended Input Termination for CLKIN (ac-coupled)  
Rev. 1.2  
17  
Si5310  
Clock source  
or  
differential buffer/driver  
Si5310  
VDD  
2.5 k  
0.1  
µ
F
Zo = 50  
REFCLK +  
REFCLK –  
10 k  
2.5 kΩ  
102  
100  
10 kΩ  
0.1  
µ
F
GND  
VDD  
2.5 kΩ  
0.1  
µ
F
Zo = 50  
CLKIN -  
CLKIN +  
10 kΩ  
2.5 kΩ  
102  
100  
10 k  
0.1 µF  
( Example: REFCLK = CLKIN = 155.52MHz )  
GND  
Figure 9. Single-Ended Input Termination for REFCLK & CLKIN (ac-coupled)  
Si5310  
VDD  
VDD  
50 Ω  
100 Ω  
CLKOUT+,  
MULTOUT+  
0.1 µF  
0.1 µF  
Zo = 50 Ω  
Zo = 50 Ω  
CLKOUT–,  
MULTOUT–  
100 Ω  
VDD  
50 Ω  
VDD  
Figure 10. Output Termination for CLKOUT and MULTOUT (ac-coupled)  
18  
Rev. 1.2  
Si5310  
5. Pin Descriptions: Si5310  
20 19 18 17  
16  
PWRDN  
VDD  
REXT  
VDD  
1
2
3
4
5
15  
14  
13  
GND  
Pad  
CLKOUT+  
GND  
12 CLKOUT–  
11  
REFCLK+  
REFCLK–  
VDD  
6
7
8
9
10  
Top View  
Figure 11. Si5310 Pin Configuration  
Table 11. Si5310 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
External Bias Resistor.  
1
REXT  
This resistor is used by onboard circuitry to establish  
bias currents within the device. This pin must be  
connected to GND through a 10 kΩ (1%) resistor.  
Supply Voltage.  
Nominally 2.5 V.  
2, 7, 11, 14  
VDD  
GND  
2.5 V  
GND  
Supply Ground.  
3, 8, 18, and  
GND Pad  
Nominally 0.0 V. The GND pad found on the bottom  
of the 20-pin micro leaded package (see Figure 12)  
must be connected directly to supply ground.  
Differential Reference Clock.  
4, 5  
REFCLK+, REF-  
CLK–  
I
See Table 2  
The reference clock sets the initial operating fre-  
quency used by the onboard PLL for clock regenera-  
tion and multiplication. Additionally, the reference  
clock is used as a reference in generation of the LOL  
output and to bound the frequency drift of MULTOUT  
when CLKIN is not present.  
Loss of Lock.  
6
LOL  
O
I
LVTTL  
This output is driven high when a divided version of  
the clock multiplier output deviates from the refer-  
ence clock frequency by the amount specified in  
Table 4 on page 8.  
Differential Clock Input.  
Differential input clock from which MULTOUT is  
derived.  
9, 10  
CLKIN+, CLKIN–  
See Table 2  
Rev. 1.2  
19  
Si5310  
Table 11. Si5310 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Differential Clock Output.  
The clock output signal is a regenerated version of  
the input clock signal present on CLKIN. It is phase  
aligned with MULTOUT and is updated on the rising  
edge of MULTOUT.  
12, 13  
CLKOUT–,  
CLKOUT+  
O
CML  
Note: Connection of an improperly terminated  
transmission line to the CLKOUT output can cause  
reflections that may adversely affect the  
performance of the MULTOUT output. If the  
CLKOUT output is not used, these pins should be  
either tied to VDD (recommended), left  
unconnected, or connected to a properly  
terminated transmission line.  
Power Down.  
15  
PWRDN/CAL  
I
LVTTL  
To shut down the high-speed outputs and reduce  
power consumption, hold this pin high. For normal  
operation, hold this pin low.  
Calibration.  
To initiate an internal self-calibration, force a high-to-  
low transition on this pin. (See "4.9. PLL Self-Cali-  
bration" on page 15.)  
Note: This input has a weak internal pulldown.  
Differential Multiplier Output.  
16, 17  
MULTOUT–,  
MULTOUT+  
O
CML  
The multiplier output is generated from the signal  
present on CLKIN. In the absence of CLKIN, the  
REFCLK is used to bound the frequency of MUL-  
TOUT according to Table 4 on page 8.  
Note: Connection of an improperly terminated  
transmission line to the MULTOUT output can  
cause reflections that may adversely affect the  
CLKOUT output. If the MULTOUT output is not  
used, these pins should be either tied to VDD  
(recommended), left unconnected, or connected to  
a properly terminated transmission line.  
Multiplier Rate Select.  
19  
20  
MULTSEL  
I
LVTTL  
This pin configures the onboard PLL-based clock  
multiplier for clock generation at one of two user  
selectable clock rates.  
Note: This input has a weak internal pulldown.  
NC  
No Connect.  
20  
Rev. 1.2  
Si5310  
6. Ordering Guide  
Part Number  
Package  
20-pin MLP  
Temperature  
–40 to 85 °C  
–40 to 85 °C  
Si5310-BM  
Si5310-GM  
20-pin MLP (Pb free)  
7. Top Mark  
Silicon Labs  
Part Number  
Die Revision (R)  
Part Designator (Z)  
Si5310-BM  
Si5310-GM  
C
C
D
G
Rev. 1.2  
21  
Si5310  
8. Package Outline: Si5310  
Figure 12 illustrates the package details for the Si5310. Table 12 lists the values for the dimensions shown in the  
illustration.  
A
D
D1  
A1  
D2  
A2  
L
b
PIN1 ID  
0.50 DIA.  
A3  
b
20  
20  
1
2
3
1
2
3
E1  
E
E2  
θ
e
e
Top View  
Side View  
Bottom View  
Figure 12. 20-pin Micro Leadframe Package (MLP)  
Table 12. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
Nom  
0.85  
Max  
0.90  
0.05  
0.70  
Min  
Nom  
3.75 BSC  
2.10  
Max  
A
A1  
D1, E1  
0.00  
0.01  
D2, E2  
1.95  
2.25  
A2  
0.65  
e
θ
L
0.50 BSC  
A3  
0.20 REF.  
0.23  
12°  
b
0.18  
0.30  
0.50  
0.60  
0.75  
D, E  
4.00 BSC  
Notes:  
1. Dimensioning and tolerances conform to ASME Y14.5M. - 1994  
2. Package warpage MAX 0.05 mm.  
3. “b” applies to plated terminal and is measured between 0.20 and 0.25 mm from terminal TIP.  
4. The package weight is approximately 42 mg.  
5. The mold compound for this package has a flammability rating of UL94-V0 with an oxygen index of 28  
minimum/54 typical.  
6. The recommended reflow profile for this package is defined by the JEDEC-020B Small Body specification.  
22  
Rev. 1.2  
Si5310  
9. 4x4 mm 20L MLP Recommended PCB Layout  
See Note 8  
See Note 9  
Gnd Pin  
Symbol  
Parameter  
Dimensions  
Nom  
Min  
2.23  
2.03  
Max  
2.28  
2.13  
A
D
e
Pad Row/Column Width/Length  
Thermal Pad Width/Height  
Pad Pitch  
2.25  
2.08  
0.50 BSC  
2.46  
G
R
X
Y
Z
Pad Row/Column Separation  
Pad Radius  
2.43  
2.48  
0.12 REF  
0.25  
Pad Width  
0.23  
0.28  
Pad Length  
0.94 REF  
4.28  
Pad Row/Column Extents  
4.26  
4.31  
Notes:  
1. All dimensions listed are in millimeters (mm).  
2. The perimeter pads are to be Non-Solder Mask Defined (NSMD). Solder mask openings should be designed to leave 60-75 mm  
separation between solder mask and pad metal, all the way around the pad.  
3. The center thermal pad is to be Solder Mask Defined (SMD).  
4. Thermal/Ground vias placed in the center pad should be no less than 0.2 mm (8 mil) diameter and tented from the top to prevent  
solder from flowing into the via hole.  
5. The stencil aperture should match the pad size (1:1 ratio) for the perimeter pads. A 3x3 array of 0.5 mm square stencil openings, on a  
0.65 mm pitch, should be used for the center thermal pad.  
6. A stencil thickness of 5 mil is recommended. The stencil should be laser cut and electropolished, with trapezoidal walls to facilitate  
paste release.  
7. A “No-Clean”, Type 3 solder paste should be used for assembly. Nitrogen purge during reflow is recommended.  
8. Do not place any signal or power plane vias in these “keep out” regions.  
9. Suggest four 0.38 mm (15 mil) vias to the ground plane.  
Rev. 1.2  
23  
Si5310  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
„ Added "7. Top Mark" on page 21.  
„ Updated "8. Package Outline: Si5310" on page 22.  
„ Added "9. 4x4 mm 20L MLP Recommended PCB  
Layout" on page 23.  
Revision 1.1 to Revision 1.2  
„ Added Pb-free packaging option in "6. Ordering  
Guide" on page 21.  
24  
Rev. 1.2  
Si5310  
NOTES:  
Rev. 1.2  
25  
Si5310  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Rev. 1.2  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY