SI5324 [SILICON]

Pin-Controlled 1_710 MHz Jitter Cleaning Clock; 销控1_710 MHz的抖动清洗时钟
SI5324
型号: SI5324
厂家: SILICON    SILICON
描述:

Pin-Controlled 1_710 MHz Jitter Cleaning Clock
销控1_710 MHz的抖动清洗时钟

时钟
文件: 总50页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5317  
PRELIMINARY DATA SHEET  
PIN-CONTROLLED 1–710 MHZ JITTER CLEANING CLOCK  
Features  
Provides jitter attenuation on any  
frequency  
One clock input / two clock outputs  
Input/output frequency range:  
1–710 MHz  
Selectable output clock signal  
format: LVPECL, LVDS, CML or  
CMOS  
Single supply: 1.8, 2.5, or 3.3 V  
VCO freeze during LOS/LOL  
Loss of lock and loss of signal alarms  
On-chip voltage regulator with high  
PSRR  
Ultra low jitter: 300 fs  
(12 kHz–20 MHz) typical  
Simple pin control interface  
Selectable loop bandwidth for jitter  
attenuation: 60 Hz–8.4 kHz  
Small size: 6 x 6 mm, 36-QFN  
Wide temperature range: –40 to  
+85 ºC  
Applications  
Ordering Information:  
See page 43.  
Data converter clocking  
Wireless infrastructure  
Networking, SONET/SDH  
Switches and routers  
Medical instrumentation  
Test and measurement  
Pin Assignments  
Description  
The Si5317 is a flexible 1:1 jitter cleaning clock for high-performance applications  
that require jitter attenuation without clock multiplication. The Si5317 accepts a  
single clock input ranging from 1 to 710 MHz and generates two low jitter clock  
outputs at the same frequency. The clock frequency range and loop bandwidth are  
selectable from a simple look-up table. The Si5317 is based on Silicon  
Laboratories' 3rd-generation DSPLL® technology, which provides jitter attenuation  
on any frequency in a highly integrated PLL solution that eliminates the need for  
external VCXO and loop filter components. The DSPLL loop bandwidth is user  
selectable, providing jitter performance optimization at the application level.  
36 35 34 33 32 31 30 29 28  
RST  
FRQTBL  
LOS  
NC  
1
2
3
4
5
6
7
8
9
27 FRQSEL3  
26  
FRQSEL2  
25 FRQSEL1  
24  
23  
FRQSEL0  
BWSEL1  
GND  
Pad  
VDD  
XA  
22 BWSEL0  
XB  
21  
20  
19  
NC  
GND  
NC  
DEC  
INC  
Functional Block Diagram  
10 11 12 13 14 15 16 17 18  
XTAL/Clock  
Clock Out1  
Clock In  
DSPLL ®  
Signal Format [1:0]  
Clock Out2  
Status/Control  
High  
PSRR  
Regulator  
VDD (1.8, 2.5, 3.3 V)  
GND  
Frequency Table  
Loss of Lock  
Frequency Select [3:0]  
Bandwidth Select [1:0]  
Phase Skew INC/DEC  
Loss of Signal  
XTAL/Clock Rate [1:0]  
Preliminary Rev. 0.15 4/10  
Copyright © 2010 by Silicon Laboratories  
Si5317  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5317  
2
Preliminary Rev. 0.15  
Si5317  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.2. Three-Level Input Pins (with External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Frequency Range Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Output Skew Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.3. PLL Self-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.4. Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.5. VCO Freeze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.6. PLL Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4. High-Speed I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.1. Input Clock Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.2. Output Clock Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5. Crystal/Reference Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.1. Crystal/Reference Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6. Power Supply Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
7. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
7.1. Example: SONET OC-192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
8. Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
9. Pin Descriptions: Si5317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
11. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
12. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
13. Si5317 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Preliminary Rev. 0.15  
3
Si5317  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Temperature Range  
Supply Voltage  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
ºC  
V
T
A
V
3.3 V nominal  
2.5 V nominal  
1.8 V nominal  
2.97  
2.25  
1.71  
3.3  
2.5  
1.8  
3.63  
2.75  
1.89  
DD  
V
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. DC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Supply Current (Supply  
current is independent of  
I
LVPECL Format  
622.08 MHz Out  
All CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
Only 1 CKOUT Enabled  
CMOS Format  
19.44 MHz Out  
All CKOUTs Enabled  
251  
279  
mA  
DD  
1
V
)
DD  
217  
204  
194  
243  
234  
220  
mA  
mA  
mA  
1
2
CMOS Format  
19.44 MHz Out  
Only CKOUT1 Enabled  
2
CKIN Input Pin  
Input Common Mode  
Voltage  
(Input Threshold Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
3.3 V ± 10%  
Single-ended  
0.9  
1.0  
1.1  
20  
0
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
V
Input Resistance  
CKN  
CKN  
k  
V
RIN  
3
Input Voltage Level Limits  
See note  
V
DD  
VIN  
Single-ended Input Voltage  
Swing  
V
f
f
< 212.5 MHz  
0.2  
V
ISE  
CKIN  
PP  
See Figure 2.  
> 212.5 MHz  
0.25  
V
CKIN  
PP  
See Figure 2.  
Notes:  
1. LVPECL outputs require VDD > 2.25 V.  
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
3. No overshoot or undershoot.  
4
Preliminary Rev. 0.15  
Si5317  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Differential Input  
Symbol  
Test Condition  
< 212.5 MHz  
Min  
Typ  
Max  
Units  
V
f
f
0.2  
V
ID  
CKIN  
PP  
Voltage Swing  
See Figure 2.  
> 212.5 MHz  
0.25  
V
CKIN  
PP  
See Figure 2.  
1
CKOUT Output Clock  
Common Mode  
V
LVPECL 100 load  
V
1.42  
V
1.25  
V
OCM  
DD  
DD  
line-to-line  
Differential Output Swing  
Single-ended Output Swing  
Differential Output Voltage  
V
LVPECL 100 load  
1.1  
0.5  
350  
1.9  
V
OD  
PP  
PP  
line-to-line  
V
LVPECL 100 load  
0.93  
500  
V
SE  
line-to-line  
CKO  
CML 100 load  
425  
mV  
PP  
VD  
line-to-line  
Common Mode  
Output Voltage  
CKO  
CML 100 load  
V
V
VCM  
DD  
0.36  
line-to-line  
Differential  
Output Voltage  
CKO  
LVDS 100 load  
500  
350  
1.125  
700  
425  
1.2  
80  
900  
500  
1.275  
90  
mV  
VD  
PP  
line-to-line  
Low swing LVDS 100 load  
mV  
PP  
line-to-line  
Common Mode  
Output Voltage  
CKO  
LVDS 100 load  
V
VCM  
line-to-line  
Output Short to GND  
CKO  
V
= 3.63 V  
DD  
mA  
mA  
mA  
mA  
µA  
ISC  
CML, LVDS, LVPECL  
V
= 1.89 V  
45  
50  
DD  
CML, LVDS  
V
= 3.63 V  
165  
65  
175  
70  
DD  
CMOS  
V
= 1.89 V  
DD  
CMOS  
Disable  
0.1  
0.2  
Notes:  
1. LVPECL outputs require VDD > 2.25 V.  
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
3. No overshoot or undershoot.  
Preliminary Rev. 0.15  
5
Si5317  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Output Short to V  
Symbol  
CKO  
Test Condition  
= 3.63 V  
Min  
Typ  
Max  
Units  
V
DD  
25  
30  
mA  
DD  
ISC+  
CML, LVDS, LVPECL  
V
= 1.89 V  
25  
190  
70  
30  
200  
80  
mA  
mA  
mA  
DD  
CML, LVDS  
V
V
= 3.63 V  
CMOS  
DD  
= 1.89 V  
DD  
CMOS  
Disable  
1.5  
2
µA  
Differential Output  
Resistance  
CKO  
CKO  
CML, LVPECL, LVDS,  
Disable  
170  
200  
230  
RD  
Common Mode Output  
CML, LVPECL, LVDS  
Disable  
85  
1
100  
115  
M  
V
RCM  
Resistance (to V  
)
DD  
Output Voltage Low  
Output Voltage High  
CKO  
CKO  
CMOS  
0.4  
VOLLH  
V
= 1.71 V  
0.8 x V  
V
VOHLH  
DD  
DD  
CMOS  
Output Drive Current  
CKO  
IO  
CMOS  
Driving into CKO  
for out-  
VOL  
put low or CKO  
for output  
VOH  
high. CKOUT+ and CKOUT–  
shorted externally.  
V
V
= 1.71 V  
= 2.97 V  
7.5  
32  
mA  
mA  
DD  
