SI5342A-B03366-GM [SILICON]

Processor Specific Clock Generator,;
SI5342A-B03366-GM
型号: SI5342A-B03366-GM
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator,

时钟 外围集成电路 晶体
文件: 总60页 (文件大小:1365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5345/44/42  
10-CHANNEL, ANY-FREQUENCY, ANY-OUTPUT JITTER  
ATTENUATOR/CLOCK MULTIPLIER  
Features  
Generates any combination of output  
frequencies from any input frequency  
Input frequency range:  
Differential: 8 kHz to 750 MHz  
LVCMOS: 8 kHz to 250 MHz  
Output frequency range:  
Differential: up to 712.5 MHz  
LVCMOS: up to 250 MHz  
Ultra-low jitter:  
<100 fs typ (12 kHz–20 MHz)  
Programmable jitter attenuation  
bandwidth from 0.1 Hz to 4 kHz  
Meets G.8262 EEC Opt 1, 2 (SyncE)  
Highly configurable outputs compatible  
with LVDS, LVPECL, LVCMOS, CML,  
and HCSL with programmable signal  
amplitude  
Status monitoring (LOS, OOF, LOL)  
Hitless input clock switching:  
automatic or manual  
Locks to gapped clock inputs  
Automatic free-run and holdover  
modes  
Optional zero delay mode  
Fastlock feature: 50 ms typ lock time  
Glitchless on the fly output frequency  
changes  
DCO mode: as low as 0.001 ppb  
steps.  
Core voltage  
V : 1.8 V ±5%  
DD  
V  
: 3.3 V ±5%  
DDA  
Independent output supply pins: 3.3 V,  
2.5 V, or 1.8 V  
Output-output skew: <100 ps  
2
Serial interface: I C or SPI  
Ordering Information:  
In-circuit programmable with  
non-volatile OTP memory  
See section 8  
TM  
ClockBuilder Pro software simplifies  
Functional Block Diagram  
device configuration  
Si5345: 4 input, 10 output, 64 QFN  
Si5344: 4 input, 4 output, 44 QFN  
Si5342: 4 input, 2 output, 44 QFN  
Temperature range: –40 to +85 °C  
Pb-free, RoHS-6 compliant  
XTAL  
XB  
Si5345/44/42  
XA  
IN_SEL  
OSC  
Device Selector Guide  
÷FRAC  
÷FRAC  
÷FRAC  
÷FRAC  
IN0  
IN1  
IN2  
Grade  
Si534xA  
Si534xB  
Si534xC  
Si534xD  
Max Output Frequency Frequency Synthesis Modes  
712.5 MHz  
350 MHz  
712.5 MHz  
350 MHz  
Integer+Fractional  
Integer+Fractional  
Integer  
DSPLL  
IN3/  
FB_IN  
Optional  
External  
Feedback  
Integer  
Applications  
Multi  
Synth  
÷INT  
OUT0  
OUT1  
OUT2  
OTN Muxponders and Transponders Carrier Ethernet switches  
10/40/100G networking line cards  
GbE/10GbE/100GbE Synchronous  
Ethernet (ITU-T G.8262)  
SONET/SDH Line Cards  
Broadcast video  
Test and measurement  
ITU-T G.8262 (SyncE) Compliant  
Multi  
Synth  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
Multi  
Synth  
Multi  
Synth  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
Description  
Multi  
Synth  
These jitter attenuating clock multipliers combine fourth-generation DSPLL and  
MultiSynth™ technologies to enable any-frequency clock generation and jitter  
attenuation for applications requiring the highest level of jitter performance. These  
devices are programmable via a serial interface with in-circuit programmable non-  
volatile memory (NVM) so they always power up with a known frequency configuration.  
They support free-run, synchronous, and holdover modes of operation, and offer both  
automatic and manual input clock switching. The loop filter is fully integrated on-chip,  
eliminating the risk of noise coupling associated with discrete solutions. Further, the  
jitter attenuation bandwidth is digitally programmable, providing jitter performance  
optimization at the application level. Programming the Si5345/44/42 is easy with  
Silicon Labs’ ClockBuilderPro software. Factory preprogrammed devices are also  
available.  
NVM  
I2C/SPI  
Control/  
Status  
Preliminary Rev. 0.95 3/15  
Copyright © 2015 by Silicon Laboratories  
Si5345/44/42  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5345/44/42  
TABLE OF CONTENTS  
1. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
3. Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.1. Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.2. DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.3. Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.4. External Reference (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.5. Digitally Controlled Oscillator (DCO) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5.6. Inputs (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5.7. Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
5.8. Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
5.9. Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
5.10. In-Circuit Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
5.11. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
5.12. Custom Factory Preprogrammed Parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
5.13. Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro for  
Factory Preprogrammed Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
6. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6.1. Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6.2. High-Level Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
7. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
8.1. Ordering Part Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
9. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
9.1. Si5345 9x9 mm 64-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
9.2. Si5344 and Si5342 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . . . . . . . . .55  
10. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
11. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
12. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
2
Preliminary Rev. 0.95  
Si5345/44/42  
1. Typical Application Schematic  
100 MHz (HCSL)  
PCIe 3.0  
133.333 MHz (CMOS)  
CPU/NPU  
Si5345  
83.333 MHZ (CMOS)  
50 MHz (CMOS)  
DSPLL  
100 MHz  
FPGA/ASIC/  
SWITCH  
156.25 MHz (LVDS)  
156.25 MHz (LVDS)  
125 MHz  
MultiSynth  
19.44 MHz  
MultiSynth  
MultiSynth  
156.525 MHz (LVDS)  
155.52 MHz (LVDS)  
2.048 MHz  
10G PHY  
10G PHY  
MultiSynth  
MultiSynth  
125 MHz (LVPECL)  
125 MHz (LVPECL)  
1G PHY  
1G PHY  
Figure 1. 10G Ethernet Data Center Switch and Compute Blade Schematic  
Preliminary Rev. 0.95  
3
Si5345/44/42  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions*  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%,TA = –40 to 85 °C)  
Parameter  
Ambient Temperature  
Symbol  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
T
A
Junction Temperature  
Core Supply Voltage  
TJ  
125  
MAX  
V
1.71  
3.14  
3.14  
2.38  
1.71  
3.14  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
3.30  
1.80  
1.89  
3.47  
3.47  
2.62  
1.89  
3.47  
1.89  
DD  
V
V
DDA  
DDO  
Clock Output Driver Supply Voltage  
Status Pin Supply Voltage  
V
V
V
V
V
V
DDS  
V
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
4
Preliminary Rev. 0.95  
Si5345/44/42  
Table 2. DC Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
125  
120  
Max  
185  
125  
Units  
mA  
1 2 3  
Core Supply Current  
I
Si5345,  
Si5344,  
Si5342  
Notes , ,  
DD  
I
mA  
DDA  
4
Output Buffer Supply Current  
I
LVPECL Output  
21  
15  
21  
16  
12  
25  
17  
25  
18  
13  
mA  
mA  
mA  
mA  
mA  
DDOx  
@ 156.25 MHz  
4
LVDS Output  
@ 156.25 MHz  
5
3.3 V LVCMOS output  
@ 156.25 MHz  
5
2.5 V LVCMOS output  
@ 156.25 MHz  
5
1.8 V LVCMOS output  
@ 156.25 MHz  
1 6  
Total Power Dissipation  
P
Si5345  
Si5344  
Si5342  
Note ,  
880  
720  
715  
1040  
850  
mW  
mW  
mW  
d
2 6  
Note ,  
3 6  
Note ,  
840  
Notes:  
1. Si5345 test configuration: 10x 3.3 V LVDS outputs enabled @156.25 MHz. Excludes power in termination resistors.  
2. Si5344 test configuration: 4x 3.3 V LVDS outputs enabled @ 156.25 MHz. Excludes power in termination resistors.  
3. Si5342 test configuration: 2x 3.3 V LVDS outputs enabled @ 156.25 MHz. Excludes power in termination resistors.  
4. Differential outputs terminated into an AC coupled 100 load.  
5. LVCMOS outputs measured into a 6 inch 50 PCB trace with 5 pF load. Measurements were made in CMOS3 mode.  
Differential Output Test Configuration  
LVCMOS Output Test Configuration  
IDDO  
IDDO  
6 inch  
0.1 uF  
50  
OUTa  
OUT  
50  
100  
OUTb  
OUT  
5 pF  
50  
0.1 uF  
6. Detailed power consumption for any configuration can be estimated using ClockBuilderPro when an evaluation board  
(EVB) is not available. All EVBs support detailed current measurements for any configuration.  
Preliminary Rev. 0.95  
5
Si5345/44/42  
Table 3. Input Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Standard Differential or Single-Ended - AC Coupled (IN0/IN0, IN1/IN1, IN2/IN2, IN3/IN3, FB_IN/FB_IN)  
Input Frequency Range  
Voltage Swing  
f
Differential  
10  
10  
750  
250  
MHz  
MHz  
IN_DIFF  
Single-ended/LVCMOS  
V
f < 400 MHz  
100  
3600  
mVpp_se,  
mVpp_diff  
IN  
in  
400 MHz < f < 800 MHz  
225  
3600  
mVpp_se,  
mVpp_diff  
in  
1, 2  
Slew Rate  
SR  
DC  
400  
40  
2
60  
V/µs  
%
Duty Cycle  
Capacitance  
C
pF  
IN  
Pulsed CMOS - DC Coupled (IN0, IN1, IN2, IN3)  
3
Input Frequency  
f
0.008  
–0.2  
0.49  
400  
1.6  
8
250  
0.33  
3.8  
MHz  
V
IN_PULSED_CMOS  
3
Input Voltage  
V
IL  
V
V
IH  
1, 2  
Slew Rate  
SR  
V/µs  
ns  
Minimum Pulse Width  
Input Resistance  
PW  
Pulse Input  
R
k  
IN  
REFCLK (applied to XA/XB)  
REFCLK Frequency  
f
Frequency range for best  
output jitter performance  
48  
54  
MHz  
MHz  
IN_REF  
TCXO frequency for  
SyncE  
40  
applications. Jitter perfor-  
mance may be reduced  
Input Voltage Swing  
V
365  
350  
400  
2000  
2500  
mVpp_se  
mVpp_diff  
V/µs  
IN  
1, 2  
Slew rate  
SR  
DC  
Imposed for best  
jitter performance  
Input Duty Cycle  
40  
60  
%
Notes:  
1. Imposed for jitter performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 – 0.2) x VIN_Vpp_se) / SR  
3. This mode is intended primarily for single-ended LVCMOS input clocks < 1 MHz, are dc-coupled, and have a duty cycle  
significantly less than 50%. A typical application example is a low-frequency video frame sync pulse. Since the input  
thresholds (VIL, VIH) of this buffer are non-standard (0.33 and 0.49 V, respectively) refer to the input attenuator circuit for  
dc-coupled pulsed LVCMOS in the Family Reference Manual at: www.silabs.com/Support%20Documents/  
TechnicalDocs/Si5345-44-42-RM.pdf. Otherwise, for standard LVCMOS input clocks, use the Standard Differential or  
Single-Ended ac-coupled input mode.  
