SI5315A-C-GM [SILICON]

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet; 提供SONET / PDH和Ethemet之间的抖动衰减和频率转换
SI5315A-C-GM
型号: SI5315A-C-GM
厂家: SILICON    SILICON
描述:

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
提供SONET / PDH和Ethemet之间的抖动衰减和频率转换

光电二极管
文件: 总54页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5315  
SYNCHRONOUS ETHERNET/TELECOM JITTER ATTENUATING  
CLOCK MULTIPLIER  
Features  
Provides jitter attenuation and frequency Selectable loop bandwidth for jitter  
translation between SONET/PDH and  
Ethernet  
attenuation: 60 to 8.4 kHz  
Automatic/Manual hitless switching  
and holdover during loss of inputs  
clock  
Programmable output clock signal  
format: LVPECL, LVDS, CML or  
CMOS  
Supports ITU-T G.8262 Synchronous  
Ethernet equipment slave clock (EEC  
option 1 and 2) requirements with  
optional Stratum 3 compliant timing card  
clock source  
Two clock inputs/two clock outputs  
Input frequency range: 8 kHz–644 MHz  
Output frequency range: 8 kHz–644 MHzOn-chip voltage regulator with high  
40 MHz crystal or XO reference  
Single supply: 1.8, 2.5, or 3.3 V  
Ultra low jitter:  
PSRR  
0.23 ps RMS (1.875–20 MHz)  
0.47 ps RMS (12 kHz–20 MHz)  
Simple pin control interface  
Loss of lock and loss of signal alarms  
Small size: 6 x 6 mm, 36-QFN  
Wide temperature range: –40 to  
+85 ºC  
Ordering Information:  
See page 48.  
Applications  
Pin Assignments  
Synchronous Ethernet line cards  
SONET OC-3/12/48 line cards  
PON OLT/ONU  
Carrier Ethernet switches routers  
MSAN / DSLAM  
T1/E1/DS3/E3 line cards  
Description  
36 35 34 33 32 31 30 29 28  
RST  
1
2
3
4
5
6
7
8
9
27 FRQSEL3  
26  
The Si5315 is a jitter-attenuating clock multiplier for Gb and 10G Synchronous  
Ethernet, SONET/SDH, and PDH (T1/E1) applications. The Si5315 supports SyncE  
EEC options 1 and 2 when paired with a timing card that implements the required  
wander filter. The Si5315 accepts dual clock inputs ranging from 8 kHz to 644.53 MHz  
and generates two equal frequency-multiplied clock outputs ranging from 8 kHz to  
644.53 MHz. The input clock frequency and clock multiplication ratio are selectable  
from a table of popular SyncE and T1/E1 rates. The Si5315 is based on Silicon  
FRQTBL  
LOS1  
LOS2  
VDD  
FRQSEL2  
25 FRQSEL1  
24  
23  
FRQSEL0  
BWSEL1  
GND  
Pad  
XA  
22 BWSEL0  
XB  
21  
20  
19  
CS_CA  
GND  
GND  
GND  
AUTOSEL  
®
10 11 12 13 14 15 16 17 18  
Laboratories' third-generation DSPLL technology, which provides any-frequency  
synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the  
need for external VCXO and loop filter components. The DSPLL loop bandwidth is  
user programmable, providing jitter performance optimization at the application level.  
Functional Block Diagram  
XTAL/Clock  
Si5315  
Clock Out 1  
Clock In 1  
®
Output Signal Format[1:0]  
Clock Out 2  
DSPLL  
Clock In 2  
Clock 2 Disable/PLL Bypass  
Loss of Lock  
Loss of Signal 1  
Loss of Signal 2  
Status/Control  
VDD (1.8, 2.5, or 3.3 V)  
GND  
Frequency Select[3:0]  
Manual/Auto Clock Selection  
Frequency Table Select  
Clock Switch/Clock Active Indicator  
XTAL/Clock  
Loop Bandwidth Select[1:0]  
Rev. 1.0 4/12  
Copyright © 2012 by Silicon Laboratories  
Si5315  
Si5315  
2
Rev. 1.0  
Si5315  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . .11  
1.2. Three-Level (3L) Input Pins (With External Resistors) . . . . . . . . . . . . . . . . . . . . . . .12  
2. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. System Level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.2. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
5. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.1. Frequency Multiplication Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.3. Input Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.4. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
5.5. Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.6. PLL Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
6. High-Speed I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.1. Input Clock Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.2. Output Clock Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
7. Crystal/Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
7.1. Crystal/Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
8. Power Supply Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
9. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
9.1. 10G LAN SyncE Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
10. Pin Descriptions: Si5315 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
11. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
12. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
13. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
14. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
14.1. Si5315 Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
14.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Rev. 1.0  
3
Si5315  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
ºC  
V
Temperature Range  
Supply Voltage  
T
A
V
3.3 V nominal  
2.5 V nominal  
1.8 V nominal  
2.97  
2.25  
1.71  
3.3  
2.5  
1.8  
3.63  
2.75  
1.89  
DD  
V
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. DC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Supply Current (Supply  
current is independent of  
I
LVPECL Format  
644.53125 MHz Out  
All CKOUTs Enabled  
251  
279  
mA  
DD  
1
V
)
DD  
LVPECL Format  
644.53125 MHz Out  
Only 1 CKOUT Enabled  
217  
204  
194  
243  
234  
220  
mA  
mA  
mA  
1
CMOS Format  
25.00 MHz Out  
All CKOUTs Enabled  
2
CMOS Format  
25.00 MHz Out  
Only CKOUT1 Enabled  
2
CKINn Input Pins  
Input Common Mode Voltage  
(Input Threshold Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
3.3 V ± 10%  
Single-ended  
0.9  
1.0  
1.1  
20  
0
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
V
Input Resistance  
Input Voltage Level Limits  
Notes:  
CKN  
CKN  
k  
V
RIN  
V
VIN  
DD  
1. Refers to Si5315A speed grade.  
2. Refers to Si5315B speed grade.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 11.  
4
Rev. 1.0  
Si5315  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
< 212.5 MHz  
Min  
Typ  
Max  
Units  
Single-ended Input Voltage  
Swing  
V
f
f
f
f
0.2  
V
V
V
V
ISE  
CKIN  
PP  
PP  
PP  
PP  
See Figure 2.  
> 212.5 MHz  
0.25  
0.2  
CKIN  
See Figure 2.  
< 212.5 MHz  
CKIN  
Differential Input  
Voltage Swing  
V
ID  
See Figure 2.  
> 212.5 MHz  
0.25  
CKIN  
See Figure 2.  
CKOUTn Output Clocks  
Common Mode  
V
LVPECL 100 load  
V
1.42  
V
1.25  
V
OCM  
DD  
DD  
line-to-line  
Differential Output Swing  
Single Ended Output Swing  
Differential Output Voltage  
V
LVPECL 100 load  
1.1  
1.9  
V
OD  
PP  
PP  
line-to-line  
V
LVPECL 100 load  
0.5  
0.93  
500  
V
SE  
line-to-line  
CKO  
CML 100 load  
350  
425  
mV  
PP  
VD  
line-to-line  
Common Mode  
Output Voltage  
CKO  
CML 100 load  
V
V
VCM  
DD  
0.36  
line-to-line  
Differential  
Output Voltage  
CKO  
LVDS 100 load  
500  
350  
1.125  
700  
425  
1.2  
900  
500  
1.275  
mV  
VD  
PP  
line-to-line  
Low swing LVDS 100 load  
mV  
PP  
line-to-line  
Common Mode  
Output Voltage  
CKO  
LVDS 100 load  
V
VCM  
line-to-line  
Differential Output Resistance  
CKO  
CML, LVPECL, LVDS,  
Disable  
200  
RD  
Output Voltage Low  
Output Voltage High  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
V
= 1.71 V  
0.8 x V  
DD  
VOHLH  
DD  
CMOS  
Notes:  
1. Refers to Si5315A speed grade.  
2. Refers to Si5315B speed grade.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 11.  
Rev. 1.0  
5
Si5315  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
CKO  
Test Condition  
Min  
Typ  
Max  
Units  
Output Drive Current  
CMOS  
IO  
Driving into CKO  
for out-  
VOL  
put low or CKO  
for out-  
VOH  
put high. CKOUT+ and  
CKOUT– shorted externally.  
V
V
= 1.71 V  
= 2.97 V  
7.5  
32  
mA  
mA  
DD  
DD  
2-Level LVCMOS Input Pins  
Input Voltage Low  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
75  
0.5  
0.7  
0.8  
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
V
Input Voltage High  
V
1.4  
1.8  
2.5  
V
IH  
V
V
Input Low Current  
Input High Current  
I
50  
50  
µA  
µA  
k  
IL  
I
IH  
Weak Internal Input Pull-up  
Resistor  
R
PUP  
Weak Internal Input  
Pull-down Resistor  
R
75  
k  
PDN  
3-Level Input Pins  
Input Voltage Low  
Input Voltage Mid  
Input Voltage High  
Input Low Current  
Input Mid Current  
Input High Current  
0.15 x VDD  
V
0.45 x VDD  
0.85 x VDD  
–20  
V
V
ILL  
0.55 x VDD  
V
IMM  
V
2
V
IHH  
ILL  
I
See note 3.  
See note 3.  
See note 3.  
µA  
µA  
µA  
I
–2  
IMM  
I
20  
IHH  
Notes:  
1. Refers to Si5315A speed grade.  
2. Refers to Si5315B speed grade.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 11.  
6
Rev. 1.0  
Si5315  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
LVCMOS Output Pins  
Output Voltage Low  
V
I = 2 mA  
0.4  
0.4  
V
V
OL  
OH  
OZ  
O
V
V
= 1.62 V  
DD  
I = 2 mA  
O
= 2.97 V  
DD  
Output Voltage High  
V
I = –2 mA  
V
V
– 0.4  
V
O
DD  
DD  
V
= 1.62 V  
DD  
I = –2 mA  
– 0.4  
V
O
V
= 2.97 V  
DD  
Disabled Leakage Current  
I
RST = 0  
–100  
100  
µA  
Single-Ended Reference Clock Input Pin XA (XB with Cap to Gnd)  
Input Resistance  
XA  
XA  
XTAL/CLOCK = M  
XTAL/CLOCK = M  
0
12  
k  
RIN  
VIN  
Input Voltage Level Limits  
Input Voltage Swing  
1.2  
1.2  
V
XA  
0.5  
V
PP  
VPP  
Differential Reference Clock Input Pins (XA/XB)  
Input Resistance  
XA/XB  
0
12  
k  
RIN  
VIN  
Differential Input Voltage  
Level Limits  
XA/XB  
1.2  
V
Input Voltage Swing  
XA  
/XB  
0.5  
2.4  
V
PP  
VPP  
VPP  
Notes:  
1. Refers to Si5315A speed grade.  
2. Refers to Si5315B speed grade.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 11.  
Rev. 1.0  
7
Si5315  
Table 3. AC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Input Frequency  
CKINn Input Pins  
CKN  
0.008  
644.53 MHz  
F
Input Duty Cycle (Minimum  
Pulse Width)  
40  
2
60  
3
%
ns  
pF  
ns  
1
CKN  
Whichever is smaller  
DC  
Input Capacitance  
CKN  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
CKOUTn Output Pins  
Output Frequency (Output not  
configured for CMOS or disable)  
Note 2  
Note 3  
0.008  
0.008  
644.53 MHz  
125 MHz  
161.13 MHz  
CK  
OF  
Maximum Output Frequency in CKO  
CMOS Format  
FMC  
Output Rise/Fall (20–80%) at  
644.5313 MHz  
CKO  
Output not configured for CMOS  
or disabled, see Figure 2  
230  
350  
8
ps  
ns  
TRF  
Single Ended Output Rise/Fall  
(20–80%)  
CMOS Output  
V
= 1.62  
DD  
Cload = 5 pF  
CKO  
TRF  
CMOS Output  
2
ns  
ps  
V
= 2.97  
DD  
Cload = 5 pF  
Output Duty Cycle Differential  
Uncertainty  
CKO  
100 Load  
Line to Line  
±40  
DC  
Measured at 50% Point  
(not for CMOS)  
LVCMOS Pins  
Input Capacitance  
Notes:  
C
3
pF  
in  
1. Assumes N3 does not equal 1. IF N3 = 1, CKNDC = 50 µs.  
2. Refers to Si5315A speed grade.  
3. Refers to Si5315B speed grade.  
8
Rev. 1.0  
Si5315  
Table 3. AC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
LVCMOS Output Pins  
Rise/Fall Times  
t
CLOAD = 20 pf  
See Figure 2  
25  
10  
750  
ns  
µs  
RF  
LOSn Trigger Window  
From last CKINn to  
internal detection of LOSn  
LOS  
t
TRIG  
Time to Clear LOL after LOS  
Cleared  
LOS to LOL  
Assume Fold=Fnew,  
Stable XA-XB reference  
ms  
CLRLOL  
PLL Performance  
Output Clock Skew  
t
of CKOUTn to CKOUTn  
100  
500  
ps  
ps  
SKEW  
Phase Change Due to  
Temperature Variation  
t
Maximum phase change from  
–40 to +85 °C  
300  
TEMP  
Lock Time  
t
RST with valid CKIN to LOL;  
1200  
0.05  
ms  
dB  
LOCKHW  
BW = 100 Hz  
Closed Loop Jitter Peaking  
Jitter Tolerance  
J
0.1  
PK  
See 4.2.3. "Jitter Toler- ns pk-  
J
TOL  
ance" on page 18.  
pk  
µs  
ps  
Minimum Reset Pulse Width  
Output Clock Initial Phase Step  
t
1
RSTMIN  
P_STEP  
During clock switch CKIN > 19.44  
MHz  
100  
200  
t
Holdover Frequency Historical  
Averaging Time  
6.7  
26.2  
–75  
sec  
ms  
t
t
HISTAVG  
HISTDEL  
Holdover Frequency Historical  
Delay Time  
Spurious Noise  
Max spur @ n x f3  
(n > 1, n x f3 < 100 MHz)  
dBc  
SP  
SPUR  
Notes:  
1. Assumes N3 does not equal 1. IF N3 = 1, CKNDC = 50 µs.  
2. Refers to Si5315A speed grade.  
3. Refers to Si5315B speed grade.  
Rev. 1.0  
9
Si5315  
Table 4. Jitter Generation  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
1,2,3,4  
Parameter  
Symbol  
Min  
Typ  
Max  
GR-253 Spec  
Unit  
Test Condition  
1
Measuremen  
DSPLL BW  
t Filter (MHz)  
0.02–80  
4–80  
5
167 Hz  
0.483 0.628  
0.302 0.392  
0.467 0.607  
N/A  
N/A  
ps  
ps  
ps  
rms  
rms  
rms  
5
167 Hz  
Jitter Gen OC-192  
Jitter Gen OC-48  
J
GEN  
5
0.05–80  
167 Hz  
1.0 ps  
rms  
(0.01 UI  
rms  
5
167 Hz  
0.470 0.611  
0.565 0.734  
0.232 0.301  
4.02 ps  
(0.01 UI  
4.02 ps  
(0.01 UI  
ps  
ps  
ps  
rms  
rms  
rms  
rms  
)
rms  
J
J
0.012–20  
1.875–20  
GEN  
6
111 Hz  
rms  
rms  
)
IEEE 802.3 GbE  
RMS Jitter  
6
83 Hz  
GEN  
Notes:  
1. BWSEL [1:0] loop bandwidth settings provided in Table 9 on page 20.  
2. 40 MHz fundamental mode crystal used as XA/XB input.  
3. VDD = 2.5 V  
4. TA = 85 °C  
5. Si5315A test condition: fIN = 19.44 MHz, fOUT = 156.25 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time  
(20–80%), LVPECL clock output.  
6. Si5315B test condition: fIN =19.44 MHz, fOUT = 125 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time (20-  
80%), LVPECL clock output.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
Differential I/Os  
V
ICM , V  
VISE,VOSE  
SIGNAL – OCM  
(SIGNAL +) – (SIGNAL –)  
ICM, VOCM  
Differential  
Peak-to-Peak Voltage  
V ,VOD  
ID  
V
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. CKIN Voltage Characteristics  
80%  
20%  
DOUT, CLOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
10  
Rev. 1.0  
Si5315  
1.1. Three-Level (3L) Input Pins (No External Resistors)  
VDD  
Si5315  
75 k  
Iimm  
75 k  
External Driver  
Figure 3. Three-Level Input Pins  
Table 5. Three-Level Input Pins (No External Resistors)  
Parameter  
Symbol  
Vill  
Min  
Max  
0.15 x V  
0.55 x V  
Input Voltage Low  
Input Voltage Mid  
Input Voltage High  
Input Low Current  
Input Mid Current  
Input High Current  
DD  
DD  
Vimm  
Vihh  
Iill  
0.45 x V  
0.85 x V  
–6 µA  
–2 µA  
DD  
DD  
Iimm  
Iihh  
2 µA  
6 µA  
Note: The above currents are the amount of leakage that the 3L inputs can tolerate from an external driver.  
Rev. 1.0  
11  
Si5315  
1.2. Three-Level (3L) Input Pins (With External Resistors)  
VDD  
18 k  
VDD  
Si5315  
75 k  
Iimm  
18 k  
75 k  
External Driver  
One of eight resistors from a Panasonic EXB-D10C183J  
(or similar) resistor pack  
Figure 4. Three Level Input Pins  
Table 6. Three-Level Input Pins (With External Resistors)  
Parameter  
Symbol  
Iill  
Min  
–30 µA  
–11 µA  
Max  
Input Low Current  
Input Mid Current  
Input High Current  
Iimm  
Iihh  
–11 µA  
–30 µA  
Note: The above currents are the amount of leakage that the 3L inputs can tolerate from an external driver.  
Any resistor pack may be used.  
The Panasonic EXB-D10C183J is an example.  
PCB layout is not critical.  
Resistor packs are only needed if the leakage current of the external driver exceeds the listed currents.  
If a pin is tied to ground or V , no resistors are needed.  
DD  
If a pin is left open (no connect), no resistors are needed.  
12  
Rev. 1.0  
Si5315  
Table 7. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Thermal Resistance  
Junction to Ambient  
Still Air  
32  
ºC/W  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