DD  
2-Level LVCMOS Input Pins  
Input Voltage Low  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
75  
0.5  
0.7  
0.8  
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
V
Input Voltage High  
V
1.4  
1.8  
2.5  
V
IH  
V
V
Input Low Current  
Input High Current  
I
50  
50  
µA  
µA  
k  
IL  
I
IH  
Weak Internal Input Pull-up  
Resistor  
R
PUP  
Notes:  
1. LVPECL outputs require VDD > 2.25 V.  
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
3. No overshoot or undershoot.  
6
Preliminary Rev. 0.15  
Si5317  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Weak Internal Input  
Pull-down Resistor  
R
75  
k  
PDN  
3-Level Input Pins  
Input Voltage Low  
Input Voltage Mid  
Input Voltage High  
Input Low Current  
Input Mid Current  
Input High Current  
LVCMOS Output Pins  
Output Voltage Low  
0.15 x VDD  
V
0.45 x VDD  
0.85 x VDD  
–20  
V
V
ILL  
0.55 x VDD  
V
IMM  
V
2
V
IHH  
2
I
µA  
µA  
µA  
ILL  
2
I
–2  
IMM  
2
I
20  
IHH  
V
I = 2 mA  
0.4  
0.4  
V
V
V
V
OL  
O
V
V
= 1.62 V  
DD  
I = 2 mA  
O
= 2.97 V  
DD  
Output Voltage High  
V
I = –2 mA  
V
V
– 0.4  
– 0.4  
OH  
O
DD  
DD  
V
= 1.62 V  
DD  
I = –2 mA  
O
V
= 2.97 V  
DD  
Single-Ended Reference Clock Input Pin XA (XB with cap to gnd)  
Input Resistance  
XA  
XA  
XTAL/RefCLK  
RATE[1:0] = LM, ML, MH, or  
HM  
8.5  
10  
11.5  
1.2  
k  
RIN  
VIN  
Input Voltage Level Limits  
Input Voltage Swing  
0
V
XA  
0.5  
1.2  
V
PP  
VPP  
Differential Reference Clock Input Pins (XA/XB)  
Input Resistance  
XA/XB  
XTAL/RefCLK  
RATE[1:0] = LM, ML, MH, or  
HM  
8.5  
0
10  
11.5  
1.2  
k  
RIN  
VIN  
Differential Input Voltage  
Level Limits  
XA/XB  
V
Input Voltage Swing  
XA  
/XB  
0.5  
1.2  
V
PP, each  
VPP  
VPP  
Notes:  
1. LVPECL outputs require VDD > 2.25 V.  
2. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
3. No overshoot or undershoot.  
Preliminary Rev. 0.15  
7
Si5317  
V
SIGNAL +  
Differential I/Os  
SIGNAL – OCM  
Single-Ended  
Peak-to-Peak Voltage  
V
ICM , V  
VISE,VOSE  
(SIGNAL +) – (SIGNAL –)  
ICM, VOCM  
Differential Peak-to-Peak Voltage  
VID = (SIGNAL+) – (SIGNAL–)  
V ,VOD  
ID  
V
t
SIGNAL +  
SIGNAL –  
Figure 1. Voltage Characteristics  
80%  
20%  
DOUT, CLOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
8
Preliminary Rev. 0.15  
Si5317  
1.1. Three-Level (3L) Input Pins (No External Resistors)  
VDD  
Si5317  
75 k  
Iimm  
75 k  
External Driver  
Figure 3. Three Level Input Pins  
1.2. Three-Level Input Pins (with External Resistors)  
VDD  
18 k  
VDD  
Si5317  
75 k  
Iimm  
18 k  
75 k  
External Driver  
One of eight resistors from a Panasonic EXB-D10C183J  
(or similar) resistor pack  
Figure 4. Three-Level Input Pins  
Table 3. Three-Level Input Pins1,2,3,4  
Parameter  
Input Low Current  
Input Mid Current  
Input High Current  
Notes:  
Symbol  
Iill  
Min  
–30 µA  
–11 µA  
Max  
Iimm  
Iihh  
–11 µA  
–30 µA  
1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external driver. In most  
designs, an external resistor voltage divider is recommended.  
2. Resistor packs are only needed if the leakage current of the external driver exceeds the listed currents.  
Any resistor pack may be used (e.g. Panasonic EXB-D10C183J). PCB layout is not critical.  
3. If a pin is tied to ground or V , no resistors are needed.  
DD  
4. If a pin is left open (no connect), no resistors are needed.  
Preliminary Rev. 0.15  
9
Si5317  
Table 4. AC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Input Frequency  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
CKN  
1
710  
MHz  
F
CKIN Input Pins  
Input Duty Cycle (Minimum Pulse  
Width)  
Whichever is smaller  
40  
2
60  
3
%
ns  
pF  
ns  
CKN  
DC  
Input Capacitance  
CKN  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
CKOUT Output Pins  
Output Frequency (Output not  
configured for CMOS or disable)  
1
1
710  
212.5  
8
MHz  
MHz  
ns  
CK  
OF  
Maximum Output Frequency in  
CMOS Format  
CKO  
FMC  
CMOS Output  
Single-ended Output Rise/Fall  
(20–80%)  
V
= 1.62  
DD  
Cload = 5 pF  
CKO  
TRF  
CMOS Output  
2
ns  
V
= 2.97  
DD  
Cload = 5 pF  
20 to 80 %, f  
= 622.08  
230  
350  
±40  
ps  
ps  
Differential Output Rise/Fall Time  
CKO  
OUT  
TRF  
Output Duty Cycle Differential  
Uncertainty  
CKO  
100 Load  
Line to Line  
DC  
Measured at 50% Point  
(not for CMOS)  
LVCMOS Pins  
Input Capacitance  
C
3
pF  
IN  
10  
Preliminary Rev. 0.15  
Si5317  
Table 4. AC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
LVCMOS Output Pins  
Rise/Fall Times  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
t
CLOAD = 20 pf  
See Figure 2  
25  
ns  
RF  
LOS  
t
From L  
CKINto LOS  
750  
220  
µs  
LOSn Trigger Window  
TRIG  
VST  
Time to Clear LOS Alarm  
Measured from appearance  
of valid CKIN to of LOS  
alarm  
90  
ms  
LOSCLR  
Time to Clear LOL after LOS Cleared t  
f unchanged and XA/XB  
10  
ms  
CLRLOL  
in  
stable.  
LOS to LOL  
PLL Performance  
Lock Time  
t
1.2  
sec  
dB  
RST with valid CKIN to   
LOCKHW  
LOL; BW = 100 Hz  
Closed Loop Jitter Peaking  
Jitter Tolerance  
J
0.05  
0.1  
PK  
5000/  
BW  
ns pk-  
pk  
BW determined by  
BWSEL[1:0]  
J
TOL  
Minimum Reset Pulse Width  
Lock Time  
t
1
35  
µs  
ms  
RSTMIN  
t
Reset b to of LOL  
1000  
–75  
LOCKMP  
Spurious Noise  
Max spur @ n x f3  
(n > 1, n x f3 < 100 MHz)  
dBc  
SP  
SPUR  
Preliminary Rev. 0.15  
11  
Si5317  
Table 5. Performance Specifications1, 2, 3, 4, 5  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Generation  
J
0.32  
0.42  
ps rms  
GEN  
f
= f  
= 622.08 MHz,  
50 kHz–80 MHz  
12 kHz–20 MHz  
800 Hz–80 MHz  
100 Hz offset  
1 kHz offset  
IN  
OUT  
LVPECL output format  
BW = 120 Hz  
0.31  
0.4  
0.41  
0.45  
ps rms  
ps rms  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
Phase Noise  
CKO  
–65  
PN  
f
= f  
= 622.08 MHz  
IN  
OUT  
–95  
LVPECL output format  
10 kHz offset  
100 kHz offset  
1 MHz offset  
–110  
–117  
–130  
Notes:  
1. BWSEL [1:0] loop bandwidth settings provided in Table 9 on page 22.  
2. 114.285 MHz 3rd OT crystal used as XA/XB input.  
3. VDD = 2.5 V  
4. TA = 85 °C  
5. Test condition: fIN = 622.08 MHz, fOUT = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time  
(20-80%), LVPECL clock output.  
12  
Preliminary Rev. 0.15  
Si5317  
Table 6. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Thermal Resistance  
Junction to Ambient  
Still Air  
32  
ºC/W  
JA  
Thermal Resistance  
Junction to Case  
14  
ºC/W  
JC  
Table 7. Absolute Maximum Ratings  
Parameter  
DC Supply Voltage  
Symbol  
Value  
Unit  
V
–0.5 to 3.63  
V
V
DD  
DIG  
JCT  
STG  
LVCMOS Input Voltage  
V
–0.3 to (V + 0.3)  
DD  
Operating Junction Temperature  
Storage Temperature Range  
T
–55 to 150  
–55 to 150  
2
C
T
C
ESD HBM Tolerance (100 pF, 1.5 k); All pins except  
kV  
CKIN+/CKIN–  
ESD MM Tolerance; All pins except CKIN+/CKIN–  
ESD HBM Tolerance (100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance; CKIN+/CKIN–  
200  
700  
150  
V
V
V
Latch-Up Tolerance  
JESD78 Compliant  
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
Preliminary Rev. 0.15  
13  
Si5317  
2. Functional Description  
External Crystal or  
Reference Clock  
RATE[1:0]  
XB  
XA  
2
2
CKOUT+  
CKOUT–  
2
fOSC  
f3  
CKIN+  
CKIN–  
DSPLL®  
SFOUT[1:0]  
CKOUT+  
CKOUT–  
LOS  
LOL  
RST  
Alarms  
Control  
DBL2_BY  
Bandwidth  
Control  
BWSEL[1:0]  
FRQSEL[3:0]  
Frequency  
Control  
Voltage  
Regulator with  
High PSRR  
VDD (1.8, 2.5, or 3.3 V)  
GND  
FRQTBL  
INC  
Skew Control  
DEC  
Figure 5. Detailed Block Diagram  
2.1. Overview  
The Si5317 is a 1:1 jitter-attenuating precision clock for applications requiring sub 1 ps jitter performance. The  
Si5317 accepts one clock input ranging from 1 to 710 MHz and generates two clock outputs at the same frequency  
ranging from 1 to 710 MHz. The Si5317 is based on Silicon Laboratories' 3rd-generation DSPLL® technology,  
which provides jitter attenuation on any frequency in a highly integrated PLL solution that eliminates the need for  
external VCXO and loop filter components. The nominal operating frequency is selectable from a look-up table.  
The Si5317 PLL loop bandwidth (BW) is selectable via the BWSEL[1:0] pins and supports a range from 60 Hz to  
8.4 kHz.  
The Si5317 monitors the input clock for loss-of-signal (LOS) and provides a LOS alarm when it detects missing  
pulses on the input clock. The device monitors the lock status of the DSPLL. The lock detect algorithm works by  
continuously monitoring the phase of the input clock in relation to the phase of the feedback clock.  
The Si5317 provides a VCO freeze capability that allows the device to continue generation of a stable output clock  
when the selected input clock is lost. During VCO freeze, the DSPLL latches its VCO settings and uses its XA/XB  
clock as its frequency reference.  
The Si5317 has two output clock drivers and can be configured as four single-ended or two differential outputs.  
The signal format of the clock output is selectable to support LVPECL, LVDS, CML, or CMOS loads. The device  
operates from a single 1.8, 2.5, or 3.3 V supply. The use of LVPECL requires a VDD > 2.25 V.  
14  
Preliminary Rev. 0.15  
Si5317  
3. Frequency Plan Tables  
For ease of use, the Si5317 is pin-controlled to enable simple device configuration of the frequency range plan and  
PLL loop bandwidth via a predefined look-up table. The DSPLL has been optimized for jitter performance and  
tunability for each frequency range and PLL loop bandwidth provided in Table 9 on page 22.  
Many of the control inputs are three levels: High, Low, and Medium. High and Low are standard voltage levels  
determined by the supply pins: V and Ground. If the input pin is left floating, it is driven to nominally half of V  
.
DD  
DD  
Effectively, this creates three logic levels for these controls. See section 6. "Power Supply Filtering" on page 35 and  
section 1.2. "Three-Level Input Pins (with External Resistors)" on page 9 for additional information.  
3.1. Frequency Range Plan  
The input to output clock frequency range is set by the 3-level FRQSEL[3:0] and FRQTBL pins. The CKIN and  
CKOUT is the same frequency range as specified in Table 8. Due to the wide tunability of the Si5317, each  
frequency plan provides overlap between adjacent settings. To select a frequency plan, the desired frequency  
should be selected as close to the defined center frequency. In certain cases where the desired frequency is  
exactly between two overlapping plans, either FRQTBL and FRQSEL can be used.  
3.1.1. PLL Loop Bandwidth Plan  
The Si5317's loop bandwidth ranges from 60 Hz to 8.4 kHz. For each frequency range, the corresponding loop  
bandwidth is provided in a simple look-up table (see Table 9 on page 22). The loop bandwidth is digitally  
programmable using the three-level BWSEL [1:0] input pins.  
3.2. Output Skew Adjustment  
The overall device skew (CKIN to CKOUTn phase delay) is adjustable via the INC and DEC input pins. A positive  
edge triggered pulse applied to the INC pin increases the device skew defined by Table 8, INC/DEC step size, for  
each given frequency plan. The identical operation on the DEC pin decreases the skew by the same amount.  
Using the INC and DEC pins, there is no limit to the range of skew adjustment that can be made. Following a  
powerup or reset, the overall device skew will revert to the reset value, although the input-to-output skew is  
effectively random. The rate of change for each INC/DEC operation is defined by the selected loop bandwidth,  
BWSEL[1:0].  
Preliminary Rev. 0.15  
15  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
[3:0]  
0
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
LLLL  
1.00  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
2.00  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
1.80  
1.85  
1.90  
1.95  
3814 927 230 114 57  
3814 927 230 114 57  
3834 931 231 115 57  
4052 983 244 121 60  
4251 1030 255 127 63  
4451 1078 267 133 66  
4652 1125 279 139 69  
4852 1172 290 145 72  
5054 1219 302 150 75  
5256 1267 314 156 78  
5256 1267 314 156 78  
5459 1314 325 162 81  
5866 1409 349 174 87  
5866 1409 349 174 87  
6071 1457 360 180 89  
6276 1504 372 185 92  
6483 1552 384 191 95  
6688 1599 395 197 98  
6895 1647 407 203 101  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.21  
0.20  
0.21  
0.20  
0.20  
0.20  
0.20  
0.21  
1
LLLM  
LLLH  
2
3
LLML  
LLMM  
LLMH  
LLHL  
4
5
6
7
LLHM  
LLHH  
LMLL  
LMLM  
LMLH  
LMML  
LMMM  
LMMH  
LMHL  
LMHM  
LMHH  
LHLL  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
LHLM  
LHLH  
LHML  
LHMM  
LHMH  
LHHL  
LHHM  
LHHH  
MLLL  
MLLM  
MLLH  
MLML  
MLMM  
MLMH  
MLHL  
2.00 4696 2285 560 139 69  
2.10 4832 2350 575 143 71  
2.20 4967 2415 591 147 73  
2.30 5239 2544 622 154 77  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
3.40  
4052 983 244 121 60  
4251 1030 255 127 63  
4451 1078 267 133 66  
4651 1125 279 139 69  
4852 1172 290 145 72  
5054 1219 302 150 75  
5255 1267 314 156 78  
5458 1314 325 162 81  
5859 1409 349 174 87  
5859 1409 349 174 87  
6071 1457 360 180 89  
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
16  
Preliminary Rev. 0.15  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
[3:0]  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
MLHM  
MLHH  
MMLL  
MMLM  
MMLH  
MMML  
3.30  
3.40  
3.50  
3.60  
3.70  
3.80  
3.40  
3.50  
3.60  
3.70  
3.80  
3.90  
4.00  
4.20  
4.40  
4.60  
4.80  
5.00  
5.20  
5.40  
5.60  
5.80  
6.00  
6.20  
6.40  
6.60  
6.80  
7.00  
7.20  
7.40  
7.60  
7.80  
8.00  
8.40  
8.80  
9.00  
9.20  
9.60  
3.50  
3.60  
3.70  
3.80  
3.90  
4.00  
4.20  
4.40  
4.60  
4.80  
5.00  
5.20  
5.40  
5.60  
5.80  
6.00  
6.20  
6.40  
6.60  
6.80  
7.00  
7.20  
7.40  
7.60  
7.80  
8.00  
8.40  
8.80  
9.00  
9.20  
9.60  
10.00  
6071 1457 360 180 89  
6276 1504 372 185 92  
6483 1552 384 191 95  
6895 1647 407 203 101  
6895 1647 407 203 101  
4650 1125 279 139 69  
4786 1156 286 143 71  
4919 1188 294 147 73  
5457 1314 325 162 81  
5457 1314 325 162 81  
5730 1378 341 170 85  
6268 1504 372 185 92  
6273 1504 372 185 92  
6550 1568 387 193 96  
6823 1631 403 201 100  
6823 1631 403 201 100  
6333 3064 748 185 92  
6571 3176 774 192 96  
6811 3289 801 199 99  
6071 1457 360 180 89  
6534 1567 387 193 96  
6534 1567 387 193 96  
6483 1552 384 191 95  
6686 1599 395 197 98  
6891 1647 407 203 101  
4648 1125 279 139 69  
4786 1156 286 143 71  
4919 1188 294 147 73  
6599 1580 391 195 97  
7080 1693 418 209 104  
7080 1693 418 209 104  
5727 1377 341 170 85  
6003 1441 356 178 88  
6273 1504 372 185 92  
0.21  
0.21  
0.21  
0.21  
0.21  
0.20  
0.21  
0.21  
0.20  
0.20  
0.21  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
0.21  
0.20  
0.20  
0.21  
0.20  
0.20  
0.20  
0.21  
0.21  
0.20  
0.19  
0.19  
0.20  
0.21  
0.20  
MMMM 3.90  
MMMH 4.00  
MMHL  
4.20  
MMHM 4.40  
MMHH  
MHLL  
MHLM  
MHLH  
MHML  
4.60  
4.80  
5.00  
5.20  
5.40  
MHMM 5.60  
MHMH  
MHHL  
MHHM  
MHHH  
HLLL  
5.80  
6.00  
6.20  
6.40  
6.60  
6.80  
7.00  
7.20  
7.40  
7.60  
7.80  
8.00  
8.40  
8.80  
9.00  
9.20  
HLLM  
HLLH  
HLML  
HLMM  
HLMH  
HLHL  
HLHM  
HLHH  
HMLL  
HMLM  
HMLH  
HMML  
9.60 10.00 10.50  
HMMM 10.00 10.50 11.00  
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
Preliminary Rev. 0.15  
17  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
[3:0]  
L
L
HMMH 10.50 11.00 11.50  
HMHL 11.00 11.50 12.00  
HMHM 11.50 12.00 12.50  
HMHH 12.00 12.50 13.00  
6992 1672 413 206 103  
5866 1409 349 174 87  
6155 1477 365 182 91  
6446 1545 382 190 95  
7034 1680 415 207 103  
5408 1303 323 161 80  
5633 1356 336 167 83  
5861 1409 349 174 87  
7383 1764 436 217 108  
6321 1515 374 187 93  
6321 1515 374 187 93  
6774 1620 400 200 99  
7230 1726 426 213 106  
4422 1071 265 132 66  
7342 1756 434 216 108  
7342 1756 434 216 108  
7298 1742 430 214 107  
4995 1206 299 149 74  
7518 1796 444 221 110  
6208 1488 368 183 91  
7429 1777 439 219 109  
6155 1477 365 182 91  
6155 1477 365 182 91  
6739 1612 399 199 99  
7613 1816 449 224 111  
6817 1631 403 201 100  
6817 1631 403 201 100  
7640 1821 450 224 112  
4941 1194 296 147 73  
7658 1827 451 225 112  
7658 1827 451 225 112  
6774 1620 400 200 99  
6774 1620 400 200 99  
7692 1832 452 225 112  
0.20  
0.21  
0.20  
0.20  
0.20  
0.20  
0.20  
0.20  
0.19  
0.21  
0.21  
0.20  
0.20  
0.21  
0.19  
0.19  
0.20  
0.20  
0.19  
0.21  
0.18  
0.20  
0.20  
0.20  
0.19  
0.20  
0.20  
0.20  
0.20  
0.19  
0.19  
0.20  
0.20  
0.20  
L
L
L
HHLL  
12.50 13.00 13.50  
L
HHLM 13.00 13.50 14.00  
HHLH 13.50 14.00 14.50  
HHML 14.00 14.50 15.00  
HHMM 14.50 15.00 15.50  
HHMH 15.00 15.50 16.00  
HHHL 15.50 16.00 16.50  
HHHM 16.00 16.50 17.00  
HHHH 16.50 17.00 17.50  
L
L
L
L
L
L
L
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
LLLL  
LLLM  
LLLH  
LLML  
17.00 17.50 18.00  
17.50 18.00 18.50  
18.00 18.50 19.00  
18.50 19.00 19.50  
LLMM 19.00 19.50 20.00  
LLMH  
LLHL  
LLHM  
LLHH  
LMLL  
19.50 20.00 21.00  
20.00 21.00 22.00  
21.00 22.00 23.00  
22.00 23.00 24.00  
23.00 24.00 25.00  
LMLM 24.00 25.00 26.00  
LMLH 25.26 26.00 27.00  
LMML 26.00 27.00 28.00  
LMMM 27.00 28.00 29.00  
LMMH 28.00 29.00 30.00  
LMHL  
29.00 30.00 31.00  
LMHM 30.31 31.00 32.00  
LMHH 31.00 32.00 33.00  
LHLL  
LHLM  
LHLH  
32.00 33.00 34.00  
33.00 34.00 35.00  
34.00 35.00 36.00  
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
18  
Preliminary Rev. 0.15  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
[3:0]  
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
LHML  
35.00 36.00 37.00  
7680 1833 453 226 113  
7539 1803 446 222 111  
7658 1827 451 225 112  
7607 1818 449 224 112  
7607 1818 449 224 112  
5709 1373 340 169 84  
7653 1828 452 225 112  
7653 1828 452 225 112  
6155 1477 365 182 91  
7630 1823 450 225 112  
7692 1832 452 225 112  
7880 1882 465 232 116  
6169 1481 366 183 91  
7664 1826 451 225 112  
7664 1826 451 225 112  
7882 1882 465 232 116  
7890 1883 465 232 116  
7878 1882 465 232 116  
7878 1882 465 232 116  
6228 1494 369 184 92  
7888 1883 465 232 116  
7889 1883 465 232 116  
7917 1884 465 232 116  
7895 1883 465 232 116  
7895 1883 465 232 116  
6010 1445 357 178 89  
6010 1445 357 178 89  
6329 1518 375 187 93  
7878 1882 465 232 116  
7795 1864 461 230 114  
7795 1864 461 230 114  
7903 1884 465 232 116  
7812 1866 461 230 115  
6329 1518 375 187 93  
7820 1867 461 230 115  
0.19  
0.18  
0.19  
0.18  
0.18  
0.21  
0.18  
0.18  
0.20  
0.18  
0.20  
0.18  
0.20  
0.20  
0.20  
0.18  
0.18  
0.18  
0.18  
0.20  
0.18  
0.18  
0.20  
0.19  
0.19  
0.20  
0.20  
0.20  
0.18  
0.18  
0.18  
0.19  
0.18  
0.20  
0.18  
LHMM 36.00 37.00 38.00  
LHMH 37.00 38.00 39.00  
LHHL  
38.00 39.00 40.00  
LHHM 39.00 40.00 42.00  
LHHH 40.00 42.00 44.00  
MLLL  
MLLM 44.00 46.00 48.00  
MLLH 46.00 48.00 50.00  
43.30 44.00 46.00  
MLML 48.00 50.00 52.00  
MLMM 50.52 52.00 54.00  
MLMH 52.00 54.00 56.00  
MLHL  
54.00 56.00 58.00  
MLHM 56.00 58.00 60.00  
MLHH 58.00 60.00 60.00  
MMLL 60.00 62.00 64.00  
MMLM 62.00 64.00 66.00  
MMLH 64.00 66.00 68.00  
MMML 66.00 68.00 70.00  
MMMM 68.00 70.00 70.88  
MMMH 70.00 72.00 74.00  
MMHL 72.00 74.00 76.00  
MMHM 75.78 76.00 78.00  
MMHH 76.00 78.00 80.00  
MHLL  
78.00 80.00 84.00  
MHLM 80.00 84.00 88.00  
MHLH 84.00 88.00 88.59  
MHML 88.00 90.00 92.00  
MHMM 90.00 92.00 96.00  
MHMH 92.00 96.00 100.00  
MHHL 96.00 100.00 105.00  
MHHM 101.04 105.00 110.00  
MHHH 105.00 110.00 115.00  
HLLL 110.00 115.00 118.13  
HLLM 115.00 120.00 125.00  
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
Preliminary Rev. 0.15  
19  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
[3:0]  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
H
HLLH 120.00 125.00 130.00  
HLML 125.00 130.00 135.00  
HLMM 130.00 135.00 140.00  
HLMH 135.00 140.00 145.00  
HLHL 140.00 145.00 150.00  
HLHM 145.00 150.00 155.00  
HLHH 151.56 155.00 160.00  
HMLL 155.00 160.00 165.00  
HMLM 160.00 165.00 170.00  
HMLH 165.00 170.00 175.00  
HMML 170.00 175.00 177.19  
HMMM 175.00 180.00 185.00  
HMMH 180.00 185.00 190.00  
HMHL 185.00 190.00 195.00  
HMHM 190.00 195.00 200.00  
HMHH 195.00 200.00 202.50  
HHLL 202.08 210.00 220.00  
HHLM 210.00 220.00 230.00  
HHLH 220.45 230.00 240.00  
HHML 230.00 240.00 250.00  
HHMM 242.50 250.00 260.00  
HHMH 250.00 260.00 270.00  
HHHL 260.00 270.00 280.00  
HHHM 270.00 280.00 290.00  
HHHH 280.00 290.00 300.00  
LLLL 290.00 300.00 310.00  
LLLM 303.13 310.00 320.00  
LLLH 310.00 320.00 330.00  
LLML 320.00 330.00 340.00  
LLMM 330.00 340.00 350.00  
LLMH 340.00 350.00 354.38  
LLHL 350.00 360.00 370.00  
LLHM 360.00 370.00 380.00  
LLHH 370.00 380.00 390.00  
7812 1868 462 230 115  
7878 1882 465 232 116  
6873 1648 408 203 101  
7851 1871 462 230 115  
7826 1870 462 230 115  
7240 1735 429 214 107  
7853 1872 462 230 115  
7890 1883 465 232 116  
7831 1871 462 231 115  
7831 1871 462 231 115  
6912 1654 409 204 102  
7140 1710 423 211 105  
7846 1873 463 231 115  
7878 1882 465 232 116  
7878 1882 465 232 116  
6993 1673 414 206 103  
7903 1884 465 232 116  
7069 1689 417 208 104  
7903 1884 465 232 116  
7507 1793 443 221 110  
7910 1884 465 232 116  
7878 1882 465 232 116  
7429 1776 439 219 109  
7908 1884 465 232 116  
7879 1882 465 232 116  
7571 1811 448 223 111  
7903 1884 465 232 116  
7890 1883 465 232 116  
7878 1882 465 232 116  
7878 1882 465 232 116  
7344 1757 434 217 108  
7900 1883 465 232 116  
7889 1883 465 232 116  
7878 1882 465 232 116  
0.18  
0.18  
0.19  
0.19  
0.18  
0.18  
0.19  
0.18  
0.18  
0.18  
0.20  
0.19  
0.18  
0.18  
0.18  
0.19  
0.19  
0.20  
0.19  
0.19  
0.19  
0.18  
0.19  
0.19  
0.18  
0.18  
0.19  
0.18  
0.18  
0.18  
0.18  
0.19  
0.18  
0.18  
H
H
H
H
H
H
H
H
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
20  
Preliminary Rev. 0.15  
Si5317  
Table 8. Look-up Tables for Fin = Fout Frequency Range and Loop Bandwidth Settings  
Frequency Range  
(MHz)  
BWSEL [1:0] (BW in Hz)  
INC/DEC  
Phase  
Change  
(ns)  
Plan FRQTBL FRQSEL Min Center Max  
LH  
ML  
MM MH HL HM  
No  
[3:0]  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
LMLL 380.00 390.00 400.00  
LMLM 390.00 400.00 405.00  
LMLH 404.17 420.00 440.00  
LMML 420.00 440.00 460.00  
LMMM 440.91 460.00 480.00  
LMMH 460.00 480.00 500.00  
LMHL 485.00 500.00 520.00  
LMHM 500.00 520.00 540.00  
LMHH 520.00 540.00 560.00  
LHLL 540.00 560.00 580.00  
LHLM 560.00 580.00 600.00  
LHLH 580.00 600.00 620.00  
LHML 606.25 620.00 640.00  
LHMM 620.00 640.00 660.00  
LHMH 640.00 660.00 680.00  
LHHL 660.00 680.00 700.00  
LHHM 680.00 700.00 704.00  
LHHH 700.00 710.00 710.00  
7878 1882 465 232 116  
7755 1854 458 228 114  
7903 1884 465 232 116  
7848 1874 463 231 115  
7903 1884 465 232 116  
7507 1793 443 221 110  
7910 1884 465 232 116  
7878 1882 465 232 116  
7704 1842 455 227 113  
7908 1884 465 232 116  
7879 1882 465 232 116  
7571 1811 448 223 111  
7903 1884 465 232 116  
7890 1883 465 232 116  
7878 1882 465 232 116  
7878 1882 465 232 116  
7831 1871 462 231 115  
7908 1880 464 231 115  
0.18  
0.18  
0.19  
0.18  
0.19  
0.19  
0.19  
0.18  
0.18  
0.19  
0.18  
0.18  
0.19  
