Si53326-B-GM [SILICON]

Output Enable option;
Si53326-B-GM
型号: Si53326-B-GM
厂家: SILICON    SILICON
描述:

Output Enable option

驱动 逻辑集成电路
文件: 总51页 (文件大小:1073K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53320-28 Data Sheet  
Low-Jitter LVPECL Fanout Clock Buffers with up to 10 LVPECL  
Outputs from Any-Format Input and Wide Frequency Range from  
DC up to 1250 MHz  
KEY FEATURES  
• Ultra-low additive jitter: 50 fs rms  
• Built-in LDOs for high PSRR performance  
• Up to 10 LVPECL Outputs  
The Si53320–28 family of LVPECL fanout buffers is ideal for clock/data distribution and  
redundant clocking applications. These devices feature typical ultra-low jitter character-  
istics of 50 fs and operate over a wide frequency range from dc to 725/1250 MHz. Built-  
in LDOs deliver high PSRR performance and reduce the need for external components,  
simplifying low-jitter clock distribution in noisy environments.  
• Any-format Inputs (LVPECL, Low-power  
LVPECL, LVDS, CML, HCSL, LVCMOS)  
• Wide frequency range: dc to 1250 MHz  
• Output Enable option  
The Si53320–28 family is available in multiple configurations, with some versions offer-  
ing a selectable input clock using a 2:1 input mux. Other features include independent  
output enable and built-in format translation. These buffers can be paired with the  
Si534x clocks and Si5xx oscillators to deliver end-to-end clock tree performance.  
• Multiple configuration options  
• Dual Bank option  
• 2:1 Input Mux operation  
• RoHS compliant, Pb-free  
• Temperature range: –40 to +85 °C  
VDD  
VDD  
Power Supply Filtering  
Power Supply Filtering  
4
4 Outputs  
Si53323  
Si53320  
OEb  
Si53322  
2
2 Outputs  
CLK  
5
5 Outputs  
0
1
CLK0*  
VDDOA  
OEAb  
CLK1*  
3 Outputs  
3 Outputs  
3
VDD  
CLK_SEL  
Si53327/28  
Si53321/26  
3
Power Supply Filtering  
OEBb  
VDDOB  
5 Outputs  
5 Outputs  
CLK0  
CLK1  
5
5
Si53325  
10 Outputs  
10  
*Si53326/28 require Single-ended Inputs  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2  
Si53320-28 Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Si5332x Ordering Guide  
Part Number  
Input  
LVPECL Output  
Output Enable  
Frequency Range  
Package  
2:1 selectable MUX  
Any-format  
Si53320-B-GT  
1 bank / 5 Outputs  
Single  
dc to 725 MHz  
20-TSSOP  
2:1 selectable MUX  
Any-format  
32-QFN  
5 x 5 mm  
Si53321-B-GM  
1 bank / 10 Outputs  
1 bank / 10 Outputs  
1 bank / 2 Outputs  
1 bank / 4 Outputs  
2 banks / 5 Outputs  
2 banks / 5 Outputs  
1 bank / 10 Outputs  
2 banks / 3 Outputs  
2 banks / 3 Outputs  
dc to 1250 MHz  
dc to 1250 MHz  
dc to 1250 MHz  
dc to 1250 MHz  
dc to 1250 MHz  
dc to 1250 MHz  
dc to 200 MHz  
dc to 1250 MHz  
dc to 200 MHz  
2:1 selectable MUX  
Any-format  
32-eLQFP  
7 x 7 mm  
Si53321-B-GQ  
Si53322-B-GM  
1 bank / 1 Input  
Any-format  
16-QFN  
3 x 3 mm  
2:1 selectable MUX  
Any-format  
16-QFN  
3 x 3 mm  
Si53323-B-GM  
Si53325-B-GM  
Si53325-B-GQ  
Si53326-B-GM  
Si53327-B-GM  
Si53328-B-GM  
2 banks / 2 Inputs  
Any-format  
32-QFN  
5 x 5 mm  
2 banks / 2 Inputs  
Any-format  
32-eLQFP  
7 x 7 mm  
2:1 selectable MUX  
LVCMOS  
32-QFN  
5 x 5 mm  
2:1 selectable MUX  
Any-format  
24-QFN  
4 x 4 mm  
1 per bank  
1 per bank  
2:1 selectable MUX  
LVCMOS  
24-QFN  
4 x 4 mm  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 1  
Si53320-28 Data Sheet  
Functional Description  
2. Functional Description  
The Si53320-28 are a family of low-jitter, low-skew, fixed-format (LVPECL) buffers. All devices except the Si53326 and Si53328 have a  
universal input that accepts most common differential or LVCMOS input signals. The Si53326 and Si53328 accept only single-ended  
LVCMOS inputs. These devices are available in multiple configurations customized for the end application (refer to 1. Ordering Guide  
for more details on configurations).  
2.1 Universal, Any-Format Input Termination (Si53320/21/22/23/25/27)  
The universal input stage enables simple interfacing to a wide variety of clock formats, including LVPECL, low-power LVPECL,  
LVCMOS, LVDS, HCSL, and CML. The tables below summarize the various ac- and dc-coupling options supported by the device. For  
the best high-speed performance, the use of differential formats is recommended. For both single-ended and differential input clocks,  
the fastest possible slew rate is recommended since low slew rates can increase the noise floor and degrade jitter performance.  
Though not required, a minimum slew rate of 0.75 V/ns is recommended for differential formats and 1.0 V/ns for single-ended formats.  
See “AN766: Understanding and Optimizing Clock Buffer’s Additive Jitter Performance” for more information.  
Table 2.1. Clock Input Options  
Clock Format  
1.8 V  
2.5/3.3 V  
AC-Coupled  
LVPECL/Low-power LVPECL  
N/A  
No  
Yes  
Yes  
LVCMOS  
LVDS  
Yes  
No  
Yes  
HCSL  
CML  
Yes (3.3 V)  
Yes  
Yes  
DC-Coupled  
LVPECL/Low-power LVPECL  
N/A  
No  
No  
No  
No  
Yes  
Yes  
LVCMOS  
LVDS  
Yes  
HCSL  
CML  
Yes (3.3 V)  
No  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 2  
Si53320-28 Data Sheet  
Functional Description  
VDD  
0.1 µF  
0.1 µF  
Si53320/21/22/23/25/27  
CLKx  
100  
CLKxb  
Figure 2.1. Differential (HCSL, LVPECL, Low-Power LVPECL, LVDS, CML) AC-Coupled Input Termination  
VDD  
DC-Coupled  
VDD  
1 k  
V
DD = 3.3 V or 2.5 V  
Si53320/21/22/23/25/27  
CLKx  
CMOS  
Driver  
50  
CLKxb  
Rs  
V
TERM = VDD/2  
1 k  
VDD  
VDD  
AC-Coupled  
1 k  
VDD  
1 k  
VBIAS = VDD/2  
V
DD = 3.3 V or 2.5 V  
Si53320/21/22/23/25/27  
CLKx  
CMOS  
Driver  
50  
CLKxb  
Rs  
1 k  
1 k  
Note:  
Value for Rs should be chosen so that the total  
source impedance matches the characteristic  
impedance of the PCB trace.  
V
TERM = VDD/2  
Figure 2.2. Single-Ended (LVCMOS) Input Termination  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 3  
Si53320-28 Data Sheet  
Functional Description  
VDD  
DC Coupled LVPECL Input Termination Scheme 1  
VDD  
R1  
R1  
V
DD = 3.3 V or 2.5 V  
Si53320/21/22/23/25/27  
CLKx  
CLKxb  
50  
50  
“Standard”  
LVPECL  
Driver  
VTERM = VDD – 2V  
R1 // R2 = 50 Ohm  
R2  
R2  
3.3 V LVPECL: R1 = 127 Ohm, R2 = 82.5 Ohm  
2.5 V LVPECL: R1 = 250 Ohm, R2 = 62.5 Ohm  
DC Coupled LVPECL Input Termination Scheme 2  
VDD  
V
DD = 3.3 V or 2.5 V  
Si53320/21/22/23/25/27  
50  
50  
CLKx  
“Standard”  
LVPECL  
Driver  
CLKxb  
50  
50  
VTERM = VDD – 2 V  
DC Coupled LVDS Input Termination  
VDD  
VDD  
= 3.3 V or 2.5 V  
Si53320/21/22/23/25/27  
CLKx  
50  
50  
Standard  
LVDS  
Driver  
100  
CLKxb  
DC Coupled HCSL Input Termination Scheme  
VDD  
VDD  
= 3.3 V  
Si53320/21/22/23/25/27  
33  
33  
50  
50  
CLKx  
Standard  
HCSL Driver  
CLKxb  
50  
50  
Note: 33 Ohm series termination is optional depending on the location of the receiver.  
Figure 2.3. Differential DC-Coupled Input Terminations (Si53320/21/22/23/25/27)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 4  
Si53320-28 Data Sheet  
Functional Description  
2.2 LVCMOS Input Termination (Si53326/28 Only)  
The table below summarizes the various ac- and dc-coupling options supported by the LVCMOS device, and the figure shows the rec-  
ommended input clock termination.  
Note: 1.8 V LVCMOS inputs are not supported for Si53326/28.  
Table 2.2. LVCMOS Input Clock Options  
LVCMOS  
AC-Coupled  
DC-Coupled  
1.8 V  
No  
No  
2.5/3.3 V  
Yes  
Yes  
VDD  
DC-Coupled  
V
DD = 3.3 V or 2.5 V  
Si53326/28  
CLKx  
NC  
CMOS  
Driver  
50  
Rs  
VDD  
1 k  
VDD  
AC-Coupled  
V
DD = 3.3 V or 2.5 V  
Si53326/28  
CLKx  
NC  
CMOS  
Driver  
50  
Rs  
1 k  
VBIAS = VDD/2  
Note:  
Value for Rs should be chosen so that the total  
source impedance matches the characteristic  
impedance of the PCB trace.  
Figure 2.4. Recommended Input Clock Termination (Si53326/28)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 5  
Si53320-28 Data Sheet  
Functional Description  
2.3 Input Bias Resistors  
Internal bias resistors ensure a differential output low condition in the event that the clock inputs are not connected. The non-inverting  
input is biased with a 18.75 kΩ pull-down to GND and a 75 kΩ pull-up to VDD. The inverting input is biased with a 75 kΩ pull-up to VDD  
.
VDD  
RPU  
RPU  
+
CLK0 or  
CLK1  
RPD  
RPU = 75 k  
RPD = 18.75 k  
Figure 2.5. Input Bias Resistors  
Note: To minimize the possibility of system noise coupling into the Si5332x differential inputs and adversely affecting the buffered out-  
put, Silicon Labs recommends 1 PPS clocks and disabled/gapped clocks be dc-coupled and driven “stop-low”.  
2.4 Input Mux  
The Si53320/21/23/26/27/28 provide two clock inputs for applications that need to select between one of two clock sources. The  
CLK_SEL pin selects the active clock input. The following table summarizes the input and output clock based on the input mux and  
output enable pin settings.  
Table 2.3. Input Mux Logic  
Q1  
L
CLK_SEL  
CLK0  
CLK1  
Qb  
L
L
L
H
X
X
X
X
L
H
L
H
L
H
H
H
L
H
H
Note:  
1. On the next negative transition of CLK0 or CLK1.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 6  
Si53320-28 Data Sheet  
Functional Description  
2.5 Output Clock Termination Options  
The recommended output clock termination options for dc and ac are shown below. Unused outputs should be left unconnected.  
DC Coupled LVPECL Output Termination Scheme 1  
VDDO  
R1  
R1  
VDDXX  
VDD = VDDO  
Si5332x  
50  
50  
Q
LVPECL  
Receiver  
Qb  
VTERM = VDDO – 2 V  
R1 // R2 = 50 Ohm  
R2  
R2  
3.3 V LVPECL: R1 = 127 Ohm; R2 = 82.5 Ohm  
2.5 V LVPECL: R1 = 250 Ohm; R2 = 62.5 Ohm  
DC Coupled LVPECL Output Termination Scheme 2  
VDDXX  
VDD = VDDO  
Si5332x  
50  
50  
Q
LVPECL  
Receiver  
Qb  
50  
50  
VTERM = VDDO – 2 V  
Note:  
For Si53320/21/22/23/25/26, VDDXX = VDD = 3.3 V, 2.5 V  
For Si53327/28, VDDXX = VDDOA or VDDOB = 3.3 V, 2.5 V  
Figure 2.6. LVPECL DC Output Terminations  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 7  
Si53320-28 Data Sheet  
Functional Description  
AC Coupled LVPECL Output Termination Scheme 1  
VDDO  
R1  
R1  
VDDXX  
0.1 uF  
VDD = 3.3 V or 2.5 V  
Si5332x  
50  
50  
Q
LVPECL  
Receiver  
Qb  
0.1 uF  
VBIAS = VDD – 1.3 V  
R1 // R2 = 50 Ohm  
R2  
R2  
Rb  
Rb  
3.3 V LVPECL: R1 = 82.5 Ohm; R2 = 127 Ohm; Rb = 120 Ohm  
2.5 V LVPECL: R1 = 62.5 Ohm; R2 = 250 Ohm; Rb = 90 Ohm  
AC Coupled LVPECL Output Termination Scheme 2  
VDDXX  
0.1 uF  
VDD = 3.3 V or 2.5 V  
Si5332x  
50  
50  
Q
LVPECL  
Receiver  
Qb  
0.1 uF  
50  
50  
Rb  
Rb  
VBIAS = VDD – 1.3 V  
3.3 V LVPECL: Rb = 120 Ohm  
2.5 V LVPECL: Rb = 90 Ohm  
Note:  
For Si53320/21/22/23/25/26, VDDXX = VDD = 3.3 V, 2.5 V  
For Si53327/28, VDDXX = VDDOA or VDDOB = 3.3 V, 2.5 V  
Figure 2.7. LVPECL AC Output Terminations  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 8  
Si53320-28 Data Sheet  
Functional Description  
2.6 AC Timing Waveforms  
TPHL  
TSK  
VPP/2  
VPP/2  
CLK  
Q
QN  
QM  
VPP/2  
VPP/2  
TPLH  
TSK  
Propagation Delay  
Output-Output Skew  
TF  
80% VPP  
20% VPP  
Q
80% VPP  
20% VPP  
Q
TR  
Rise/Fall Time  
Figure 2.8. AC Timing Waveforms  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 9  
Si53320-28 Data Sheet  
Functional Description  
2.7 Typical Phase Noise Performance: Differential Input Clock  
Each of the phase noise plots superimposes Source Jitter, Total SE Jitter, and Total Diff Jitter on the same diagram.  
Source Jitter—Reference clock phase noise (measured Single-ended to PNA).  
Total Jitter (SE)—Combined source and clock buffer phase noise measured as a single-ended output to the phase noise analyzer  
and integrated from 12 kHz to 20 MHz.  
Total Jitter (Diff)—Combined source and clock buffer phase noise measured as a differential output to the phase noise analyzer  
and integrated from 12 kHz to 20 MHz. The differential measurement as shown in each figure is made using a balun. For more infor-  
mation, see 3. Electrical Specifications.  
Note: To calculate the total RMS phase jitter when adding a buffer to your clock tree, use the root-sum-square (RSS).  
Total jitter (Single-Ended)  
measured here  
AG E5052 Phase Noise  
Analyzer  
PSPL 5310A  
Balun  
PSPL 5310A  
CLKx  
CLK SYNTH  
SMA103A  
50  
50  
Si5332x  
DUT  
50 Ohm  
CLKxb  
Balun  
Source jitter  
measured here  
Total jitter (Differential)  
measured here  
Figure 2.9. Differential Measurement Method Using a Balun  
The total jitter is a measure of the source plus the buffer's additive phase jitter. The additive jitter (rms) of the buffer can then be calcula-  
ted (via root-sum-square addition).  
Frequency  
(MHz)  
Differential  
Input Slew Rate (V/ns)  
Source Jitter Total Jitter  
Additive Jitter  
(SE) (fs)  
Total Jitter  
(Differential) (fs)  
Additive Jitter  
(Differential) (fs)  
(fs)  
(SE) (fs)  
156.25  
1.0  
38.2  
147.8  
142.8  
118.3  
112.0  
Figure 2.10. Total Jitter Differential Input (156.25 MHz)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 10  
Si53320-28 Data Sheet  
Functional Description  
Frequency  
(MHz)  
Differential  
Input Slew Rate (V/ns)  
Source Jitter Total Jitter  
Additive Jitter  
(SE) (fs)  
Total Jitter  
(Differential) (fs)  
Additive Jitter  
(Differential) (fs)  
(fs)  
(SE) (fs)  
312.5  
1.0  
33.10  
94.39  
88.39  
83.80  
76.99  
Figure 2.11. Total Jitter Differential Input (312.5 MHz)  
Frequency  
(MHz)  
Differential  
Input Slew Rate (V/ns)  
Source Jitter Total Jitter  
Additive Jitter  
(SE) (fs)  
Total Jitter  
(Differential) (fs)  
Additive Jitter  
(Differential) (fs)  
(fs)  
(SE) (fs)  
625  
1.0  
23  
57  
52  
59  
54  
Figure 2.12. Total Jitter Differential Input (625 MHz)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 11  
Si53320-28 Data Sheet  
Functional Description  
2.8 Typical Phase Noise Performance: Single-Ended Input Clock  
For single-ended input phase noise measurements, the input was connected directly without the use of a balun.  
The following figure shows three phase noise plots superimposed on the same diagram.  
Frequency  
(MHz)  
Single-Ended  
Input Slew Rate (V/ns)  
Source Jitter Total Jitter  
Additive Jitter  
(SE) (fs)  
Total Jitter  
(Differential) (fs)  
Additive Jitter  
(Differential) (fs)  
(fs)  
(SE) (fs)  
156.25  
1.0  
40.74  
182.12  
177.51  
125.22  
118.41  
Figure 2.13. Total Jitter Single-Ended Input (156.25 MHz)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 12  
Si53320-28 Data Sheet  
Functional Description  
2.9 Input Mux Noise Isolation  
The input clock mux is designed to minimize crosstalk between the CLK0 and CLK1. This improves phase jitter performance when  
clocks are present at both the CLK0 and CLK1 inputs. The following figure shows a measurement of the input mux’s noise isolation.  
Figure 2.14. Input Mux Noise Isolation (Differential Input Clock, 44-QFN Package)  
Figure 2.15. Input Mux Noise Isolation (Single-Ended Input Clock, 24-QFN Package)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 13  
Si53320-28 Data Sheet  
Functional Description  
2.10 Power Supply Noise Rejection  
The device supports on-chip supply voltage regulation to reject power supply noise and simplify low-jitter operation in real-world envi-  
ronments. This feature enables robust operation alongside FPGAs, ASICs and SoCs and may reduce board-level filtering requirements.  
See “AN491: Power Supply Rejection for Low-Jitter Clocks” for more information.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 14  
Si53320-28 Data Sheet  
Electrical Specifications  
3. Electrical Specifications  
Table 3.1. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
Max  
85  
Unit  
°C  
V
TA  
Ambient Operating Temperature  
2.38  
2.97  
2.5  
3.3  
2.63  
3.63  
VDD  
Supply Voltage Range  
LVPECL  
V
Table 3.2. Input Clock Specifications  
VDD = 2.5 V ± 5% or 3.3 V ± 10%; TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Input Common  
Mode Voltage  
VCM  
0.05  
V
Differential Input Swing  
(peak-to-peak)  
VIN  
0.2  
2.2  
V
VIH  
VIL  
VDD x 0.7  
LVCMOS Input High Voltage  
LVCMOS Input Low Voltage  
V
V
VDD x 0.3  
CLK0 and CLK1 pins with re-  
spect to GND  
CIN  
Input Capacitance  
5
pF  
Table 3.3. DC Common Characteristics  
VDD = 2.5 V ± 5% or 3.3 V ± 10%; TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Si53320  
Min  
Typ  
260  
440  
130  
210  
80  
Max  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
Si53321/25/26  
Si53322  
1
Core Supply Current  
IDD  
Si53323  
Si53327/28  
Si53327/28  
1
Output Supply Current  
(Per Clock Output)  
35  
IDDOx  
VIH  
VIL  
V
DD x 0.8  
Input High Voltage  
Input Low Voltage  
CLK_SEL, OExb  
CLK_SEL, OExb  
CLK_SEL, OExb  
25  
VDD x 0.2  
V
V
RDOWN  
Internal Pull-down Resistor  
kΩ  
Note:  
1. Measured using ac-coupled termination at VDD/VDDOX = 3.3 V.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 15  
Si53320-28 Data Sheet  
Electrical Specifications  
Table 3.4. Output Characteristics (LVPECL)  
VDD = 2.5 V ± 5% or 3.3 V ± 10%; TA = –40 to 85 °C  
Parameter  
Symbol  
VSE  
Test Condition  
Min  
0.55  
Typ  
0.80  
Max  
1.05  
Unit  
V
Single-Ended Output Swing1  
Output Common Mode Voltage  
Note:  
VCOM  
VDD – 1.595  
VDD – 1.245  
V
1. Unused outputs can be left floating. Do not short unused outputs to ground.  
Table 3.5. AC Characteristics  
VDD = 2.5 V ± 5% or 3.3 V ± 10%; TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Si53326/28  
Min  
dc  
Typ  
Max  
200  
Unit  
MHz  
MHz  
MHz  
Frequency  
F
Si53320  
dc  
725  
Si53321/22/23/25/27  
dc  
1250  
20/80% TR/TF<10% of period  
(Differential input clock)  
47  
45  
50  
50  
53  
55  
%
%
Duty Cycle  
(50% input duty cycle)  
DC  
20/80% TR/TF<10% of period  
(Single-Ended input clock)  
SRdiff  
SRse  
Required to meet prop delay  
and additive jitter specifications  
(20–80%)  
0.75  
1.00  
V/ns  
V/ns  
Minimum Input Clock Slew Rate  
TR/TF  
TW  
Output Rise/Fall Time  
Minimum Input Pulse Width  
Propagation Delay  
20–80%  
360  
600  
350  
ps  
ps  
ps  
ps  
TPLH, TPHL  
TSK  
800  
25  
1000  
60  
Output-to-Output Skew1  
Part-to-Part Skew2  
TPS  
–65  
150  
ps  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
dBc  
dBc  
dBc  
dBc  
–62.5  
–60  
Power Supply Noise Rejection3  
PSRR  
–55  
Note:  
1. Output-to-output skew specified for outputs with identical configuration.  
2. Defined as skew between any output on different devices operating at the same supply voltage, temperature, and equal load con-  
dition. Using the same type of inputs on each device, the outputs are measured at the differential cross points.  
3. Measured for 156.25 MHz carrier frequency. Sine-wave noise added to VDD (3.3 V = 100 mVPP) and noise spur amplitude meas-  
ured. See “AN491: Power Supply Rejection for Low-Jitter Clocks” for more information.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 16  
Si53320-28 Data Sheet  
Electrical Specifications  
Table 3.6. Additive Jitter, Differential Clock Input  
Additive Jitter (fs rms, 12  
kHz to 20 MHz)3  
Input1, 2  
Amplitude VIN  
(Single-Ended,  
Peak-to-Peak)  
Output  
VDD  
Differential 20% to  
80% Slew Rate  
(V/ns)  
Freq (MHz)  
Clock Format  
Clock Format  
Typ  
Max  
3.3  
3.3  
725  
156.25  
725  
Differential  
Differential  
Differential  
Differential  
0.15  
0.5  
0.637  
0.458  
0.637  
0.458  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
45  
160  
45  
95  
185  
95  
2.5  
0.15  
0.5  
2.5  
156.25  
145  
185  
Note:  
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock Buffer’s Addi-  
tive Jitter Performance” for more information.  
2. AC-coupled differential inputs.  
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 2.9 Differential Measurement Method Using a  
Balun on page 10.  
Table 3.7. Additive Jitter, Single-Ended Clock Input  
Additive Jitter (fs rms, 12  
kHz to 20 MHz)3  
Input1, 2  
Amplitude VIN  
Output  
VDD  
Single-Ended 20%  
Freq (MHz)  
Clock Format  
to 80% Slew Rate Clock Format  
(V/ns)  
Typ  
Max  
(Single-Ended,  
Peak-to-Peak)  
3.3  
2.5  
156.25  
156.25  
Single-ended  
Single-ended  
2.18  
2.18  
1
1
LVPECL  
LVPECL  
160  
145  
185  
185  
Note:  
1. For best additive jitter results, use the fastest slew rate possible. See “AN766: Understanding and Optimizing Clock Buffer’s Addi-  
tive Jitter Performance” for more information.  
2. DC-coupled single-ended inputs.  
3. Measured differentially using a balun at the phase noise analyzer input. See Figure 2.9 Differential Measurement Method Using a  
Balun on page 10.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 17  
Si53320-28 Data Sheet  
Electrical Specifications  
Table 3.8. Thermal Conditions  
Symbol  
Parameter  
Test Condition  
Still air  
Value  
57.6  
41.5  
93.88  
37  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
16-QFN Thermal Resistance, Junction to Ambient  
16-QFN Thermal Resistance, Junction to Case  
20-TSSOP Thermal Resistance, Junction to Ambient  
24-QFN Thermal Resistance, Junction to Ambient  
24-QFN Thermal Resistance, Junction to Case  
32-eLQFP Thermal Resistance, Junction to Ambient  
32-eLQFP Thermal Resistance, Junction to Case  
32-QFN Thermal Resistance, Junction to Ambient  
32-QFN Thermal Resistance, Junction to Case  
θJA  
θJC  
θJA  
θJA  
θJC  
θJA  
θJC  
θJA  
θJC  
Still air  
Still air  
Still air  
Still air  
25  
Still air  
54.9  
Still air  
Still air  
Still air  
10.0  
99.6  
10.3  
°C/W  
°C/W  
°C/W  
Table 3.9. Absolute Maximum Ratings1  
Parameter  
Storage Temperature  
Supply Voltage  
Input Voltage  
Symbol  
TS  
Test Condition  
Min  
–55  
–0.5  
–0.5  
Typ  
Max  
Unit  
°C  
V
150  
3.8  
VDD  
VIN  
VDD + 0.3  
VDD + 0.3  
2000  
V
VOUT  
HBM  
CDM  
Output Voltage  
V
HBM, 100 pF, 1.5 kΩ  
V
ESD Sensitivity  
500  
V
Peak Soldering Reflow  
Temperature  
Pb-Free; Solder reflow profile  
per JEDEC J-STD-020  
TPEAK  
260  
125  
°C  
°C  
Maximum Junction  
Temperature  
TJ  
Note:  
1. Stresses beyond those listed in this table may cause permanent damage to the device. Functional operation specification compli-  
ance is not implied at these conditions. Exposure to maximum rating conditions for extended periods may affect device reliability.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 18  
Si53320-28 Data Sheet  
Detailed Block Diagrams  
4. Detailed Block Diagrams  
VDD  
Power Supply  
Filtering  
Q0  
Q0b  
Q1  
CLK0  
0
1
Q1b  
Q2  
CLK0b  
Q2b  
Q3  
CLK1  
CLK1b  
Q3b  
Q4  
Q4b  
Switching  
Logic  
CLK_SEL  
OEb  
Si53320 - 20-TSSOP  
Figure 4.1. Si53320 Block Diagram  
VDD  
Q0  
Power Supply  
Filtering  
Q0b  
Q1  
Q1b  
Q2  
Q2b  
Q3  
Q3b  
Q4  
CLK0  
0
1
CLK0b  
Q4b  
Q5  
CLK1  
Q5b  
Q6  
CLK1b  
Q6b  
Q7  
Switching  
Logic  
CLK_SEL  
Q7b  
Q8  
Q8b  
Q9  
Q9b  
Si53321  
32-QFN (5x5 mm)  
32-eLQFP (7x7 mm)  
Figure 4.2. Si53321 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 19  
Si53320-28 Data Sheet  
Detailed Block Diagrams  
VDD  
Power Supply  
Filtering  
Q0  
Q0b  
Q1  
CLK0  
CLK0b  
Q1b  
Si53322 - 16-QFN (3x3 mm)  
Figure 4.3. Si53322 Block Diagram  
VDD  
Power Supply  
Filtering  
Q0  
Q0b  
CLK0  
0
1
Q1  
CLK0b  
Q1b  
CLK1  
Q2  
CLK1b  
Q2b  
Q3  
Switching  
Logic  
Q3b  
CLK_SEL  
Si53323 - 16-QFN (3x3 mm)  
Figure 4.4. Si53323 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 20  
Si53320-28 Data Sheet  
Detailed Block Diagrams  
VDD  
Q0  
Q0b  
Q1  
Power Supply  
Filtering  
Q1b  
Q2  
CLK0  
CLK0b  
Q2b  
Q3  
Q3b  
Q4  
Q4b  
Q5  
Q5b  
Q6  
Q6b  
Q7  
CLK1  
CLK1b  
Q7b  
Q8  
Q8b  
Q9  
Q9b  
Si53325  
32-QFN (5x5mm)  
32-eLQFP (7x7mm)  
Figure 4.5. Si53325 Block Diagram  
VDD  
Q0  
Q0b  
Q1  
Power Supply  
Filtering  
Q1b  
Q2  
Q2b  
Q3  
Q3b  
Q4  
CLK0  
0
1
Q4b  
Q5  
Q5b  
Q6  
CLK1  
Q6b  
Q7  
Switching  
Logic  
CLK_SEL  
Q7b  
Q8  
Q8b  
Q9  
Q9b  
Si53326 - 32-QFN (5x5 mm)  
Figure 4.6. Si53326 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 21  
Si53320-28 Data Sheet  
Detailed Block Diagrams  
VDD  
VDDOA  
OEAb  
Q0  
Power Supply  
Filtering  
Q0b  
Q1  
Q1b  
CLK0  
0
1
Q2  
CLK0b  
Q2b  
Q3  
CLK1  
CLK1b  
Q3b  
Q4  
Switching  
Logic  
Q4b  
Q5  
CLK_SEL  
Q5b  
OEBb  
VDDOB  
Si53327 - 24-QFN (4x4 mm)  
Figure 4.7. Si53327 Block Diagram  
VDD  
VDDOA  
OEAb  
Q0  
Power Supply  
Filtering  
Q0b  
Q1  
Q1b  
CLK0  
CLK1  
0
1
Q2  
Q2b  
Q3  
Q3b  
Q4  
Switching  
Logic  
Q4b  
Q5  
CLK_SEL  
