SI5318-G-BC [SILICON]

Support Circuit, 1-Func, CBGA63, 9 X 9 MM, CERAMIC, BGA-63;
SI5318-G-BC
型号: SI5318-G-BC
厂家: SILICON    SILICON
描述:

Support Circuit, 1-Func, CBGA63, 9 X 9 MM, CERAMIC, BGA-63

ATM 异步传输模式 电信 电信集成电路
文件: 总30页 (文件大小:457K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5318  
SONET/SDH PRECISION CLOCK MULTIPLIER IC  
Features  
„ Jitter generation as low as  
„ Output clock ranges at 19 or  
0.7 ps  
(typ), compliant with  
155 MHz  
RMS  
GR-253-CORE OC-48  
specifications  
„ Digital hold for loss of input clock  
„ Selectable loop bandwidth  
„ Loss-of-signal alarm output  
„ Low power  
318  
„ No external components  
(other than a resistor and  
standard bypassing)  
„ Small size (9x9 mm)  
„ Input clock ranges at 19, 39, 78,  
and 155 MHz  
Ordering Information:  
Applications  
See page 26.  
„ SONET/SDH line/port cards  
„ Optical modules  
„ Core switches  
„ Digital cross connects  
„ Terabit routers  
Description  
The Si5318 is a precision clock multiplier designed to exceed the requirements of  
high-speed communication systems, including OC-48. The device phase locks to  
an input clock in the 19, 39, 78, or 155 MHz frequency range and generates a low  
jitter output clock in the 19 or 155 MHz range. Silicon Laboratories’ DSPLL®  
technology delivers all PLL functionality with unparalleled performance while  
eliminating external loop filter components, providing programmable loop  
parameters, and simplifying design. The Si5318 establishes a new standard in  
performance and integration for ultra-low-jitter clock generation. It operates from a  
single 3.3 V supply.  
Functional Block Diagram  
REXT  
VDD  
GND  
Biasing & Supply Regulation  
FXDDELAY  
CAL_ACTV  
DH_ACTV  
2
CLKIN+  
CLKIN–  
DSPLL®  
÷
CLKOUT+  
CLKOUT–  
÷
2
VALTIME  
LOS  
FRQSEL[1:0]  
Signal  
Detect  
3
2
Calibration  
RSTN/CAL  
INFRQSEL[2:0]  
BWSEL[1:0] DBLBW  
Rev. 1.0 4/05  
Copyright © 2005 by Silicon Laboratories  
Si5318  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5318  
NOTES:  
2
Rev. 1.0  
Si5318  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
®
2.1. DSPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.2. Clock Input and Output Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.3. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.4. Digital Hold of the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.5. Hitless Recovery from Digital Hold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.6. Loss-of-Signal Alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.7. Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.8. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.9. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.10. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.11. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.12. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.13. Design and Layout Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3. Pin Descriptions: Si5318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. 9x9 mm CBGA Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Rev. 1.0  
3
Si5318  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Parameter  
Symbol  
Test Condition  
Typ  
Unit  
Min  
Max  
2
Ambient Temperature  
Si5318 Supply Voltage  
Notes:  
T
–20  
3.135  
25  
85  
°C  
V
A
3
V
3.3  
3.465  
DD33  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5318 is guaranteed by design to operate at –40° C. All electrical specifications are guaranteed for an ambient  
temperature of –20 to 85° C.  
3. The Si5318 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of Figure 5 on page 13.  
4
Rev. 1.0  
 
 
 
Si5318  
CLKIN+  
CLKIN–  
VIS  
A. Operation with Single-Ended Clock Input  
Note: When using single-ended clock sources, the unused clock  
input on the Si5318 must be ac-coupled to ground.  
CLKIN+  
0.5 V  
ID  
CLKIN–  
(CLKIN+) – (CLKIN–)  
VID  
B. Operation with Differential Clock Input  
Note: Transmission line termination, when required, must be provided  
externally.  
Figure 1. CLKIN Voltage Characteristics  
80%  
20%  
tF  
tR  
Figure 2. Rise/Fall Time Measurement  
(C LKIN+ ) – (C LK IN )  
0 V  
tLOS  
Figure 3. Transitionless Period on CLKIN for Detecting a LOS Condition  
Rev. 1.0  
5
 
 
 
Si5318  
Table 2. DC Characteristics, VDD = 3.3 V  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
I
Clock in = 19.44 MHz  
Supply Current  
DD  
Clock out = 155.52 MHz  
135  
145  
mA  
Power Dissipation Using 3.3 V Supply  
P
Clock in = 19.44 MHz  
D
Clock out = 155.52 MHz  
445  
1.5  
479  
2.0  
mW  
V
1,2,3  
Common Mode Input Voltage  
V
1.0  
ICM  
(CLKIN)  
2,3,4  
4
Single-Ended Input Voltage  
(CLKIN)  
V
See Figure 1A  
See Figure 1B  
200  
200  
500  
mV  
mV  
IS  
ID  
IN  
PP  
PP  
2,3,4  
4
Differential Input Voltage Swing  
V
500  
(CLKIN)  
Input Impedance  
(CLKIN+, CLKIN–)  
R
80  
1155  
2.2  
k  
Differential Output Voltage Swing  
(CLKOUT)  
V
100 Load  
Line-to-Line  
720  
1.4  
938  
1.8  
mV  
PP  
OD  
Output Common Mode Voltage  
(CLKOUT)  
V
100 Load  
Line-to-Line  
V
OCM  
Output Short to GND (CLKOUT)  
I
I
–60  
15  
mA  
mA  
V
SC(–)  
Output Short to V  
(CLKOUT)  
DD25  
SC(+)  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Internal Pulldowns (All LVTTL Inputs)  
Input Impedance (LVTTL Inputs)  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
Notes:  
V
0.8  
IL  
IH  
IL  
V
2.0  
V
I
50  
50  
50  
µA  
µA  
µA  
kΩ  
V
I
IH  
I
pd  
R
50  
IN  
OL  
OH  
V
I = .5 mA  
0.4  
O
V
I = .5 mA  
2.0  
V
O
1. The Si5318 device provides weak 1.5 V internal biasing that enables ac-coupled operation.  
2. Clock inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input should be ac  
coupled to ground.  
3. Transmission line termination, when required, must be provided externally.  
4. Although the Si5318 device can operate with input clock swings as high as 1500 mV , Silicon Laboratories recommends  
PP  
maintaining the input clock amplitude below 500 mV for optimal performance.  
PP  
6
Rev. 1.0  
 
Si5318  
Table 3. AC Characteristics  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Input Clock Frequency (CLKIN)  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
f
CLKIN  
19.436  
38.872  
77.744  
155.48  
21.685 MHz  
43.369  
86.738  
173.48  
Input Clock Rise Time (CLKIN)  
Input Clock Fall Time (CLKIN)  
Input Clock Duty Cycle  
t
Figure 2  
Figure 2  
40  
50  
11  
11  
60  
ns  
ns  
%
R
t
F
C
DUTY_IN  
CLKOUT Frequency Range*  
FRQSEL[1:0] = 00 (no output)  
FRQSEL[1:0] = 01  
19.436  
155.48  
21.685 MHz  
173.48  
f
O_19  
FRQSEL[1:0] = 10  
f
O_155  
CLKOUT Rise Time  
CLKOUT Fall Time  
CLKOUT Duty Cycle  
RSTN/CAL Pulse Width  
t
Figure 2; single-ended; after  
3 cm of 50 FR4 stripline  
48  
20  
213  
191  
260  
260  
52  
ps  
ps  
%
R
t
Figure 2; single-ended; after  
3 cm of 50 FR4 stripline  
F
C
Differential:  
(CLKOUT+) – (CLKOUT–)  
DUTY_O  
UT  
t
ns  
RSTN  
Transitionless Period Required on  
CLKIN for Detecting a LOS  
Condition.  
INFRQSEL[2:0] = 001  
INFRQSEL[2:0] = 010  
INFRQSEL[2:0] = 011  
INFRQSEL[2:0] = 100  
INFRQSEL[2:0] = 101  
INFRQSEL[2:0] = 110  
t
Figure 3  
LOS  
6
8
8
8
8
8
8
/
/
/
/
/
/
/
/
/
s
fo_155  
fo_155  
fo_155  
fo_155  
fo_155  
fo_155  
fo_155  
fo_155  
fo_155  
4
3
5
9
9
/
/
/
2 x fo_155  
4 x fo_155  
4 x fo_155  
Recovery Time for Clearing an  
LOS Condition  
VALTIME = 0  
t
Measured from when a valid  
reference clock is applied  
until the LOS flag clears  
VAL  
0.09  
12.0  
0.22  
14.1  
s
VALTIME = 1  
*Note: The Si5318 provides a 1/8, 1/4, 1/2, 1, 2, 4 or 8x clock frequency multiplication function.  
Rev. 1.0  
7
 
Si5318  
Table 4. AC Characteristics (PLL Performance Characteristics)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 800 Hz Bandwidth  
(BWSEL[1:0] = 10 and DBLBW = 0)  
Jitter Tolerance (see Figure 7)  
J
f = 8 Hz  
f = 80 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
TOL(PP)  
f = 800 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 800 Hz  
< 800 Hz  
0.87  
7.3  
800  
0.0  
1.2  
GEN(RMS)  
J
10.0 ps  
Hz  
0.05 dB  
GEN(PP)  
F
BW  
J
P
Wander/Jitter at 1600 Hz Bandwidth  
(BWSEL[1:0] = 10 and DBLBW = 1)  
Jitter Tolerance (see Figure 7)  
f = 16 Hz  
f = 160 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
Hz  
f = 1600 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 1600 Hz  
< 1600 Hz  
0.78  
7.0  
1600  
1.2  
9.0  
GEN(RMS)  
J
GEN(PP)  
F
BW  
J
0.00 0.05 dB  
P
Wander/Jitter at 1600 Hz Bandwidth  
(BWSEL[1:0] = 01 and DBLBW = 0)  
Jitter Tolerance (see Figure 7)  
J
f = 16 Hz  
f = 160 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
TOL(PP)  
f = 1600 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 10)  
Wander/Jitter Transfer Peaking  
Notes:  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 1600 Hz  
< 1600 Hz  
0.82  
7.3  
1600  
0.0  
1.0  
GEN(RMS)  
J
10.0 ps  
GEN(PP)  
F
Hz  
dB  
BW  
J
0.1  
P
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5318 (tPT_MTIE) never reaches one nanosecond.  
8
Rev. 1.0  
 
Si5318  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 3200 Hz Bandwidth  
(BWSEL[1:0] = 01 and DBLBW = 1)  
Jitter Tolerance (see Figure 7)  
f = 32 Hz  
f = 320 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
f = 3200 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 3200 Hz  
< 3200 Hz  
0.72  
6.8  
0.9  
GEN(RMS)  
J
10.0 ps  
GEN(PP)  
F
3200  
0.05  
Hz  
dB  
BW  
J
0.1  
P
Wander/Jitter at 3200 Hz Bandwidth  
(BWSEL[1:0] = 00 and DBLBW = 0)  
Jitter Tolerance (see Figure 7)  
J
f = 32 Hz  
f = 320 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
TOL(PP)  
f = 3200 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 3200 Hz  
< 3200 Hz  
0.86  
7.7  
1.2  
GEN(RMS)  
J
10.0 ps  
GEN(PP)  
F
3200  
0.05  
Hz  
dB  
BW  
J
0.1  
P
Wander/Jitter at 6400 Hz Bandwidth  
(BWSEL[1:0] = 00 and DBLBW = 1)  
Jitter Tolerance (see Figure 7)  
f = 64 Hz  
f = 640 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
Hz  
dB  
f = 6400 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
Notes:  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 6400 Hz  
< 6400 Hz  
0.7  
6.6  
6400  
0.05  
1.0  
9.0  
GEN(RMS)  
J
GEN(PP)  
F
BW  
J
0.1  
P
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5318 (tPT_MTIE) never reaches one nanosecond.  
Rev. 1.0  
9
Si5318  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Wander/Jitter at 6400 Hz Bandwidth  
(BWSEL[1:0] = 11 and DBLBW = 0)  
Jitter Tolerance (see Figure 7)  
J
f = 64 Hz  
f = 640 Hz  
1000  
100  
10  
ns  
ns  
ns  
ps  
TOL(PP)  
f = 6400 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 6400 Hz  
< 6400 Hz  
1.0  
9.4  
6400  
0.05  
1.4  
GEN(RMS)  
J
12.0 ps  
GEN(PP)  
F
Hz  
dB  
BW  
J
0.1  
P
Wander/Jitter at 12800 Hz Bandwidth  
(BWSEL[1:0] = 11 and DBLBW = 1)  
Jitter Tolerance (see Figure 7)  
f = 128 Hz  
f = 1280 Hz  
500  
50  
5
ns  
ns  
ns  
ps  
ps  
Hz  
dB  
f = 12800 Hz  
CLKOUT RMS Jitter Generation  
CLKOUT Peak-Peak Jitter Generation  
Jitter Transfer Bandwidth (see Figure 6)  
Wander/Jitter Transfer Peaking  
Acquisition Time  
J
12 kHz to 20 MHz  
12 kHz to 20 MHz  
BW = 12800 Hz  
< 12800 Hz  
0.74  
6.9  
1.0  
9.0  
GEN(RMS)  
J
GEN(PP)  
F
12800  
0.05  
300  
BW  
J
0.1  
P
T
RSTN/CAL high to  
CAL_ACTV low, with valid  
clock input and  
350 ms  
AQ  
VALTIME = 0  
Clock Output Wander with  
Temperature Gradient  
C
Stable Input Clock;  
Temperature  
Gradient <10 °C/min;  
800 Hz Loop BW  
50  
ps/  
°C/  
min  
CO_TG  
1,2  
Notes:  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5318 (tPT_MTIE) never reaches one nanosecond.  
10  
Rev. 1.0  
Si5318  
Table 4. AC Characteristics (PLL Performance Characteristics) (Continued)  
(VDD33 = 3.3 V ±5%, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ Max Unit  
Initial Frequency Accuracy in Digital Hold  
Mode (first 100 ms with supply voltage and  
temperature held constant)  
C
Stable Input Clock  
Selected until entering  
Digital Hold  
10 ppm  
DH_FA  
Clock Output Frequency Accuracy Over  
Temperature in Digital Hold Mode  
C
Constant Supply Voltage  
16.7  
30 ppm  
DH_T  
/°C  
Clock Output Frequency Accuracy Over  
Supply Voltage in Digital Hold Mode  
C
Constant Temperature  
250 ppm  
/V  
DH_V33  
3
Clock Output Phase Step (See Figure 8)  
t
When hitlessly recovering –200  
from Digital Hold mode  
0
200 ps  
PT_MTIE  
3
Clock Output Phase Step Slope (See  
Figure 8)  
m
When hitlessly recovering  
from Digital Hold mode  
PT  
BWSEL[1:0] = 11, DBLBW = 0  
BWSEL[1:0] = 00, DBLBW = 0  
BWSEL[1:0] = 01, DBLBW = 0  
BWSEL[1:0] = 10, DBLBW = 0  
6400 Hz  
3200 Hz  
1600 Hz  
800 Hz  
10  
5
2.5  
1.25  
ps/  
µs  
Notes:  
1. Higher PLL bandwidth settings provide smaller clock output wander with temperature gradient.  
2. For reliable device operation, temperature gradients should be limited to 10 °C/min.  
3. Telcordia GR-1244-CORE requirements specify maximum phase transient slope during clock rearrangement in terms  
of nanoseconds per millisecond. The equivalent ps/µs unit is used here since the maximum phase transient magnitude  
for the Si5318 (tPT_MTIE) never reaches one nanosecond.  
Rev. 1.0  
11  
Si5318  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
V
3.3 V DC Supply Voltage  
LVTTL Input Voltage  
V
–0.5 to 3.6  
DD33  
V
–0.3 to (V  
+ 0.3)  
DD33  
V
DIG  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
ESD HBM Tolerance (100 pf, 1.5 k)  
±50  
mA  
°C  
°C  
kV  
T
–55 to 150  
–55 to 150  
1.0  
JCT  
T
STG  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
θ
Still Air  
20  
°C/W  
JA  
0.00  
-20.00  
-40.00  
-60.00  
-80.00  
-100.00  
-120.00  
-140.00  
-160.00  
-180.00  
101  
102  
103  
104  
105  
106  
107  
108  
Offset Frequency  
Figure 4. Typical Si5318 Phase Noise (CLKIN = 155.52 MHz, CLKOUT = 155.52 MHz, and  
Loop BW = 800 Hz)  
12  
Rev. 1.0  
 
 
Si5318  
3.3 V Supply  
Ferrite Bead  
0.1 µF  
2200 pF  
22 pF  
10 k1%  
33 µF  
0.1 µF  
0.1 µF  
CLKIN+  
CLKOUT+  
CLKOUT–  
Clock Output  
(19 or 155 MHz)  
100 Ω  
0.1 µF  
Input Clock Source  
CLKIN-  
0.1 µF  
Clock Output  
Frequency Select  
FRQSEL[1:0]  
Input Clock Frequency Select  
(19, 38, 77, or 155 MHz)  
INFRQSEL[2:0]  
Si5318  
BWSEL[1:0]  
DBLBW  
PLL Bandwidth Select  
Bandwidth Doubling  
Loss of Signal (LOS)  
Digital Hold Active  
LOS  
Fixed Delay Mode Control  
LOS Validation Time  
FXDDELAY  
VALTIME  
DH_ACTV  
RSTN/CAL  
Reset/Calibration Control  
Calibration Active  
Status Output  
CAL_ACTV  
Figure 5. Si5318 Typical Application Circuit (3.3 V Supply)  
Rev. 1.0  
13  
 
Si5318  
This digital technology also allows for highly stable and  
consistent operation over all process, temperature, and  
2. Functional Description  
The Si5318 is a high-performance precision clock voltage variations.  
multiplication and clock generation device. This device  
2.1.1. Selectable Loop Filter Bandwidth  
accepts a clock input in the 19, 39, 78, or 155 MHz  
range, attenuates significant amounts of jitter, and  
generates a clock output in the 19 or 155 MHz range.  
The digital nature of the DSPLL loop filter allows control  
of the loop filter parameters without the need to change  
external components. The Si5318 provides the user  
with up to eight user-selectable loop bandwidth settings  
for different system requirements. The base loop  
bandwidth is selected using the BWSEL [1:0] and  
DBLBW = 0 pins. When DBLBW is driven high, the  
bandwidth selected on the BWSEL[1:0] pins is doubled.  
(See Table 7.)  
®
The Si5318 employs Silicon Laboratories DSPLL  
technology to provide excellent jitter performance while  
minimizing the external component count and  
maximizing flexibility and ease-of-use. The Si5318  
DSPLL phase locks to the input clock signal, attenuates  
jitter, and multiplies the clock frequency to generate the  
device SONET/SDH-compliant clock output. The  
DSPLL loop bandwidth is user-selectable, allowing the  
Si5318 jitter performance to be optimized for different  
applications. The Si5318 can produce a clock output  
When DBLBW is asserted, the Si5318 shows improved  
jitter generation performance. DBLBW function is  
defined only when hitless recovery from digital hold is  
disabled. Therefore, when DBLBW is high, the user  
must also drive FXDDELAY high for proper operation.  
with jitter generation as low as 1.0 ps  
(see Table 4),  
RMS  
making the device an ideal solution for clock  
multiplication in SONET/SDH systems.  
2.2. Clock Input and Output Rate Selection  
The Si5318 monitors the clock input signal for loss-of-  
signal, and provides a loss-of-signal (LOS) alarm when  
missing pulses are detected. The Si5318 provides a  
digital hold capability to continue generation of a stable  
output clock when the input reference is lost.  
The Si5318 provides a 1/8x, 1/4x, 1/2x, 1x, 2x, 4x, or 8x  
clock frequency multiplication function. Output rates  
vary in accordance with the input clock rate. The  
multiplication factor is configured by selecting the input  
and output clock frequency ranges for the device.  
2.1. DSPLL®  
The Si5318 accepts an input clock in the 19, 39, 78, or  
155 MHz frequency range. The input frequency range is  
selected using the INFRQSEL[2:0] pins. The  
INFRQSEL[2:0] settings and associated output clock  
rates are given in Table 8.  
The Si5318 phase-locked loop (PLL) uses Silicon  
Laboratories' DSPLL technology to eliminate jitter,  
noise, and the need for external loop filter components  
found in traditional PLL implementations. This is  
achieved by using a digital signal processing (DSP)  
algorithm to replace the loop filter commonly found in  
analog PLL designs. This algorithm processes the  
phase detector error term and generates a digital  
control value to adjust the frequency of the voltage-  
controlled oscillator (VCO). The technology produces a  
low phase noise clock with less jitter than is generated  
using traditional methods. See Figure 4 for an example  
phase noise plot. In addition, because external loop  
filter components are not required, sensitive noise entry  
points are eliminated, making the DSPLL less  
susceptible to board-level noise sources.  
The Si5318 DSPLL phase locks to the clock input signal  
to generate an internal VCO frequency that is a multiple  
of the input clock frequency. The internal VCO  
frequency is divided down to produce a clock output in  
the 19 or 155 MHz frequency range. The clock output  
range is selected using the Frequency Select  
(FRQSEL[1:0]) pins. The FRQSEL[1:0] settings and  
associated output clock rates are given in Table 9.  
The Si5318 clock input frequencies are variable within  
the range specified in Table 3 on page 7. The output  
rates scale accordingly. When a 19.44 MHz input clock  
is used, the clock output frequency is 19.44 or  
155.52 MHz.  
14  
Rev. 1.0  
Si5318  
2.3. PLL Performance  
Table 7. Loop Bandwidth Settings  
The Si5318 PLL is designed to provide extremely low  
jitter generation, high jitter tolerance, and a well-  
controlled jitter transfer function with low peaking and a  
high degree of jitter attenuation.  
Loop  
*
Bandwidth  
12800 Hz  
6400 Hz  
6400 Hz  
3200 Hz  
3200 Hz  
1600 Hz  
1600 Hz  
800 Hz  
BWSEL1  
BWSEL0  
DBLBW  
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
2.3.1. Jitter Generation  
Jitter generation is defined as the amount of jitter  
produced at the output of the device with a jitter free  
input clock. Generated jitter arises from sources within  
the VCO and other PLL components. Jitter generation is  
also a function of the PLL bandwidth setting. Higher  
loop bandwidth settings may result in lower jitter  
generation, but may also result in less attenuation of  
jitter on the input clock signal.  
2.3.2. Jitter Transfer  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter for a specified jitter frequency. The  
jitter transfer characteristic determines the amount of  
input clock jitter that passes to the outputs. The DSPLL  
technology used in the Si5318 provides tightly-  
controlled jitter transfer curves because the PLL gain  
parameters are determined by digital circuits that do not  
vary over supply voltage, process, and temperature. In  
a system application, a well-controlled transfer curve  
minimizes the output clock jitter variation from board to  
board, providing more consistent system level jitter  
performance.  
*Note: When DBLBW = 1, FXDDELAY must be asserted.  
Table 8. Nominal Clock Input Frequencies  
INFRQSEL2 INFRQSEL1 INFRQSEL0  
Input Clock  
Frequency  
Range  
Reserved  
Reserved  
Reserved  
155 MHz  
78 MHz  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
The jitter transfer characteristic is a function of the  
BWSEL[1:0] setting. (See Table 7.) Lower bandwidth  
selection settings result in more jitter attenuation of the  
incoming clock but may result in higher jitter generation.  
Table 4 on page 8 gives the 3 dB bandwidth and  
peaking values for specified BWSEL settings. Figure 6  
shows the jitter transfer curve mask.  
39 MHz  
19 MHz  
Reserved  
Table 9. Nominal Clock Output Frequencies  
FRQSEL1 FRQSEL0  
Output Clock Frequency  
Range  
Jitter  
Transfer  
Reserved  
1
1
0
0
1
0
1
0
Jitter Out  
(s)  
155 MHz  
Jitter In  
19 MHz  
0 dB  
Peaking  
Driver Powerdown  
–20 dB/dec.  
fJitter  
FBW  
Figure 6. PLL Jitter Transfer Mask/Template  
Rev. 1.0  
15  
 
 
Si5318  
2.3.3. Jitter Tolerance  
Jitter tolerance for the Si5318 is defined as the  
maximum peak-to-peak sinusoidal jitter that can be  
present on the incoming clock. The tolerance is a  
function of the jitter frequency, because tolerance  
improves for lower input jitter frequency. See Figure 7.  
mPT  
tPT_MTIE  
Input  
Jitter  
Amplitude  
Excessive Input Jitter Range  
–20 dB/dec.  
t
10 ns  
Recovery from  
Digital Hold  
Figure 8. Recovery from Digital Hold  
2.6. Loss-of-Signal Alarm  
FBW  
fJitter In  
Figure 7. Jitter Tolerance Mask/Template  
2.4. Digital Hold of the PLL  
The Si5318 has loss-of-signal (LOS) circuitry that  
constantly monitors the CLKIN input clock for missing  
pulses. The LOS circuitry sets a LOS output alarm  
signal when missing pulses are detected.  
When no valid input clock is available, the Si5318  
digitally holds the internal oscillator to its last frequency  
value. This provides a stable clock to the system until an  
input clock is again valid. This clock maintains very  
stable operation in the presence of constant voltage and  
temperature. The frequency accuracy specifications for  
digital hold mode are given in Table 4 on page 8.  
The LOS circuitry operates as follows. Regardless of  
the selected input clock frequency range, the LOS  
circuitry divides down the input clock into the 19 MHz  
range. The LOS circuitry then over-samples this  
divided-down input clock to search for extended periods  
of time without input clock transitions. If the LOS  
circuitry detects four consecutive samples of the  
divided-down input clock that are the same state (i.e.,  
1111 or 0000), a LOS condition is declared, the Si5318  
goes into digital hold mode, and the LOS output alarm  
signal is set high. The LOS sampling circuitry runs at a  
2.5. Hitless Recovery from Digital Hold  
When the Si5318 device is locked to a valid input clock,  
a loss of the input clock causes the device to  
automatically switch to digital hold mode. When the  
input clock signal returns, the device performs a  
“hitless” transition from digital hold mode back to the  
selected input clock. That is, the device performs  
“phase build-out” to absorb the phase difference  
between the internal VCO clock operating in digital hold  
mode and the new/returned input clock. The maximum  
phase step size seen at the clock output during this  
transition and the maximum slope for this phase step  
are given in Table 4 on page 8.  
frequency of f  
, where f  
is the output clock  
O_155/2  
O_155  
frequency when the FRQSEL[1:0] pins are set to 10.  
Table 3 on page 7 lists the minimum and maximum  
transitionless time periods required for declaring a LOS  
on the input clock (t  
).  
LOS  
Once the LOS alarm is asserted, it is held high until the  
input clock is validated over a time period designated by  
the VALTIME pin. When VALTIME is low, the validation  
time period is about 100 ms. When VALTIME is high,  
the validation time period is about 13 s. If another LOS  
condition is detected on the input clock during the  
validation time (i.e., if another set of 1111 or 0000  
samples are detected), the LOS alarm remains  
asserted, and the validation time starts over. When the  
LOS alarm is finally released, the Si5318 exits digital  
hold mode and locks to the input clock. The LOS alarm  
is automatically set high at power-on and at every low-  
to-high transition of the RSTN/CAL pin. In these cases,  
the Si5318 undergoes a self-calibration before releasing  
the LOS alarm and locking to the input clock.  
This feature can be disabled by asserting the  
FXDDELAY pin. When the FXDDELAY pin is high, the  
output clock is phase and frequency locked with a  
known phase relationship to the input clock.  
Consequently, any abrupt phase change on the input  
clock propagates through the device, and the output  
slews at the selected loop bandwidth until the original  
phase relationship is restored.  
Note: When the DBLBW is asserted, hitless recovery must  
also be disabled by driving FXDDELAY high for proper  
operation.  
16  
Rev. 1.0  
 
Si5318  
The Si5318 also provides an output indicating the digital If the self-calibration is initiated without a valid clock  
hold status of the device, DH_ACTV. The Si5318 only present, the device waits for a valid clock before  
enters the digital hold mode upon the loss of the input completing the self-calibration. The Si5318 clock output  
clock. When this occurs, the LOS alarm will also be is set to the lower end of the operating frequency range  
active. Therefore, applications that require monitoring of while the device is waiting for a valid clock. After the  
the status of the Si5318 need only monitor the clock input is validated, the calibration process runs to  
CAL_ACTV and either the LOS or DH_ACTV outputs to completion; the device locks to the clock input, and the  
know the state of the device.  
clock output shifts to its target frequency. Subsequent  
losses of the input clock signal do not require re-  
calibration. If the clock input is lost following self-  
calibration, the device enters digital hold mode. When  
the input clock returns, the device re-locks to the input  
clock without performing a self-calibration. During the  
calibration process, the output clock frequency is  
indeterminate and may jump as high as 5% above the  
final locked value.  
2.7. Reset  
The Si5318 provides a Reset/Calibration pin, RSTN/  
CAL, which resets the device and disables the outputs.  
When the RSTN/CAL pin is driven low, the internal  
circuitry enters into the reset mode, and all LVTTL  
outputs are forced into a high-impedance state. Also,  
the CLKOUT+ and CLKOUT– pins are forced to a  
nominal CML logic LOW and HIGH respectively (See  
Figure 9). This feature is useful in in-circuit test  
applications. A low-to-high transition on RSTN/CAL  
initializes all digital logic to a known condition and  
initiates self-calibration of the DSPLL. Upon completion  
of self-calibration, the DSPLL begins to lock to the clock  
input signal.  
2.9. Bias Generation Circuitry  
The Si5318 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption and variation as compared  
with traditional implementations that use an internal  
resistor. The bias generation circuitry requires a 10 kΩ  
(1%) resistor connected between REXT and GND.  
VDD 2.5 V  
2.10. Differential Input Circuitry  
The Si5318 provides a differential input for the clock  
input, CLKIN. This input is internally biased to a voltage  
100  
100 Ω  
of V  
(see Table 2 on page 6) and may be driven by a  
ICM  
CLKOUT–  
CLKOUT+  
differential or single-ended driver circuit. For differential  
transmission lines, the termination resistor is connected  
externally as shown.  
2.11. Differential Output Circuitry  
15 mA  
The Si5318 utilizes a current mode logic (CML)  
architecture to drive the differential clock output,  
CLKOUT.  
For single-ended output operation, simply connect to  
either CLKOUT+ or CLKOUT–, and leave the unused  
signal unconnected.  
Figure 9. CLKOUT± Equivalent Circuit, RSTN/  
CAL asserted LOW  
2.12. Power Supply Connections  
2.8. PLL Self-Calibration  
The Si5318 incorporates an on-chip voltage regulator.  
The Si5318 achieves optimal jitter performance by  
using self-calibration circuitry to set the VCO center  
frequency and loop gain parameters within the DSPLL.  
Internal circuitry generates self calibration automatically  
on powerup or after a loss of power condition. Self-  
calibration can also be manually initiated by a low-to-  
high transition on the RSTN/CAL input.  
Whether manually initiated or automatically initiated at  
powerup, the self-calibration process requires the  
presence of a valid input clock.  
The  
voltage  
regulator  
requires  
an  
external  
compensation circuit of one resistor and one capacitor  
to ensure stability over all operating conditions.  
Internally, the Si5318 V  
pins are connected to the  
DD33  
on-chip voltage regulator input, and the V  
pins also  
DD33  
supply power to the device’s LVTTL I/O circuitry. The  
pins supply power to the core DSPLL circuitry  
V
DD25  
and are also used for connection of the external  
compensation circuit.  
Rev. 1.0  
17  
 
Si5318  
The regulator’s compensation circuit is in reality a To get optimal performance from the Si5318 device, the  
resistor and a capacitor in series between the VDD25 power supply noise spectrum must comply with the plot  
node and ground. (See Figure 5 on page 13.) Typically, in Figure 10. This plot shows the power supply noise  
the resistor is incorporated into the capacitor’s tolerance mask for the Si5318. The customer should  
equivalent series resistance (ESR). The target RC time provide a 3.3 V supply that does not have noise density  
constant for this combination is 15 to 50 µs. The in excess of the amount shown in the diagram.  
capacitor used in the Si5318 evaluation board is a However, the diagram cannot be used as spur criteria  
33 µF tantalum capacitor with an ESR of 0.8 . This for a power supply that contains single tone noise.  
gives an RC time constant of 26.4 µs. The Venkel part  
number, TA6R3TCR336KBR, is an example of a  
capacitor that meets these specs.  
µ √  
Vn ( V/ Hz)  
2100  
42  
f
100 MHz  
10 kHz  
500 kHz  
Figure 10. Power Supply Noise Tolerance Mask  
18  
Rev. 1.0  
 
Si5318  
2.13. Design and Layout Guidelines  
Precision clock circuits are susceptible to board noise  
and EMI. To take precautions against unacceptable  
levels of board noise and EMI affecting performance of  
the Si5318, consider the following:  
„
Power the device from 3.3 V since the internal  
regulator provides at least 40 dB of isolation to the  
VDD25 pins (which power the PLL circuitry).  
„
Use an isolated local plane to connect the VDD25  
pins. Avoid running signal traces over or below this  
plane without a ground plane in between.  
„
„
Route all I/O traces between ground planes as much  
as possible  
Maintain an input clock amplitude in the 200 mVPP to  
500 mVPP differential range.  
„
Excessive high-frequency harmonics of the input  
clock should be minimized. The use of filters on the  
input clock signal can be used to remove high-  
frequency harmonics.  
Rev. 1.0  
19  
Si5318  
3. Pin Descriptions: Si5318  
8
7
6
5
4
3
2
1
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_GND  
RSVD_GND  
A
B
C
D
E
F
RSVD_NC  
RSVD_GND  
RSVD_GND  
RSVD_NC  
FXDDELAY  
RSVD_GND  
RSVD_GND  
VDD33  
BWSEL[0]  
BWSEL[1]  
RSVD_GND  
GND  
GND  
GND  
GND  
GND  
DH_ACTV  
CAL_ACTV  
LOS  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
DBLBW  
GND  
CLKIN+  
CLKIN–  
GND  
INFRQSEL[0]  
G
H
GND  
GND  
GND  
GND  
GND  
GND  
GND  
INFRQSEL[1]  
INFRQSEL[2]  
REXT  
FRQSEL[1]  
CLKOUT–  
CLKOUT+  
FRQSEL[0]  
VALTIME  
RSTN/CAL  
Bottom View  
Figure 11. Si5318 Pin Configuration (Bottom View)  
20  
Rev. 1.0  
Si5318  
1
2
3
4
5
6
7
8
RSVD_GND  
RSVD_GND  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_NC  
RSVD_GND  
A
B
C
D
E
F
BWSEL[0]  
BWSEL[1]  
RSVD_GND  
VDD33  
RSVD_GND  
FXDDELAY  
RSVD_NC  
RSVD_GND  
RSVD_GND  
GND  
GND  
GND  
GND  
GND  
CLKIN+  
CLKIN–  
DBLBW  
GND  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD33  
VDD33  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
VDD25  
DH_ACTV  
CAL_ACTV  
LOS  
INFRQSEL[0]  
GND  
G
H
INFRQSEL[1]  
INFRQSEL[2]  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
REXT  
RSTN/CAL  
VALTIME  
FRQSEL[0]  
CLKOUT+  
CLKOUT–  
FRQSEL[1]  
Top View  
Figure 12. Si5318 Pin Configuration (Transparent Top View)  
Rev. 1.0  
21  
Si5318  
Table 10. Si5318 Pin Descriptions  
Pin #  
Pin Name  
I/O  
I*  
Signal Level  
Description  
B4  
FXDDELAY  
LVTTL  
Fixed Delay Mode.  
Set high to disable hitless recovery from digital hold  
mode. This configuration is useful in applications that  
require a known, or constant, input-to-output phase  
relationship.  
When this pin is high, hitless switching from digital  
hold mode back to a valid clock input is disabled.  
When switching from digital hold mode to a valid  
clock input with FXDDELAY high, the clock output  
changes as necessary to re-establish the initial/  
default input-to-output phase relationship that is  
established after powerup or reset. The rate of  
change is determined by the setting of BWSEL[1:0].  
When this pin is low, hitless switching from digital  
hold mode back to a valid clock input is enabled.  
When switching from digital hold mode to a valid  
clock input with FXDDELAY low, the device enables  
"phase build out" to absorb the phase difference  
between the clock output and the clock input so that  
the phase change at the clock output is minimized. In  
this case, the input-to-output phase relationship fol-  
lowing the transition out of digital hold mode is deter-  
mined by the phase relationship at the time that  
switching occurs.  
Note: FXDDELAY should remain at a static high or static  
low level during normal operation. Transitions on  
this pin are allowed only when the RSTN/CAL pin is  
low. FXDDELAY must be set high when DBLBW is  
set high.  
D1  
E1  
CLKIN+  
CLKIN–  
I
AC Coupled  
200–500 mVPPD  
(See Table 2)  
System Clock Input.  
Clock input to the DSPLL circuitry. The frequency of  
the CLKIN signal is multiplied by the DSPLL to gen-  
erate the CLKOUT clock output. The input-to-output  
frequency multiplication factor is set by selecting the  
clock input range and the clock output range. The fre-  
quency of the CLKIN clock input can be in the 19, 39,  
78, or 155 MHz range (nominally 19.44, 38.88,  
77.76, or 155.52 MHz) as indicated in Table 3 on  
page 7. The clock input frequency is selected using  
the INFRQSEL[2:0] pins. The clock output frequency  
is selected using the FRQSEL[1:0] pins.  
*Note: The LVTLL inputs on the Si5318 device have an internal pulldown mechanism that causes these inputs to default to a  
logic low state if the input is not driven from an external source.  
22  
Rev. 1.0  
Si5318  
Table 10. Si5318 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
F1  
G1  
H1  
INFRQSEL[0]  
INFRQSEL[1]  
INFRQSEL[2]  
I*  
LVTTL  
Input Frequency Range Select.  
Pins(INFRQSEL[2:0]) select the frequency range for  
the input clock, CLKIN. (See Table 3 on page 7.)  
000 = Reserved.  
001 = 19 MHz range.  
010 = 39 MHz range.  
011 = 78 MHz range.  
100 = 155 MHz range.  
101 = Reserved.  
110 = Reserved.  
111 = Reserved.  
F8  
D8  
H3  
LOS  
O
O
I*  
LVTTL  
LVTTL  
LVTTL  
Loss-of-Signal (LOS) Alarm for CLKIN.  
Active high output indicates that the Si5318 has  
detected missing pulses on the input clock signal.  
The LOS alarm is cleared after either 100 ms or  
13 seconds of a valid CLKIN clock input, depending  
on the setting of the VALTIME input.  
DH_ACTV  
RSTN/CAL  
Digital Hold Mode Active.  
Active high output indicates that the DSPLL is in  
digital hold mode. Digital hold mode locks the current  
state of the DSPLL and forces the DSPLL to continue  
generation of the output clock with no additional  
phase or frequency information from the input clock.  
Reset/Calibrate.  
When low, the internal circuitry enters the reset mode  
and all LVTTL outputs are forced into a high-imped-  
ance state. Also, the CLKOUT+ and CLKOUT– pins  
are forced to a nominal CML logic LOW and HIGH  
respectively. This feature is useful for in-circuit test  
applications.  
A low-to-high transition on RSTN/CAL initializes all  
digital logic to a known condition, enables the device  
outputs, and initiates self-calibration of the DSPLL.  
Upon completion of self-calibration, the DSPLL  
begins to lock to the selected clock input signal.  
*Note: The LVTLL inputs on the Si5318 device have an internal pulldown mechanism that causes these inputs to default to a  
logic low state if the input is not driven from an external source.  
Rev. 1.0  
23  
Si5318  
Table 10. Si5318 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Differential Clock Output.  
H6  
H7  
CLKOUT+  
CLKOUT–  
O
CML  
High frequency clock output. The frequency of the  
CLKOUT output is a multiple of the frequency of the  
CLKIN input. The input-to-output frequency multipli-  
cation factor is set by selecting the clock input range  
and the clock output range. The frequency of the  
CLKOUT clock output can be in the 19 or 155 MHz  
range as indicated in Table 3 on page 7. The clock  
output frequency is selected using the FRQSEL[1:0]  
pins. The clock input frequency is selected using the  
INFRQSEL[2:0] pins.  
H5  
H8  
FRQSEL[0]  
FRQSEL[1]  
I*  
I*  
LVTTL  
LVTTL  
Clock Output Frequency Range Select  
Select frequency range of the clock output, CLKOUT.  
(See Table 3 on page 7.)  
00 = Clock Driver Powerdown.  
01 = 19 MHz Frequency Range.  
10 = 155 MHz Frequency Range.  
11 = Reserved.  
B1  
C1  
BWSEL[0]  
BWSEL[1]  
Bandwidth Select.  
BWSEL[1:0] pins set the bandwidth of the loop filter  
within the DSPLL to 6400, 3200, 1600, or 800 Hz as  
indicated below.  
00 = 3200 Hz  
01 = 1600 Hz  
10 = 800 Hz  
11 = 6400 Hz  
Note: The loop filter bandwidth will be twice the value  
indicated when DBLBW is set high.  
E8  
H4  
CAL_ACTV  
VALTIME  
O
I*  
LVTTL  
LVTTL  
Calibration Mode Active.  
This output is driven high during the DSPLL self-cali-  
bration and the subsequent initial lock acquisition  
period.  
Clock Validation Time for LOS.  
VALTIME sets the clock validation times for recovery  
from an LOS alarm condition. When VALTIME is  
high, the validation time is approximately  
13 seconds. When VALTIME is low, the validation  
time is approximately 100 ms.  
A2, A3, B2,  
B3, B6, B7,  
C8  
RSVD_GND  
LVTTL  
Reserved—GND.  
This pin must be tied to GND for normal operation.  
*Note: The LVTLL inputs on the Si5318 device have an internal pulldown mechanism that causes these inputs to default to a  
logic low state if the input is not driven from an external source.  
24  
Rev. 1.0  
Si5318  
Table 10. Si5318 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Reserved—No Connect.  
A4–8, B5, B8  
RSVD_NC  
LVTTL  
This pin must be left unconnected for normal  
operation.  
3.3 V Supply.  
C2, D3–D5,  
E3–E5  
VDD33  
VDD  
Supply  
3.3 V power is applied to the VDD33 pins. Typical  
supply bypassing/decoupling for this configuration is  
indicated in the typical application diagram for 3.3 V  
supply operation.  
2.5 V Supply.  
D6, D7, E6,  
E7, F3–F7  
VDD25  
GND  
VDD  
Supply  
Supply  
These pins provide a means of connecting the  
compensation network for the on-chip regulator.  
C3–C7, E2,  
F2, G2–G8  
GND  
Ground.  
Must be connected to system ground. Minimize the  
ground path impedance for optimal performance of  
the device.  
H2  
D2  
REXT  
I
Analog  
LVTTL  
External Biasing Resistor.  
Used by on-chip circuitry to establish bias currents  
within the device. This pin must be connected to  
GND through a 10 k(1%) resistor.  
DBLBW  
I*  
Double Bandwidth  
Active high input to boost the selected bandwidth 2x.  
When this pin is high, the loop filter bandwidth  
selected on BWSEL[1:0] is doubled. When this pin is  
high, FXDDELAY must also be high.  
*Note: The LVTLL inputs on the Si5318 device have an internal pulldown mechanism that causes these inputs to default to a  
logic low state if the input is not driven from an external source.  
Rev. 1.0  
25  
Si5318  
4. Ordering Guide  
Part Number  
Package  
Temperature  
Si5318-X-BC  
63-Ball CBGA  
–20 to 85 °C  
Note: “X” denotes product revision.  
26  
Rev. 1.0  
Si5318  
5. Package Outline  
Figure 13 illustrates the package details for the Si5318. Table 11 lists the values for the dimensions shown in the  
illustration.  
Figure 13. 63-Ball Ceramic Ball Grid Array (CBGA)  
Table 11. Package Drawing Dimensions  
Dimension  
Description  
Total Package Height  
Standoff  
Minimum  
2.13  
Nominal  
2.28  
Maximum  
2.43  
A
A1  
A2  
A3  
b
0.60  
0.70  
0.80  
Ceramic Thickness  
Mold Cap Thickness  
Solder Ball Diameter  
Ceramic Body Size  
Mold Cap Size  
0.88  
0.98  
1.08  
0.55  
0.60  
0.65  
0.65  
0.70  
0.75  
D
8.85  
9.00  
9.15  
D1  
e
8.55  
8.75  
8.95  
Solder Ball Pitch  
Pitch to Centerline  
1.00 BSC  
0.50 BSC  
S
Rev. 1.0  
27  
 
 
Si5318  
6. 9x9 mm CBGA Card Layout  
Placement Courtyard  
Table 12. Recommended Land Pattern Dimensions  
Symbol  
Parameter  
Dimension  
Nom  
Notes  
Min  
Max  
C
Column Width  
Row Height  
7.00 REF  
7.00 REF  
1.00 BSC  
D
E
F
Pad Pitch  
Placement Courtyard  
Pad Diameter  
10.00  
0.64  
1
X
0.68  
0.72  
2, 3  
Notes:  
1. The Placement Courtyard is the minimum keep-out area required to assure assembly clearances.  
2. Pad Diameter is Copper Defined (Non-Solder Mask Defined/NSMD).  
3. OSP Surface Finish Recommended.  
4. Controlling dimension is millimeters.  
5. Land Pad Dimensions comply with IPC-SM-782 guidelines.  
6. Target solder paste volume per pad is 0.065 mm3 ± 0.010 mm3 (4000 mils3 ± 600 mils3).  
Recommended stencil aperture dimensions to achieve target solder paste volume are 0.191 mm  
thick x 0.68±0.01 mm diameter, with a 0.025 mm taper.  
7. Recommended stencil type is chemically etched stainless steel with circularly tapered apertures.  
28  
Rev. 1.0  
Si5318  
DOCUMENT CHANGE LIST  
Revision 0.9 to Revision 1.0  
„
Updated θJA in Table 6, “Thermal Characteristics,” on page 12.  
Rev. 1.0  
29  
Si5318  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: Clockinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
30  
Rev. 1.0  

相关型号:

SI5318-X-BC

Support Circuit, 1-Func, CBGA63, 9 X 9 MM, CERAMIC, BGA-63
SILICON

SI5319

ANY-RATE PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5319-H

LAMP,IRED,950NM PEAK WAVELENGTH,LED-2B
KODENSHI

SI5319-H(B)

LAMP,IRED,950NM PEAK WAVELENGTH,LED-2B
KODENSHI

SI5319A-C-GM

Clock Generator, 1417MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5319B-C-GM

Clock Generator, 808MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5319B-C-GMR

暂无描述
SILICON

SI5319C-C-GM

Clock Generator, 364MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5319C-C-GMR

Clock Generator, 364MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI532

DUAL FREQUENCY XO (10 MHZ TO 1.4 GHZ)
SILICON

SI5320

SONET/SDH PRECISION CLOCK MULTIPLIER IC
ETC

SI5320-EVB

EVALUATION BOARD FOR Si5320 SONET/SDH PRECISION CLOCK MULTIPLIER IC
ETC