4. A programmable internal divider (PREF) is available to help support REFCLK frequencies up to 200 MHz.  
6
Preliminary Rev. 0.95  
Si5345/44/42  
Table 4. Control Input Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Units  
Si5345 Control Input Pins (I2C_SEL, IN_SEL[1:0], RST, OE, A1, SCLK, A0/CS, FINC, FDEC)  
*
Input Voltage  
V
–0.1  
0.7 x V  
2
0.3 x V  
V
V
IL  
IH  
IN  
DDIO  
*
V
C
I
3.6  
DDIO  
Input Capacitance  
Input Resistance  
50  
pF  
k  
ns  
20  
L
Minimum Pulse Width  
PW  
RST, FINC and  
FDEC  
Update Rate  
T
FINC and FDEC  
1
ns  
UR  
Si5344/42 Control Input Pins (I2C_SEL, IN_SEL[1:0], RST, OE, A1, SCLK, A0/CS)  
*
Input Voltage  
V
–0.1  
0.7 x V  
2
0.3 x V  
V
V
IL  
IH  
IN  
DDIO  
*
V
C
I
3.6  
DDIO  
Input Capacitance  
Input Resistance  
50  
pF  
k  
ns  
20  
L
Minimum Pulse Width  
PW  
RST  
*Note: VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5345/44/42 Family Reference  
Manual for more details on the proper register settings.  
Preliminary Rev. 0.95  
7
Si5345/44/42  
Table 5. Differential Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Output Frequency  
Symbol  
Test Condition  
Min  
0.0001  
48  
Typ  
20  
0
Max  
712.5  
52  
Units  
MHz  
%
f
OUT  
Duty Cycle  
DC  
f < 400 MHz  
400 MHz < f < 800 MHz  
Differential Output  
45  
55  
%
Output-Output Skew  
OUT-OUT Skew  
T
100  
100  
ps  
SK  
T
Measured from the positive to  
negative output pins  
ps  
SK_OUT  
1
Output Voltage Swing  
Normal Mode  
V
V
= 3.3 V  
or  
LVDS  
350  
660  
470  
810  
550 mVpp_se  
950  
OUT  
DDO  
LVPECL  
2.5 V or 1.8 V  
Low-Power Mode  
V
V
= 3.3 V  
or  
LVDS  
300  
620  
420  
820  
530 mVpp_se  
1060  
OUT  
DDO  
2.5 V or 1.8 V  
V
= 3.3 V  
LVPECL  
DDO  
or 2.5 V  
1,2  
Common Mode Voltage  
Normal Mode or Low-Power Mode  
(100 load line-to-line)  
V
V
V
= 3.3 V  
= 2.5 V  
LVDS  
1.10  
1.90  
1.15  
1.25  
2.05  
1.25  
1.30  
2.10  
1.30  
V
CM  
DDO  
DDO  
LVPECL  
LVPECL  
LVDS  
Note:  
1. For normal and low-power modes, the amplitude and common-mode settings are programmable through register  
settings and can be stored in NVM. Each output driver can be programmed independently. The typical normal mode  
(or low-power mode) LVDS maximum is 100 mV (or 80 mV) higher than the TIA/EIA-644 maximum.  
2. Not all combinations of voltage swing and common mode voltages settings are possible. See the Si5345/44/42 Family  
Reference Manual for details.  
3. Driver output impedance depends on selected output mode (Normal, High).  
4. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO  
(1.8 V = 50 mVpp, 2.5 V/3.3 V = 100 mVpp) and noise spur amplitude measured.  
5. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor  
at 156.25 MHz. Refer to “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure  
Systems” for guidance on crosstalk optimization. Note that all active outputs must be terminated when measuring  
crosstalk.  
OUTx  
Vcm  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
Vcm  
OUTx  
8
Preliminary Rev. 0.95  
Si5345/44/42  
Table 5. Differential Clock Output Specifications (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Normal Mode  
Min  
Typ  
170  
300  
100  
Hi-Z  
Max  
240  
430  
Units  
Rise and Fall Times  
(20% to 80%)  
t /t  
ps  
R F  
Low-Power Mode  
Normal Mode  
3
Differential Output Impedance  
Z
O
Low Power Mode  
4
Power Supply Noise Rejection  
PSRR Normal Mode  
10 kHz sinusoidal noise  
–93  
–93  
–84  
–79  
dB  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Low Power Mode  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Measured spur from adjacent  
–98  
–95  
–84  
–76  
–75  
dB  
dB  
Output-output Crosstalk  
XTALK  
5
output  
Note:  
1. For normal and low-power modes, the amplitude and common-mode settings are programmable through register  
settings and can be stored in NVM. Each output driver can be programmed independently. The typical normal mode  
(or low-power mode) LVDS maximum is 100 mV (or 80 mV) higher than the TIA/EIA-644 maximum.  
2. Not all combinations of voltage swing and common mode voltages settings are possible. See the Si5345/44/42 Family  
Reference Manual for details.  
3. Driver output impedance depends on selected output mode (Normal, High).  
4. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO  
(1.8 V = 50 mVpp, 2.5 V/3.3 V = 100 mVpp) and noise spur amplitude measured.  
5. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor  
at 156.25 MHz. Refer to “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure  
Systems” for guidance on crosstalk optimization. Note that all active outputs must be terminated when measuring  
crosstalk.  
OUTx  
Vcm  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
Vcm  
OUTx  
Preliminary Rev. 0.95  
9
Si5345/44/42  
Table 6. LVCMOS Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Output Frequency  
Duty Cycle  
Symbol  
Test Condition  
Min  
0.0001  
47  
Typ  
Max  
250  
53  
Unit  
MHz  
%
f
OUT  
DC  
f
<100 MHz  
OUT  
100 MHz < f  
< 250 MHz  
44  
55  
OUT  
Output-to-Output Skew  
T
100  
ps  
V
SK  
1, 2, 3  
Output Voltage High  
V
V
= 3.3 V  
DDO  
OH  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
I
I
I
= –10 mA  
= –12 mA  
= –17 mA  
V
V
V
x
x
x
OH  
OH  
DDO  
0.85  
OH  
V
= 2.5 V  
DDO  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
I
I
= –6 mA  
V
V
OH  
OH  
OH  
DDO  
0.85  
= –8 mA  
I
= –11 mA  
V
= 1.8 V  
DDO  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
I
= –4 mA  
OH  
OH  
DDO  
0.85  
I
= –5 mA  
Notes:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer  
to the Si5345/44/42 Family Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 PCB trace. A 5 pF  
capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
DC Test Configuration  
Trace length 5 inches  
499 Ohm  
IOL/IOH  
IDDO  
50  
Zs  
OUT  
OUT  
4.7 pF  
56 Ohm  
56 Ohm  
VOL/VOH  
499 Ohm  
50  
4.7 pF  
10  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 6. LVCMOS Clock Output Specifications (Continued)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1, 2, 3  
Output Voltage Low  
V
V
= 3.3 V  
DDO  
OL  
OUTx_CMOS_DRV=1  
I
I
I
= 10 mA  
V
V
OL  
OL  
OL  
DDO  
x 0.15  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
= 12 mA  
= 17 mA  
V
= 2.5 V  
DDO  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
= 6 mA  
= 8 mA  
= 11 mA  
V
V
OL  
OL  
OL  
DDO  
x 0.15  
I
I
V
= 1.8 V  
DDO  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
I
= 4 mA  
= 5 mA  
V
DDO  
x 0.15  
V
OL  
OL  
I
LVCMOS Rise and Fall  
Times  
tr/tf  
VDDO = 3.3V  
420  
475  
525  
550  
625  
705  
ps  
ps  
ps  
3
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
Notes:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer  
to the Si5345/44/42 Family Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 PCB trace. A 5 pF  
capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
DC Test Configuration  
Trace length 5 inches  
499 Ohm  
IOL/IOH  
IDDO  
50  
Zs  
OUT  
OUT  
4.7 pF  
56 Ohm  
56 Ohm  
VOL/VOH  
499 Ohm  
50  
4.7 pF  
Preliminary Rev. 0.95  
11  
Si5345/44/42  
Table 7. Output Status Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Si5345 Status Output Pins (LOL, INTR)  
*
Output Voltage  
V
I
I
I
I
= –2 mA  
= 2 mA  
V
V
x 0.75  
V
V
OH  
OH  
DDIO  
*
V
I
V
V
x 0.15  
OL  
OL  
DDIO  
Si5344 Status Output Pins (INTR)  
Output Voltage  
*
V
= –2 mA  
= 2 mA  
x 0.75  
V
V
OH  
OH  
DDIO  
*
V
I
x 0.15  
OL  
OL  
DDIO  
Si5344 Status Output Pins (LOL)  
Output Voltage  
V
= –2 mA  
= 2 mA  
V x 0.85  
DDS  
V
V
OH  
OH  
V
I
V
x 0.15  
DDS  
OL  
OL  
Si5342 Status Output Pins (INTR)  
Output Voltage  
1
V
= –2 mA  
V
x 0.75  
V
V
OH  
OH  
DDIO  
*
VOL  
Si5342 Status Output Pins (LOL, LOS0, LOS1, LOS2, LOS3, LOS_XAXB)  
IOL = 2 mA  
V
x 0.15  
DDIO  
Output Voltage  
V
I
= –2 mA  
= 2 mA  
V x 0.85  
DDS  
V
V
OH  
OH  
V
I
V
x 0.15  
DDS  
OL  
OL  
*Note: VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5345/44/42 Family Reference  
Manual for more details on the proper register settings.  
12  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 8. Performance Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
PLL Loop Bandwidth Pro-  
gramming Range  
f
0.1  
4000  
Hz  
BW  
2
Initial Start-Up Time  
t
Time from power-up to when the  
30  
45  
ms  
START  
device generates free-running clocks  
PLL Lock Time  
t
With Fastlock enabled  
50  
0.28  
71.8  
±9.14  
60  
15  
ms  
ps  
ACQ  
Output Delay Adjustment  
t
f
= 14 GHz  
VCO  
DELAY_frac  
t
ps  
DELAY_int  
t
ns  
ms  
RANGE  
POR to Serial Interface  
t
RDY  
1
Ready  
Jitter Peaking  
J
Measured with a frequency plan run-  
ning a 25 MHz input, 25 MHz output,  
and a Loop Bandwidth of 4 Hz  
0.1  
dB  
PK  
Jitter Tolerance  
J
Compliant with G.8262 Options 1 and  
2 Carrier Frequency = 10.3125 GHz  
Jitter Modulation  
3180  
UI pk-pk  
TOL  
Frequency = 10 Hz  
Maximum Phase Tran-  
sient During a Hitless  
Switch  
t
Only valid for a single switch between  
two input clocks running at the same  
frequency  
2.8  
ns  
SWITCH  
Pull-in Range  
500  
2
ppm  
ns  
P
Input-to-Output Delay  
Variation  
t
IODELAY  
t
In Zero Delay Mode. Measured as the  
time delay difference between the ref-  
erence input and the feedback input,  
with both clocks running at 10 MHz  
and having the same slew rate. The  
rise time of the reference input should  
not exceed 200 ps in order to guaran-  
tee this spec.  
