SI53315-B-GMR [SILICON]

Clock Driver;
SI53315-B-GMR
型号: SI53315-B-GMR
厂家: SILICON    SILICON
描述:

Clock Driver

文件: 总30页 (文件大小:1658K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53315  
1:10 LOW JITTER UNIVERSAL BUFFER/LEVEL  
TRANSLATOR WITH 2:1 INPUT MUX AND INDIVIDUAL OE (<1.25 GHZ)  
Features  
10 differential or 20 LVCMOS outputsLow propagation delay variation:  
<400 ps  
Independent VDD and VDDO  
1.8/2.5/3.3 V  
Ultra-low additive jitter: 100 fs rms  
Wide frequency range:  
1 MHz to 1.25 GHz  
:
Any-format input with pin selectable  
output formats: LVPECL, Low Power  
LVPECL, LVDS, CML, HCSL,  
LVCMOS  
2:1 mux with hot-swappable inputs  
Asynchronous output enable  
Individual output enable  
Excellent power supply noise  
rejection (PSRR)  
Selectable LVCMOS drive strength to  
tailor jitter and EMI performance  
Small size: 44-QFN (7 mm x 7 mm)  
RoHS compliant, Pb-free  
Industrial temperature range:  
–40 to +85 °C  
Ordering Information:  
Low output-output skew: <50 ps  
See page 25.  
Applications  
Pin Assignments  
Si53315  
High-speed clock distribution  
Ethernet switch/router  
Optical Transport Network (OTN)  
SONET/SDH  
Storage  
Telecom  
Industrial  
Servers  
PCI Express Gen 1/2/3  
Backplane clock distribution  
Description  
1
2
3
33  
32  
31  
OE2  
OE7  
SFOUT[0]  
SFOUT[1]  
OE1  
Q2  
OE8  
The Si53315 is an ultra low jitter ten output differential buffer with pin-selectable  
output clock signal format and individual OE. The Si53315 features a 2:1 mux,  
making it ideal for redundant clocking applications. The Si53315 utilizes Silicon  
Laboratories' advanced CMOS technology to fanout clocks from 1 MHz to  
1.25 GHz with guaranteed low additive jitter, low skew, and low propagation delay  
variability. The Si53315 features minimal cross-talk and provides superior supply  
noise rejection, simplifying low jitter clock distribution in noisy environments.  
Independent core and output bank supply pins provide integrated level translation  
without the need for external circuitry.  
4
5
30  
29  
28  
27  
26  
25  
24  
23  
Q7  
Q7  
NC  
Q8  
Q2  
GND  
PAD  
6
GND  
Q1  
7
8
Q1  
Q8  
Q9  
9
Q0  
Q0  
10  
11  
Q9  
OE0  
OE9  
Patents pending  
Functional Block Diagram  
Power  
Vref  
Supply  
VREF  
Generator  
Filtering  
VDDOA  
OE[0:4]  
Q0, Q1, Q2, Q3, Q4  
Q0, Q1, Q2, Q3, Q4  
CLK0  
CLK0  
SFOUT[1:0]  
VDDOB  
CLK1  
CLK1  
OE[5:9]  
Q5, Q6, Q7, Q8, Q9  
Switching  
Logic  
Q5, Q6, Q7, Q8, Q9  
CLK_SEL  
Preliminary Rev. 0.4 10/12  
Copyright © 2012 by Silicon Laboratories  
Si53315  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si53315  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.1. Universal, Any-Format Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.2. Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.3. Universal, Any-Format Output Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.4. Input Mux and Output Enable Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.5. Power Supply (V and V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
DD  
DDOX  
2.6. Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
2.7. AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.8. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.9. Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.10. Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3. Pin Description: 44-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.1. 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
6. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6.1. 7x7 mm 44-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
7.1. Si53315 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
7.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
2
Preliminary Rev. 0.4  
Si53315  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Ambient Operating  
Temperature  
T
–40  
85  
°C  
A
Supply Voltage Range*  
V
LVDS, CML, HCSL, LVCMOS  
1.71  
2.38  
2.97  
1.71  
2.38  
2.97  
1.8  
2.5  
3.3  
1.89  
2.63  
3.63  
1.89  
2.63  
3.63  
V
V
V
V
V
V
DD  
LVPECL, low power LVPECL,  
LVDS, CML, HCSL, LVCMOS  
Output Buffer Supply  
Voltage*  
V
LVDS, CML, HCSL, LVCMOS  
DDO  
LVPECL, low power LVPECL,  
LVDS, CML, HCSL, LVCMOS  
*Note: Core supply V  
and output buffer supplies VDDO are independent.  
DD  
Table 2. Input Clock Specifications  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%, TA = –40 to 85 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Differential Input Common  
Mode Voltage  
V
V
= 2.5 V5%, 3.3 V10%  
DD  
0.05  
V
CM  
Input Swing  
(single-ended, peak-to-  
peak)  
V
V
0.1  
1.1  
V
IN  
IH  
Input Voltage High  
Input Voltage Low  
Input Capacitance  
V
x
5
V
V
DD  
0.7  
V
C
V
x
DD  
IL  
0.3  
pF  
IN  
Preliminary Rev. 0.4  
3
Si53315  
Table 3. DC Common Characteristics  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Supply Current  
I
TBD  
35  
30  
20  
30  
35  
5
100  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD  
Output Buffer  
Supply Current  
(Per Clock Output)  
@100 MHz  
I
LVPECL (3.3 V)  
Low Power LVPECL (3.3 V)  
LVDS (3.3 V)  
DDOX  
CML (3.3 V)  
HCSL, 100 MHz, 2 pF load (3.3 V)  
CMOS (1.8 V, SFOUT = Open/0),  
per output, C = 5 pF, 200 MHz  
L
CMOS (2.5 V, SFOUT = Open/0),  
8
mA  
mA  
µA  
per output, C = 5 pF, 200 MHz  
L
CMOS (3.3 V, SFOUT = 0/1),  
15  
per output, C = 5 pF, 200 MHz  
L
Leakage Current  
I
Input leakage at all inputs except  
TBD  
TBD  
L
CLKIN, V = 0 V  
IN  
Input leakage at CLKIN  
µA  
V
= 0 V  
IN  
Voltage Reference  
Input High Voltage  
V
V
pin  
REF  
VDD/2  
V
V
REF  
V
SFOUTX, DIVX  
3-level input pins  
0.85 x  
VDD  
IH  
Input Mid Voltage  
Input Low Voltage  
V
SFOUTX, DIVX  
3-level input pins  
0.45 x  
VDD  
0.5 x  
VDD  
0.55 x  
VDD  
V
V
IM  
V
SFOUTX, DIVXpin  
3-level input pins  
25  
25  
0.15 x  
VDD  
IL  
Internal Pull-down  
Resistor  
R
CLK_SEL, DIVA, DIVB, SFOUTA[1],  
SFOUTB[1]  
k  
kΩ  
DOWN  
Internal Pull-up  
Resistor  
R
SFOUTA[1], SFOUTB[1], DIVA,  
DIVB, OEX, OEX  
UP  
4
Preliminary Rev. 0.4  
Si53315  
Table 4. DC Characteristics—LVPECL and Low Power LVPECL  
(VDD = 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Output Voltage High  
V
R = 50 to V  
– 2 V  
V
V
V
V
V
V
V
OH  
L
DDOX  
DDOX  
DDOX  
1.145  
0.895  
Output Voltage Low  
V
R = 50 to V  
– 2 V  
V
V
V
OL  
L
DDOX  
DDOX  
DDOX  
1.945  
1.695  
Output DC Common  
Mode Voltage  
V
DDOX  
1.425  
COM  
DDOX  
1.895  
Single-Ended  
Output Swing  
V
Terminate unused outputs to  
R = 50 to V – 2 V  
0.25  
0.60  
0.85  
SE  
L
DDOX  
Table 5. DC Characteristics—CML  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Single-Ended Output  
Swing  
V
Terminated as shown in Figure 6  
(CML termination).  
300  
400  
500  
mV  
SE  
Table 6. DC Characteristics—LVDS  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Single-Ended Output  
Swing  
V
R = 100 across Q and Q  
247  
454  
mV  
SE  
L
N
N
Output Common  
Mode Voltage  
V
V
= 2.38 to 2.63 V, 2.97 to  
1.10  
0.85  
1.25  
0.97  
1.35  
1.10  
V
V
COM1  
COM2  
DDOX  
3.63 V, R = 100 across Q  
L
N
and Q  
(V  
= 2.5 V or  
N
DDO  
3.3 V)  
Output Common  
Mode Voltage  
V
V
= 1.71 to 1.89 V,  
DDOX  
R = 100 across Q  
L
N
(V  
= 1.8 V)  
and Q  
DDO  
N
Preliminary Rev. 0.4  
5
Si53315  
Table 7. DC Characteristics—LVCMOS  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
*
Output Voltage High  
V
0.8 x  
V
OH  
V
DDOX  
*
Output Voltage Low  
V
0.2 x  
V
OL  
V
DDOX  
*Note: IOH and IOL per the Output Signal Format Table for specific V  
and SFOUTX settings.  
DDOX  
Table 8. DC Characteristics—HCSL  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
R = 50 to GND  
Min  
Typ  
Max  
Unit  
Parameter  
Output Voltage High  
Output Voltage Low  
V
550  
–150  
700  
0
850  
150  
mV  
mV  
mV  
OH  
L
V
V
R = 50 to GND  
L
OL  
SE  
Single-Ended  
Output Swing  
R = 50 to GND  
700  
L
Crossing Voltage  
V
R = 50 to GND  
250  
350  
550  
mV  
C
L
6
Preliminary Rev. 0.4  
Si53315  
Table 9. AC Characteristics  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Frequency  
F
LVPECL, low power LVPECL,  
LVDS, CML, HCSL  
1
1250  
MHz  
LVCMOS  
1
200  
MHz  
%
Duty Cycle  
D
200 MHz, 50 toV /220/80%  
TBD  
TBD  
TBD  
C
DD  
T /T <10% of period (LVCMOS)  
Note: 50% input duty  
cycle.  
R
F
20/80% T /T <10% of period  
48  
50  
52  
%
R
F
(Differential)  
Minimum Input Clock  
Slew Rate  
SR  
Required to meet prop delay and  
additive jitter specifications  
(20–80%)  
0.75  
V/ns  
1
Output Rise/Fall Time  
T /T  
LVPECL, LVDS, CML, HCSL,  
20/80%  
350  
750  
ps  
ps  
R
F
200 MHz, 50 20/80%,  
TBD  
TBD  
2 pF load (LVCMOS)  
Minimum Input Pulse  
Width  
T
500  
ps  
fs  
W
Additive Jitter  
(Differential Clock  
Input)  
J
V
= 2.5/3.3 V, LVPECL/LVDS,  
F = 725 MHz, 0.75 V/ns  
input slew rate  
60  
80  
DD  
Propagation Delay  
T
T
Low to high, high to low  
Single-ended  
TBD  
TBD  
TBD  
TBD  
ns  
ns  
PLH,  
PHL  
Low to high, high to low  
Differential  
2
Output Enable Time  
T
F = 1 MHz  
F = 100 MHz  
F = 725 MHz  
F = 1 MHz  
2
s  
ns  
ns  
s  
ns  
ns  
EN  
60  
50  
2
2
Output Disable Time  
T
DIS  
F = 100 MHz  
F = 725 MHz  
25  
15  
Notes:  
1. For clock division applications, a minimum input clock slew rate of 30 mV/ns is required.  
2. See Figure 4.  
3. Defined as skew between outputs on different devices operating at the same supply voltages, temperatures, and equal  
load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (1.8 V = 50 mVPP  
,
2.5/3.3 V = 100 mVPP) and noise spur amplitude measured. See AN491 for further details.  
Preliminary Rev. 0.4  
7
Si53315  
Table 9. AC Characteristics (Continued)  
(VDD = 1.8 V 5%, 2.5 V 5%, or 3.3 V 10%,TA = –40 to 85 C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Output to Output  
Skew  
T
Identical Configuration,  
100  
ps  
SK  
Single-ended (Q to Q )  
N
M
Identical Configuration,  
Differential (Q to Q )  
50  
ps  
N
M
3
Part to Part Skew  