14  
ºC/W  
JC  
Table 8. Absolute Maximum Limits  
Parameter  
Symbol  
Value  
Unit  
DC Supply Voltage  
V
–0.5 to 3.8  
V
V
DD  
LVCMOS Input Voltage  
V
–0.3 to (V + 0.3)  
DD  
DIG  
CKINn Voltage Level Limits  
XA/XB Voltage Level Limits  
Operating Junction Temperature  
Storage Temperature Range  
CKN  
0 to V  
V
VIN  
DD  
XA  
0 to 1.2  
–55 to 150  
–55 to 150  
2
V
VIN  
T
C
C
kV  
JCT  
T
STG  
ESD HBM Tolerance (100 pF, 1.5 k); All pins except  
CKIN+/CKIN–  
ESD MM Tolerance; All pins except CKIN+/CKIN–  
ESD HBM Tolerance (100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance; CKIN+/CKIN–  
150  
V
V
V
750  
100  
Latch-Up Tolerance  
JESD78 Compliant  
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
Rev. 1.0  
13  
Si5315  
2. Typical Application Circuit  
C4  
C3  
1 µF  
System  
Power  
Supply  
0.1 µF  
Ferrite  
Bead  
C2  
C1  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
130  
82   
130   
82   
0.1 µF  
CKOUT1+  
CKOUT1–  
CKIN1+  
CKIN1–  
+
100   
0.1 µF  
0.1 µF  
Clock Outputs to  
Ethernet PHYs  
CKOUT2+  
CKOUT2–  
+
Backplane or Line  
Recovered Clock  
Inputs  
100   
VDD = 3.3 V  
0.1 µF  
130   
82   
130   
82   
CKIN2+  
CKIN2–  
LOS1  
LOS2  
LOL  
CKIN1 Loss of Signal Indicator  
CKIN2 Loss of Signal Indicator  
PLL Loss of Lock Indicator  
XA  
XB  
Option 1:  
40 MHz Crystal  
0.1 µF  
Si5315  
Option 2:  
Ext. Refclk+  
Ext. Refclk–  
XA  
XB  
0.1 µF  
VDD  
15 k  
XTAL/Clock2  
AUTOSEL2  
CS3  
Crystal/Ref Clk  
VDD  
VDD  
VDD  
VDD  
15 k  
Manual/Automatic Clock 15 k  
Selection (L)15 k  
VDD  
15 k  
Input Clock Select  
15 k  
15 k  
FRQTBL2  
Frequency Table Select  
VDD  
15 k  
15 k  
FRQSEL[3:0]2  
BWSEL[1:0]2  
Frequency Select  
15 k  
15 k  
Bandwidth Select  
VDD  
15 k  
15 k  
Signal Format Select  
SFOUT[1:0]2  
DBL2_BY2  
RST  
15 k  
Clock Output 2 Disable/ 15 k  
Bypass Mode Control 15 k  
Reset  
Notes:  
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.  
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).  
3. Assumes manual input clock selection.  
Figure 5. Si5315 Typical Application Circuit  
14  
Rev. 1.0  
Si5315  
3. System Level Overview  
The Si5315 provides clock translation, jitter attenuation, and clock distribution for high-performance Synchronous  
Ethernet* line card timing applications.  
*Note: The Si5315 supports SyncE EEC options 1 and 2 when paired with a timing card that implements the required wander  
filtering and Stratum 3 compliant reference clock. For detailed information, refer to “AN420: SyncE and IEEE 1588: Sync  
Distribution for a Unified Network”.  
The Si5315 provides clock translation, jitter attenuation, and clock distribution for high-performance Synchronous  
Ethernet line card timing applications. The device accepts two clock inputs ranging from 8 kHz to 644.53 MHz and  
generates two equal frequency, low jitter clock outputs ranging from 8 kHz to 644.53 MHz. For ease of use, the  
Si5315 is pin controlled to enable simple device configuration of frequency plans, PLL loop bandwidth, and input  
clock selection. The DSPLL locks to one of two input reference clocks and provides over 200 frequency  
translations to synchronize output clocks for Ethernet, SONET/SDH, and PDH line cards. The Si5315 implements  
internal state machines to control hitless switching between input clocks and holdover. Status alarms, loss of signal  
(LOS) and loss of lock (LOL) are provided on output pins to indicate a change in device status.  
This device is designed for systems with line cards that are synchronized to a redundant, centralized telecom or  
Ethernet backplane. The Si5315 synchronizes to backplane clocks and generates a multiplied, jitter attenuated  
Ethernet/SONET/SDH clock or PDH clock. A typical system application is shown in Figure 6. The Si5315  
translates a 19.44 MHz clock from the telecom backplane to an Ethernet or SONET/SDH clock frequency to the  
PHY and filters the jitter to ensure compliance with related ITU-T and Telcordia standards.  
Telecom  
or  
Ethernet  
Redundant  
Timing Cards  
10G LAN / WAN  
SyncE Line Card  
Backplane  
Wander Filtering  
Hitless Switching  
Holdover  
Tx Timing Path  
Hitless Switching  
Jitter Filtering  
Frequency Translation  
10GbE  
PHY  
A
B
BITS A  
BITS B  
Network  
Synchronization  
155.52 MHz  
156.25 MHz  
161.1328125 MHz  
A
B
Si5315  
8 kHz  
19.44 MHz  
25 MHz  
10GbE  
PHY  
Rx Timing Path  
Line  
Recovered  
Clocks  
8 kHz  
19.44 MHz  
25 MHz  
Multi-Port  
SONET / SDH / PDH Line Card  
Tx Timing Path  
Hitless Switching  
Jitter Filtering  
Frequency Translation  
OC-3 / 12  
77.76 / 155.52 MHz  
1.544 / 2.048 MHz  
A
B
Si5315  
T1 / E1  
Rx Timing Path  
Line  
Recovered  
Clocks  
8 kHz  
19.44 MHz  
25 MHz  
Figure 6. Typical Si5315 Application  
Rev. 1.0  
15  
Si5315  
4. Functional Description  
Crystal or  
Reference Clock  
Xtal/Clock  
XB  
XA  
PLL Bypass  
0
1
2
CKOUT1+  
CKOUT1–  
2
CKIN1+  
CKIN1–  
0
1
f3  
fOSC  
DSPLL®  
2
SFOUT[1:0]  
CKIN2+  
CKIN2–  
0
1
2
CKOUT2+  
CKOUT2–  
LOS1  
LOS2  
DBL2_BY  
Signal Detect  
Control  
LOL  
AUTOSEL  
CS/CA  
RST  
Bandwidth  
Control  
BWSEL[1:0]  
VDD (1.8, 2.5, or 3.3 V)  
GND  
FRQSEL[3:0]  
FRQTBL  
Frequency  
Control  
Figure 7. Detailed Block Diagram  
4.1. Overview  
The Si5315 is a jitter-attenuating precision clock multiplier for Synchronous Ethernet, SONET/SDH, and PDH  
(T1/E1) applications. The Si5315 accepts dual clock inputs ranging from 8 kHz to 644.53 MHz and generates two  
frequency-multiplied clock outputs ranging from 8 kHz to 644.53 MHz. The two input clocks are at the same  
frequency and the two output clocks are at the same frequency. The input clock frequency and clock multiplication  
ratio are selectable from a look up table of popular SyncE and T1/E1 rates.  
®
The Si5315 is based on Silicon Laboratories' 3rd-generation DSPLL technology, which provides any-frequency  
synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and  
loop filter components. The Si5315 PLL loop bandwidth is selectable via the BWSEL[1:0] pins and supports a  
range from 60 to 8.4 kHz.  
The Si5315 supports hitless switching between the two input clocks in compliance with ITU-T G.8262 and Telcordia  
GR-253-CORE and GR-1244-CORE. This feature greatly minimizes the propagation of phase transients to the  
clock outputs during an input clock transition (<200 ps typ). Manual and automatic revertive and non-revertive input  
clock switching options are available via the AUTOSEL input pin. The Si5315 monitors both input clocks for loss-of-  
signal and provides a LOS alarm when it detects missing pulses on either input clock. The device monitors the lock  
status of the PLL. The lock detect algorithm works by continuously monitoring the phase of the input clock in  
relation to the phase of the feedback clock. The Si5315 provides a holdover capability that allows the device to  
continue generation of a stable output clock when the selected input reference is lost.  
The Si5315 has two differential clock outputs. The signal format of the clock outputs is programmable to support  
LVPECL, LVDS, CML, or CMOS loads. The second clock output can be powered down to minimize power  
consumption. For system-level debugging, a bypass mode is available which drives the output clock directly from  
the input clock, bypassing the internal DSPLL. The device operates from a single 1.8, 2.5, or 3.3 V supply.  
16  
Rev. 1.0  
Si5315  
4.2. PLL Performance  
The Si5315 provides extremely low jitter generation, a well-controlled jitter transfer function, and high jitter  
tolerance due to the high level of integration.  
4.2.1. Jitter Generation  
Jitter generation is defined as the amount of jitter produced at the output of the device with a jitter free input clock.  