Q5b  
OEBb  
VDDOB  
Si53328 - 24-QFN (4x4 mm)  
Figure 4.8. Si53328 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 22  
Si53320-28 Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
5.1 Si53320 Pin Descriptions  
1
2
3
4
5
6
7
8
9
20 VDD  
19 OEb  
18 VDD  
17 CLK1b  
16 CLK1  
15 NC  
Q0  
Q0b  
Q1  
Q1b  
Q2  
Q2b  
Q3  
14 CLK0b  
13 CLK0  
12 CLK_SEL  
11 GND  
Q3b  
Q4  
Q4b 10  
Si53320  
20-TSSOP  
Table 5.1. Si53320 20-Pin TSSOP Descriptions  
Type1  
O
Pin #  
Name  
Q0  
Description  
1
2
Output clock 0.  
Q0b  
Q1  
O
Output clock 0 (complement).  
Output clock 1.  
3
O
4
Q1b  
Q2  
O
Output clock 1 (complement).  
Output clock 2.  
5
O
6
Q2b  
Q3  
O
Output clock 2 (complement).  
Output clock 3.  
7
O
8
Q3b  
Q4  
O
Output clock 3 (complement).  
Output clock 4.  
9
O
10  
11  
Q4b  
GND  
O
Output clock 4 (complement).  
Ground.  
GND  
Mux input select pin (LVCMOS). When CLK_SEL is high, CLK1 is selected. When  
CLK_SEL is low, CLK0 is selected. CLK_SEL contains an internal pull-down resistor.  
12  
13  
14  
CLK_SEL  
CLK0  
I
I
I
Input clock 0.  
Input clock 0 (complement). When CLK0 is driven by a single-ended input, connect  
CLK0b to an appropriate bias voltage (e.g., for a CMOS input apply VDD/2).  
CLK0b  
15  
16  
NC  
I
No connect. Leave this pin unconnected.  
Input clock 1.  
CLK1  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 23  
Si53320-28 Data Sheet  
Pin Descriptions  
Type1  
Pin #  
Name  
Description  
Input clock 1 (complement). When CLK1 is driven by a single-ended input, connect  
CLK1b to an appropriate bias voltage (e.g., for a CMOS input apply VDD/2).  
17  
CLK1b  
I
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
18  
19  
20  
VDD  
OEb  
VDD  
P
I
Output enable. When OEb = low, the clock outputs are enabled. When OEb = high, Qx is  
held low and Qxb is held high. OEb features an internal pull-down resistor and may be  
left unconnected.  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
P
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 24  
Si53320-28 Data Sheet  
Pin Descriptions  
5.2 Si53321 and Si53326 Pin Descriptions  
24 Q3  
23 Q3b  
22 Q4  
21 Q4b  
20 Q5  
19 Q5b  
18 Q6  
17 Q6b  
VDD  
CLK_SEL  
CLK0  
1
2
3
4
5
6
7
8
24 Q3  
23 Q3b  
22 Q4  
21 Q4b  
20 Q5  
19 Q5b  
18 Q6  
17 Q6b  
VDD  
CLK_SEL  
CLK0  
1
2
3
4
5
6
7
8
CLK0b  
NC  
CLK0b  
NC  
GND  
PAD  
GND  
PAD  
CLK1  
CLK1  
CLK1b  
GND  
CLK1b  
GND  
Si53321  
32-eLQFP  
Si53321  
32-QFN  
24 Q3  
23 Q3b  
22 Q4  
21 Q4b  
20 Q5  
19 Q5b  
18 Q6  
17 Q6b  
VDD  
CLK_SEL  
CLK0  
NC  
1
2
3
4
5
6
7
8
GND  
PAD  
NC  
CLK1  
NC  
Si53326  
32-QFN  
GND  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 25  
Si53320-28 Data Sheet  
Pin Descriptions  
Table 5.2. Si53321 32-QFN/32-eLQFP and Si53326 32-QFN Pin Descriptions  
Type1  
Pin #  
Name  
Description  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
1
VDD  
P
Mux input select pin (LVCMOS). When CLK_SEL is high, CLK1 is selected. When  
CLK_SEL is low, CLK0 is selected. CLK_SEL contains an internal pull-down resistor.  
2
3
CLK_SEL  
CLK0  
I
I
I
Input clock 0.  
Input clock 0 (complement). When CLK0 is driven by a single-ended LVCMOS input,  
connect CLK0b to an appropriate bias voltage (e.g. VDD/2).  
CLK0b  
(Si53321 only)  
4
NC  
No connect. Leave this pin unconnected.  
(Si53326 only)  
5
6
NC  
No connect. Leave this pin unconnected.  
Input clock 1.  
CLK1  
I
I
Input clock 1 (complement). When CLK1 is driven by a single-ended input, connect  
CLK1b to VDD/2.  
CLK1b  
(Si53321 only)  
7
NC  
GND  
P
No connect. Leave this pin unconnected.  
Ground.  
(Si53326 only)  
8
9
GND  
VDD  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
10  
11  
12  
13  
14  
15  
Q9b  
Q9  
O
O
O
O
O
O
Output clock 9 (complement).  
Output clock 9.  
Q8b  
Q8  
Output clock 8 (complement).  
Output clock 8.  
Q7b  
Q7  
Output clock 7 (complement).  
Output clock 7.  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
16  
VDD  
P
17  
18  
19  
20  
21  
22  
23  
24  
Q6b  
Q6  
O
O
O
O
O
O
O
O
Output clock 6 (complement).  
Output clock 6.  
Q5b  
Q5  
Output clock 5 (complement).  
Output clock 5.  
Q4b  
Q4  
Output clock 4 (complement).  
Output clock 4.  
Q3b  
Q3  
Output clock 3 (complement).  
Output clock 3.  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
25  
26  
VDD  
Q2b  
P
O
Output clock 2 (complement).  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 26  
Si53320-28 Data Sheet  
Pin Descriptions  
Type1  
Pin #  
27  
Name  
Q2  
Description  
O
O
O
O
O
Output clock 2.  
28  
Q1b  
Q1  
Output clock 1 (complement).  
Output clock 1.  
29  
30  
Q0b  
Q0  
Output clock 0 (complement).  
Output clock 0.  
31  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
32  
VDD  
P
Power supply ground and thermal relief. The exposed ground pad is thermally connected  
to the die to improve the heat transfer out of the package. The ground pad must be con-  
nected to GND to ensure device specifications are met.  
Exposed  
ground pad  
GND Pad  
GND  
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 27  
Si53320-28 Data Sheet  
Pin Descriptions  
5.3 Si53322 Pin Descriptions  
Q1b  
Q1  
GND  
NC  
1
2
3
4
12  
11  
10  
9
GND  
PAD  
NC  
Q0b  
Q0  
Si53322  
16-QFN  
NC  
Table 5.3. Si53322 16-QFN Pin Descriptions  
Type1  
GND  
Pin  
1
Name  
GND  
NC  
Description  
Ground.  
2
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
3
NC  
4
NC  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
5
6
7
VDD  
CLK  
P
I
Input Clock  
Input clock (complement). When CLK is driven by a single-ended LVCMOS input, con-  
nect CLKb to an appropriate bias voltage (e.g. VDD/2).  
CLKb  
I
8
NC  
Q0  
O
No connect. Leave this pin unconnected.  
Output Clock 0.  
9
10  
11  
12  
13  
14  
15  
16  
Q0b  
Q1  
O
Output Clock 0 (complement).  
Output Clock 1.  
O
Q1b  
NC  
NC  
NC  
NC  
O
Output Clock 1 (complement).  
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
Power supply ground and thermal relief. The exposed ground pad is thermally connected  