T
Identical configuration  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
50  
ps  
PS  
Power Supply Noise  
PSRR  
–90  
–90  
–80  
–70  
dBc  
dBc  
dBc  
dBc  
4
Rejection  
Notes:  
1. For clock division applications, a minimum input clock slew rate of 30 mV/ns is required.  
2. See Figure 4.  
3. Defined as skew between outputs on different devices operating at the same supply voltages, temperatures, and equal  
load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
4. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDDOX (1.8 V = 50 mVPP  
,
2.5/3.3 V = 100 mVPP) and noise spur amplitude measured. See AN491 for further details.  
8
Preliminary Rev. 0.4  
Si53315  
Table 10. Thermal Conditions  
Symbol  
Test Condition  
Value  
Unit  
Parameter  
Thermal Resistance,  
Junction to Ambient  
JA  
JC  
Still air  
46.2  
°C/W  
Thermal Resistance,  
Junction to Case  
Still air  
27.1  
°C/W  
Table 11. Absolute Maximum Ratings  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
Storage Temperature  
Supply Voltage  
T
–55  
–0.5  
–0.5  
150  
3.8  
C  
V
S
V
DD  
Input Voltage  
V
V
+
V
IN  
DD  
0.3  
Output Voltage  
V
V
+
V
OUT  
DD  
0.3  
ESD Sensitivity  
ESD Sensitivity  
HBM  
CDM  
HBM, 100 pF, 1.5 kΩ  
2000  
500  
V
V
Peak Soldering Reflow  
Temperature  
T
Pb-Free; Solder reflow profile per  
JEDEC J-STD-020  
260  
C  
PEAK  
Maximum Junction  
Temperature  
T
125  
C  
J
Note: Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation  
specification compliance is not implied at these conditions. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Preliminary Rev. 0.4  
9
Si53315  
2. Functional Description  
The Si53315 is a low jitter, low skew 1:10 differential buffer with an integrated 2:1 input mux and individual OE  
control. The device has a universal input that accepts most common differential or LVCMOS input signals. A clock  
select pin is used to select the active input clock. The selected clock input is routed to two independent banks of  
outputs. Each output bank features control pins to select signal format and LVCMOS drive strength settings. In  
addition, each clock output has an independent OE pin for individual clock enable/disable.  
2.1. Universal, Any-Format Input  
The Si53315 has a universal input stage that enables simple interfacing to a wide variety of clock formats, including  
LVPECL, LVCMOS, LVDS, HCSL, and CML. Tables 12 and 13 summarize the various input ac- and dc-coupling  
options supported by the device. Figures 1 and 2 show the recommended input clock termination options.  
Table 12. LVPECL, LVCMOS, and LVDS  
LVPECL  
LVCMOS  
LVDS  
AC-Couple  
AC-Couple  
DC-Couple  
N/A  
AC-Couple  
DC-Couple  
Yes  
DC-Couple  
No  
1.8 V  
N/A  
Yes  
No  
No  
Yes  
Yes  
2.5/3.3 V  
Yes  
Yes  
Yes  
Table 13. HCSL and CML  
HCSL  
CML  
AC-Couple  
DC-Couple  
No  
AC-Couple  
DC-Couple  
1.8 V  
No  
No  
Yes  
Yes  
No  
No  
2.5/3.3 V  
Yes (3.3 V)  
Si533xx  
0.1 uF  
0.1 uF  
CLKx  
100  
/CLKx  
Figure 1. Differential LVPECL, LVDS, CML AC-Coupled Input Termination  
VDDO  
VDD  
= 3.3V, 2.5V, 1.8V  
Si533xx  
Rs  
CM OS  
Driver  
CLKx  
50  
/CLKx  
VREF  
0.1 uF  
Note: VDDO and VDD m ust be at the sam e voltage level.  
Figure 2. LVCMOS DC-Coupled Input Termination  
10  
Preliminary Rev. 0.4  
 
 
Si53315  
VDDO  
DC Coupled LVPECL Termination Scheme 1  
VDD  
R1  
R1  
VDDO  
= 3.3V or 2.5V  
Si533xx  
CLKx  
/CLKx  
50  
50  
“Standard”  
LVPECL  
Driver  
VTERM = VDDO – 2V  
R1 // R2 = 50 Ohm  
R2  
R2  
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm  
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm  
DC Coupled LVPECL Termination Scheme 2  
VDD  
VDDO  
= 3.3V or 2.5V  
Si533xx  
50  
50  
CLKx  
“Standard”  
LVPECL  
Driver  
/CLKx  
50  
50  
VTERM = VDDO – 2V  
DC Coupled LVDS Termination  
VDD  
VDDO = 3.3V or 2.5V  
Si533xx  
CLKx  
50  
50  
Standard  
LVDS  
Driver  
/CLKx  
100  
DC Coupled HCSL Termination Scheme  
VDD  
VDDO  
= 3.3V  
33  
33  
Si533xx  
50  
50  
CLKx  
/CLKx  
Standard  
HCSL Driver  
50  
50  
Note: 33 Ohm series termination is optional depending on the location of the receiver.  
Figure 3. Differential DC-Coupled Input Terminations  
Preliminary Rev. 0.4  
11  
Si53315  
2.2. Input Bias Resistors  
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected.  
The noninverting input is biased with a 18.75 kpulldown to GND and a 75 kpullup to V . The inverting input is  
DD  
biased with a 75 kpullup to V  
.
DD  
VDD  
RPU  
RPU  
+
RPD  
CLK0 or  
CLK1  
RPU = 75 kohm  
RPD = 18.75 kohm  
Figure 4. Input Bias Resistors  
2.3. Universal, Any-Format Output Buffer  
The Si53315 has highly flexible output drivers that support a wide range of clock signal formats, including LVPECL,  
low power LVPECL, LVDS, CML, HCSL, and LVCMOS. SFOUT[0] and SFOUT[1] are 3-level inputs that can be  
pin-strapped to select the clock signal formats for all of the outputs, Q0 through Q9. This feature enables the device  
to be used for format/level translation in addition to clock distribution, minimizing the number of unique buffer part  
numbers required in a typical application and simplifying design reuse. For EMI reduction applications, four  
LVCMOS drive strength options are available for each V  
setting.  
DDO  
Table 14. Output Signal Format Selection  
SFOUT[1]  
SFOUT[0]  
V
= 3.3 V  
V
= 2.5 V  
V
= 1.8 V  
DDOX  
DDOX  
DDOX  
Open*  
Open*  
LVPECL  
LVDS  
LVPECL  
LVDS  
N/A  
LVDS  
0
0
0
1
LVCMOS, 24 mA drive LVCMOS, 18 mA drive  
LVCMOS, 18 mA drive LVCMOS, 12 mA drive  
LVCMOS, 12 mA drive LVCMOS, 9 mA drive  
LVCMOS, 6 mA drive LVCMOS, 4 mA drive  
LVCMOS, 12 mA drive  
LVCMOS, 9 mA drive  
LVCMOS, 6 mA drive  
LVCMOS, 2 mA drive  
N/A  
1
0
1
Open*  
Open*  
0
1
0
1
LVPECL Low power  
LVPECL Low power  
Open*  
Open*  
CML  
CML  
CML  
1
HCSL  
HCSL  
HCSL  
*Note: SFOUT[1:0] are 3-level input pins. Tie low for “0” setting. Tie high for “1” setting. When left open, the pin floats to  
VDD/2.  
12  
Preliminary Rev. 0.4  
Si53315  
2.4. Input Mux and Output Enable Logic  
The Si53315 provides two clock inputs for applications that need to select between one of two clock sources. The  
CLK_SEL pin selects the active clock input. The table below summarizes the input and output clock based on the  
input mux and output enable pin settings.  
Table 15. Input Mux and Output Enable Logic  
OE1  
Q2  
CLK_SEL  
CLK0  
CLK1  
L
L
H
X
X
X
X
X
L
H
L
L
H
H
H
L
H
L
H
H
H
X
H
3
X
L
Notes:  
1. Output enable active high  
2. On the next negative transition of CLK0 or CLK1.  
3. Single-end: Q=low, Q=high  
Differential: Q=low, Q=high  
2.5. Power Supply (V and VDDO  
)
X
DD  
The device includes separate core (V ) and output driver supplies (V  
). This feature allows the core to  
DDOX  
DD  
operate at a lower voltage than V  
, reducing current consumption in mixed supply applications. The core V  
DDO  
DD  
supports 3.3, 2.5, or 1.8 V. Each output bank has its own V  
supply, supporting 3.3, 2.5, or 1.8 V.  
DDOX  
Preliminary Rev. 0.4  
13  
Si53315  
2.6. Output Clock Termination Options  
The recommended output clock termination options are shown below. Unused output clocks should be left floating.  
VDDO  
DC Coupled LVPECL Termination Scheme 1  
R1  
R1  
VDDO  
= 3.3V or 2.5V  
VDD = VDDO  
Si533xx  
50  
50  
Q
LVPECL  
Receiver  
Qn  
VTERM = VDDO – 2V  
R1 // R2 = 50 Ohm  
R2  
R2  
3.3V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm  
2.5V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm  
DC Coupled LVPECL Termination Scheme 2  
VDDO  
= 3.3V or 2.5V  
VDD = VDDO  
50  
50  
Si533xx  
Q
LVPECL  
Receiver  
Qn  
50  
50  
VTERM = VDDO – 2V  
VDDO  
AC Coupled LVPECL Termination Scheme 1  
R1  
R1  
VDDO = 3.3V or 2.5V  
0.1 uF  
VDD  
= 3.3V or 2.5V  
Si533xx  
50  
50  
Q
LVPECL  
Receiver  
Qn  
0.1 uF  
VBIAS = VDD – 1.3V  
R1 // R2 = 50 Ohm  
R2  
R2  
Rb  
Rb  
3.3V LVPECL: R1 = 82.5 Ohm, R2 = 127 Ohm, Rb = 120 Ohm  
2.5V LVPECL: R1 = 62.5 Ohm, R2 = 250 Ohm, Rb = 90 Ohm  
AC Coupled LVPECL Termination Scheme 2  
VDDO  
= 3.3V or 2.5V  
0.1 uF  
0.1 uF  
VDD  
= 3.3V or 2.5V  
Si533xx  
50  
50  
Q
LVPECL  
Receiver  
Qn  
50  
50  
Rb  
Rb  
3.3V LVPECL: Rb = 120 Ohm  
2.5V LVPECL: Rb = 90 Ohm  
Figure 5. LVPECL Output Termination  
14  
Preliminary Rev. 0.4  
Si53315  
DC Coupled LVDS and Low-Power LVPECL Termination  
VDDO  
= 3.3V or 2.5V or 1.8V  
VDD  
Si533xx  
50  
50  
Q
LVDS  
Receiver  
Qn  
100  
AC Coupled LVDS Termination  
VDDO  
0.1 uF  
= 3.3V or 2.5V or 1.8V  
VDD  
Si533xx  
50  
50  
Q
LVDS  
Receiver  
Qn  
0.1 uF  
50  
50  
AC Coupled CML Termination  
VDDO  
0.1 uF  
= 3.3V or 2.5V or 1.8V  
VDD  
Si533xx  
50  
50  
Q
CML  
Receiver  
100  
Qn  
0.1 uF  
DC Coupled HCSL Receiver Termination  
VDDO = 3.3V  
VDD  
Si533xx  
50  
50  
Q
Standard  
HCSL  
Receiver  
Qn  
50  
50  
DC Coupled HCSL Source Termination  
VDDO = 3.3V  
42.2  
VDD  
Si533xx  
50  
Q
Standard  
HCSL  
Receiver  
42.2  
Qn  
50  
86.6  
86.6  
Figure 6. LVDS, CML, and HCSL Output Termination  
Preliminary Rev. 0.4  
15  
Si53315  
CMOS  
Receivers  
Si533xx  
CMOS Driver  
Zo  
50  
Rs  
Zout  
CL = 15 pF  
Figure 7. LVCMOS Output Termination  
Table 16. Recommended LVCMOS RS Series Termination  
SFOUT[1]  
SFOUT[0]  
RS (ohms)  
3.3 V  
33  
33  
0
2.5 V  
33  
33  
0
1.8 V  
33  
33  
0
0
1
1
0
1
0
1
Open  
0
0
0
16  
Preliminary Rev. 0.4  
Si53315  
2.7. AC Timing Waveforms  
TPHL  
TSK  
VPP/2  
VPP/2  
CLK  
QN  
QM  
VPP/2  
VPP/2  
Q
TPLH  
TSK  
Propagation Delay  
Output-Output Skew  
TF  
80% VPP  
20% VPP  
Q
80% VPP  
20% VPP  
Q
TR  
Rise/Fall Time  
Figure 8. AC Waveforms  
Preliminary Rev. 0.4  
17  
Si53315  
2.8. Typical Phase Noise Performance  
22.77fs@625MHz  
30.26fs@312.5MHz  
39.34fs@156.25MHz  
Source Jitter  
55.00fs@625MHz  
106.37fs@312.5MHz  
191.58fs@156.25MHz  
Total Jitter  
Figure 9. Si53315 Phase Noise  
Note: Measured single-endedly.  
18  
Preliminary Rev. 0.4  
Si53315  
Table 17. Si53315 Additive Jitter  
Frequency  
(MHz)  
Source Jitter  
(fs)  
Total Jitter  
(fs)  
Additive Jitter  
(fs)  
156.25  
312.5  
625  
39.34  
30.26  
22.77  
191.58  
106.37  
55.00  
187.50  
101.98  
50.07  
2.9. Input Mux Noise Isolation  
LVPECL output@156.25MHz;  
Selected clk is active  
Unselected clk is static  
Mux Isolation = 61dB  
LVPECL output@156.25MHz;  
Selected clk is static  
Unselected clk is active  
Figure 10. Input Mux Noise Isolation  
Preliminary Rev. 0.4  
19  
Si53315  
2.10. Power Supply Noise Rejection  
The device supports on-chip supply voltage regulation to reject noise present on the power supply, simplifying low  
jitter operation in real-world environments. This feature enables robust operation alongside FPGAs, ASICs and  