110  
ps  
ZDELAY  
3
RMS Phase Jitter  
J
Integer Mode  
12 kHz to 20 MHz  
0.090 0.140 ps RMS  
0.130 0.165 ps RMS  
GEN  
Fractional Mode  
12 kHz to 20 MHz  
Notes:  
1. Measured as time from valid VDD/VDD33 rails (90% of their value) to when the serial interface is ready to respond to  
commands. Measured in SPI 4-wire mode, SCLK = 10 MHz.  
2. Actual loop bandwidth might be lower; please refer to CBPro for actual value for your frequency plan.  
3. Jitter generation test conditions: fIN = 19.44 MHz, fOUT = 156.25 MHz LVPECL, loop bandwidth = 100 Hz.  
Preliminary Rev. 0.95  
13  
Si5345/44/42  
Table 9. I2C Timing Specifications (SCL,SDA)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Fast Mode  
400 kbps  
Max  
Units  
Standard Mode  
100 kbps  
SCL Clock Frequency  
SMBus Timeout  
f
0
100  
35  
0
400  
35  
kHz  
ms  
SCL  
When Timeout is  
Enabled  
25  
25  
Hold time (repeated)  
START condition  
t
t
4.0  
4.7  
4.0  
4.7  
0.6  
1.3  
0.6  
0.6  
µs  
µs  
µs  
µs  
HD:STA  
Low period of the SCL  
clock  
t
LOW  
HIGH period of the SCL  
clock  
t
HIGH  
Set-up time for a  
repeated START condi-  
tion  
SU:STA  
Data hold time  
t
100  
250  
100  
100  
20  
ns  
ns  
ns  
HD:DAT  
Data set-up time  
t
SU:DAT  
Rise time of both SDA  
and SCL signals  
t
1000  
300  
r
Fall time of both SDA  
and SCL signals  
t
300  
300  
ns  
µs  
µs  
f
Set-up time for STOP  
condition  
t
t
4.0  
4.7  
0.6  
1.3  
SU:STO  
Bus free time between a  
STOP and START con-  
dition  
t
BUF  
Data valid time  
3.45  
3.45  
0.9  
0.9  
µs  
µs  
VD:DAT  
VD:ACK  
Data valid acknowledge  
time  
t
14  
Preliminary Rev. 0.95  
Si5345/44/42  
Figure 2. I2C Serial Port Timing Standard and Fast Modes  
Preliminary Rev. 0.95  
15  
Si5345/44/42  
Table 10. SPI Timing Specifications (4-Wire)  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, TA = –40 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol  
Min  
Typ  
Max  
20  
Units  
MHz  
%
f
SPI  
SCLK Duty Cycle  
T
40  
60  
DC  
SCLK Rise & Fall Time  
Tr/Tf  
10  
ns  
SCLK High & Low Time  
T
HL  
SCLK Period  
T
50  
12.5  
12.5  
12.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
Delay Time, SCLK Fall to SDO Active  
Delay Time, SCLK Fall to SDO  
Delay Time, CS Rise to SDO Tri-State  
Setup Time, CS to SCLK  
T
T
T
D1  
D2  
D3  
T
25  
SU1  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CS)  
T
25  
H1  
T
12.5  
12.5  
50  
SU2  
T
H2  
T
CS  
TSU1  
TD1  
TC  
SCLK  
CS  
TH1  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 3. 4-Wire SPI Serial Interface Timing  
16  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 11. SPI Timing Specifications (3-Wire)  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, TA = –40 to 85 °C)  
Parameter  
SCLK Frequency  
Symbol  
Min  
Typ  
Max  
20  
Units  
MHz  
%
f
SPI  
SCLK Duty Cycle  
T
40  
60  
DC  
SCLK Rise & Fall Time  
Tr/Tf  
10  
ns  
SCLK High & Low Time  
T
HL  
SCLK Period  
T
50  
12.5  
12.5  
12.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CS Rise to SDIO Tri-State  
Setup Time, CS to SCLK  
T
T
T
D1  
D2  
D3  
T
25  
SU1  
Hold Time, CS to SCLK Rise  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CS)  
T
25  
H1  
T
12.5  
12.5  
50  
SU2  
T
H2  
T
CS  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CS  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 4. 3-Wire SPI Serial Interface Timing  
Preliminary Rev. 0.95  
17  
Si5345/44/42  
Table 12. Crystal Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Crystal Frequency Range  
f
Frequency range for  
48  
54  
MHz  
XTAL_48-54  
best jitter performance  
Load Capacitance  
C
8
2
pF  
pF  
L_48-54  
O_48-54  
L_48-54  
Shunt Capacitance  
C
d
Crystal Drive Level  
200  
µW  
Equivalent Series Resistance  
r
Refer to the Si5345/44/42 Family Reference Manual to determine  
ESR.  
ESR_48-54  
Crystal Frequency Range  
Load Capacitance  
f
25  
8
MHz  
pF  
XTAL_25  
C
L_25  
O_25  
L_25  
Shunt Capacitance  
C
d
3
pF  
Crystal Drive Level  
200  
µW  
rESR_25  
Equivalent Series Resistance  
Refer to the Si5345/44/42 Family Reference Manual to determine  
ESR.  
Notes:  
1. The Si5345/44/42 is designed to work with crystals that meet the specifications in Table 12.  
2. Refer to the Si5345/44/42 Family Reference Manual for recommended 48 to 54 MHz crystals. Crystal frequencies from  
24.97 to 54.06 MHz are supported, but jitter performance is best from 48 to 54 MHz.  
18  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 13. Thermal Characteristics  
Parameter  
*
Symbol  
Value  
Units  
Test Condition  
Si5345-64QFN  
Thermal Resistance  
Junction to Ambient  
Still Air  
22  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
9.5  
Thermal Resistance  
Junction to Case  
JC  
Thermal Resistance  
Junction to Board  
9.4  
9.3  
0.2  
JB  
JB  
Thermal Resistance  
JT  
Junction to Top Center  
Si5344, Si5342-44QFN  
Thermal Resistance  
Junction to Ambient  
Still Air  
22.3  
19.4  
18.4  
10.9  
°C/W  
JA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Thermal Resistance  
Junction to Case  
JC  
Thermal Resistance  
Junction to Board  
9.3  
9.2  
JB  
JB  
Thermal Resistance  
0.23  
JT  
Junction to Top Center  
*Note: Based on PCB Dimension: 3” x 4.5”, PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4.  
Preliminary Rev. 0.95  
19  
Si5345/44/42  
Table 14. Absolute Maximum Ratings1,2,3,4  
Parameter  
Storage Temperature Range  
DC Supply Voltage  
Symbol  
Test Condition  
Value  
Units  
°C  
V
T
–55 to +150  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
–0.5 to 3.8  
STG  
V
DD  
V
V
DDA  
DDO  
V
V
V
V
DDS  
Input Voltage Range  
V
V
IN0 – IN3/FB_IN  
V
I1  
I2  
IN_SEL1, IN_SEL0, RST,  
OE, I2C_SEL, FINC, FDEC,  
SDI, SCLK, A0/CS, A1  
V
V
XA/XB  
–0.5 to 2.7  
V
I3  
Latch-up Tolerance  
LU  
JESD78 Compliant  
ESD Tolerance  
HBM  
100 pF, 1.5 k  
2.0  
kV  
Storage Temperature Range  
Junction Temperature  
Soldering Temperature  
T
–55 to 150  
–55 to 150  
260  
°C  
°C  
°C  
STG  
T
JCT  
T
PEAK  
TP  
4
(Pb-free profile)  
s
Soldering Temperature Time at T  
20–40  
PEAK  
4
(Pb-free profile)  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. 64-QFN and 44-QFN packages are RoHS-6 compliant.  
3. For more packaging information, including MSL rating, go to www.silabs.com/support/quality/pages/  
RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
20  
Preliminary Rev. 0.95  
Si5345/44/42  
3. Typical Operating Characteristics  
The phase noise plots below were taken under the following conditions: V = 1.8 V, V  