to the die to improve the heat transfer out of the package. The ground pad must be con-  
nected to GND to ensure device specifications are met.  
Exposed  
ground pad  
GND Pad  
GND  
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 28  
Si53320-28 Data Sheet  
Pin Descriptions  
5.4 Si53323 Pin Descriptions  
Q1b  
Q1  
GND  
CLK_SEL  
CLK1  
1
2
3
4
12  
11  
10  
9
GND  
PAD  
Q0b  
Q0  
Si53323  
16-QFN  
CLK1b  
Table 5.4. Si53323 16-QFN Pin Descriptions  
Type1  
Pin  
Name  
Description  
1
GND  
GND  
Ground.  
Mux input select pin (LVCMOS). When CLK_SEL is high, CLK1 is selected. When  
CLK_SEL is low, CLK0 is selected. CLK_SEL contains an internal pull-down resistor.  
2
3
4
CLK_SEL  
CLK1  
I
I
I
Input clock 1.  
Input clock 1 (complement). When CLK1 is driven by a single-ended input, connect  
CLK1b to an appropriate bias voltage (e.g., for a CMOS input apply VDD/2).  
CLK1b  
Core and Output Voltage Supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
5
6
7
VDD  
CLK0  
CLK0b  
P
I
Input Clock 0.  
Input Clock 0 (complement). When CLK0 is driven by a single-ended input, connect  
CLK0b to an appropriate bias voltage (e.g., for a CMOS input apply VDD/2).  
I
8
NC  
Q0  
O
O
O
O
O
O
O
O
No connect. Leave this pin unconnected.  
Output Clock 0.  
9
10  
11  
12  
13  
14  
15  
16  
Q0b  
Q1  
Output Clock 0 (complement).  
Output Clock 1.  
Q1b  
Q2  
Output Clock 1 (complement).  
Output Clock 2.  
Q2b  
Q3  
Output Clock 2 (complement).  
Output Clock 3.  
Q3b  
Output Clock 3 (complement).  
Power supply ground and thermal relief. The exposed ground pad is thermally connected  
to the die to improve the heat transfer out of the package. The ground pad must be con-  
nected to GND to ensure device specifications are met.  
Exposed  
ground pad  
GND Pad  
GND  
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 29  
Si53320-28 Data Sheet  
Pin Descriptions  
5.5 Si53325 Pin Descriptions  
24 Q3  
24 Q3  
23 Q3b  
22 Q4  
21 Q4b  
20 Q5  
19 Q5b  
18 Q6  
17 Q6b  
VDD  
NC  
1
2
3
4
5
6
7
8
VDD  
NC  
1
2
3
4
5
6
7
8
23 Q3b  
22 Q4  
21 Q4b  
20 Q5  
19 Q5b  
18 Q6  
17 Q6b  
CLK0  
CLK0b  
NC  
CLK0  
CLK0b  
NC  
GND  
PAD  
GND  
PAD  
CLK1  
CLK1b  
GND  
CLK1  
CLK1b  
GND  
Si53325  
32-eLQFP  
Si53325  
32-QFN  
Table 5.5. Si53325 32-QFN and 32-eLQFP Pin Descriptions  
Name1  
Pin #  
Type  
Description  
Core and Output voltage supply.  
Bypass with 1.0 µF capacitor and place as close to the VDD pin as possible.  
1
VDD  
P
2
3
4
5
6
7
8
NC  
CLK0  
CLK0b  
NC  
No connect. Leave this pin unconnected.  
Input clock 0.  
I
I
Input clock 0 (complement).  
No connect. Leave this pin unconnected.  
Input clock 1.  
CLK1  
CLK1b  
GND  
I
I
Input clock 1 (complement).  
Ground.  
GND  
Core voltage supply. Bypass with 1.0 µF capacitor and place as close to the VDD pin as  
possible.  
9
VDD  
P
10  
11  
12  
13  
14  
15  
Q9b  
Q9  
O
O
O
O
O
O
Output clock 9 (complement).  
Output clock 9.  
Q8b  
Q8  
Output clock 8 (complement).  
Output clock 8.  
Q7b  
Q7  
Output clock 7 (complement).  
Output clock 7.  
Core voltage supply. Bypass with 1.0 µF capacitor and place as close to the VDD pin as  
possible.  
16  
VDD  
P
17  
18  
19  
20  
Q6b  
Q6  
O
O
O
O
Output clock 6 (complement).  
Output clock 6.  
Q5b  
Q5  
Output clock 5 (complement).  
Output clock 5.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 30  
Si53320-28 Data Sheet  
Pin Descriptions  
Name1  
Q4b  
Q4  
Pin #  
21  
Type  
O
Description  
Output clock 4 (complement).  
Output clock 4.  
22  
O
23  
Q3b  
Q3  
O
Output clock 3 (complement).  
Output clock 3.  
24  
O
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
25  
VDD  
P
26  
27  
28  
29  
30  
31  
Q2b  
Q2  
O
O
O
O
O
O
Output clock 2 (complement).  
Output clock 2.  
Q1b  
Q1  
Output clock 1 (complement).  
Output clock 1.  
Q0b  
Q0  
Output clock 0 (complement).  
Output clock 0.  
Core and Output voltage supply. Bypass with 1.0 µF capacitor and place as close to the  
VDD pin as possible.  
32  
VDD  
P
Power supply ground and thermal relief. The exposed ground pad is thermally connected  
to the die to improve the heat transfer out of the package. The ground pad must be con-  
nected to GND to ensure device specifications are met.  
Exposed  
ground pad  
GND Pad  
GND  
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 31  
Si53320-28 Data Sheet  
Pin Descriptions  
5.6 Si53327 and Si53328 Pin Descriptions  
OEAb  
1
OEAb  
Q1b  
Q1  
18  
17 Q4  
1
2
3
4
5
6
18  
17 Q4  
OEBb  
OEBb  
Q1b  
Q1  
2
3
4
5
6
Q4b  
Q4b  
16  
15  
14  
13  
16  
15  
14  
13  
GND  
PAD  
GND  
PAD  
Q5  
Q5  
Q0b  
Q0  
Q0b  
Q0  
Q5b  
Q5b  
Si53327  
24-QFN  
Si53328  
24-QFN  
VDD  
VDD  
CLK_SEL  
CLK_SEL  
Table 5.6. Si53327 and Si53328 24-QFN Pin Descriptions  
Type1  
Pin  
Name  
Description  
Output Enable for Bank A (Q0, Q1, Q2). When OEAb = LOW, outputs Q0, Q1, and Q2  
are enabled. This pin contains an active pull-down resistor, and leaving the pin discon-  
nected enables the outputs. When OEAb = HIGH, Q0, Q1, and Q2 are disabled.  
1
OEAb  
I
2
3
4
5
Q1b  
Q1  
O
O
O
O
Output clock 1 (Complement).  
Output clock 1.  
Q0b  
Q0  
Output clock 0 (complement).  
Output clock 0.  
Core voltage supply. Bypass with 1.0 μF capacitor and place as close to the VDD pin as  
possible.  
6
7
VDD  
P
I
Input clock 0. Bypass with 1.0 µF capacitor and place as close to the VDD pin as possi-  
ble.  
CLK0  
Input clock 0 (complement). When CLK0 is driven by a single-ended input, connect  
CLK0b to VDD/2.  
CLK0b  
(Si53327 only)  
O
8
NC  
No connect. Leave this pin unconnected.  
(Si53328 only)  
9
NC  
NC  
I
No connect. Leave this pin unconnected.  
No connect. Leave this pin unconnected.  
Input clock 1.  
10  
11  
CLK1  
CLK1b  
(Si53327 only)  
Input clock 1 (complement). When CLK1 is driven by a single-ended input, connect  
CLK1b to VDD/2.  
I
I
12  
NC  
No connect. Leave this pin unconnected.  
(Si53328 only)  
Mux input select pin. When CLK_SEL=HIGH, CLK1 is selected. When CLK_SEL=LOW,  