SoCs and may reduce board-level filtering requirements. For more information, see AN491: Power Supply  
Rejection for Low Jitter Clocks.  
ꢀꢃꢀ  
ꢁꢂꢀꢃꢀ  
ꢁꢅꢀꢃꢀ  
)F ꢆꢇꢄꢃꢂꢇ0+]ꢈ  
ꢁꢄꢀꢃꢀ  
ꢁꢉꢀꢃꢀ  
ꢁꢆꢀꢀꢃꢀ  
ꢁꢆꢂꢀꢃꢀ  
ꢀꢃꢀꢆ  
ꢀꢃꢆ  
Figure 11. Power Supply Noise Rejection (100 mVpp Sinusoidal Power Supply Noise Applied)  
20  
Preliminary Rev. 0.4  
Si53315  
3. Pin Description: 44-Pin QFN  
1
33  
32  
31  
OE2  
OE7  
2
SFOUT[0]  
SFOUT[1]  
3
OE1  
OE8  
4
30  
29  
28  
27  
26  
25  
24  
23  
Q2  
Q7  
Q7  
NC  
Q8  
5
Q2  
GND  
PAD  
6
GND  
7
Q1  
8
Q1  
Q8  
9
Q9  
Q0  
10  
Q9  
Q0  
11  
OE0  
OE9  
Table 18. Pin Description  
Description  
Pin #  
Name  
1
OE2  
Output enable—Output 2  
When OE = high, the Q2 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE2 contains an internal pull-up resistor.  
2
3
SFOUT[0]  
OE1  
Output signal format control pin [0]  
Three-level input control. Internally biased at V /2. Can be left floating or tied to  
DD  
ground or V  
.
DD  
Output enable—Output 1  
When OE = high, the Q1 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE1 contains an internal pull-up resistor.  
4
5
Q2  
Q2  
Output clock 2 (complement)  
Output clock 2  
6
7
GND  
Q1  
Ground  
Output clock 1 (complement)  
Preliminary Rev. 0.4  
21  
Si53315  
Table 18. Pin Description (Continued)  
Output clock 1  
8
9
Q1  
Q0  
Output clock 0 (complement)  
Output clock 0  
10  
11  
Q0  
OE0  
Output enable—Output 0  
When OE = high, the Q0 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE0 contains an internal pull-up resistor.  
12  
13  
V
Core voltage supply  
Bypass with 1.0 µF capacitor and place close to the V pin as possible  
DD  
DD  
OE3  
Output Enable 3  
When OE = high, the Q3 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE3 contains an internal pull-up resistor.  
14  
15  
CLK0  
CLK0  
Input clock 0  
Input clock 0 (complement)  
When CLK0 is driven by a single-ended input, connect V  
CLK0 contains an internal pull-up resistor.  
to CLK0.  
REF  
16  
17  
OE4  
Output Enable 4  
When OE = high, Q4 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE4 contains an internal pull-up resistor.  
V
Input reference voltage  
REF  
When driven by a LVCMOS clock input, connect the unused clock input to V  
and a  
REF  
0.1 µF cap to ground. When driven by a differential clock, do not connect the V  
pin.  
REF  
18  
19  
OE5  
Output Enable 5  
When OE = high, Q5 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE5 contains an internal pull-up resistor.  
CLK1  
Input clock 1  
22  
Preliminary Rev. 0.4  
Si53315  
Table 18. Pin Description (Continued)  
Input clock 1 (complement)  
When CLK1 is driven by a single-ended input, connect V  
CLK1 contains an internal pull-up resistor  
20  
21  
CLK1  
OE6  
to CLK1.  
REF  
Output Enable 6  
When OE = high, Q6 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE6 contains an internal pull-up resistor.  
22  
23  
GND  
OE9  
Ground  
Output Enable 9  
When OE = high, the Output 9 outputs are enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE9 contains an internal pull-up resistor.  
24  
25  
26  
27  
28  
29  
30  
31  
Q9  
Q9  
Output clock 9 (complement)  
Output clock 9  
Q8  
Output clock 8 (complement)  
Output clock 8  
Q8  
NC  
Q7  
No Connect  
Output clock 7 (complement)  
Output clock 7  
Q7  
OE8  
Output Enable 8  
When OE = high, Q8 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE8 contains an internal pull-up resistor.  
32  
33  
SFOUT[1]  
OE7  
Output signal format control pin [1]  
Three-level input control. Internally biased at V /2. Can be left floating or tied to  
DD  
ground or V  
.
DD  
Output Enable 7  
When OE = high, Q7 is enabled.  
When OE = low, Q is held low, and Q is held high for differential formats.  
For LVCMOS, both Q and Q are held low when OE is set low.  
OE7 contains an internal pull-up resistor.  
34  
35  
V
Output voltage supply – Bank B (Outputs Q5 through Q9)  
DDOB  
Bypass with 1.0 µF capacitor and place as close to V  
pin as possible.  
DDOB  
Q6  
Output clock 6 (complement)  
Preliminary Rev. 0.4  
23  
Si53315  
Table 18. Pin Description (Continued)  
Output clock 6  
36  
37  
38  
39  
Q6  
Q5  
Output clock 5 (complement)  
Output clock 5  
Q5  
CLK_SEL  
MUX input select pin (LVCMOS)  
When CLK_SEL is high, CLK1 is selected  
When CLK_SEL is low, CLK0 is selected  
CLK_SEL contains an internal pull-down resistor  
40  
41  
42  
43  
44  
Q4  
Q4  
Q3  
Q3  
Output clock 4 (complement)  
Output clock 4  
Output clock 3 (complement)  
Output clock 3  
V
Output voltage supply – Bank A (Outputs Q0 to Q4)  
Bypass with 1.0 µF capacitor and place as close to V  
DDOA  
pin as possible.  
DDOA  
GND  
Pad  
GND  
Ground Pad  
Power supply ground and thermal relief  
24  
Preliminary Rev. 0.4  
Si53315  
4. Ordering Guide  
Part Number  
Package  
PB-Free, ROHS-6  
Temperature  
–40 to 85 C  
Si53315-B-GM  
44-QFN  
Yes  
Preliminary Rev. 0.4  
25  
Si53315  
5. Package Outline  
5.1. 7x7 mm 44-QFN Package Diagram  
Figure 12. Si53315 7x7 mm 44-QFN Package Diagram  
Table 19. Package Diagram Dimensions  
Dimension  
MIN  
0.80  
0.00  
0.18  
NOM  
0.85  
MAX  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
7.00 BSC  
2.80  
D2  
e
2.65  
2.95  
0.50 BSC  
7.00 BSC  
2.80  
E
E2  
2.65  
0.30  
2.95  
0.50  
0.10  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small  
Body Components.  
26  
Preliminary Rev. 0.4  
Si53315  
6. PCB Land Pattern  
6.1. 7x7 mm 44-QFN Package Land Pattern  
Figure 13. Si53315 7x7 mm 44-QFN Package Land Pattern  
Table 20. PCB Land Pattern  
Dimension  
Min  
6.80  
6.80  
Max  
6.90  
6.90  
Dimension  
Min  
2.85  
0.75  
2.85  
Max  
2.95  
0.85  
2.95  
C1  
C2  
E
X2  
Y1  
Y2  
0.50 BSC  
X1  
0.20  
0.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to  
be 60 µm minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder  
paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2x2 array of 1.0 mm square openings on 1.45 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Preliminary Rev. 0.4  
27  
Si53315  
7. Top Marking  
7.1. Si53315 Top Marking  
7.2. Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
1.9 Point (26 mils)  
Right-Justified  
Line 1 Marking: Device Part Number  
53315-B-GM  
Line 2 Marking: YY = Year  
Assigned by Assembly Supplier.  
Corresponds to the year and work  
week of the mold date.  
WW = Work Week  
TTTTTT = Mfg Code  
Manufacturing Code from the  
Assembly Purchase Order form.  
Line 3 Marking: Circle = 1.3 mm Diameter  
“e3” Pb-Free Symbol  
Center-Justified  
Country of Origin  
TW  
ISO Code Abbreviation  
Line 4 Marking Circle = 0.75 mm Diameter Pin 1 Identification  
Filled  
28  
Preliminary Rev. 0.4  
Si53315  
NOTES:  
Preliminary Rev. 0.4  
29  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5332

Any-Frequency 6/8/12-output
SILICON

SI53320-28

Output Enable option
SILICON

Si53320-B-GT

Output Enable option
SILICON

SI53321-B-GM

Low Skew Clock Driver, 53321 Series, 20 True Output(s), 0 Inverted Output(s), CMOS, ROHS COMPLIANT, MO-220, QFN-32
SILICON

Si53321-B-GQ

Output Enable option
SILICON

Si53322-B-GM

Output Enable option
SILICON

Si53323-B-GM

Output Enable option
SILICON

Si53325-B-GM

Output Enable option
SILICON

Si53325-B-GQ

Output Enable option
SILICON

Si53326-B-GM

Output Enable option
SILICON

Si53327-B-GM

Output Enable option
SILICON

Si53328-B-GM

Output Enable option
SILICON