= 3.3 V, V = 3.3 V,  
DDS  
DD  
DDA  
1.8 V, and T = 25 °C.  
A
Figure 5. Input = 25 MHz; Output = 625 MHz, 2.5 V LVDS  
Figure 6. Input = 25 MHz; Output = 156.25 MHz, 2.5 V LVDS  
Preliminary Rev. 0.95  
21  
Si5345/44/42  
Figure 7. Input = 25 MHz; Output = 155.52 MHz, 2.5 V LVDS  
22  
Preliminary Rev. 0.95  
Si5345/44/42  
4. Detailed Block Diagrams  
48-54MHz XTAL  
or REFCLK  
3
XA  
XB  
Si5345  
OSC  
IN_SEL[1:0]  
÷PREF  
IN0  
IN0  
IN1  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
P1d  
PD LPF  
P2n  
÷
IN2  
P2d  
IN2  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
IN3/FB_IN  
P3d  
Feedback  
VDDO0  
OUT0  
OUT0  
Multi  
Synth  
N0n  
÷
t0  
t1  
t2  
t3  
t4  
÷R0  
N0d  
VDDO1  
OUT1  
OUT1  
Multi  
Synth  
N1n  
÷
N1d  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
VDDO2  
OUT2  
OUT2  
Multi  
Synth  
N2n  
÷
N2d  
Multi  
Synth  
N3n  
÷
VDDO3  
OUT3  
OUT3  
N3d  
Multi  
Synth  
N4n  
÷
VDDO4  
OUT4  
OUT4  
N4d  
VDDO5  
OUT5  
OUT5  
I2C_SEL  
VDDO6  
OUT6  
OUT6  
SDA/SDIO  
A1/SDO  
SCLK  
SPI/  
NVM  
I2C  
VDDO7  
OUT7  
OUT7  
A0/CS  
VDDO8  
OUT8  
OUT8  
INTR  
LOL  
Status  
Monitors  
VDDO9  
OUT9  
OUT9  
Figure 8. Si5345 Block Diagram  
Preliminary Rev. 0.95  
23  
Si5345/44/42  
48-54MHz XTAL  
or REFCLK  
2
4
XA  
XB  
Si5344  
OSC  
IN_SEL[1:0]  
P
÷
REF  
IN0  
IN0  
IN1  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
P1d  
PD LPF  
P2n  
÷
IN2  
P2d  
IN2  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
IN3/FB_IN  
P3d  
Feedback  
I2C_SEL  
SDA/SDIO  
A1/SDO  
SCLK  
VDDO0  
OUT0  
OUT0  
SPI/  
I2C  
Multi  
Synth  
N0n  
N0d  
÷
÷
÷
÷
t0  
t1  
t2  
t3  
÷R0  
A0/CS  
VDDO1  
OUT1  
OUT1  
Multi  
Synth  
N1n  
N1d  
÷R1  
÷R2  
÷R3  
NVM  
VDDO2  
OUT2  
OUT2  
Multi  
Synth  
N2n  
N2d  
Multi  
Synth  
N3n  
N3d  
VDDO3  
OUT3  
OUT3  
Status  
Monitors  
Figure 9. Si5344 Block Diagram  
24  
Preliminary Rev. 0.95  
Si5345/44/42  
48-54MHz XTAL  
or REFCLK  
2
4
3
XA  
XB  
Si5342  
OSC  
IN_SEL[1:0]  
P
÷
REF  
IN0  
IN0  
IN1  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
P1d  
PD LPF  
P2n  
÷
IN2  
IN2  
P2d  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
IN3/FB_IN  
P3d  
Feedback  
I2C_SEL  
VDDO0  
OUT0  
OUT0  
Multi  
Synth  
N0n  
N0d  
SDA/SDIO  
A1/SDO  
SCLK  
÷
÷
t0  
t1  
SPI/  
I2C  
÷R0  
÷R1  
VDDO1  
OUT1  
OUT1  
Multi  
Synth  
N1n  
N1d  
A0/CS  
NVM  
Status  
Monitors  
Figure 10. Si5342 Block Diagram  
Preliminary Rev. 0.95  
25  
Si5345/44/42  
5. Functional Description  
The Si5345’s internal DSPLL provides jitter attenuation and any-frequency multiplication of the selected input  
frequency. Fractional input dividers (P) allow the DSPLL to perform hitless switching between input clocks (INx)  
that are fractionally related. Input switching is controlled manually or automatically using an internal state machine.  
The oscillator circuit (OSC) provides a frequency reference which determines output frequency stability and  
accuracy while the device is in free-run or holdover mode. The high-performance MultiSynth dividers (N) generate  
integer or fractionally related output frequencies for the output stage. A crosspoint switch connects any of the  
MultiSynth generated frequencies to any of the outputs. Additional integer division (R) determines the final output  
frequency.  
5.1. Frequency Configuration  
The frequency configuration of the DSPLL is programmable through the serial interface and can also be stored in  
non-volatile memory. The combination of fractional input dividers (P /P ), fractional frequency multiplication (M /  
n
d
n
M ), fractional output MultiSynth division (N /N ), and integer output division (R ) allows the generation of virtually  
d
n
d
n
any output frequency on any of the outputs. All divider values for a specific frequency plan are easily determined  
using the ClockBuilder Pro utility.  
5.2. DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL  
loop bandwidth settings in the range of 0.1 Hz to 4 kHz are available for selection. Since the loop bandwidth is  
controlled digitally, the DSPLL will always remain stable with less than 0.1 dB of peaking regardless of the loop  
bandwidth selection.  
5.2.1. Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g. 0.1 Hz) will generally lengthen the lock acquisition time. The fastlock  
feature allows setting a temporary Fastlock Loop Bandwidth that is used during the lock acquisition process.  
Higher fastlock loop bandwidth settings will enable the DSPLLs to lock faster. Fastlock Loop Bandwidth settings of  
in the range of 100 Hz to 4 kHz are available for selection. The DSPLL will revert to its normal loop bandwidth once  
lock acquisition has completed.  
5.3. Modes of Operation  
Once initialization is complete the DSPLL operates in one of four modes: Free-run Mode, Lock Acquisition Mode,  
Locked Mode, or Holdover Mode. A state diagram showing the modes of operation is shown in Figure 11. The  
following sections describe each of these modes in greater detail.  
5.3.1. Initialization and Reset  
Once power is applied, the device begins an initialization period where it downloads default register values and  
configuration data from NVM and performs other initialization tasks. Communicating with the device through the  
serial interface is possible once this initialization period is complete. No clocks will be generated until the  
initialization is complete. There are two types of resets available. A hard reset is functionally similar to a device  
power-up. All registers will be restored to the values stored in NVM, and all circuits including the serial interface will  
be restored to their initial state. A hard reset is initiated using the RST pin or by asserting the hard reset bit. A soft  
reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
26  
Preliminary Rev. 0.95  
Si5345/44/42  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
An input is qualified  
and available for  
selection  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
Holdover  
Mode  
No  
Selected input  
clock fails  
Is holdover  
history valid?  
Locked  
Mode  
Figure 11. Modes of Operation  
5.3.2. Freerun Mode  
The DSPLL will automatically enter freerun mode once power is applied to the device and initialization is complete.  
The frequency accuracy of the generated output clocks in freerun mode is entirely dependent on the frequency  
accuracy of the external crystal or reference clock on the XA/XB pins. For example, if the crystal frequency is  
±100 ppm, then all the output clocks will be generated at their configured frequency ±100 ppm in freerun mode.  
Any drift of the crystal frequency will be tracked at the output clock frequencies. A TCXO or OCXO is  
recommended for applications that need better frequency accuracy and stability while in freerun or holdover  
modes.  
5.3.3. Lock Acquisition Mode  
The device monitors all inputs for a valid clock. If at least one valid clock is available for synchronization, the  
DSPLL will automatically start the lock acquisition process. If the fast lock feature is enabled, the DSPLL will  
acquire lock using the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Bandwidth setting  
when lock acquisition is complete. During lock acquisition the outputs will generate a clock that follows the VCO  
frequency change as it pulls-in to the input clock frequency.  
5.3.4. Locked Mode  
Once locked, the DSPLL will generate output clocks that are both frequency and phase locked to their selected  
input clocks. At this point any XTAL frequency drift will not affect the output frequency. A loss of lock pin (LOL) and  
status bit indicate when lock is achieved. See section 5.7.4 for more details on the operation of the loss of lock  
circuit.  
5.3.5. Holdover Mode  
The DSPLL will automatically enter holdover mode when the selected input clock becomes invalid and no other  
valid input clocks are available for selection. The DSPLL uses an averaged input clock frequency as its final  
holdover frequency to minimize the disturbance of the output clock phase and frequency when an input clock  
suddenly fails. The holdover circuit for the DSPLL stores up to 120 seconds of historical frequency data while  
locked to a valid clock input. The final averaged holdover frequency value is calculated from a programmable  
window within the stored historical frequency data. Both the window size and the delay are programmable as  
shown in Figure 12. The window size determines the amount of holdover frequency averaging. The delay value  
allows ignoring frequency data that may be corrupt just before the input clock failure.  
Preliminary Rev. 0.95  
27  
Si5345/44/42  
Clock Failure and  
Entry into Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window  
Programmable delay  
used to determine the final holdover value  
120s  
0s  
30ms, 60ms, 1s,10s, 30s, 60s  
1s,10s, 30s, 60s  
Figure 12. Programmable Holdover Window  
When entering holdover, the DSPLL will pull its output clock frequency to the calculated averaged holdover  
frequency. While in holdover, the output frequency drift is entirely dependent on the external crystal or external  
reference clock connected to the XA/XB pins. If the clock input becomes valid, the DSPLL will automatically exit the  
holdover mode and re-acquire lock to the new input clock. This process involves pulling the output clock frequency  
to achieve frequency and phase lock with the input clock. This pull-in process is glitchless and its rate is controlled  
by the DSPLL or the Fastlock bandwidth.  
5.4. External Reference (XA/XB)  
An external crystal (XTAL) is used in combination with the internal oscillator (OSC) to produce an ultra low jitter  
reference clock for the DSPLL and for providing a stable reference for the free-run and holdover modes. A  
simplified diagram is shown in Figure 13. The device includes internal XTAL loading capacitors which eliminates  
the need for external capacitors and also has the benefit of reduced noise coupling from external sources. Refer to  
Table 12 for crystal specifications. A crystal in the range of 48 MHz to 54 MHz is recommended for best jitter  
performance. Frequency offsets due to C mismatch can be adjusted using the frequency adjustment feature  
L
which allows frequency adjustments of ±200 ppm. The Si5345/44/42 Family Reference Manual provides additional  
information on PCB layout recommendations for the crystal to ensure optimum jitter performance.  
The device can also accommodate an external reference clock (REFCLK) instead of a crystal. Selection between  
the external XTAL or REFCLK is controlled by register configuration. The internal crystal loading capacitors (C )  
L
are disabled in this mode. Refer to Table 3 for REFCLK requirements when using this mode. A P  
divider is  
REF  
available to accommodate external clock frequencies higher than 54 MHz. Frequencies in the range of 48 MHz to  
54 MHz will achieve the best output jitter performance.  
5.5. Digitally Controlled Oscillator (DCO) Mode  
The output MultiSynths support a DCO mode where their output frequencies are adjustable in pre-defined steps  
defined by frequency step words (FSW). The frequency adjustments are controlled through the serial interface or  
by pin control using frequency increment (FINC) or decrement (FDEC). A FINC will add the frequency step word to  
the DSPLL output frequency, while a FDEC will decrement it. Any number of MultiSynths can be can be updated at  
once or independently controlled. The DCO mode is available when the DSPLL is operating in either free-run or  
locked mode.  
28  
Preliminary Rev. 0.95  
Si5345/44/42  
48-54MHz  
XO  
48-54MHz  
XO  
48-54MHz  
XTAL  
100  
XA  
XB  
XA  
XB  
XA  
XB  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
OSC  
OSC  
OSC  
P
÷
REF  
P
P
÷
REF  
÷
REF  
Si5345/44/42  
Si5345/44/42  
Si5345/44/42  
Crystal Resonator  
Connection  
Differential XO  
Connection  
Single-ended XO  
Connection  
Figure 13. Crystal Resonator and External Reference Clock Connection Options  
5.6. Inputs (IN0, IN1, IN2, IN3)  
There are four inputs that can be used to synchronize the DSPLL. The inputs accept both differential and single-  
ended clocks. Input selection can be manual (pin or register controlled) or automatic with user definable priorities.  
5.6.1. Manual Input Switching (IN0, IN1, IN2, IN3)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit  
determines input selection as pin selectable or register selectable. The IN_SEL pins are selected by default. If  
there is no clock signal on the selected input, the device will automatically enter free-run or holdover mode. When  
the zero delay mode is enabled, IN3 becomes the feedback input (FB_IN) and is not available for selection as a  
clock input.  
Table 15. Manual Input Selection Using IN_SEL[1:0] Pins  
Selected Input  
IN_SEL[1:0]  
Zero Delay  
Zero Delay  
Mode Disabled  
Mode Enabled  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN0  
IN1  
IN2  
Reserved  
Preliminary Rev. 0.95  
29  
Si5345/44/42  
5.6.2. Automatic Input Selection (IN0, IN1, IN2, IN3)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic  
mode, the selection criteria is based on input clock qualification, input priority, and the revertive option. Only input  
clocks that are valid can be selected by the automatic clock selection state machine. If there are no valid input  
clocks available the DSPLL will enter the holdover mode. With revertive switching enabled, the highest priority  
input with a valid input clock is always selected. If an input with a higher priority becomes valid then an automatic  
switchover to that input will be initiated. With non-revertive switching, the active input will always remain selected  
while it is valid. If it becomes invalid an automatic switchover to a valid input with the highest priority will be  
initiated.  
5.6.3. Hitless Input Switching  
Hitless switching is a feature that prevents a phase transient from propagating to the output when switching  
between two clock inputs that have a fixed phase relationship. A hitless switch can only occur when the two input  
frequencies are frequency locked meaning that they have to be exactly at the same frequency, or at a fractional  
frequency relationship to each other. When hitless switching is enabled, the DSPLL simply absorbs the phase  
difference between the two input clocks during a input switch. When disabled, the phase difference between the  
two inputs is propagated to the output at a rate determined by the DSPLL Loop Bandwidth. The hitless switching  
feature supports clock frequencies down to the minimum input frequency of 8 kHz.  
5.6.4. Glitchless Input Switching  
The DSPLL has the ability of switching between two input clock frequencies that are up to ±500 ppm apart. The  
DSPLL will pull-in to the new frequency using the DSPLL Loop Bandwidth or using the Fastlock Loop Bandwidth if  
enabled. The loss of lock (LOL) indicator will assert while the DSPLL is pulling-in to the new clock frequency. There  
will be no output runt pulses generated at the output during the transition.  
5.6.5. Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination  
schemes are shown in Figure 14. Differential signals must be ac-coupled, while single-ended LVCMOS signals can  
be ac or dc-coupled. Unused inputs can be disabled and left unconnected when not in use.  
30  
Preliminary Rev. 0.95  
Si5345/44/42  
Standard AC Coupled Differential LVDS  
Si5345/44/42  
Standard  
50  
INx  
INx  
100  
3.3V, 2.5V  
LVDS or CML  
50  
Pulsed CMOS  
Standard AC Coupled Differential LVPECL  
Si5345/44/42  
Standard  
50  
INx  
INx  
100  
50  
3.3V, 2.5V  
LVPECL  
Pulsed CMOS  
Standard AC Coupled Single Ended  
Si5345/44/42  
Standard  
50  
INx  
INx  
3.3V, 2.5V, 1.8V  
LVCMOS  
Pulsed CMOS  
Pulsed CMOS DC Coupled Single Ended  
R1  
Si5345/44/42  
Standard  
50  
INx  
INx  
3.3V, 2.5V, 1.8V  
LVCMOS  
R2  
VDD  
1.8V  
2.5V  
3.3V  
R1 ()  
549  
680  
R2 ()  
Pulsed CMOS  
442  
324  
243  
750  
Figure 14. Termination of Differential and LVCMOS Input Signals  
Preliminary Rev. 0.95  
31  
Si5345/44/42  
5.6.6. Synchronizing to Gapped Input Clocks  
The DSPLL supports locking to an input clock that has missing periods. This is also referred to as a gapped clock.  
The purpose of gapped clocking is to modulate the frequency of a periodic clock by selectively removing some of  
its cycles. Gapping a clock severely increases its jitter so a phase-locked loop with high jitter tolerance and low  
loop bandwidth is required to produce a low-jitter periodic clock. The resulting output will be a periodic non-gapped  
clock with an average frequency of the input with its missing cycles. For example, an input clock of 100 MHz with  
one cycle removed every 10 cycles will result in a 90 MHz periodic non-gapped output clock. This is shown in  
Figure 15. For more information on gapped clocks, see “AN561: Introduction to Gapped Clocks and PLLs”.  
Gapped Input Clock  
Periodic Output Clock  
100 MHz clock  
1 missing period every 10  
90 MHz non-gapped clock  
100 ns  
100 ns  
DSPLL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
Period Removed  
10 ns  
11.11111... ns  
Figure 15. Generating an Averaged Clock Output Frequency from a Gapped Clock Input  
A valid gapped clock input must have a minimum frequency of 10 MHz with a maximum of two missing cycles out  
of every 8. Locking to a gapped clock will not trigger the LOS, OOF, and LOL fault monitors. Clock switching  
between gapped clocks may violate the hitless switching specification in Table 8 when the switch occurs during a  
gap in either input clock.  
5.7. Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF)  
as shown in Figure 16. The reference at the XA/XB pins is also monitored for LOS since it provides a critical  
reference clock for the DSPLL. There is also a Loss Of Lock (LOL) indicator which is asserted when the DSPLL  
loses synchronization.  
XA XB  
Si5345/44/42  
OSC  
IN0  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
DSPLL  
IN1  
IN1  
Precision  
Fast  
LOL  
PD LPF  
÷M  
Precision  
Fast  
IN2  
IN2  
IN3/FB_IN  
IN3/FB_IN  
Precision  
Fast  
Figure 16. Si5345/44/42 Fault Monitors  
32  
Preliminary Rev. 0.95  
Si5345/44/42  
5.7.1. Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing  
clock edges. Each of the input LOS circuits has its own programmable sensitivity which allows ignoring missing  
edges or intermittent errors. Loss of signal sensitivity is configurable using the ClockBuilder Pro utility.  
The LOS status for each of the monitors is accessible by reading a status register. The live LOS register always  
displays the current LOS state and a sticky register always stays asserted until cleared. An option to disable any of  
the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 17. LOS Status Indicators  
5.7.2. XA/XB LOS Detection  
A LOS monitor is available to ensure that the external crystal or reference clock is valid. By default the output  
clocks are disabled when XAXB_LOS is detected. This feature can be disabled such that the device will continue to  
produce output clocks when XAXB_LOS is detected.  
5.7.3. OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its  
“0_ppm” reference.  
This OOF reference can be selected as either:  
XA/XB pins  
Any input clock (IN0, IN1, IN2, IN3)  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as  
shown in Figure 18. An option to disable either monitor is also available. The live OOF register always displays the  
current OOF state, and its sticky register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 18. OOF Status Indicator  
5.7.3.1. Precision OOF Monitor  
The precision OOF monitor circuit measures the frequency of all input clocks to within ±1 ppm accuracy with  
respect to the selected OOF frequency reference. A valid input clock frequency is one that remains within the OOF  
frequency range which is register configurable from ±2 ppm to ±500 ppm in steps of 2 ppm.  
A configurable amount of hysteresis is also available to prevent the OOF status from toggling at the failure  
boundary. An example is shown in Figure 19. In this case the OOF monitor is configured with a valid frequency  
range of ±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0 - IN3) as the 0 ppm OOF  
reference instead of the XA/XB pins is available. This option is register configurable.  
Preliminary Rev. 0.95  
33  
Si5345/44/42  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF  
Reference  
Figure 19. Example of Precise OOF Monitor Assertion and De-assertion Triggers  
5.7.3.2. Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1 ppm of frequency measurement accuracy, it must measure  
the monitored input clock frequencies over a relatively long period of time. This may be too slow to detect an input  
clock that is quickly ramping in frequency. An additional level of OOF monitoring called the Fast OOF monitor runs  
in parallel with the precision OOF monitors to quickly detect a ramping input frequency. The Fast OOF monitor  
asserts OOF on an input clock frequency that has changed by greater than ±4000 ppm.  
5.7.4. LOL Detection  
The Loss Of Lock (LOL) monitor asserts a LOL register bit when the DSPLL has lost synchronization with its  
selected input clock.  
There is also a dedicated loss of lock pin that reflects the loss of lock condition. The LOL monitor functions by  
measuring the frequency difference between the input and feedback clocks at the phase detector. There are two  
LOL frequency monitors, one that sets the LOL indicator (LOL Set) and another that clears the indicator (LOL  
Clear). An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to  
completely lock to the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering  
as the DSPLL completes lock acquisition. A block diagram of the LOL monitor is shown in Figure 20. The live LOL  
register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOL  
pin reflects the current state of the LOL monitor.  
LOL Monitor  
Sticky  
LOL  
Clear  
Timer  
LOL  
LOL  
Set  
Live  
LOL  
DSPLL  
fIN  
PD LPF  
Feedback  
Clock  
÷M  
Si5345/44/42  
Figure 20. LOL Status Indicators  
34  
Preliminary Rev. 0.95  
Si5345/44/42  
The LOL frequency monitors have an adjustable sensitivity which is register configurable from 0.2 ppm to  
20000 ppm. Having two separate frequency monitors allows for hysteresis to help prevent chattering of LOL status.  
An example configuration where LOCK is indicated when there is less than 0.2 ppm frequency difference at the  
inputs of the phase detector and LOL is indicated when there’s more than 2 ppm frequency difference is shown in  
Figure 21.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
LOL  
Hysteresis  
Lost Lock  
LOCKED  
0
0.2  
2
20,000  
Phase Detector Frequency Difference (ppm)  
Figure 21. LOL Set and Clear Thresholds  
Note: In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these signaling  
standards.  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to  
completely lock to the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering  
as the DSPLL completes lock acquisition. The configurable delay value depends on frequency configuration and  
loop bandwidth of the DSPLL and is automatically calculated using the ClockBuilder Pro utility.  
5.7.5. Interrupt pin (INTR)  
An interrupt pin (INTR) indicates a change in state of the status indicators (LOS, OOF, LOL, HOLD). Any of the  
status indicators are maskable to prevent assertion of the interrupt pin. The state of the INTR pin is reset by  
clearing the status register that caused the interrupt.  
Preliminary Rev. 0.95  
35  
Si5345/44/42  
5.8. Outputs  
Each driver has a configurable voltage swing and common mode voltage covering a wide variety of differential  
signal formats. In addition to supporting differential signals, any of the outputs can be configured as single-ended  
LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 20 single-ended outputs, or any combination of differential and  
single-ended outputs.  
5.8.1. Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the MultiSynths as shown in Figure 22. The  
crosspoint configuration is programmable and can be stored in NVM so that the desired output configuration is  
ready at power up.  