0.18  
0.18  
0.18  
0.18  
0.20  
Note: For BWSEL[1:0] settings LL, LM, HH are reserved.  
Preliminary Rev. 0.15  
21  
Si5317  
3.3. PLL Self-Calibration  
An internal self-calibration (ICAL) is performed before operation to optimize loop parameters and jitter  
performance. While the self-calibration is being performed, the DSPLL is being internally controlled by the self-  
calibration state machine. The LOL alarm will be active during ICAL. The self-calibration time t  
Table 4, “AC Characteristics”.  
is given in  
LOCKHW  
Any of the following events will trigger a self-calibration:  
Power-on-reset (POR)  
Release of the external reset pin RST (transition of RST from 0 to 1)  
Change in FRQSEL, FRQTBL, BWSEL, or RATE[1:0] pins  
Internal DSPLL registers out-of-range, indicating the need to relock the DSPLL  
In any of the above cases, an ICAL will be initiated if a valid input clock exists with no input alarm. The external  
crystal or reference clock must also be present for the self-calibration to begin. If no valid input clock is present, the  
self-calibration state machine will wait until it appears, at which time the calibration will start.  
After a successful ICAL has been performed with a valid input clock, no subsequent self-calibrations are performed  
unless one of the above conditions are met. If the input clock is lost following self-calibration, the device enters  
VCO freeze mode. When the input clock returns, the device relocks to the input clock without performing a self-  
calibration.  
3.3.1. Input Clock Stability during Internal Self-Calibration  
An exit from reset must occur when the selected CKIN clock is stable in frequency with a frequency value that is  
within the device operating range.  
3.3.2. Self-Calibration caused by Changes in Input Frequency  
If the selected CKIN frequency varies by 500 ppm or more within the frequency range defined by FRQSEL and  
FRQTBL since the last calibration, the device may initiate a self-calibration.  
3.3.3. Device Reset  
Upon powerup, the device internally executes a power-on-reset (POR) which resets the internal device logic. The  
pin RST can also be used to initiate a reset. The device stays in this state until a valid CKINn is present, when it  
then performs a PLL self-calibration (refer to section 3.3. "PLL Self-Calibration”).  
3.3.4. Recommended Reset Guidelines  
Follow the recommended RESET guidelines in Table 9 that describe when reset should be applied to a device.  
Table 9. Si5317 Pins and Reset  
Pin #  
2
Si5317 Pin Name  
FRQTBL  
Must Reset after Changing  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
11  
RATE0  
15  
22  
23  
24  
25  
26  
27  
RATE1  
BWSEL0  
BWSEL1  
FRQSEL0  
FRQSEL1  
FRQSEL2  
FRQSEL3  
22  
Preliminary Rev. 0.15  
Si5317  
3.4. Alarms  
Summary alarms are available to indicate the overall status of the input signals. Alarm outputs stay high until all  
the alarm conditions for that alarm output are cleared.  
3.4.1. Loss-of-Signal  
The device has loss-of-signal circuitry that continuously monitors CKIN for missing pulses.  
An LOS condition on CKIN causes the LOS alarm to become active. Once a LOS alarm is asserted, it remains  
asserted until the input clock is validated over a designated time period. The time to clear LOS after a valid input  
clock appears is listed in Table 4, “AC Characteristics”. If another error condition on the same input clock is  
detected during the validation time, then the alarm remains asserted and the validation time starts over.  
3.4.1.1. LOS Algorithm  
The LOS circuitry divides down each input clock to produce an 8 kHz to 2 MHz signal. The LOS circuitry  
oversamples this divided down input clock using a 40 MHz clock to search for extended periods of time without  
input clock transitions. If the LOS monitor detects twice the normal number of samples without a clock edge, a  
LOS alarm is declared. Table 4, “AC Characteristics” gives the minimum and maximum amount of time for the  
LOS monitor to trigger.  
3.4.1.2. Lock Detect  
The PLL lock detection algorithm indicates the lock status on the LOL output pin. The algorithm works by  
continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. If the time  
between two consecutive phase cycle slips is greater than the retrigger time, the PLL is in lock. The LOL output  
has a guaranteed minimum pulse width as shown in Table 4, “AC Characteristics”. The LOL pin is also held in the  
active state during an internal PLL calibration. The retrigger time is automatically set based on the PLL closed loop  
bandwidth (see Table 10).  
Table 10. Lock Detect Retrigger Time  
PLL Bandwidth Setting (BW)  
60–120 Hz  
Retrigger Time (ms)  
53  
26.5  
13.3  
6.6  
120–240 Hz  
240–480 Hz  
480–960 Hz  
960–1920 Hz  
3.3  
1920–3840 Hz  
3840–7680 Hz  
1.66  
0.833  
3.5. VCO Freeze  
The Si5317 device features a VCO freeze mode whereby the DSPLL is locked to a frequency value.  
If an LOS condition exists on the selected input clock, the device freezes the VCO. In this mode, the device  
provides a stable output frequency until the input clock returns and is validated. When the device enters VCO  
freeze, the internal oscillator is initially held to its last frequency value.  
3.5.1. Recovery from VCO Freeze  
When the input clock signal returns, the device transitions from VCO freeze to the selected input clock.  
Preliminary Rev. 0.15  
23  
Si5317  
3.6. PLL Bypass Mode  
The Si5317 supports a PLL bypass mode in which the selected input clock is fed directly to both enabled output  
buffers, bypassing the DSPLL. Internally, the bypass path is implemented with high-speed differential signaling;  
however, this path is not a low jitter path and will see significantly higher jitter on CKOUT. In PLL bypass mode, the  
input and output clocks will be at the same frequency. PLL bypass mode is useful in a laboratory environment to  
measure system performance with and without the jitter attenuation provided by the DSPLL. The DSBL2_BY pin is  
used to select the PLL Bypass Mode according to Table 11.  
Table 11. DSBL2/BYPASS Pin Settings  
DSBL2/BYPASS  
Function  
CKOUT2 Enabled  
L
M
H
CKOUT2 Disabled  
PLL Bypass Mode w/ CKOUT2 Enabled  
External Crystal or  
Reference Clock  
RATE[1:0]  
XB  
XA  
PLL Bypass  
0
1
2
CKOUT+  
CKOUT–  
2
fOSC  
f3  
CKIN+  
CKIN–  
DSPLL®  
SFOUT[1:0]  
2
CKOUT+  
CKOUT–  
LOS  
LOL  
RST  
Alarms  
Control  
Bandwidth  
Control  
DBL2_BY  
BWSEL[1:0]  
FRQSEL[3:0]  
Frequency  
Control  
Voltage  
Regulator with  
High PSRR  
VDD (1.8, 2.5, or 3.3 V)  
GND  
FRQTBL  
INC  
Skew Control  
DEC  
Figure 6. Bypass Signal  
24  
Preliminary Rev. 0.15  
Si5317  
4. High-Speed I/O  
4.1. Input Clock Buffer  
The Si5317 provides differential inputs for the CKIN clock input. This input is internally biased to a common mode  
voltage (see Table 2, “DC Characteristics”) and can be driven by either a single-ended or differential source. No  
additional external bias is required. Figure 7 through Figure 10 shows typical interface circuits for LVPECL, CML,  
LVDS, or CMOS input clocks. Note that the jitter generation improves for higher levels on CKINn within the limits in  
Table 4, “AC Characteristics”.  
AC coupling the input clocks is recommended because it removes any issue with common mode input voltages.  
However, either ac or dc coupling is acceptable. Figure 7 and Figure 8 shows various examples of different input  
termination arrangements. Unused inputs can be left unconnected.  
3.3 V  
Si5317  
130  
130  
C
CKIN+  
300  
40 k  
LVPECL  
Driver  
40 k  
VICM  
±
CKIN _  
82   
82  
C
Figure 7. Differential LVPECL Termination  
3.3 V  
Si5317  
130  
C
CKIN +  
300  
Driver  
40 k  
40 k  
VICM  
±
CKIN _  
82   
C
Figure 8. Single-ended LVPECL Termination  
Preliminary Rev. 0.15  
25  
Si5317  
Si5317  
C
CKIN +  
300  
40 k  
CML/  
LVDS  
Driver  
100  
40 k  
VICM  
±
CKIN _  
C
Figure 9. CML/LVDS Termination (1.8, 2.5, 3.3 V)  
VDD  
Si5317  
VDD  
39  
CMOS  
Driver  
CKIN +  
40 k  
40 k  
300  
VICM  
±
CKIN _  
0.1 uF  
Figure 10. CMOS Termination (1.8, 2.5, 3.3 V)  
26  
Preliminary Rev. 0.15  
Si5317  
50  
1. Attenuation circuit limits overshoot and undershoot.  
2. Not to be used with non-square wave input clocks.  
Figure 11. CMOS Termination with Attenuation and AC-coupling (1.8, 2.5, 3.3 V)  
Preliminary Rev. 0.15  
27  
Si5317  
4.2. Output Clock Driver  
The Si5317 has a flexible output driver structure that can drive a variety of loads, including LVPECL, LVDS, CML,  
and CMOS formats. The signal format is selected for CKOUT output using the SFOUT [1:0] pins. This modifies the  
output common mode and differential signal swing. See Table 2, “DC Characteristics” for output driver  
specifications. The SFOUT [1:0] pins are three-level input pins with the states designated as L (ground), M (V /2),  
DD  
and H (V ). Table 12 shows the signal formats based on the supply voltage and the type of load being driven.  
DD  
Table 12. Output Signal Format Selection (SFOUT)  
SFOUT[1:0]  
Signal Format  
CML  
HL  
HM  
LVDS  
LH  
CMOS  
LM  
Disabled  
LVPECL  
MH  
ML  
Low-swing LVDS  
Reserved  
All Others  
Si5317  
Z0 = 50  
Z0 = 50   
100   
CKOUTn  
Rcvr  
Figure 12. Typical Differential Output Circuit  
Si5317  
CMOS  
Logic  
CKOUTn  
Optionally Tie CKOUTn  
Outputs Together for Greater Strength  
Figure 13. Typical CMOS Output Circuit (Tie CKOUTn+ and CKOUTn– Together)  
For the CMOS setting (SFOUT = LH), both output pins drive single-ended in-phase signals and should be  
externally shorted together to obtain the drive strength specified in Table 2, “DC Characteristics”.  
28  
Preliminary Rev. 0.15  
Si5317  
+
SFOUT[1:0] = ML (Output disable)  
100  
100   
CKOUT  
Output from  
DSPLL  
Figure 14. Disable CKOUT Structure  
The SFOUT [1:0] pins can also be used to disable both outputs. Disabling the output puts the CKOUT+ and  
CKOUT– pins in a high-impedance state relative to V (common mode tri-state) while the two outputs remain  
DD  
connected to each other through a 200 on-chip resistance (differential impedance of 200 ). The maximum  
amount of internal circuitry is powered down, minimizing power consumption and noise generation (see Figure 14).  
Recovery from the disable mode requires additional time as specified in Table 4, “AC Characteristics”.  
Preliminary Rev. 0.15  
29  
Si5317  
5. Crystal/Reference Clock Input  
The device can use an external crystal or external clock as a reference. If an external clock is used, it must be ac  
coupled. With appropriate buffers, the same external reference clock can be applied to CKIN. Although the  
reference clock input can be driven single ended (See Figure 15), the best performance is with a crystal or  
differential clock source.  
3.3 V  
150  
0.1F  
3.3 V  
Si5317  
130   
10 k  
XA  
XB  
0.6 V  
150   
0.1F  
CMOS buffer,  
8 mA output current  
For 2.5 V operation, change 130 to 82 .  
Figure 15. CMOS External Reference Circuit  
0 dBm into 50  
1.2 V  
Si5317  
0.01 F  
XA  
10 pF  
0.01 F  
10 k  
0.6 V  
XB  
External Clock Source  
50   
0.1 µF  
Figure 16. Sinewave External Reference Clock Input Example  
Si5317  
1.2 V  
0.01 F  
0.01 F  
XA  
XB  
100   
LVPECL, CML, etc.  
10 k  
10 k  
0.6 V  
Figure 17. Differential External Reference Clock Input Example  
30  
Preliminary Rev. 0.15  
Si5317  
5.1. Crystal/Reference Clock Selection  
An external low-jitter clock or a low-cost crystal is used as part of a fixed-frequency oscillator within the DSPLL.  
This external clock is required for the device to perform jitter attenuation. Silicon Laboratories recommends using a  
high-quality crystal.  
In VCO freeze, the DSPLL remains locked to this external clock. Any changes in the frequency of this clock when  
the DSPLL is in VCO freeze will be tracked by the output of the device. Note that crystals can have temperature  
sensitivities. Table 13 shows the recommended crystals.  
Table 13. Approved Crystals  
Manufacturer  
Part Number  
Web Address  
Stability  
Initial  
Accuracy  
TXC  
7MA1400014  
http://www.txc.com.tw  
http://www.conwin.com  
http://www.conwin.com  
http://www.ndk.com/en/  
100 ppm  
100 ppm  
20 ppm  
100 ppm  
100 ppm  
20 ppm  
Connor Winfield  
Connor Winfield  
NDK  
CS-018-114.285M  
CS-023-114.285M  
NX3225SA  
100 ppm  
100 ppm  
EXS00A-CS00871  
NDK  
NX3225SA  
EXS00A-CS00997  
http://www.ndk.com/en/  
http://www.siward.com  
20 ppm  
20 ppm  
20 ppm  
20 ppm  
Siward  
XTL573200NLG-  
114.285 MHz-OR  
Saronix/eCera  
Mtron  
FLB420001  
M1253S071  
http://www.pericom.com/saronix  
http://www.mtronpti.com  
100 ppm  
100 ppm  
100 ppm  
100 ppm  
Note: While these crystals meet the preceding criteria according to their data sheets, Silicon Laboratories, Inc. does not  
guarantee operation with the Si5317, nor does Silicon Laboratories endorse one supplier of crystals over another.  
Contact Silicon Labs for details and a current list of crystal vendors and recommended part numbers.  
Preliminary Rev. 0.15  
31  
Si5317  
Table 14. XA/XB Reference Sources and Frequencies  
RATE[1:0]  
HH  
Type  
Reserved  
Recommended  
Lower limit  
Upper limit  
HM  
External clock  
Reserved  
171.4275 MHz  
163 MHz  
180 MHz  
HL  
MH  
External clock  
3rd overtone crystal  
External clock  
Reserved  
114.285 MHz  
114.285 MHz  
57.1425 MHz  
109 MHz  
125.5 MHz  
MM  
ML  
55 MHz  
61 MHz  
LH  
LM  
External clock  
Reserved  
38.88 MHz  
37 MHz  
41 MHz  
LL  
Because the crystal is used as a jitter reference, rapid changes of the crystal temperature can temporarily disturb  
the output phase and frequency. For example, it is recommended that the crystal not be placed close to a fan that  
is being turned off and on. If a situation such as this is unavoidable, the crystal should be thermally isolated with an  
insulating cover.  
5.1.1. XA/XB Clock Drift  
During VCO freeze, long-term and temperature-related drift of the XA/XB clock input results in a one-to-one drift of  
the output frequency. The stability of the any frequency output is identical to the drift of the XA/XB frequency. This  
means that for the most demanding applications where the drift of a crystal is not acceptable, an external  
temperature-compensated or ovenized oscillator will be required. Drift is not an issue unless the part is in VCO  
freeze. Also, the initial accuracy of the XA/XB oscillator (or crystal) is not relevant.  
5.1.2. XA/XB Jitter  
Jitter on the XA/XB input has a roughly one-to-one transfer function to the output jitter over the bandwidth ranging  
from 100 Hz up to 30 kHz. If a crystal is used on the XA/XB pins, this will have low jitter if a suitable crystal is in  
use. If the XA/XB pins are connected to an external oscillator, the jitter of the external oscillator may contribute  
significantly to the output jitter.  
32  
Preliminary Rev. 0.15  
Si5317  
5.1.3. Jitter Attenuation Performance  
The internal VCO uses the XA/XB clock on the XA/XB pins as its reference for jitter attenuation. The XA/XB pins  
support either a crystal input or an input buffer single-ended or differential clock input, such that an external  
oscillator can become the reference source. In either case, the device accepts a wide margin in absolute frequency  
of the XA/XB input (refer to section 3.5.1. "Recovery from VCO Freeze" on page 23). In VCO freeze, the Si5317's  
output clock stability matches the clock supplied on the XA/XB pins. The external crystal or clock must be selected  