CLK0 is selected. CLK_SEL contains an internal pull-down resistor.  
13  
CLK_SEL  
14  
15  
Q5b  
Q5  
O
O
Output clock 5 (complement).  
Output clock 5.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 32  
Si53320-28 Data Sheet  
Pin Descriptions  
Type1  
Pin  
16  
Name  
Q4b  
Q4  
Description  
O
O
Output clock 4 (complement).  
Output clock 4.  
17  
Output Enable for Bank B (Q3, Q4, Q5). When OEBb = LOW, outputs Q3, Q4, and Q5  
are enabled. This pin contains an active pull-down resistor, and leaving the pin discon-  
nected enables the outputs. When OEBb = HIGH, Q3, Q4, and Q5 are disabled.  
18  
19  
OEBb  
I
Output voltage supply—Bank B (Outputs: Q3 to Q5). Bypass with 1.0 µF capacitor and  
place as close to the VDDOB pin as possible.  
VDDOB  
P
20  
21  
22  
23  
Q3b  
Q3  
O
O
O
O
Output clock 3 (complement).  
Output clock 3.  
Q2b  
Q2  
Output clock 2 (complement).  
Output clock 2.  
Output voltage supply—Bank A (Outputs: Q0 to Q2). Bypass with 1.0 μF capacitor and  
place as close to the VDDOA pin as possible.  
24  
VDDOA  
P
Ground Pad—Power supply ground and thermal relief. The exposed ground pad is ther-  
mally connected to the die to improve the heat transfer out of the package. The ground  
pad must be connected to GND to ensure device specifications are met.  
Exposed  
ground pad  
GND Pad  
GND  
Note:  
1. I = Input; O = Output; P = Power; GND = Ground.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 33  
Si53320-28 Data Sheet  
Package Outlines  
6. Package Outlines  
6.1 16-Pin QFN Package  
Figure 6.1. 16-Pin QFN Package  
Table 6.1. 16-QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
3.00 BSC.  
1.70  
D2  
1.65  
1.75  
e
0.50 BSC.  
3.00 BSC.  
1.70  
E
E2  
1.65  
0.30  
1.75  
0.50  
0.10  
0.10  
0.08  
0.10  
0.05  
L
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 34  
Si53320-28 Data Sheet  
Package Outlines  
6.2 20-Pin TSSOP Package  
Figure 6.2. 20-Pin TSSOP Package  
Table 6.2. 20-TSSOP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.30  
0.20  
6.60  
Dimension  
Min  
0.45  
0°  
Nom  
Max  
0.75  
8°  
A
e
L
0.65 BSC  
0.60  
A1  
0.05  
0.80  
0.19  
0.09  
6.40  
A2  
1.00  
L2  
q
0.25 BSC  
b
c
D
aaa  
bbb  
ccc  
0.10  
6.50  
6.40 BSC  
4.40  
0.10  
E
0.20  
E1  
4.30  
4.50  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-153, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 35  
Si53320-28 Data Sheet  
Package Outlines  
6.3 24-Pin QFN Package  
Figure 6.3. 24-Pin QFN Package  
Table 6.3. 24-QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
4.00 BSC.  
2.50  
D2  
2.35  
2.65  
e
0.50 BSC.  
4.00 BSC.  
2.50  
E
E2  
2.35  
0.30  
2.65  
0.50  
L
0.40  
aaa  
0.10  
bbb  
0.10  
ccc  
0.08  
ddd  
0.10  
eee  
0.05  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 36  
Si53320-28 Data Sheet  
Package Outlines  
6.4 32-Pin QFN Package  
Figure 6.4. 32-Pin QFN Package  
Table 6.4. 32-QFN Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
0.20  
Nom  
0.85  
Max  
1.00  
0.05  
0.30  
0.30  
A
A1  
0.02  
b
0.25  
c
0.25  
D
5.00 BSC  
2.15  
D2  
2.00  
2.30  
e
0.50 BSC  
5.00 BSC  
2.15  
E
E2  
2.00  
0.30  
2.30  
0.50  
L
0.40  
aaa  
0.10  
bbb  
0.10  
ccc  
0.08  
ddd  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 37  
Si53320-28 Data Sheet  
Package Outlines  
6.5 32-Pin eLQFP Package  
Figure 6.5. 32-Pin eLQFP Package  
Table 6.5. 32-eLQFP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.60  
0.15  
1.45  
0.45  
0.20  
Dimension  
Min  
Nom  
Max  
A
E1  
E2  
7.00 BSC  
1.92  
A1  
0.05  
1.35  
0.30  
0.09  
1.87  
0.45  
0°  
1.97  
0.75  
7°  
A2  
1.40  
L
0.60  
b
0.37  
θ
3.5°  
c
aaa  
bb  
0.20  
D
D1  
9.00 BSC  
7.00 BSC  
1.92  
0.20  
0.10  
ccc  
dddd  
eee  
D2  
1.87  
1.97  
0.20  
e
0.80 BSC  
9.00 BSC  
0.05  
E
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC MS-026.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 38  
Si53320-28 Data Sheet  
Land Patterns  
7. Land Patterns  
7.1 16-Pin QFN Land Pattern  
Figure 7.1. 16-Pin QFN Land Pattern  
Table 7.1. 16-QFN Land Pattern Dimensions  
Dimension  
mm  
3.00  
3.00  
0.50  
0.30  
0.80  
1.75  
1.75  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2 x 2 array of 0.65 mm square openings on a 0.90 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 39  
Si53320-28 Data Sheet  
Land Patterns  
7.2 20-Pin TSSOP Land Pattern  
Figure 7.2. 20-Pin TSSOP Land Pattern  
Table 7.2. 20-TSSOP Land Pattern Dimensions  
Dimensions  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
C1  
5.80  
0.65  
0.45  
1.40  
E
X1  
Y1  
Pad Length  
Note:  
1. This Land Pattern Design is based on IPC-7351 specifications for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 40  
Si53320-28 Data Sheet  
Land Patterns  
7.3 24-Pin QFN Land Pattern  
Figure 7.3. 24-Pin QFN Land Pattern  
Table 7.3. 24-QFN Land Pattern Dimensions  
Dimension  
mm  
2.55  
2.55  
0.25  
0.80  
3.90  
3.90  
0.50  
P1  
P2  
X1  
Y1  
C1  
C2  
E
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 m  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2 x 2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 41  
Si53320-28 Data Sheet  
Land Patterns  
7.4 32-Pin QFN Land Pattern  
Figure 7.4. 32-Pin QFN Land Pattern  
Table 7.4. 32-QFN Land Pattern Dimensions  
Dimension  
Min  
4.52  
4.52  
Max  
4.62  
4.62  
Dimension  
Min  
2.20  
0.59  
2.20  
Max  
2.30  
0.69  
2.30  
C1  
C2  
E
X2  
Y1  
Y2  
0.50 BSC  
X1  
0.20  
0.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2 x 2 array of 0.75 mm square openings on 1.15 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 42  
Si53320-28 Data Sheet  
Land Patterns  
7.5 32-Pin eLQFP Land Pattern  
Figure 7.5. 32-Pin eLQFP Land Pattern  
Table 7.5. 32-eLQFP Land Pattern Dimensions  
Dimension  
Min  
8.40  
8.40  
1.84  
1.84  
Max  
C1  
8.50  
8.50  
2.00  
2.00  
C2  
D1  
D2  
E
0.80 BSC  
X1  
0.40  
1.25  
0.50  
1.35  
Y1  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A single 1.5 x 1.5 mm stencil aperture should be used for the center ground pad to achieve between 50-60% solder coverage.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 43  
Si53320-28 Data Sheet  
Top Markings  
8. Top Markings  
8.1 Si53320 Top Marking  
Figure 8.1. Si53320 Top Marking  
Table 8.1. Si53320 Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
2.0 Point (0.71 mm)  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Line 3 Marking:  
Customer Part Number  
TTTTTT = Mfg Code  
Si53320  
Manufacturing Code from Assembly Purchase Order form.  
“e3” Pb-Free Symbol  
Circle = 1.2 mm Diameter  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to year and work week of  
the build date.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 44  
Si53320-28 Data Sheet  
Top Markings  
8.2 Si53321/25/26 Top Markings  
Figure 8.4. Si53326 Top Marking  
Figure 8.2. Si53321 Top Marking  
Figure 8.3. Si53325 Top Marking  
Table 8.2. Si53321/25/26 Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
2.0 Point (28 mils)  
Center-Justified  
Line 1 Marking:  
Device Part Number  
53321 for Si53321  
53325 for Si53325  
53326 for Si53326  
Line 2 Marking:  
Line 3 Marking:  
Line 4 Marking  
Device Revision/Type  
TTTTTT = Mfg Code  
B-GM for Si53321 and Si53325. Blank for Si53326.  
Manufacturing Code from the Assembly Purchase Order form.  
Pin 1 Identifier  
Circle = 0.50 mm Diameter  
Lower-Left Justified  
YY = Year  
Corresponds to the year and work week of the mold date.  
WW = Work Week  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 45  
Si53320-28 Data Sheet  
Top Markings  
8.3 Si53322/23 Top Markings  
Figure 8.5. Si53322 Top Marking  
Figure 8.6. Si53323 Top Marking  
Table 8.3. Si53322/23 Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
0.635 mm (25 mils)  
Right-Justified  
Line 1 Marking:  
Product ID  
3322 for Si53322  
3323 for Si53323  
Manufacturing Code  
Pin 1 Identifier  
Line 2 Marking:  
Line 3 Marking  
TTTT = Mfg Code  
Circle = 0.5 mm Diameter  
Bottom-Left Justified  
YWW = Date Code  
Corresponds to the last digit of the current year (Y) and the workweek (WW)  
of the mold date.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 46  
Si53320-28 Data Sheet  
Top Markings  
8.4 Si53327/28 Top Markings  
Figure 8.7. Si53327 Top Marking  
Figure 8.8. Si53328 Top Marking  
Table 8.4. Si53327/28 Top Marking Explanation  
Mark Method:  
Font Size:  
Laser  
2.0 Point (28 mils)  
Center-Justified  
Line 1 Marking:  
Device Part Number  
53327 for Si53327  
53328 for Si53328  
B-GM  
Line 2 Marking:  
Line 3 Marking:  
Line 4 Marking:  
Device Revision/Type  
TTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase Order form.  
Pin 1 Identifier  
Circle = 0.5 mm Diameter  
Lower-Left Justified  
YY = year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the year and work week  
of the mold date.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.2 | 47  
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Universal, Any-Format Input Termination (Si53320/21/22/23/25/27) . . . . . . . . . . . . 2  
2.2 LVCMOS Input Termination (Si53326/28 Only). . . . . . . . . . . . . . . . . . . 5  
2.3 Input Bias Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.4 Input Mux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.5 Output Clock Termination Options . . . . . . . . . . . . . . . . . . . . . . . 7  
2.6 AC Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.7 Typical Phase Noise Performance: Differential Input Clock. . . . . . . . . . . . . . .10  
2.8 Typical Phase Noise Performance: Single-Ended Input Clock . . . . . . . . . . . . . .12  
2.9 Input Mux Noise Isolation . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.10 Power Supply Noise Rejection . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1 Si53320 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5.2 Si53321 and Si53326 Pin Descriptions . . . . . . . . . . . . . . . . . . . . .25  
5.3 Si53322 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.4 Si53323 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.5 Si53325 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .30  
5.6 Si53327 and Si53328 Pin Descriptions . . . . . . . . . . . . . . . . . . . . .32  
6. Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.1 16-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
6.2 20-Pin TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . .35  
6.3 24-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
6.4 32-Pin QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
6.5 32-Pin eLQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . .38  
7. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7.1 16-Pin QFN Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7.2 20-Pin TSSOP Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .40  
7.3 24-Pin QFN Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .41  
7.4 32-Pin QFN Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . .42  
7.5 32-Pin eLQFP Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . .43  
8. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table of Contents 48  
8.1 Si53320 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
8.2 Si53321/25/26 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . .45  
8.3 Si53322/23 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .46  
8.4 Si53327/28 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table of Contents 49  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si53327-B-GM

Output Enable option
SILICON

Si53328-B-GM

Output Enable option
SILICON

Si5332A

Any-Frequency 6/8/12-output
SILICON

SI5332AC09097-GM2R

Processor Specific Clock Generator,
SILICON

SI5332AC09128-GM3

Processor Specific Clock Generator,
SILICON

SI5332AC09283-GM1R

Processor Specific Clock Generator,
SILICON

SI5332AC09325-GM1R

Processor Specific Clock Generator,
SILICON

SI5332AC09696-GM2

Processor Specific Clock Generator,
SILICON

SI5332AC10352-GM2R

Processor Specific Clock Generator,
SILICON

SI5332AC10391-GM2

Processor Specific Clock Generator,
SILICON

SI5332AC10391-GM2R

Processor Specific Clock Generator,
SILICON

Si5332B

Any-Frequency 6/8/12-output
SILICON