VDDO0  
OUT0  
OUT0  
Multi  
Synth  
N0n  
N0d  
÷
÷
÷
÷
÷
t0  
t1  
t2  
t3  
t4  
÷R0  
VDDO1  
OUT1  
OUT1  
Multi  
Synth  
N1n  
N1d  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
VDDO2  
OUT2  
OUT2  
Multi  
Synth  
N2n  
N2d  
Multi  
Synth  
N3n  
N3d  
VDDO3  
OUT3  
OUT3  
Multi  
Synth  
N4n  
N4d  
VDDO4  
OUT4  
OUT4  
VDDO5  
OUT5  
OUT5  
VDDO6  
OUT6  
OUT6  
VDDO7  
OUT7  
OUT7  
VDDO8  
OUT8  
OUT8  
VDDO9  
OUT9  
OUT9  
Figure 22. MultiSynth to Output Driver Crosspoint  
5.8.2. Output Signal Format  
The differential output swing and common mode voltage are both fully programmable covering a wide variety of  
signal formats including LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be  
configured as LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 20 single-ended outputs, or any combination  
of differential and single-ended outputs.  
36  
Preliminary Rev. 0.95  
Si5345/44/42  
5.8.3. Differential Output Terminations  
Note: In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these signaling  
standards.  
The differential output drivers support both ac coupled and dc coupled terminations as shown in Figure 23.  
DC Coupled LVDS/LVPECL  
VDDO = 3.3V, 2.5V, 1.8V  
50  
OUTx  
100  
OUTx  
50  
Si5345/44/42  
AC Coupled LVPECL  
AC Coupled LVDS/LVPECL  
VDD – 1.3V  
VDDO = 3.3V, 2.5V, 1.8V  
VDDO = 3.3V, 2.5V  
50  
50  
50  
50  
50  
50  
OUTx  
OUTx  
OUTx  
OUTx  
100  
Internally  
self-biased  
Si5345/44/42  
Si5345/44/42  
Figure 23. Supported Differential Output Terminations  
5.8.4. LVCMOS Output Terminations  
LVCMOS outputs are dc-coupled as shown in Figure 24.  
3.3V, 2.5V, 1.8V  
LVCMOS  
VDDO = 3.3V, 2.5V, 1.8V  
50  
50  
Rs  
Rs  
OUTx  
OUTx  
Si5345/44/42  
Figure 24. LVCMOS Output Terminations  
5.8.5. Output Signal Format  
The differential output swing and common mode voltage are both fully programmable and compatible with a wide  
variety of signal formats, including LVDS and LVPECL. In addition to supporting differential signals, any of the  
outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 20 single-ended outputs or  
any combination of differential and single-ended outputs.  
Preliminary Rev. 0.95  
37  
Si5345/44/42  
5.8.6. Differential Output Swing Modes  
There are two selectable differential output swing modes: Normal and high swing. Each output can support a  
unique mode.  
Differential Normal Swing Mode: When an output driver is configured in normal swing mode, its output  
swing is selectable as one of 7 settings ranging from 200 mVpp_se to 800 mVpp_se in increments of  
100 mV. The output impedance in the Normal Swing Mode is 100differentialAny of the terminations  
shown in Figure 23 is supported in this mode.  
Differential Low Power Mode: When an output driver is configured in low power mode, its output swing is  
configurable as one of 7 settings ranging from 400 mVpp_se to 1600 mVpp_se in increments of 200 mV.  
The output driver is in high impedance mode and supports standard 50 PCB traces. Any of the  
terminations shown in Figure 23 is supported in this mode.  
5.8.7. LVCMOS Output Terminations  
LVCMOS outputs are DC coupled as shown in Figure 25.  
DC Coupled LVCMOS  
3.3V, 2.5V, 1.8V  
LVCMOS  
VDDO = 3.3V, 2.5V, 1.8V  
50  
50  
Rs  
Rs  
OUTx  
OUTx  
Figure 25. LVCMOS Output Terminations  
5.8.8. LVCMOS Output Impedance Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance, where  
Rs = Transmission line impedance – Z . There are three programmable output impedance selections (CMOS1,  
O
CMOS2, CMOS3) for each VDDO options as shown in Table 16.  
Table 16. Typical Output Impedance (Z )  
S
CMOS_DRIVE_Selection  
VDDO  
3.3 V  
2.5 V  
1.8 V  
CMOS1  
CMOS2  
30   
CMOS3  
22   
38   
43   
35   
24   
46   
31   
5.8.9. LVCMOS Output Signal Swing  
The signal swing (V /V ) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output  
OL OH  
driver has its own VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers. Each output  
driver automatically detects the voltage on the VDDO pin to properly determine the correct output voltage.  
5.8.10. LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTx). By  
default the clock on the OUTx pin is generated with the same polarity (in phase) with the clock on the OUTx pin.  
The polarity of these clocks is configurable enabling complementary clock generation and/or inverted polarity with  
respect to other output drivers.  
38  
Preliminary Rev. 0.95  
Si5345/44/42  
5.8.11. Output Enable/Disable  
The OE pin provides a convenient method of disabling or enabling the output drivers. When the OE pin is held high  
all outputs will be disabled. When held low, the outputs will be enabled. Outputs in the enabled state can be  
individually disabled through register control.  
5.8.12. Output Driver State When Disabled  
The disabled state of an output driver is configurable as: disable low, disable high, or disable high-impedance.  
5.8.13. Synchronous Output Disable Feature  
The output drivers provide a selectable synchronous disable feature. Output drivers with this feature turned on will  
wait until a clock period has completed before the driver is disabled. This prevents unwanted runt pulses from  
occurring when disabling an output. When this feature is turned off, the output clock will disable immediately  
without waiting for the period to complete.  
5.8.14. Output Skew Control (t0 t4)  
The Si5345 uses independent MultiSynth dividers (N - N ) to generate up to 5 unique frequencies to its 10 outputs  
0
4
through a crosspoint switch. By default all clocks are phase aligned. A delay path (t - t ) associated with each of  
0
4
these dividers is available for applications that need a specific output skew configuration. This is useful for PCB  
trace length mismatch compensation. The resolution of the phase adjustment is approximately 0.28 ps per step  
definable in a range of ±9.14 ns. Phase adjustments are register configurable. An example of generating two  
frequencies with unique configurable path delays is shown in Figure 26.  
VDDO0  
OUT0  
OUT0  
÷R0  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO1  
OUT1  
OUT1  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO2  
OUT2  
OUT2  
VDDO3  
OUT3  
OUT3  
VDDO4  
OUT4  
OUT4  
VDDO5  
OUT5  
OUT5  
VDDO6  
OUT6  
OUT6  
VDDO7  
OUT7  
OUT7  
VDDO8  
OUT8  
OUT8  
VDDO9  
OUT9  
OUT9  
÷R9  
Figure 26. Example of Independently Configurable Path Delays  
All phase delay values are restored to their default values after power-up, hard reset, or a reset using the RST pin.  
Phase delay default values can be written to NVM allowing a custom phase offset configuration at power-up or  
after power-on reset, or after a hardware reset using the RST pin.  
Preliminary Rev. 0.95  
39  
Si5345/44/42  
5.8.15. Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the  
selected input and outputs. The zero delay mode is configured by opening the internal feedback loop through  
software configuration and closing the loop externally as shown in Figure 27.  
This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the output  
drivers. Any one of the outputs can be fed back to the FB_IN pins, although using the output driver that achieves  
the shortest trace length will help to minimize the input-to-output delay. The OUT9 and FB_IN pins are  
recommended for the external feedback connection. The FB_IN input pins must be terminated and ac-coupled  
when zero delay mode is used. A differential external feedback path connection is necessary for best performance.  
Note that automatic input clock switching and hitless switching features are not available when zero delay mode is  
enabled.  
IN0  
Si5345/44/42  
÷P0  
IN0  
IN1  
DSPLL  
15GHz  
÷P1  
÷P2  
IN1  
PD LPF  
IN2  
IN2  
÷M  
IN3/FB_IN  
IN3/FB_IN  
÷P3  
VDDO0  
OUT0  
OUT0  
÷R0  
÷R1  
÷R2  
VDDO1  
OUT1  
OUT1  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO2  
OUT2  
OUT2  
VDDO7  
OUT7  
OUT7  
÷R7  
÷R8  
÷R9  
VDDO8  
OUT8  
OUT8  
VDDO9  
OUT9  
OUT9  
External Feedback Path  
Figure 27. Si5345 Zero Delay Mode Setup  
5.8.16. Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures  
consistent and repeatable phase alignment across all output drivers. Resetting the device using the RST pin or  
asserting the hard reset bit will have the same result. Asserting the sync register bit provides another method of re-  
aligning the R dividers without resetting the device.  
40  
Preliminary Rev. 0.95  
Si5345/44/42  
5.9. Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Si5345/44/42 Family  
Reference Manual and ClockBuilder Pro configuration utility for details.  
5.10. In-Circuit Programming  
2
The Si5345/44/42 is fully configurable using the serial interface (I C or SPI). At power-up the device downloads its  
default register values from internal non-volatile memory (NVM). Application specific default configurations can be  
written into NVM allowing the device to generate specific clock frequencies at power-up. Writing default values to  
NVM is in-circuit programmable with normal operating power supply voltages applied to its V and V  
pins. The  
DD  
DDA  
NVM is two time writable. Once a new configuration has been written to NVM, the old configuration is no longer  
accessible. Refer to the Si5345/44/42 Family Reference Manual for a detailed procedure for writing registers to  
NVM.  
5.11. Serial Interface  
2
Configuration and operation of the Si5345/44/42 is controlled by reading and writing registers using the I C or SPI  
interface. The I2C_SEL pin selects I C or SPI operation. Communication with both 3.3 V and 1.8 V host is  
2
supported. The SPI mode operates in either 4-wire or 3-wire. See the Si5345/44/42 Family Reference Manual for  
details.  
5.12. Custom Factory Preprogrammed Parts  
For applications where a serial interface is not available for programming the device, custom pre-programmed  
parts can be ordered with a specific configuration written into NVM. A factory pre-programmed part will generate  
clocks at power-up. Custom, factory-preprogrammed devices are available. Use the ClockBuilder Pro custom part  
number wizard (www.silabs.com/clockbuilderpro) to quickly and easily request and generate a custom part number  
for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum  
matching your design’s configuration. Once you receive the confirmation email with the data sheet addendum,  
simply place an order with your local Silicon Labs sales representative. Samples of your preprogrammed device  
will typically ship in about two weeks.  
5.13. Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro  
for Factory Preprogrammed Devices  
As with essentially all modern software utilities, ClockBuilder Pro is continuously updated and enhanced. By  
registering at www.silabs.com, you will be notified whenever changes are made and what the impact of those  
changes are. This update process will ultimately enable ClockBuilder Pro users to access all features and register  
setting values documented in this data sheet and the Si5345/44/42 Family Reference Manual.  