based on the stability requirements of the application if VCO freeze is a key requirement. However, care must be  
exercised in certain areas for optimum performance. For examples of connections to the XA/XB pins, refer to  
section 5. Figure 23, “Si5317 Typical Application Circuit,” on page 37.  
Jitter Transfer XA/XB Reference to CKOUT  
38.88 MHz Clock on XA/XB, RATE[1:0]=LM  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
1
10  
100  
1000  
10000  
100000  
1000000  
Jitter Frequency (Hz)  
Figure 18. Typical XA-XB Jitter Transfer Function  
Preliminary Rev. 0.15  
33  
Si5317  
5.1.4. Reference Clock Frequency  
Based on the application and desired output frequency, care should be exercised in selecting the frequency on the  
reference used for XA/XB. When the CKOUT operating frequency is close to having a simple integer relationship,  
significant spurs can occur. For example, compare the spurs when the CKOUT operating frequency is 622.08 MHz  
with a reference of 114.285 MHz (see Figure 22) versus a reference frequency of 38.88 MHz, which is 16 times the  
XA/XB reference (see Figure 19).  
Figure 19. Effect of Reference Frequency on Spurs  
34  
Preliminary Rev. 0.15  
Si5317  
6. Power Supply Filtering  
This device incorporates an on-chip voltage regulator to power the device from supply voltages of 1.8, 2.5, or 3.3 V.  
Internal core circuitry is driven from the output of this regulator while I/O circuitry uses the external supply voltage  
directly. Table 4, “AC Characteristics” gives the sensitivity of the on-chip oscillator to changes in the supply voltage.  
The center ground pad under the device must be electrically and thermally connected to the ground plane. See  
Figure 26, “Ground Pad Recommended Layout,” on page 45.  
0.1 uF  
System  
C1 – C3  
Power  
Supply  
(1.8, 2.5, or  
3.3 V)  
1.0 uF  
Ferrite  
Bead  
C4  
GND &  
GND Pad  
VDD  
Si5317  
Figure 20. Typical Power Supply Bypass Network  
Power Supply Noise to Output Transfer Function  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
1
10  
100  
1000  
Frequency of Power Supply Noise (kHz)  
Figure 21. Fin = Fout = 155 MHz with 120 Hz Loop Bandwidth, 100 mV, pk-pk Supply Noise  
Preliminary Rev. 0.15  
35  
Si5317  
7. Typical Phase Noise Plots  
The following is a typical phase noise plot. The clock input source was a Rohde and Schwarz model SML03 RF  
Generator. The phase noise analyzer was an Agilent model E5052B. The Si5317 operates at 3.3 V with an ac  
coupled differential PECL output and an ac coupled differential sine wave input from the RF generator at 0 dBm.  
Note that, as with any PLL, the output jitter that is below the loop BW is caused by the jitter at the input clock. The  
loop BW was 120 Hz.  
7.1. Example: SONET OC-192  
Figure 22. Typical Phase Noise Plot  
Jitter Band  
Jitter, RMS  
SONET_OC48, 12 kHz to 20 MHz  
250 fs  
SONET_OC192_A, 20 kHz to 80 MHz  
SONET_OC192_B, 4 to 80 MHz  
SONET_OC192_C, 50 kHz to 80 MHz  
Brick Wall, 800 Hz to 80 MHz  
274 fs  
166 fs  
267 fs  
274 fs  
36  
Preliminary Rev. 0.15  
Si5317  
8. Typical Application Circuit  
C4  
C3  
1 µF  
System  
Power  
Supply  
0.1 µF  
Ferrite  
Bead  
C2  
C1  
0.1 µF  
0.1 µF  
0.1 µF  
CKOUT1+  
CKOUT1–  
100  
Clock Outputs  
VDD = 3.3 V  
0.1 µF  
130   
82   
130   
82   
VDD  
CKIN+  
CKIN–  
15 k  
15 k  
SFOUT[1:0]2  
Signal Format Select  
Input Clock1  
0.1 µF  
CKOUT2+  
CKOUT2–  
100   
LOS  
LOL  
CKIN Loss of Signal Indicator  
PLL Loss of Lock Indicator  
XA  
XB  
Option 1:  
Crystal  
0.1 µF  
Si5317  
Option 2:  
Ext. Refclk+  
Ext. Refclk–  
XA  
XB  
0.1 µF  
VDD  
15 k  
RATE[1:0]2  
Crystal/Ref Clk  
15 k  
VDD  
FRQTBL3  
Frequency Table  
VDD  
15 k  
FRQSEL[3:0]2  
Frequency Select  
VDD  
15 k  
15 k  
BWSEL[1:0]2  
INC  
Bandwidth Select  
Skew Increment  
Skew Decrement  
15 k  
DEC  
Clock Output 2 Disable/  
Bypass Mode Control  
DBL2_BY2  
RST  
Reset  
Notes:  
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.  
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).  
3. For schematic and layout examples, refer to Si5317-EVB User Manual.  
Figure 23. Si5317 Typical Application Circuit  
Preliminary Rev. 0.15  
37  
Si5317  
9. Pin Descriptions: Si5317  
36 35 34 33 32 31 30 29 28  
RST  
FRQTBL  
LOS  
1
2
3
4
5
6
7
8
9
27 FRQSEL3  
26  
FRQSEL2  
25 FRQSEL1  
NC  
24  
23  
FRQSEL0  
BWSEL1  
GND  
Pad  
VDD  
XA  
22 BWSEL0  
XB  
21  
20  
19  
NC  
GND  
NC  
DEC  
INC  
10 11 12 13 14 15 16 17 18  
Note: Pin assignments are preliminary and subject to change.  
Table 15. Si5317 Pin Descriptions  
Pin #  
Pin Name  
I/O Signal Level  
Description  
1
I
LVCMOS  
External Reset.  
RST  
Active low input that performs external hardware reset of  
device. Resets all internal logic to a known state. Clock out-  
puts are tristated during reset. After rising edge of RST sig-  
nal, the Si5317 will perform an internal self-calibration when  
a valid input signal is present.  
This pin has a weak pull-up.  
2
3
I
3-level  
LVCMOS  
Supply  
Frequency Table.  
FRQTBL  
LOS  
Selects frequency table.  
This pin has a weak pull-up and weak pull-down and defaults  
to M. Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
CKIN Loss of Signal.  
O
Active high loss-of-signal indicator for CKIN. Once triggered,  
the alarm will remain active until CKIN is validated.  
0 = CKIN present  
1 = LOS on CKIN  
Supply.  
5, 10, 32  
V
V
DD  
DD  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass  
capacitors should be associated with the following V pins:  
DD  
5
10  
32  
0.1 µF  
0.1 µF  
0.1 µF  
A 1.0 µF should also be placed as close to device as is  
practical.  
38  
Preliminary Rev. 0.15  
Si5317  
Table 15. Si5317 Pin Descriptions (Continued)  
Pin #  
7
6
Pin Name  
XB  
I/O Signal Level  
Description  
External Crystal or Reference Clock.  
I
Analog  
XA  
External crystal should be connected to these pins to use  
internal oscillator-based reference. Crystal or reference clock  
selection is set by the XTAL/CLOCK pin.  
Ground.  
8,31  
GND  
GND  
I
Supply  
3-Level  
Must be connected to system ground. Minimize the ground  
path impedance for optimal performance of this device.  
External Crystal or Reference Clock Rate.  
Note: L setting corresponds to ground. M setting corresponds to  
VDD/2. H setting corresponds to VDD. Some designs may  
require an external resistor voltage divider when driven by  
an active device that will tri-state. See Table 14 for settings.  
11  
15  
RATE0  
RATE1  
14  
DBL2_BY  
I
3-Level  
Output 2 Disable/Bypass Mode Control.  
Controls enable of CKOUT2 divider/output buffer path and  
PLL bypass mode.  
L = CKOUT2 enabled  
M = CKOUT2 disabled  
H = Bypass mode with CKOUT2 enabled  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
Clock Input.  
16  
17  
CKIN+  
CKIN–  
I
Multi  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency selected from Table 9  
on page 22.  
18  
19  
LOL  
O
LVCMOS  
PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock indica-  
tor.  
0 = PLL locked  
1 = PLL unlocked  
Skew Decrement.  
DEC  
I
I
LVCMOS  
LVCMOS  
This edge-triggered pin decreases the input to output device  
skew. There is no limit on the range of skew adjustment by  
this method. Detailed operations and timing characteristics  
for this pin are found in Section 3.2, Table 8.  
This pin has a weak pull-down.  
20  
INC  
Skew Increment.  
This edge-triggered pin increases the input to output device  
skew. There is no limit on the range of skew adjustment by  
this method. Detailed operations and timing characteristics  
for this pin are found in Section 3.2, Table 8.  
This pin has a weak pull-down.  
Preliminary Rev. 0.15  
39  
Si5317  
Table 15. Si5317 Pin Descriptions (Continued)  
Pin #  
23  
22  
Pin Name  
BWSEL1  
BWSEL0  
I/O Signal Level  
Description  
Loop Bandwidth Select.  
I
3-Level  
Three level inputs that select the DSPLL closed loop band-  
width. See Table 9 on page 22 for available settings.  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
Frequency Select.  
27  
26  
25  
24  
FRQSEL3  
FRQSEL2  
FRQSEL1  
FRQSEL0  
Three level inputs that select the input clock and clock range.  
See Table 9 on page 22.  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
29  
28  
CKOUT1–  
CKOUT1+  
O
I
Multi  
Clock Output 1.  
Output signal format is selected by SFOUT pins. Differential  
formats supported for LVPECL, LVDS, and CML compatible  
modes. For single-ended CMOS format, both output pins  
drive identical, in-phase clock outputs.  
33  
30  
SFOUT0  
SFOUT1  
3-Level  
Signal Format Select.  
Three-level inputs that select the output signal format (com-  
mon mode voltage and differential swing) for both CKOUT1  
and CKOUT2.  
SFOUT[1:0]  
Signal Format  
Reserved  
HH  
HM  
HL  
LVDS  
CML  
MH  
MM  
ML  
LH  
LVPECL  
Reserved  
LVDS—Low Swing  
CMOS  
LM  
LL  
Disable  
Reserved  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.*  
34  
35  
CKOUT2–  
CKOUT2+  
O
Multi  
Clock Output 2.  
Output signal format is selected by SFOUT pins. Differential  
formats supported for LVPECL, LVDS, and CML compatible  
modes. For single-ended CMOS format, both output pins  
drive identical, in-phase clock outputs.  
40  
Preliminary Rev. 0.15  
Si5317  
Table 15. Si5317 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
4,9,12,13,  
21,36  
NC  
No Connect.  
Leave floating. Make no external connections to this pin for  
normal operation.  
GND PAD  
GND  
GND  
Supply  
Ground Pad.  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
*Note: LVPECL requires VDD > 2.25 V  
Preliminary Rev. 0.15  
41  
Si5317  
Table 16. Si5317 Pull-Up/-Down  
Pin #  
1
Si5317  
RST  
Pull?  
U
2
FRQTBL  
RATE0  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
U, D  
11  
15  
22  
23  
24  
25  
26  
27  
30  
33  
RATE1  
BWSEL0  
BWSEL1  
FRQSEL0  
FRQSEL1  
FRQSEL2  
FRQSEL3  
SFOUT1  
SFOUT0  
42  
Preliminary Rev. 0.15  
Si5317  
10. Ordering Guide  
Ordering Part Number Output Clock Freq Range  
Device Pkg  
ROHS6, Pb-Free Temp Range  
Si5317A-C-GM  
Si5317B-C-GM  
Si5317C-C-GM  
Si5317D-C-GM  
Si5317-EVB  
1–710 MHz  
1–350 MHz  
1–200 MHz  
1–100 MHz  
1–710 MHz  
36-Lead 6 x 6 mm QFN  
36-Lead 6 x 6 mm QFN  
36-Lead 6 x 6 mm QFN  
36-Lead 6 x 6 mm QFN  
Evaluation Board  
Yes  
Yes  
Yes  
Yes  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
Note: Add an “R” at the end of the device to denote tape and reel options (i.e., Si5317A-C-GMR).  
Table 17. DSPLL Precision Clock Product Selection Guide  
Part  
Number  
Control  
Clock  
Inputs/  
Outputs  
Input  
Frequency  
(MHz)  
Output  
Frequency  
(MHz)  
Jitter (12 kHz  
to 20 MHz)  
PLL  
Hitless  
Digital Freerun  
Hold  
VCO  
Freeze  
Signal  
Format  
Package  
Bandwidth Switching  
Si5315  
Si5316  
Si5317  
Si5319  
Si5322  
Si5323  
Pin  
Pin  
Pin  
2/2  
2/1  
1/2  
1/1  
2/2  
2/2  
0.008 to 644 0.008 to 644 450 fs ms typ  
60 Hz to  
8.4 kHz  
36-QFN  
36-QFN  
36-QFN  
36-QFN  
36-QFN  
36-QFN  
19 to 710  
1 to 710  
19 to 710  
1 to 710  
300 fs ms typ  
300 fs ms typ  
60 Hz to  
8.4 kHz  
60 Hz to  
8.4 kHz  
2
I C / SPI  
0.002 to 710 0.002 to 1417 300 fs ms typ  
60 Hz to  
8.4 kHz  
Pin  
Pin  
19 to 707  
19 to 1050  
600 fs ms typ  
30 kHz to  
1.3 MHz  
0.008 to 707 0.008 to 1050 300 fs ms typ  
60 Hz to  
8.4 kHz  
CMOS,  
LVDS,  
LVPECL,  
CML  
2
Si5324  
Si5325  
I C / SPI  
2/2  
2/2  
0.002 to 710 0.002 to 1417 290 fs ms typ 4 to 525 Hz  
36-QFN  
36-QFN  
2
I C/ SPI  
10 to 710  
10 to 1417  
600 fs ms typ  
30 kHz to  
1.3 MHz  
2
Si5326  
Si5365  
Si5366  
Si5367  
Si5368  
I C / SPI  
2/2  
4/5  
4/5  
4/5  
4/5  
0.002 to 710 0.002 to 1417 300 fs ms typ  
60 Hz to  
8.4 kHz  
36-QFN  
Pin  
Pin  
19 to 710  
19 to 1050  
600 fs ms typ  
30 kHz to  
1.3 MHz  
100-TQFP  
100-TQFP  
100-TQFP  
100-TQFP  
0.008 to 707 0.008 to1050 300 fs ms typ  
60 Hz to  
8.4 kHz  
2
I C / SPI  
10 to 710  
10 to 1417  
600 fs ms typ  
30 kHz to  
1.3 MHz  
2
I C / SPI  
0.002 to 710 0.002 to 1417 300 fs ms typ  
60 Hz to  
8.4 kHz  
Preliminary Rev. 0.15  
43  
Si5317  
11. Package Outline: 36-Pin QFN  
Figure 24 illustrates the package details for the Si5317. Table 18 lists the values for the dimensions shown in the  
illustration.  
Figure 24. 36-Pin Quad Flat No-Lead (QFN)  
Table 18. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Min  
0.50  
Nom  
0.60  
Max  
0.70  
12º  
A
A1  
b
L
0.02  
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
D
6.00 BSC  
4.10  
D2  
e
3.95  
4.25  
0.50 BSC  
6.00 BSC  
4.10  
E
E2  
3.95  
4.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body  
Components.  
44  
Preliminary Rev. 0.15  
Si5317  
12. Recommended PCB Layout  
Figure 25. PCB Land Pattern Diagram  
Figure 26. Ground Pad Recommended Layout  
Preliminary Rev. 0.15  
45  
Si5317  
Table 19. PCB Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
E
0.50 BSC.  
5.42 REF.  
5.42 REF.  
D
E2  
D2  
GE  
GD  
X
4.00  
4.00  
4.53  
4.53  
4.20  
4.20  
0.28  
Y
0.89 REF.  
ZE  
ZD  
6.31  
6.31  
Notes (General):  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes (Solder Mask Design):  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes (Stencil Design):  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the  
center ground pad.  
Notes (Card Assembly):  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
46  
Preliminary Rev. 0.15  
Si5317  
13. Si5317 Device Top Mark  
q: Speed Code: A, B, C, D  
C: Product Revision  
S i 5 3 1 7 q  
C - G M  
G: Temperature Range –40 to 85 °C  
M: Package: QFN  
Y Y WW R F  
X X X X  
YY: Year  
WW: Week  
R: Die Rev  
F: Internal SiLabs Code  
X: Lot Code  
Preliminary Rev. 0.15  
47  
Si5317  
NOTES:  
48  
Preliminary Rev. 0.15  
Si5317  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.15  
Updated corresponding sections and pinouts to add  
CKOUT2, INC/DEC, and DBL2_BY functionality.  
Updated functional block diagram on page 1.  
Updated Table 2 IDD (DD is subscript).  
Added Differential Rise/Fall Time spec to Table 2.  
Updated pin assignment symbol and pin description  
on page 1 and in section 9 to add CKOUT2,  
INC/DEC, and DBL2_BY.  
Added section 3.6. "PLL Bypass Mode”.  
Updated section 8 diagram to add CKOUT2 and  
DBL2_BY.  
Added additional CMOS Termination with  
attenuation figure.  
Corrected pin name assignment (pin28) diagram on  
page 1 and section 9, page 35 to match pin  
description name.  
Updated all the frequency plans in Table 8 to provide  
coverage over the entire frequency range.  
Material  
Material  
Preliminary Rev. 0.15  
49  
Si5317  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
50  
Preliminary Rev. 0.15  

相关型号:

Si5324A-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

Si5324B-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

SI5324C-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

Si5324D-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

SI5324D-C-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GM

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GMR

Support Circuit, 1-Func, QFN-36
SILICON

SI5325

UP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
SILICON

Si5325/26-EVB

ANY FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI53254A-D01AMR

Processor Specific Clock Generator,
SILICON

SI53254A-D02AMR

Processor Specific Clock Generator,
SILICON

SI53258A-D01AM

Processor Specific Clock Generator,
SILICON