Generated jitter arises from sources within the VCO and other PLL components. Jitter generation is a function of  
the PLL bandwidth setting. Higher loop bandwidth settings may result in lower jitter generation, but may result in  
less attenuation of jitter that might be present on the input clock signal.  
4.2.2. Jitter Transfer  
Jitter transfer is defined as the ratio of output signal jitter to input signal jitter for a specified jitter frequency. The  
jitter transfer characteristic determines the amount of input clock jitter that passes to the outputs. The DSPLL  
technology used in the Si5315 provides tightly controlled jitter transfer curves because the PLL gain parameters  
are determined largely by digital circuits which do not vary over supply voltage, process, and temperature. In a  
system application, a well-controlled transfer curve minimizes the output clock jitter variation from board to board  
and provides more consistent system level jitter performance.  
The jitter transfer characteristic is a function of the loop bandwidth setting. Lower bandwidth settings result in more  
jitter attenuation of the incoming clock, but may result in higher jitter generation. Figure 8 shows the jitter transfer  
curve mask.  
Jitter  
Transfer  
Jitter Out  
Jitter In  
0 dB  
Peaking  
–20 dB/dec.  
fJitter  
BW  
Figure 8. PLL Jitter Transfer Mask/Template  
Rev. 1.0  
17  
Si5315  
4.2.3. Jitter Tolerance  
Jitter tolerance is defined as the maximum peak-to-peak sinusoidal jitter that can be present on the incoming clock  
before the DSPLL loses lock. The tolerance is a function of the jitter frequency, because tolerance improves for  
lower input jitter frequency.  
The jitter tolerance of the DSPLL is a function of the loop bandwidth setting. Figure 9 shows the general shape of  
the jitter tolerance curve versus input jitter frequency. For jitter frequencies above the loop bandwidth, the tolerance  
is a constant value A . Beginning at the PLL bandwidth, the tolerance increases at a rate of 20 dB/decade for  
j0  
lower input jitter frequencies.  
Input  
Jitter  
–20 dB/dec.  
Amplitude  
Excessive Input Jitter Range  
Aj0  
BW  
BW/100 BW/10  
fJitter In  
Figure 9. Jitter Tolerance Mask/Template  
The equation for the high frequency jitter tolerance can be expressed as a function of the PLL loop bandwidth  
(i.e., BW):  
5000  
BW  
------------  
ns pk-pk  
Aj0  
=
For example, the jitter tolerance when f = 19.44 MHz, f = 161.13 MHz and the loop bandwidth (BW) is 113 Hz:  
in  
out  
5000  
113  
------------  
Aj0  
=
= 44.24 ns pk-pk  
4.2.4. Jitter Attenuation Performance  
The Internal VCO uses the reference clock on the XA/XB pins as its reference for jitter attenuation. The XA/XB pins  
support either a crystal input or an input buffer single-ended or differential clock input, such that an external  
oscillator can become the reference source. In either case, the device accepts a wide margin in absolute frequency  
of the reference input. (See 5.5. "Holdover Mode" on page 32.) In holdover, the Si5315's output clock stability  
matches the reference supplied on the XA/XB pins. The external crystal or reference clock must be selected based  
on the stability requirements of the application if holdover is a key requirement.  
However, care must be exercised in certain areas for optimum performance. For examples of connections to the  
XA/XB pins, refer to 7. "Crystal/Reference Clock Input" on page 38.  
18  
Rev. 1.0  
Si5315  
5. Frequency Plan Tables  
For ease of use, the Si5315 is pin controlled to enable simple device configuration of the frequency plan and PLL  
loop bandwidth via a predefined look up table. The DSPLL has been optimized for each frequency multiplication  
and PLL loop bandwidth provided in Table 9 on page 20.  
Many of the control inputs are three levels: High, Low, and Medium. High and Low are standard voltage levels  
determined by the supply voltage: V and Ground. If the input pin is left floating, it is driven to nominally half of  
DD  
V
. Effectively, this creates three logic levels for these controls. See 1.2. "Three-Level (3L) Input Pins (With  
DD  
External Resistors)" on page 12 and 8. "Power Supply Filtering" on page 41 for additional information.  
5.1. Frequency Multiplication Plan  
The input to output clock multiplication is set by the 3-level FRQSEL[3:0] pins. The device provides a wide range of  
commonly used SyncE, SONET/SDH, and PDH frequency translations. The CKIN1 and CKIN2 inputs must be the  
same frequency as specified in Table 9. Both CKOUT1 and CKOUT2 outputs are at the same frequency.  
5.1.1. PLL Loop Bandwidth Plan  
The Si5315's loop bandwidth ranges from 60 Hz to 8.4 kHz. For each frequency multiplication, its corresponding  
loop bandwidth is provided in a simple look up table. (See Table 9 on page 20.) The loop bandwidth (BW) is  
digitally programmable using the 3-level BWSEL [1:0] and FRQTBL input pins.  
Rev. 1.0  
19  
Si5315  
20  
Rev. 1.0  
Si5315  
Rev. 1.0  
21  
Si5315  
22  
Rev. 1.0  
Si5315  
Rev. 1.0  
23  
Si5315  
24  
Rev. 1.0  
Si5315  
Rev. 1.0  
25  
Si5315  
26  
Rev. 1.0  
Si5315  
Rev. 1.0  
27  
Si5315  
28  
Rev. 1.0  
Si5315  
5.2. PLL Self-Calibration  
An internal self-calibration (ICAL) is performed before operation to optimize loop parameters and jitter  
performance. While the self-calibration is being performed, the DSPLL is being internally controlled by the self-  
calibration state machine. The LOL alarm will be active during ICAL. The self-calibration time t  
Table 3, “AC Characteristics”.  
is given in  
LOCKHW  
Any of the following events will trigger a self-calibration:  
Power-on-reset (POR)  
Release of the external reset pin RST (transition of RST from 0 to 1)  
Change in FRQSEL, FRQTBL, BWSEL, or XTAL/CLOCK pins  
Internal DSPLL registers out-of-range, indicating the need to relock the DSPLL  
In any of the above cases, an internal self-calibration will be initiated if a valid input clock exists (no input alarm)  
and is selected as the active clock at that time. The external crystal or reference clock must also be present for the  
self-calibration to begin. If valid clocks are not present, the self-calibration state machine will wait until they appear,  
at which time the calibration will start. An output clock will be active while waiting for a valid input clock. The output  
clock frequency is based on the VCO range determine by FRQSEL and FRQTBL settings. This output clock will  
vary by ±20%. If no output clock is desired prior to an ICAL, then the SFOUT pins should be kept at LM for  
1.2 seconds until the output clock is stable.  
After a successful self-calibration has been performed with a valid input clock, no subsequent self calibrations are  
performed unless one of the above conditions are met. If the input clock is lost following self-calibration, the device  
enters holdover mode. When the input clock returns, the device relocks to the input clock without performing a self-  
calibration.  
5.2.1. Input Clock Stability during Internal Self-Calibration  
An exit from reset must occur when the selected CKINn clock is stable in frequency with a frequency value that is  
within the device operating range. The other CKINs must also either be stable in frequency or squelched during a  
reset.  
5.2.2. Self-Calibration caused by Changes in Input Frequency  
If the selected CKINn varies by 500 ppm or more in frequency since the last calibration, the device may initiate a  
self-calibration.  
5.2.3. Device Reset  
Upon powerup, the device internally executes a power-on-reset (POR) which resets the internal device logic. The  
pin RST can also be used to initiate a reset. The device stays in this state until a valid CKINn is present, when it  
then performs a PLL Self-Calibration (See 5.2. "PLL Self-Calibration”).  
5.2.4. Recommended Reset Guidelines  
Follow the recommended RESET guidelines in Table 10 when reset should be applied to a device.  
Table 10. Si5315 Pins and Reset  
Pin #  
2
Si5315 Pin Name  
FRQTBL  
Must Reset after Changing  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
11  
XTAL/CLOCK  
BWSEL0  
22  
23  
24  
25  
26  
27  
BWSEL1  
FRQSEL0  
FRQSEL1  
FRQSEL2  
FRQSEL3  
Rev. 1.0  
29  
Si5315  
5.2.5. Hitless Switching with Phase Build-Out  
Silicon Laboratories switching technology performs "phase build-out" to minimize the propagation of phase  
transients to the clock outputs during input clock switching. All switching between input clocks occurs within the  
input multiplexor and phase detector circuitry. The phase detector circuitry continually monitors the phase  
difference between each input clock and the DSPLL output clock, f  
. The phase detector circuitry can lock to a  
OSC  
clock signal at a specified phase offset relative to f  
so that the phase offset is maintained by the PLL circuitry.  
OSC  
At the time a clock switch occurs, the phase detector circuitry knows both the input-to-output phase relationship for  
the original input clock and for the new input clock. The phase detector circuitry locks to the new input clock at the  
new clock's phase offset so that the phase of the output clock is not disturbed. The phase difference between the  
two input clocks is absorbed in the phase detector's offset value, rather than being propagated to the clock output.  
The switching technology virtually eliminates the output clock phase transients traditionally associated with clock  
rearrangement (input clock switching). The Maximum Time Interval Error (MTIE) and maximum slope for clock  
output phase transients during clock switching are given in (Table 3, “AC Characteristics”). These values fall  
significantly below the limits specified in the ITU-T G.8262, Telcordia GR-1244-CORE, and GR-253-CORE  
requirements.  
5.3. Input Clock Control  
This section describes the clock selection capabilities (manual input selection, automatic input selection, hitless  
switching, and revertive switching). When switching between two clocks, LOL may temporarily go high if the two  
clocks differ in frequency by more than 100 ppm.  
5.3.1. Manual Clock Selection  
Manual control of input clock selection is chosen via the CS_CA pin according to Table 11 and Table 12.  
Table 11. Automatic/Manual Clock Selection  
AUTOSEL  
Clock Selection Mode  
Manual  
L
M
H
Automatic non-revertive  
Automatic revertive  
Table 12. Manual Input Clock Selection, AUTOSEL = L  
CS_CA  
Si5315  
AUTOSEL = L  
0
1
CKIN1  
CKIN2  
5.3.2. Automatic Clock Selection  
The AUTOSEL input pin sets the input clock selection mode as shown in Table 11. Automatic switching is either  
revertive or non-revertive. Setting AUTOSEL to M or H, changes the CS_CA pin to an output pin that indicates the  
state of the automatic clock selection.  
Table 13. Clock Active Indicators, AUTOSEL = M or H  
CS_CA  
Active Clock  
CKIN1  
0
1
CKIN2  
30  
Rev. 1.0  
Si5315  
The prioritization of clock inputs for automatic switching is shown in Table 14. This priority is hardwired in the  
devices.  
Table 14. Input Clock Priority for Auto Switching  
Priority  
Input Clocks  
CKIN1  
1
2
3
CKIN2  
Holdover  
At power-on or reset, the valid CKINn with the highest priority (1 being the highest priority) is automatically  
selected. If no valid CKINn is available, the device suppresses the output clocks and waits for a valid CKINn signal.  
If the currently selected CKINn goes into an alarm state, the next valid CKINn in priority order is selected. If no valid  
CKINn is available, the device enters holdover.  
Operation in revertive and non- revertive is different when a signal becomes valid:  
Revertive (AUTOSEL = H):  
The device constantly monitors all CKINn. If a CKINn with a higher priority than  
the current active CKINn becomes valid, the active CKINn is changed to the  
CKINn with the highest priority.  
Non-revertive (AUTOSEL = M): The active clock does not change until there is an alarm on the active clock. The  
device will then select the highest priority CKINn that is valid. Once in holdover,  
the device will switch to the first CKINn that becomes valid.  
5.4. Alarms  
Summary alarms are available to indicate the overall status of the input signals. Alarm outputs stay high until all the  
alarm conditions for that alarm output are cleared.  
5.4.1. Loss-of-Signal  
The device has loss-of-signal circuitry that continuously monitors CKINn for missing pulses. The LOS circuitry  
generates an internal LOSn_INT output signal that is processed with other alarms to generate LOS1 and LOS2.  
An LOS condition on CKIN1 causes the internal LOS1_INT alarm to become active. Similarly, an LOS condition on  
CKINn causes the LOSn_INT alarm to become active. Once a LOSn_INT alarm is asserted on one of the input  
clocks, it remains asserted until that input clock is validated over a designated time period. The time to clear  
LOSn_INT after a valid input clock appears is listed in Table 3, “AC Characteristics”. If another error condition on  
the same input clock is detected during the validation time then the alarm remains asserted and the validation time  
starts over.  
5.4.1.1. LOS Algorithm  
The LOS circuitry divides down each input clock to produce an 8 kHz to 2 MHz signal. The LOS circuitry over  
samples this divided down input clock using a 40 MHz clock to search for extended periods of time without input  
clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, a  
LOSn_INT alarm is declared. Table 3, “AC Characteristics” gives the minimum and maximum amount of time for  
the LOS monitor to trigger.  
5.4.1.2. Lock Detect  
The PLL lock detection algorithm indicates the lock status on the LOL output pin. The algorithm works by  
continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. If the time  
between two consecutive phase cycle slips is greater than the retrigger time, the PLL is in lock. The LOL output  
has a guaranteed minimum pulse width as shown in (Table 3, “AC Characteristics”). The LOL pin is also held in the  
active state during an internal PLL calibration. The retrigger time is automatically set based on the PLL closed loop  
bandwidth (See Table 15).  
Rev. 1.0  
31  
Si5315  
Table 15. Lock Detect Retrigger Time  
PLL Bandwidth Setting (BW)  
60–120 Hz  
Retrigger Time (ms)  
53  
120–240 Hz  
240–480 Hz  
26.5  
13.3  
6.6  
480–960 Hz  
960–1920 Hz  
1920–3840 Hz  
3840–7680 Hz  
3.3  
1.66  
0.833  
5.5. Holdover Mode  
If an LOS condition exists on the selected input clock, the device enters holdover. In this mode, the device provides  
a stable output frequency until the input clock returns and is validated. When the device enters holdover, the  
internal oscillator is initially held to its last frequency value. Next, the internal oscillator slowly transitions to a  
historical average frequency value that was taken over a time window of 6,711 ms in size that ended 26 ms before  
the device entered holdover. This frequency value is taken from an internal memory location that keeps a record of  
previous DSPLL frequency values. By using a historical average frequency, input clock phase and frequency  
transients that may occur immediately preceding loss of clock or any event causing holdover do not affect the  
holdover frequency. Also, noise related to input clock jitter or internal PLL jitter is minimized.  
If a highly stable reference, such as an oven-controlled crystal oscillator, is supplied at XA/XB, an extremely stable  
holdover can be achieved. If a crystal is supplied at the XA/XB port, the holdover stability will be limited by the  
stability of the crystal; Table 3, “AC Characteristics” gives the specifications related to the holdover function.  
5.5.1. Recovery from Holdover  
When the input clock signal returns, the device transitions from holdover to the selected input clock. The device  
performs hitless recovery from holdover. The clock transition from holdover to the returned input clock includes  
"phase buildout" to absorb the phase difference between the holdover clock phase and the input clock phase. See  
Table 3, “AC Characteristics” for specifications.  
5.6. PLL Bypass Mode  
The Si5315 supports a PLL bypass mode in which the selected input clock is fed directly to both enabled output  
buffers, bypassing the DSPLL. Internally, the bypass path is implemented with high-speed differential signaling;  
however, this path is not a low jitter path and will see significantly higher jitter on CKOUT. In PLL bypass mode, the  
input and output clocks will be at the same frequency. PLL bypass mode is useful in a laboratory environment to  
measure system performance with and without the jitter attenuation provided by the DSPLL. The DSBL2_BY pin is  
used to select the PLL Bypass Mode according to Table 16. Bypass mode is not supported for CMOS clock outputs  
(SFOUT = LH).  
Table 16. DSBL2/BYPASS Pin Settings  
DSBL2/BYPASS  
Function  
CKOUT2 Enabled  
L
M
H
CKOUT2 Disabled  
PLL Bypass Mode w/ CKOUT2 Enabled  
32  
Rev. 1.0  
Si5315  
Crystal or  
Reference Clock  
Xtal/Clock  
XB  
XA  
PLL Bypass  
0
1
2
CKOUT1+  
CKOUT1–  
2
2
CKIN1+  
CKIN1–  
0
1
fOSC  
f3  
DSPLL®  
CKIN2+  
CKIN2–  
SFOUT[1:0]  
2
CKOUT2+  
CKOUT2–  
LOS1  
LOS2  
LOL  
DBL2_BY  
Signal Detect  
Control  
AUTOSEL  
CS/CA  
RST  
Bandwidth  
Control  
BWSEL[1:0]  
VDD (1.8, 2.5, or 3.3 V)  
GND  
FRQSEL[3:0]  
FRQTBL  
Frequency  
Control  
Figure 10. Bypass Signal  
Rev. 1.0  
33  
Si5315  
6. High-Speed I/O  
6.1. Input Clock Buffers  
The Si5315 provides differential inputs for the CKINn clock inputs. These inputs are internally biased to a common  
mode voltage [see Table 2, “DC Characteristics”] and can be driven by either a single-ended or differential source.  
Figure 11 through Figure 14 show typical interface circuits for LVPECL, CML, LVDS, or CMOS input clocks. Note  
that the jitter generation improves for higher levels on CKINn (within the limits in Table 3, “AC Characteristics”).  
AC coupling the input clocks is recommended because it removes any issue with common mode input voltages.  
However, either ac or dc coupling is acceptable. Figures 11 and 12 show various examples of different input  
termination arrangements. Unused inputs can be left unconnected.  
3.3 V  
Si5315  
130  
130  
C
CKIN+  
300  
40 k  
LVPECL  
Driver  
40 k  
VICM  
±
CKIN _  
82   
82  
C
Figure 11. Differential LVPECL Termination  
3.3 V  
Si5315  
130  
C
CKIN +  
300  
Driver  
40 k  
40 k  
VICM  
±
CKIN _  
82   
C
Figure 12. Single-ended LVPECL Termination  
34  
Rev. 1.0  
Si5315  
Si5315  
C
CKIN +  
300  
40 k  
CML/  
LVDS  
Driver  
100  
40 k  
VICM  
±
CKIN _  
C
Figure 13. CML/LVDS Termination (1.8, 2.5, 3.3 V)  
CMOS Driver  
VDD  
VDD  
VDD  
Si5315  
R3  
VICM  
150 ohms  
50  
R1  
R2  
C1  
R5 40 kohm  
R6 40 kohm  
CKIN+  
CKIN–  
See Table  
33 ohms  
100 nF  
R4  
150 ohms  
C2  
100 nF  
VDD  
R2  
Notes  
3.3 V  
2.5 V  
1.8 V  
100 ohm  
49.9 ohm  
14.7 ohm  
Locate R1 near CMOS driver  
Locate other components near Si5317  
Recalculate resistor values for other drive strengths  
Additional Notes:  
1. Attenuation circuit limits overshoot and undershoot.  
2. Not to be used with non-square wave input clocks.  
Figure 14. CMOS Termination (1.8, 2.5, 3.3 V)  
Rev. 1.0  
35  
Si5315  
6.2. Output Clock Drivers  
The Si5315 has a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML,  
and CMOS formats. The signal format is selected for both CKOUT1 and CKOUT2 outputs using the SFOUT [1:0]  
pins. This modifies the output common mode and differential signal swing. See Table 2, “DC Characteristics” for  
output driver specifications. The SFOUT [1:0] pins are three-level input pins, with the states designated as L  
(ground), M (V /2), and H (V ). Table 17 shows the signal formats based on the supply voltage and the type of  
DD  
DD  
load being driven.  
Table 17. Output Signal Format Selection (SFOUT)  
SFOUT[1:0]  
Signal Format  
CML  
HL  
HM  
LVDS  
LH  
CMOS  
LM  
Disabled  
LVPECL  
MH  
ML  
Low-swing LVDS  
Reserved  
All Others  
Si5315  
Z0 = 50  
100  
CKOUTn  
Z0 = 50  
Rcvr  
Figure 15. Typical Differential Output Circuit  
Si5315  
CMOS  
Logic  
CKOUTn  
Optionally Tie CKOUTn  
Outputs Together for Greater Strength  
Figure 16. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn– Together)  
For the CMOS setting (SFOUT = LH), both output pins drive single-ended in-phase signals. The CKOUT+/- can be  
externally shorted together for greater drive strength specified in Table 2, “DC Characteristics”.  
36  
Rev. 1.0  
Si5315  
+
SFOUT[1:0] = LM (Output Disable)  
100  
100   
CKOUTn  
Output from  
DSPLL  
Figure 17. Disable CKOUTn Structure  
The SFOUT [1:0] pins can also be used to disable both outputs. Disabling the output puts the CKOUTn+ and  
CKOUTn– pins in a high-impedance state relative to V (common mode tri-state) while the two outputs remain  
DD  
connected to each other through a 200 on-chip resistance (differential impedance of 200 ). The maximum  
amount of internal circuitry is powered down, minimizing power consumption and noise generation. Recovery from  
the disable mode requires additional time as specified in Table 3, “AC Characteristics”.  
Rev. 1.0  
37  
Si5315  
7. Crystal/Reference Clock Input  
The device can use an external crystal or external clock as a reference. If an external clock is used, it must be ac  
coupled. With appropriate buffers, the same external reference clock can be applied to CKINn. Although the  
reference clock input can be driven single ended (See Figure 18), the best performance is with a crystal or low  
jitter, differential clock source. No external loading capacitors are required for normal crystal operation.  
3.3 V  
150  
0.1F  
3.3 V  
Si5315  
130   
10 k  
XA  
XB  
0.6 V  
150   
0.1F  
CMOS buffer,  
8 mA output current  
For 2.5 V operation, change 130 to 82 .  
Figure 18. CMOS External Reference Circuit  
0 dBm into 50  
1.2 V  
Si5315  
0.01 F  
XA  
10 pF  
0.01 F  
50   
10 k  
0.6 V  
XB  
External Clock Source  
0.1 µF  
Figure 19. Sinewave External Reference Clock Input Example  
Si5315  
1.2 V  
0.01 F  
XA  
100   
XB  
LVPECL, CML, etc.  
10 k  
10 k  
0.6 V  
0.01 F  
Figure 20. Differential External Reference Clock Input Example  
38  
Rev. 1.0  
Si5315  
7.1. Crystal/Reference Clock Selection  
The Si5315 requires either a low-jitter external oscillator or a low-cost fundamental mode crystal to be connected to  
its XA/XB pins. This serves both as a jitter reference for jitter attenuation and as a reference oscillator for stability  
during holdover. The frequency the reference is not directly related to either the input or the output clock  
frequencies. The range of the reference frequency is from 37 to 41 MHz. For recommendations on the selection of  
the reference frequency and a list of approved crystals, see the application note AN591 which can be downloaded  
from www.silabs.com/timing/.  
In holdover, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference  
when the DSPLL is in holdover will be tracked by the output of the device. Note that crystals can have temperature  
sensitivities. Table 18 shows how the XTAL/CLOCK pin is used to select between a crystal and an external  
oscillator.  
Table 18. XA/XB Reference Sources  
XTAL/CLOCK  
Type  
M
L
37–41 MHz external clock  
40 MHz crystal  
Because the crystal is used as a jitter reference, rapid changes of the crystal temperature can temporarily disturb  
the output phase and frequency. For example, it is recommended that the crystal not be placed close to a fan that  
is being turned off and on. If a situation such as this is unavoidable, the crystal should be thermally isolated with an  
insulating cover.  
7.1.1. Reference Drift  
During holdover, long-term and temperature related drift of the reference input result in a one-to-one drift of the  
output frequency. That is, the stability of the any-frequency output is identical to the drift of the reference frequency.  
This means that for the most demanding applications where the drift of a crystal is not acceptable, an external  
temperature compensated or ovenized oscillator will be required. Drift is not an issue unless the part is in holdover.  
Also, the initial accuracy of the reference oscillator (or crystal) is not relevant.  
Rev. 1.0  
39  
Si5315  
7.1.2. Reference Jitter  
Jitter on the reference input has a roughly one-to-one transfer function to the output jitter over the bandwidth  
ranging from 100 Hz up to 30 kHz. If a crystal is used on the XA/XB pins, the reference will have low jitter if a  
suitable crystal is in use. If the XA/XB pins are connected to an external reference oscillator, the jitter of the  
external reference oscillator may contribute significantly to the output jitter.  
A typical reference input-to-output jitter transfer function is shown in Figure 21.  
Jitter Transfer XA/XB Reference to CKOUT  
38.88 MHz XO, 38.88 MHz CKIN, 38.88 MHz CKOUT  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
1
10  
100  
1000  
10000  
100000  
1000000  
Jitter Frequency (Hz)  
Figure 21. Typical XA/XB Reference Jitter Transfer Function  
40  
Rev. 1.0  
Si5315  
8. Power Supply Filtering  
This device incorporates an on-chip voltage regulator with excellent PSRR to power the device from a supply  
voltage of 1.8, 2.5, or 3.3 V. The device requires minimal supply decoupling and no stringent layout or ground plane  
islands. Internal core circuitry is driven from the output of this regulator while I/O circuitry uses the external supply  
voltage directly. Table 3, “AC Characteristics” gives the sensitivity of the on-chip oscillator to changes in the supply  
voltage. Refer to the Si5315 evaluation board for an example.  
The center ground pad under the device must be electrically and thermally connected to the ground plane.  
See Figure 26, “Ground Pad Recommended Layout,” on page 50.  
0.1 uF  
System  
C1 – C3  
Power  
Supply  
(1.8, 2.5, or  
3.3 V)  
1.0 uF  
Ferrite  
Bead  
C4  
GND &  
GND Pad  
VDD  
Si5315  
Figure 22. Typical Power Supply Bypass Network  
Power Supply Noise to Output Transfer Function  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
1
10  
100  
1000  
Frequency of Power Supply Noise (kHz)  
Figure 23. Fout = 155 MHz with 112 Hz Loop Bandwidth, 100 mVp-p Supply Noise  
Rev. 1.0  
41  
Si5315  
9. Typical Phase Noise Plots  
The following is a typical phase noise plot. The clock input source was a Rohde and Schwarz model SML03 RF  
Generator. The spectrum analyzer was either an Agilent model E5052B, model E4400A or model JS-500. The  
Si5315 operates at 3.3 V with an ac coupled differential PECL output and an ac coupled differential sine wave input  
from the RF generator at 0 dBm. Note that, as with any PLL, the output jitter that is below the loop BW is caused by  
the jitter at the input clock, not the Si5315. Except as noted, loop BWs of 60 to 240 Hz were in use.  
9.1. 10G LAN SyncE Example  
Frequency Plan  
Fin=19.44 MHz Fin=19.44 MHz  
Fin=25 MHz  
Fin=25 MHz  
Fout=156.25 MHz Fout=125 MHz Fout=156.25 MHz Fout=125 MHz  
BW=167 Hz  
BW=111 Hz  
BW=111 Hz  
BW=111 Hz  
Jitter Integration Filter Band  
IEEE802.3 (1.875 to 20 MHz)  
RMS Jitter (fs)  
232  
483  
302  
467  
470  
422  
511  
240  
575  
303  
564  
565  
524  
584  
251  
525  
300  
510  
517  
471  
533  
240  
550  
294  
537  
541  
503  
557  
SONET OC-192 (20 kHz to 80 MHz)  
SONET OC-192 (4 to 80 MHz)  
SONET OC-192 (50 kHz to 80 MHz)  
SONET OC-48 (12 kHz to 20 MHz)  
SONET OC-3 (12 kHz to 5 MHz)  
BroadBand (800 Hz to 80 MHz)  
42  
Rev. 1.0  
Si5315  
10. Pin Descriptions: Si5315  
36 35 34 33 32 31 30 29 28  
RST  
FRQTBL  
LOS1  
1
2
3
4
5
6
7
8
9
27 FRQSEL3  
26  
FRQSEL2  
25 FRQSEL1  
LOS2  
24  
23  
FRQSEL0  
BWSEL1  
GND  
Pad  
VDD  
XA  
22 BWSEL0  
XB  
21  
20  
19  
CS_CA  
GND  
GND  
GND  
AUTOSEL  
10 11 12 13 14 15 16 17 18  
Pin assignments are preliminary and subject to change.  
Table 19. Si5315 Pin Descriptions  
Signal Level Description  
Pin #  
Pin Name  
I/O  
1
I
LVCMOS  
External Reset.  
RST  
Active low input that performs external hardware reset of  
device. Resets all internal logic to a known state. Clock out-  
puts are tristated during reset. After rising edge of RST sig-  
nal, the Si5315 will perform an internal self-calibration when  
a valid input signal is present.  
This pin has a weak pull-up.  
2
FRQTBL  
I
3-Level  
Frequency Table Select.  
Selects frequency table. (Table 9 on page 20.)  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
3
4
LOS1  
LOS2  
O
O
LVCMOS  
LVCMOS  
CKIN1 Loss of Signal.  
Active high loss-of-signal indicator for CKIN1. Once trig-  
gered, the alarm will remain active until CKIN1 is validated.  
0 = CKIN1 present  
1 = LOS on CKIN1  
CKIN2 Loss of Signal.  
Active high loss-of-signal indicator for CKIN2. Once trig-  
gered, the alarm will remain active until CKIN2 is validated.  
0 = CKIN2 present  
1 = LOS on CKIN2  
Rev. 1.0  
43  
Si5315  
Table 19. Si5315 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
5, 10,  
32  
V
V
Supply  
Supply.  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass  
capacitors should be associated with the following V pins:  
DD  
DD  
DD  
5
10  
32  
0.1 µF  
0.1 µF  
0.1 µF  
A 1.0 µF should also be placed as close to device as is prac-  
tical.  
7
6
XB  
XA  
I
Analog  
External Crystal or Reference Clock.  
External crystal should be connected to these pins to use  
internal oscillator based reference. Crystal or reference clock  
selection is set by the XTAL/CLOCK pin.  
8,  
15,19,  
20,31  
GND  
GND  
I
Supply  
3-Level  
Ground.  
Must be connected to system ground. Minimize the ground  
path impedance for optimal performance of this device.  
9
AUTOSEL  
Manual/Automatic Clock Selection.  
Three level input that selects the method of input clock selec-  
tion to be used.  
L = Manual  
M = Automatic non-revertive  
H = Automatic revertive  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
11  
XTAL/CLOCK  
I
3-Level  
External Crystal or Reference Clock Rate.  
Three level input that selects the type and rate of external  
crystal or reference clock to be applied to the XA/XB port.  
This pin has both a weak pull-up and a weak pull-down and  
defaults to M.  
L = Crystal  
M = Clock (Default)  
H = Reserved  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
12  
13  
CKIN2+  
CKIN2–  
I
Clock Input 2.  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency selected from a table of  
values. The same frequency must be applied to CKIN1 and  
CKIN2.  
44  
Rev. 1.0  
Si5315  
Table 19. Si5315 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
14  
DBL2_BY  
I
3-Level  
Output 2 Disable/Bypass Mode Control.  
Controls enable of CKOUT2 divider/output buffer path and  
PLL bypass mode.  
L = CKOUT2 enabled  
M = CKOUT2 disabled  
H = Bypass mode with CKOUT2 enabled. Bypass mode is  
not supported with CMOS clock outputs (SFOUT = LH).  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
16  
17  
CKIN1+  
CKIN1–  
I
Multi  
Clock Input 1.  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency selected from a table of  
values. The same frequency must be applied to CKIN1 and  
CKIN2.  
18  
21  
LOL  
O
LVCMOS  
PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock indica-  
tor.  
0 = PLL locked  
1 = PLL unlocked  
CS_CA  
I/O  
LVCMOS  
Input Clock Select/Active Clock Indicator.  
Input: If manual clock selection mode is chosen  
(AUTOSEL = L), this pin functions as the manual  
input clock selector. This input is internally deglitched  
to prevent inadvertent clock switching during  
changes in the CS input state.  
0 = Select CKIN1  
1 = Select CKIN2  
If configured as input, must be set high or low.  
Output: If automatic clock selection mode is chosen  
(AUTOSEL = M or H), this pin indicates which of the  
two input clocks is currently the active clock. If  
alarms exist on both CKIN1 and CKIN2, indicating  
that the holdover state has been entered, CA will  
indicate the last active clock that was used before  
entering the hold state.  
0 = CKIN1 active input clock  
1 = CKIN2 active input clock  
23  
22  
BWSEL1  
BWSEL0  
I
3-Level  
Loop Bandwidth Select.  
Three level inputs that select the DSPLL closed loop band-  
width. See Table 9 on page 20 for available settings.  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
Rev. 1.0  
45  
Si5315  
Table 19. Si5315 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
27  
26  
25  
24  
FRQSEL3  
FRQSEL2  
FRQSEL1  
FRQSEL0  
I
3-Level  
Frequency Select.  
Three level inputs that select the input clock and clock multi-  
plication ratio, depending on the FRQTBL setting.  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
29  
28  
CKOUT1–  
CKOUT1+  
O
Multi  
Clock Output 1.  
Differential output clock with a frequency selected from a  
table of values. Output signal format is selected by SFOUT  
pins. Output is differential for LVPECL, LVDS, and CML com-  
patible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs.  
33  
30  
SFOUT0  
SFOUT1  
I
3-Level  
Signal Format Select.  
Three level inputs that select the output signal format (com-  
mon mode voltage and differential swing) for both CKOUT1  
and CKOUT2.  
SFOUT[1:0]  
Signal Format  
Reserved  
HH  
HM  
HL  
LVDS  
CML  
MH  
MM  
ML  
LH  
LVPECL  
Reserved  
LVDS—Low Swing  
CMOS  
LM  
LL  
Disable  
Reserved  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
34  
35  
CKOUT2–  
CKOUT2+  
O
Multi  
Clock Output 2.  
Differential output clock with a frequency selected from a  
table of values. Output signal format is selected by SFOUT  
pins. Output is differential for LVPECL, LVDS, and CML com-  
patible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs.  
36  
NC  
No Connect.  
Leave floating. Make no external connections to this pin for  
normal operation.  
GND  
PAD  
GND  
GND  
Supply  
Ground Pad.  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
46  
Rev. 1.0  
Si5315  
Table 20. Si5315 Pull-Up/Pull-Down  
Pin #  
Si5315  
RST  
Pull  
U
1
2
FRQTBL  
AUTOSEL  
U, D  
U, D  
U, D  
9
11  
XTAL/  
CLOCK  
14  
21  
22  
23  
24  
25  
26  
27  
30  
33  
DBL2_BY  
CS_CA  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
BWSEL0  
BWSEL1  
FRQSEL0  
FRQSEL1  
FRQSEL2  
FRQSEL3  
SFOUT1  
SFOUT0  
Rev. 1.0  
47  
Si5315  
11. Ordering Guide  
Ordering Part Number Output Clock Freq Range  
Pkg  
ROHS6, Pb-Free Temp Range  
Si5315A-C-GM  
Si5315B-C-GM  
Si5315-EVB  
8 kHz–644.53 MHz  
8 kHz–125 MHz  
36-Lead 6x6 mm QFN  
36-Lead 6x6 mm QFN  
Evaluation Board  
Yes  
Yes  
–40 to 85 °C  
–40 to 85 °C  
8 kHz–644.53 MHz  
Note: Add an “R” at the end of the device to denote tape and reel options (i.e., Si5315A-C-GMR).  
48  
Rev. 1.0  
Si5315  
12. Package Outline: 36-Pin QFN  
Figure 24 illustrates the package details for the Si5315. Table 21 lists the values for the dimensions shown in the  
illustration.  
Figure 24. 36-Pin Quad Flat No-Lead (QFN)  
Table 21. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Min  
0.50  
Nom  
0.60  
Max  
0.70  
12º  
A
A1  
b
L
0.02  
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
D
6.00 BSC  
4.10  
D2  
e
3.95  
4.25  
0.50 BSC  
6.00 BSC  
4.10  
E
E2  
3.95  
4.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
Rev. 1.0  
49  
Si5315  
13. PCB Land Pattern  
Figure 25 illustrates the PCB land pattern for the Si5315. Figure 26 illustrates the recommended ground pad  
layout. Table 22 lists the land pattern dimensions.  
Figure 25. PCB Land Pattern  
Figure 26. Ground Pad Recommended Layout  
50  
Rev. 1.0  
Si5315  
Table 22. PCB Land Pattern Dimensions  
Dimension  
Min  
Max  
e
E
0.50 BSC.  
5.42 REF.  
5.42 REF.  
D
E2  
D2  
GE  
GD  
X
4.00  
4.00  
4.53  
4.53  
4.20  
4.20  
0.28  
Y
0.89 REF.  
ZE  
ZD  
6.31  
6.31  
Notes (General):  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes (Solder Mask Design):  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes (Stencil Design):  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the  
center ground pad.  
Notes (Card Assembly):  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
Rev. 1.0  
51  
Si5315  
14. Top Marking  
14.1. Si5315 Top Marking (QFN)  
14.2. Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Line 3 Marking:  
Si5315Q  
Customer Part Number  
Q = Speed Code: A, B  
See Ordering Guide for options.  
C-GM  
C = Product Revision  
G = Temperature Range –40 to 85 °C (RoHS6)  
M = QFN Package  
YYWWRF  
YY = Year  
WW = Work Week  
R = Die Revision  
F = Internal code  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
Line 4 Marking:  
Pin 1 Identifier  
XXXX  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
Internal Code  
52  
Rev. 1.0  
Si5315  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Expanded/added numerous operating sections to  
initial data sheet  
Revision 0.2 to Revision 0.25  
Updated features and application list  
Updated Section 1. "Electrical Specifications”  
Added voltage regulator block to Figure 7  
Revised footnotes in Table 9  
Removed plan #203 from Table 9  
Removed Figure 17. Crystal Oscillator with  
Feedback Resistor diagram from Section 7.  
"Crystal/Reference Clock Input”  
Added XA/XB jitter transfer plot to Section 7.  
"Crystal/Reference Clock Input”  
Added PSRR transfer function plot to Section 8.  
"Power Supply Filtering”  
Updated Typical phase noise plot and RMS jitter  
table in Section 9. "Typical Phase Noise Plots”  
Revision 0.25 to Revision 0.26  
Corrected Section 11. "Ordering Guide” Output  
Clock Frequency Range for Si5315B-C-GM to  
8 kHz–125 MHz.  
Revision 0.26 to Revision 1.0  
Updated Table 2 on page 4.  
Updated Table 3 on page 8.  
Updated Table 7 on page 13.  
Moved “Typical Application Circuit” to page 14.  
Added reference to AN591.  
Bypass mode not supported with CMOS outputs.  
Changed G.8262 compliance language.  
Added frequency plans 103, 129, and 130.  
Rev. 1.0  
53  
Si5315  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
54  
Rev. 1.0  

相关型号:

SI5315A-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON

SI5315B-C-GM

Provides jitter attenuation and frequency translation between SONET/PDH and Ethemet
SILICON

SI5315B-C-GMR

ATM Switching Circuit, 1-Func, QFN-36
SILICON

SI5316

PRELIMINARY DATA SHEET PRECISION CLOCK JITTER ATTENUATOR
SILICON

SI5316-B-GM

PRELIMINARY DATA SHEET PRECISION CLOCK JITTER ATTENUATOR
SILICON

SI5316-B-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5316-C-GM

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5316-C-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5316-RM

Mux/Demux, 1-Func, QFN-36
SILICON

SI5317

Pin-Controlled 1_710 MHz Jitter Cleaning Clock
SILICON

Si5317-EVB

Pin-Controlled 1_710 MHz Jitter Cleaning Clock
SILICON

SI5317-EVB

Si5317 EVALUATION BOARD
MURATA