However, if you must enable or access a feature or register setting value so that the device starts up with this  
feature or a register setting, but the feature or register setting is not yet available in CBPro, you must contact a  
Silicon Labs applications engineer for assistance. One example of this type of feature or custom setting is the  
customizable output amplitude and common voltages for the clock outputs. After careful review of your project file  
and requirements, the Silicon Labs applications engineer will email back your CBPro project file with your specific  
features and register settings enabled using what's referred to as the manual "settings override" feature of CBPro.  
"Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides"  
in a CBPro design report are shown in Table 17.  
Preliminary Rev. 0.95  
41  
Si5345/44/42  
Table 17. Setting Overrides  
Location  
0x0435[0]  
Customer Name  
Engineering Name  
OLA_HO_FORCE  
OOF_DIV_CLK_DIS  
Type  
No NVM  
User  
Target  
N/A  
Dec Value Hex Value  
FORCE_HOLD_PLLA  
OOF_DIV_CLK_DIS  
1
0
0x1  
0x0B48[0:4]  
OPN&EVB  
0x00  
Once you receive the updated design file, simply open it in CBPro. The device will begin operation after startup  
with the values in the NVM file. The flowchart for this process is shown in Figure 28.  
End: Place  
sample order  
Start  
Do I need a  
preprogrammed device with  
a feature or setting which is  
unavailable in ClockBuilder  
Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
nonstandard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 28. Process for Requesting Non-Standard CBPro Features  
42  
Preliminary Rev. 0.95  
Si5345/44/42  
6. Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains  
frequently accessible registers, such as alarm status, resets, device identification, etc. Other pages contain  
registers that need less frequent access such as frequency configuration, and general device settings. A high level  
map of the registers is shown in “6.2. High-Level Register Map” . Refer to the Si5345/44/42 Family Reference  
Manual for a complete list of register descriptions and settings. Silicon Labs strongly recommends using  
ClockBuilderPro to create and manage register settings.  
6.1. Addressing Scheme  
The device registers are accessible using a 16-bit address which consists of an 8-bit page address + 8-bit register  
address. By default the page address is set to 0x00. Changing to another page is accomplished by writing to the  
‘Set Page Address’ byte located at address 0x01 of each page.  
6.2. High-Level Register Map  
Table 18. High-Level Register Map  
16-Bit Address  
Content  
8-bit Page  
8-bit Register  
Address  
Address Range  
00  
00  
01  
Revision IDs  
Set Page Address  
02–0A  
0B–15  
17–1B  
1C  
Device IDs  
Alarm Status  
INTR Masks  
Reset controls  
1D  
FINC, FDEC Control Bits  
SPI (3-Wire vs 4-Wire)  
Alarm Configuration  
NVM Controls  
2B  
2C–E1  
E2–E4  
FE  
Device Ready Status  
Set Page Address  
01  
02  
01  
08–3A  
41–42  
FE  
Output Driver Controls  
Output Driver Disable Masks  
Device Ready Status  
Set Page Address  
01  
02–05  
08–2F  
30  
XTAL Frequency Adjust  
Input Divider (P) Settings  
Input Divider (P) Update Bits  
Output Divider (R) Settings  
User Scratch Pad Memory  
Device Ready Status  
47–6A  
6B–72  
FE  
Preliminary Rev. 0.95  
43  
Si5345/44/42  
Table 18. High-Level Register Map (Continued)  
16-Bit Address  
Content  
8-bit Page  
Address  
8-bit Register  
Address Range  
03  
01  
02–37  
0C  
Set Page Address  
MultiSynth Divider (N0–N4) Settings  
MultiSynth Divider (N0) Update Bit  
MultiSynth Divider (N1) Update Bit  
MultiSynth Divider (N2) Update Bit  
MultiSynth Divider (N3) Update Bit  
MultiSynth Divider (N4) Update Bit  
FINC/FDEC Settings N0 - N4  
Output Delay (t) Settings  
Device Ready Status  
17  
22  
2D  
38  
39–58  
59–62  
FE  
04  
05  
87  
Zero Delay Mode Set Up  
Fast Lock Loop Bandwidth  
Feedback Divider (M) Settings  
Input Select Control  
0E - 14  
15–1F  
2A  
2B  
Fast Lock Control  
2C–35  
36  
Holdover Settings  
Input Clock Switching Mode Select  
Input Priority Settings  
38–39  
3F  
Holdover History Valid Data  
Reserved  
06–08  
09  
00–FF  
01  
Set Page Address  
1C  
Zero Delay Mode Settings  
Control I/O Voltage Select  
Input Settings  
43  
49  
10–FF  
00–FF  
Reserved  
44  
Preliminary Rev. 0.95  
Si5345/44/42  
7. Pin Descriptions  
Si5345  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
IN1  
FINC  
IN1  
IN_SEL0  
IN_SEL1  
RSVD  
RST  
LOL  
3
VDD  
4
OUT6  
OUT6  
VDDO6  
OUT5  
OUT5  
VDDO5  
I2C_SEL  
OUT4  
OUT4  
VDDO4  
OUT3  
OUT3  
VDDO3  
5
6
7
X1  
XA  
8
GND  
Pad  
9
XB  
10  
11  
12  
13  
14  
15  
X2  
OE  
INTR  
VDDA  
IN2  
IN2  
SCLK 16  
Si5342 44QFN  
Top View  
Si5344 44QFN  
Top View  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
IN1  
IN1  
IN1  
INTR  
VDD  
INTR  
VDD  
IN1  
3
LOS1  
3
OUT2  
IN_SEL0  
IN_SEL0  
4
LOS0  
4
OUT2  
X1  
XA  
X1  
XA  
5
VDDS  
LOS_XAXB  
LOL  
5
VDDO2  
LOS_XAXB  
LOL  
GND  
Pad  
GND  
Pad  
6
6
XB  
XB  
7
7
X2  
X2  
VDDS  
OUT1  
VDDS  
8
8
VDDA  
VDDA  
9
OUT1  
9
VDDA  
IN2  
VDDA  
IN2  
10  
11  
OUT1  
10  
11  
OUT1  
VDDO1  
VDDO1  
IN2  
IN2  
Preliminary Rev. 0.95  
45  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions  
Pin Type1  
Pin Number  
Pin Name  
Function  
Si5345 Si5344 Si5342  
Inputs  
XA  
8
9
5
6
5
6
I
I
Crystal Input  
Input pins for external crystal (XTAL). Alternatively these  
pins can be driven with an external reference clock (REF-  
CLK). An internal register bit selects XTAL or REFCLK  
mode. Default is XTAL mode.  
XB  
X1  
X2  
7
4
7
4
7
I
I
XTAL Shield  
Connect these pins directly to the XTAL ground pins. X1,  
X2 and the XTAL ground pins should be separated from  
the PCB ground plane. Refer to the Si5345/44/42 Family  
Reference Manual for layout guidelines. These pins  
should be left disconnected when connecting XA/XB pins  
to an external reference clock (REFCLK).  
10  
IN0  
IN0  
IN1  
IN1  
IN2  
IN2  
63  
64  
1
43  
44  
1
43  
44  
1
I
I
I
I
I
I
Clock Inputs  
These pins accept an input clock for synchronizing the  
device. They support both differential and single-ended  
clock signals. Refer to "5.6.5. Input Configuration and Ter-  
minations" on page 30 for input termination options.  
These pins are high-impedance and must be terminated  
externally. The negative side of the differential input must  
be grounded through a capacitor when accepting a sin-  
gle-ended clock.  
2
2
2
14  
15  
10  
11  
10  
11  
IN3/FB_IN  
IN3/FB_IN  
61  
62  
41  
42  
41  
42  
I
I
Clock Input 3/External Feedback Input  
By default these pins are used as the fourth clock input  
(IN3/IN3). They can also be used as the external feed-  
back input (FB_IN/FB_IN) for the optional zero delay  
mode. See section "5.8.15. Zero Delay Mode" on page 40  
for details on the optional zero delay mode.  
Notes:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
46  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions (Continued)  
Pin Number  
Si5345 Si5344 Si5342  
Pin Type1  
Pin Name  
Function  
Outputs  
OUT0  
OUT0  
OUT1  
OUT1  
OUT2  
OUT2  
OUT3  
OUT3  
OUT4  
OUT4  
OUT5  
OUT5  
OUT6  
OUT6  
OUT7  
OUT7  
OUT8  
OUT8  
OUT9  
OUT9  
Notes:  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
59  
58  
20  
19  
25  
24  
31  
30  
36  
35  
20  
19  
25  
24  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Output Clocks  
These output clocks support a programmable signal  
swing and common mode voltage. Desired output signal  
format is configurable using register control. Termination  
recommendations are provided in “5.8.3. Differential Out-  
put Terminations” and section “5.8.4. LVCMOS Output  
Terminations” . Unused outputs should be left uncon-  
nected.  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
Preliminary Rev. 0.95  
47  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions (Continued)  
Pin Number  
Si5345 Si5344 Si5342  
Pin Type1  
Pin Name  
Function  
Serial Interface  
I2C_SEL  
39  
38  
38  
I
I2C Select  
2
This pin selects the serial interface mode as I C  
(I2C_SEL = 1) or SPI (I2C_SEL = 0). This pin is internally  
pulled high. Leave disconnected when unused. See Note  
2
.
SDA/SDIO  
18  
13  
13  
I/O  
Serial Data Interface  
This is the bidirectional data pin (SDA) for the I C mode,  
2
or the bidirectional data pin (SDIO) in the 3-wire SPI  
mode, or the input data pin (SDI) in 4-wire SPI mode.  
2
When in I C mode, this pin must be pulled-up using an  
external resistor of at least 1 k. No pull-up resistor is  
needed when is SPI mode. Tie low when unused. See  
2
Note .  
A1/SDO  
SCLK  
17  
16  
15  
14  
15  
14  
I/O  
I
Address Select 1/Serial Data Output  
In I C mode this pin functions as the A1 address input pin.  
In 4-wire SPI mode this is the serial data output (SDO)  
pin. Leave disconnected when unused. See Note .  
2
2
Serial Clock Input  
2
This pin functions as the serial clock input for both I C and  
2
SPI modes. When in I C mode, this pin must be pulled-up  
using an external resistor of at least 1 k. No pull-up  
resistor is needed when in SPI mode. Tie high or low  
2
when unused. See Note .  
A0/CS  
19  
16  
16  
I
Address Select 0/Chip Select  
This pin functions as the hardware controlled address A0  
2
in I C mode. In SPI mode, this pin functions as the chip  
select input (active low). This pin is internally pulled-up  
and can be left unconnected when not in use. See Note .  
2
Notes:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
48  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions (Continued)  
Pin Number  
Si5345 Si5344 Si5342  
Pin Type1  
Pin Name  
Function  
Control/Status  
INTR  
12  
6
33  
17  
33  
17  
O
Interrupt  
This pin is asserted low when a change in device status  
has occurred. It should be left unconnected when not in  
use. See Note .  
2
RST  
I
Device Reset  
Active low input that performs power-on reset (POR) of  
the device. Resets all internal logic to a known state and  
forces the device registers to their default values. Clock  
outputs are disabled during reset. This pin is internally  
pulled-up and can be left unconnected when not in use.  
2
See Note .  
OE  
11  
47  
12  
12  
I
Output Enable  
This pin disables all outputs when held high. This pin is  
internally pulled low and can be left unconnected when  
2
not in use. See Note .  
LOL  
O
O
Loss Of Lock (Si5345)  
This output pin indicates when the DSPLL is locked (high)  
or out-of-lock (low). It can be left unconnected when not in  
2
use. See Note .  
27  
27  
Loss Of Lock (Si5344/42)  
This output pin indicates when the DSPLL is locked (high)  
or out-of-lock (low). It can be left unconnected when not in  
3
use. See Note .  
LOS0  
LOS1  
30  
31  
35  
36  
O
O
O
O
Loss Of Signal for IN0  
This pin indicate a loss of clock at the IN0 pin when low.  
3
See Note .  
Loss Of Signal for IN1  
This pin indicate a loss of clock at the IN1 pin when low.  
3
See Note .  
LOS2  
Loss Of Signal for IN2  
This pin indicate a loss of clock at the IN2 pin when low.  
3
See Note .  
LOS3  
Loss Of Signal for IN3  
This pin indicate a loss of clock at the IN3 pin when low.  
3
See Note .  
Notes:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
Preliminary Rev. 0.95  
49  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions (Continued)  
Pin Number  
Si5345 Si5344 Si5342  
Pin Type1  
Pin Name  
Function  
LOS_XAXB  
28  
28  
O
Loss Of Signal on XA/XB Pins  
This pin indicates a loss of signal at the XA/XB pins when  
3
low. See Note .  
FINC  
48  
I
I
Frequency Increment Pin  
This pin is used to step-up the output frequency of a  
selected output. The affected output and its frequency  
change step size is register configurable. This pin is inter-  
nally pulled low and can be left unconnected when not in  
2
use. See Note .  
FDEC  
25  
Frequency Decrement Pin  
This pin is used to step-down the output frequency of a  
selected output. The affected output driver and its fre-  
quency change step size is register configurable. This pin  
is internally pulled low and can be left unconnected when  
2
not in use. See Note .  
IN_SEL0  
IN_SEL1  
3
4
3
3
I
I
Input Reference Select  
The IN_SEL[1:0] pins are used in manual pin controlled  
mode to select the active clock input as shown in Table 15  
on page 29. These pins are internally pulled low. See  
37  
37  
2
Note .  
RSVD  
5
22  
22  
Reserved  
These pins are connected to the die. Leave disconnected.  
20  
21  
55  
56  
NC  
No Connect  
These pins are not connected to the die. Leave discon-  
nected.  
Notes:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
50  
Preliminary Rev. 0.95  
Si5345/44/42  
Table 19. Si5345/44/42 Pin Descriptions (Continued)  
Pin Number  
Si5345 Si5344 Si5342  
Pin Type1  
Pin Name  
Function  
Power  
VDD  
32  
46  
60  
21  
32  
39  
40  
8
21  
32  
39  
40  
8
P
P
P
P
P
Core Supply Voltage  
The device operates from a 1.8 V supply. A 0.1 µF bypass  
capacitor should be placed very close to this pin. See the  
Si5345/44/42 Family Reference Manual for power supply  
filtering recommendations.  
VDDA  
VDDS  
13  
Core Supply Voltage 3.3 V  
This core supply pin requires a 3.3 V power source. A  
1 µF bypass capacitor should be placed very close to this  
pin. See the Si5345/44/42 Family Reference Manual for  
power supply filtering recommendations.  
9
9
P
26  
26  
29  
34  
P
P
P
Status Output Voltage  
The voltage on this pin determines VOL/VOH on the  
Si5342/44 LOL_A and LOL_B outputs. Connect to either  
3.3 V or 1.8 V. A 0.1 µF bypass capacitor should be  
placed very close to this pin.  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
GND PAD  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
18  
23  
29  
34  
18  
23  
P
P
P
P
P
P
P
P
P
P
P
Output Clock Supply Voltage  
Supply voltage (3.3 V, 2.5 V, 1.8 V) for OUTn, OUTn out-  
puts. For unused outputs, leave VDDO pins unconnected.  
An alternative option is to connect the VDDO pin to a  
power supply and disable the output driver to minimize  
current consumption.  
Ground Pad  
This pad provides connection to ground and must be con-  
nected for proper operation. Use as many vias as practi-  
cal and keep the via length to an internal ground plan as  
short as possible.  
Notes:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Si5345/44/42 Family Reference Manual for more information on register setting names.  
Preliminary Rev. 0.95  
51  
Si5345/44/42  
8. Ordering Guide  
Ordering  
Part Number  
(OPN)  
Number of  
Input/Output Frequency Range  
Output Clock  
Supported  
Frequency  
Synthesis Modes  
Temperature  
Range  
Package  
Clocks  
(MHz)  
Si5345  
1,2  
Si5345A-B-GM  
Si5345B-B-GM  
Si5345C-B-GM  
Si5345D-B-GM  
4/10  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
Integer  
Fractional  
64-Lead  
9x9 QFN  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
1,2  
1,2  
1,2  
Integer Only  
Si5344  
1,2  
1,2  
1,2  
1,2  
Si5344A-B-GM  
Si5344B-B-GM  
Si5344C-B-GM  
Si5344D-B-GM  
4/4  
4/2  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
Integer  
Fractional  
44-Lead  
7x7 QFN  
Integer Only  
Si5342  
1,2  
1,2  
1,2  
1,2  
Si5342A-B-GM  
Si5342B-B-GM  
Si5342C-B-GM  
Si5342D-B-GM  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
0.001 to 712.5 MHz  
0.001 to 350 MHz  
Integer  
Fractional  
44-Lead  
7x7 QFN  
Integer Only  
Si5345/44/42-EVB  
Si5345-EVB  
Si5344-EVB  
Si5342-EVB  
Notes:  
Evaluation  
Board  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory preprogrammed devices are available. Ordering part numbers are assigned by Silicon Labs and the  
ClockBuilder Pro software utility.  
3. Custom part number format is: e.g. Si5345A-Bxxxxx-GM where “xxxxx” is a unique numerical sequence representing  
the pre-programmed configuration.  
52  
Preliminary Rev. 0.95  
Si5345/44/42  
8.1. Ordering Part Number Fields  
Si534fg-Rxxxxx-GM  
Timing product family  
f = Jitter attenuator family member (5, 4, 2)  
g = Device grade (A, B, C, D)  
Product Revision*  
Custom ordering part number (OPN) sequence ID**  
Package, ambient temperature range (QFN, -40°C to +85°C)  
*See Ordering Guide table for current product revision  
** 5 digits; assigned by ClockBuilder Pro  
Preliminary Rev. 0.95  
53  
Si5345/44/42  
9. Package Outlines  
9.1. Si5345 9x9 mm 64-QFN Package Diagram  
Figure 29 illustrates the package details for the Si5345. Table 20 lists the values for the dimensions shown in the  
illustration.  
Figure 29. 64-Pin Quad Flat No-Lead (QFN)  
Table 20. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
54  
Preliminary Rev. 0.95  
Si5345/44/42  
9.2. Si5344 and Si5342 7x7 mm 44-QFN Package Diagram  
Figure 30 illustrates the package details for the Si5344 and Si5342. Table 21 lists the values for the dimensions  
shown in the illustration.  
Figure 30. 44-Pin Quad Flat No-Lead (QFN)  
Table 21. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
7.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
7.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Preliminary Rev. 0.95  
55  
Si5345/44/42  
10. PCB Land Pattern  
Figure 31 illustrates the PCB land pattern details for the devices. Table 22 lists the values for the dimensions  
shown in the illustration.  
Si5345  
Si5344 and Si5342  
Figure 31. PCB Land Pattern  
Table 22. PCB Land Pattern Dimensions  
Dimension  
Si5345 (Max)  
8.90  
Si5344/42 (Max)  
C1  
C2  
E
6.90  
6.90  
0.50  
0.30  
0.85  
5.30  
5.30  
8.90  
0.50  
X1  
Y1  
X2  
Y2  
0.30  
0.85  
5.30  
5.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is  
calculated based on a fabrication Allowance of 0.05 mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask  
and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to  
assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
8. A 3x3 array of 1.25 mm square openings on 1.80 mm pitch should be used for the center ground  
pad.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small  
Body Components.  
56  
Preliminary Rev. 0.95  
Si5345/44/42  
11. Top Marking  
Si534Xg-  
Rxxxxx-GM  
YYWWTTTTTT  
Si534Xg-  
Rxxxxx-GM  
YYWWTTTTTT  
e4  
TW  
TW  
e4  
64-QFN  
44-QFN  
Line  
1
Characters  
Description  
Si534Xg-  
Base part number and Device Grade for Any-frequency, Any-output, Jitter  
Cleaning Clock (single PLL):  
X = 5: 10-output Si5345: 64-QFN  
X = 4: 4-output Si5344: 44-QFN  
X = 2: 2-output Si5342: 44-QFN  
g = Device Grade (A, B, C, D). See “8. Ordering Guide” for more information.  
– = Dash character.  
2
Rxxxxx-GM  
R = Product revision. (Refer to “8. Ordering Guide” for latest revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code  
assigned for custom, factory pre-programmed devices.  
Characters are not included for standard, factory default configured devices.  
See Ordering Guide for more information.  
-GM = Package (QFN) and temperature range (–40 to +85 °C)  
3
4
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW) of pack-  
age assembly.  
TTTTTT = Manufacturing trace code.  
Circle w/ 1.6 mm  
(64-QFN) or 1.4 mm  
(44-QFN) diameter  
Pin 1 indicator; left-justified  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
Preliminary Rev. 0.95  
57  
Si5345/44/42  
12. Device Errata  
Please log in or register at www.silabs.com to access the device errata document.  
58  
Preliminary Rev. 0.95  
Si5345/44/42  
DOCUMENT CHANGE LIST  
Revision 0.9 to Revision 0.95  
Removed advanced product information revision  
history.  
Updated “8. Ordering Guide” and changed  
references to Revision B.  
Updated parametric tables 2, 3, 5, 6, 7, and 8 to  
reflect production characterization.  
Updated terminology to align with ClockBuilder Pro  
software.  
Corrected Table 3 references and specifications  
from “LVCMOS - DC coupled” to “Pulsed CMOS -  
DC-Coupled”.  
2
Corrected Table 9 I C data hold time specification to  
100 ns from 5 µs.  
Preliminary Rev. 0.95  
59  
Si5345/44/42  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.siliconlabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
60  
Preliminary Rev. 0.95  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY