SI5350B-A01201-GTR [SILICON]

Clock Generator;
SI5350B-A01201-GTR
型号: SI5350B-A01201-GTR
厂家: SILICON    SILICON
描述:

Clock Generator

文件: 总24页 (文件大小:275K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5350B  
FACTORY-PROGRAMMABLE ANY-FREQUENCY CMOS  
CLOCK GENERATOR + VCXO  
Features  
Generates up to 8 non-integer-related  
frequencies from 8 kHz to 160 MHz  
Exact frequency synthesis at each  
output (0 ppm error)  
Highly linear VCXO gain (kv)  
Glitchless frequency changes  
Configurable Spread Spectrum  
selectable at each output  
Operates from a low-cost, fixed  
frequency AT-cut, non-pullable  
crystal: 25 or 27 MHz  
Separate voltage supply pins:  
Core VDD: 2.5 V or 3.3 V  
Output VDDO: 2.5 V or 3.3 V  
Excellent PSRR eliminates external  
power supply filtering  
10-MSOP  
24-QSOP  
User-configurable control pins:  
Output Enable (OEB_0/1/2)  
Power Down (PDN)  
Low output period jitter: 100 ps pp  
Very low power consumption  
(<40 mA)  
Frequency Select (FS_0/1)  
Spread Spectrum Enable (SSEN)  
Supports static phase offset  
Rise/fall time control  
Available in 3 packages types:  
10-MSOP: 3 outputs  
24-QSOP: 8 outputs  
20-QFN (4x4 mm): 8 outputs  
PCIE Gen 1 compliant  
Supports HCSL compatible swing  
20-QFN  
Applications  
HDTV, DVD/Blu-ray, set-top box  
Audio/video equipment, gaming  
Printers, scanners, projectors  
Residential gateways  
Networking/communication  
Servers, storage  
Ordering Information:  
XO replacement  
See page 19  
Description  
The Si5350B combines a clock generator and VCXO function into a single device. A  
flexible architecture enables this user definable custom timing device to generate  
any of the specified output frequencies from either the internal PLL or the VCXO.  
This allows the Si5350B to replace multiple crystals, crystal oscillators, and VCXOs.  
Custom pin-controlled Si5350B devices are requested using the ClockBuilder web-  
based utility (www.silabs.com/ClockBuilder).  
Functional Block Diagram  
20-QFN, 24-QSOP  
Multi  
Synth  
0
CLK0  
CLK1  
10-MSOP  
XA  
Multi  
Synth  
1
XA  
XB  
Vc  
OSC  
PLL  
Multi  
Synth  
2
Multi  
Synth  
0
XB  
Vc  
CLK2  
CLK3  
CLK0  
CLK1  
OSC  
PLL  
Multi  
Synth  
3
Multi  
Synth  
1
VCXO  
VCXO  
Multi  
Synth  
4
Multi  
Synth  
2
CLK4  
CLK5  
CLK6  
CLK7  
CLK2  
Multi  
Synth  
5
P0  
P1  
P2  
P3  
Control  
Logic  
P0  
Control  
Logic  
Multi  
Synth  
6
Si5350B  
Multi  
Synth  
7
Si5350B  
Rev. 0.9 5/11  
Copyright © 2011 by Silicon Laboratories  
Si5350B  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si5350B  
2
Rev. 0.9  
Si5350B  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1. Si5350B Replaces Multiple Clocks and XOs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.2. Replacing a Crystal with a Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.3. HCSL Compatible Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
4. Configuring the Si5350B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1. Crystal Inputs (XA, XB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.2. Output Clocks (CLK0–CLK7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.3. Programmable Control Pins (P0–P3) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.4. Voltage Control Input (VC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.5. Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
5. Pin Descriptions (20-QFN, 24-QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
6. Pin Descriptions (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
7. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
8. Package Outline (24-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
9. Package Outline (20-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
10. Package Outline (10-Pin MSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Rev. 0.9  
3
Si5350B  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85°C)  
Parameter  
Symbol  
Test Condition  
Min  
–40  
3.0  
Typ  
25  
Max  
85  
Unit  
°C  
V
Ambient Temperature  
T
A
3.3  
2.5  
2.5  
3.3  
3.60  
2.75  
2.75  
3.60  
Core Supply Voltage  
Output Buffer Voltage  
V
DD  
2.25  
2.25  
3.0  
V
V
V
DDOx  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. DC Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85°C)  
Parameter  
Symbol  
Test Condition  
Enabled 3 outputs  
Min  
Typ  
20  
Max  
30  
Unit  
mA  
mA  
µA  
Core Supply Current*  
I
Enabled 8 outputs  
25  
40  
DD  
Power Down (PDN = V  
)
15  
DD  
Output Buffer Supply Current  
(Per Output)*  
I
C = 5 pF  
2.0  
4.5  
mA  
DDOx  
L
Pins P0, P1, P2, P3  
Vin < 3.6 V  
I
10  
30  
µA  
µA  
P0-P3  
Input Current  
I
VC  
VC  
8 mA output drive current,  
see Design Considerations  
section  
Output Impedance  
Z
85  
OI  
*Note: Output clocks less than or equal to 133 MHz.  
4
Rev. 0.9  
Si5350B  
Table 3. AC Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85°C)  
Parameter  
Symbol  
Vc  
Test Condition  
Min  
0
Typ  
Max  
Unit  
V
VCXO Control Voltage Range  
VCXO Gain (configurable)  
VCXO Control Voltage Linearity  
V
/2  
V
DD  
DD  
kv  
Vc = 10–90% of V  
Vc = 10–90% of V  
18  
–5  
150  
+5  
ppm/V  
%
DD  
DD  
KVL  
0
VCXO Pull Range  
(configurable)*  
V
= 3.3 V  
DD  
PR  
±30  
±240  
ppm  
kHz  
Vc = 10–90% of V  
DD  
VCXO Modulation Bandwidth  
10  
From V = V  
to valid  
DDmin  
DD  
Power-Up Time  
TRDY  
output clock, C = 5 pF,  
2
5
10  
100  
10  
ms  
ms  
µs  
L
f
> 1 MHz  
CLKn  
From V = V  
,
DDmin  
DD  
Power-Down Time  
Output Enable Time  
T
T
PD  
C = 5 pF, f  
> 1 MHz  
L
CLKn  
From OEB assertion to valid  
clock output, C = 5 pF,  
OE  
L
f
> 1 MHz  
CLKn  
Output Frequency Transition  
Time  
T
f
> 1 MHz  
–0.5  
30  
10  
–2.5  
33  
µs  
%
FREQ  
CLKn  
Spread Spectrum Frequency  
Deviation  
SS  
Down spread  
DEV  
Spread Spectrum Modulation  
Rate  
SS  
31.5  
kHz  
MOD  
*Note: Contact Silicon Labs for VCXO operation at 2.5 V.  
Table 4. Input Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
k  
V
VC Input Resistance  
P0-P3 Input Low Voltage  
P0-P3 Input High Voltage  
100  
–0.1  
0.3 x V  
3.60  
VIL-P0-3  
VIH_P0-3  
DD  
V
0.7 x V  
DD  
Rev. 0.9  
5
Si5350B  
Table 5. Output Characteristics  
(VDD = 2.5 V ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
F < 100 MHz  
CLK  
Min  
0.008  
Typ  
50  
1
Max  
160  
15  
Units  
MHz  
pF  
Frequency Range  
Load Capacitance  
Duty Cycle  
FCLK  
C
L
DC  
Measured at V /2  
45  
55  
%
DD  
Rise/Fall Time  
t /t  
20% - 80%, C = 5 pF  
0.5  
1.5  
ns  
r f  
L
Output High Voltage  
Output Low Voltage  
Period Jitter  
VOH  
VOL  
V
– 0.6  
60  
60  
50  
V
DD  
0.6  
100  
110  
90  
V
JPER  
ps pk-pk  
ps pk-pk  
ps pk  
Measured over 10k cycles  
Measured over 10k cycles  
12 kHz–20 MHz  
Period Jitter, VCXO  
Cycle-to-Cycle Jitter  
JPER_VCXO  
JCC  
Cycle-to-Cycle Jitter,  
VCXO  
JCC_VCXO  
50  
95  
ps pk  
RMS Phase Jitter  
RMS Phase Jitter  
JRMS  
3.5  
8.5  
11  
ps  
JRMS_VCXO  
18.5  
ps rms  
Table 6. 25 MHz Crystal Requirements1,2  
Parameter  
Symbol  
Min  
6
Typ  
Max  
Unit  
MHz  
pF  
Crystal Frequency  
Load Capacitance  
f
25  
XTAL  
C
12  
L
Equivalent Series Resistance  
r
150  
100  
ESR  
Crystal Max Drive Level  
d
µW  
L
Notes:  
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for  
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a  
combination of the internal 10 pF load capacitors in addition to external 2 pF load capacitors. Adding external 2 pF load  
capacitors can minimize jitter by 20%.  
2. Refer to “AN551: Crystal Selection Guide” for more details.  
6
Rev. 0.9  
Si5350B  
Table 7. 27 MHz Crystal Requirements1,2  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Crystal Frequency  
f
27  
MHz  
XTAL  
Load Capacitance  
C
6
TBD  
12  
pF  
L
Equivalent Series Resistance  
r
150  
100  
ESR  
Crystal Max Drive Level Spec  
d
µW  
L
Notes:  
1. Crystals which require load capacitances of 6, 8, or 10 pF should use the device’s internal load capacitance for  
optimum performance. See register 183 bits 7:6. A crystal with a 12 pF load capacitance requirement should use a  
combination of the internal 10 pF load capacitors in addition to external 2 pF load capacitors. Adding external 2 pF load  
capacitors can minimize jitter by 20%.  
2. Refer to “AN551: Crystal Selection Guide” for more details.  
Table 8. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Package  
10-MSOP  
24-QSOP  
20-QFN  
Value  
131  
80  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance Junc-  
tion to Ambient  
Still Air  
JA  
51  
10-MSOP  
24-QSOP  
20-QFN  
43  
Thermal Resistance Junc-  
tion to Case  
Still Air  
31  
JC  
16  
Table 9. Absolute Maximum Ratings  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
V
DC Supply Voltage  
V
–0.5 to 3.8  
–0.5 to 3.8  
DD_max  
VIN_P0-3 Pins P0, P1, P2, P3  
V
VIN_VC  
VC  
–0.5 to (VDD+0.3)  
V
Input Voltage  
VIN_XA/  
B
Pins XA, XB  
–0.5 to 1.3 V  
–55 to 150  
V
Temperature Range  
T
°C  
J
Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Rev. 0.9  
7
Si5350B  
2. Typical Application  
2.1. Si5350B Replaces Multiple Clocks and XOs  
The Si5350B is a clock generation device that provides both synchronous and free-running clocks for applications  
where power, board size, and cost are critical. An application where both free-running and synchronous clocks are  
required is shown in Figure 1.  
Ethernet  
PHY  
XA  
XB  
CLK0  
CLK1  
Multi  
Synth  
0
125 MHz  
48 MHz  
OSC  
PLL  
27 MHz  
Multi  
Synth  
1
USB  
Controller  
CLK2  
CLK3  
Multi  
Synth  
2
28.322 MHz  
74.25 MHz  
HDMI  
Port  
Multi  
Synth  
3
VC  
VCXO  
CLK4  
CLK5  
Multi  
Synth  
4
74.25/1.001 MHz  
24.576 MHz  
Video/Audio  
Processor  
Multi  
Synth  
5
Si5350B  
Figure 1. Example of an Si5350B in an Audio/Video Application  
2.2. Replacing a Crystal with a Clock  
The Si5350B can be driven with a clock signal through the XA input pin.  
VIN = 1 VPP  
25/27 MHz  
Multi  
Synth  
0
PLLA  
PLLB  
XA  
Multi  
Synth  
1
0.1 µF  
OSC  
XB  
Multi  
Synth  
N
Note: Float the XB input while driving  
the XA input with a clock  
Figure 2. Si5350B Driven by a Clock Signal  
8
Rev. 0.9  
Si5350B  
2.3. HCSL Compatible Outputs  
The Si5350B can be configured to support HCSL compatible swing when the VDDO of the output pair of interest is  
set to 2.5 V (i.e., VDDOA must be 2.5 V when using CLK0/1; VDDOB must be 2.5 V for CLK2/3 and so on).  
The circuit in the figure below must be applied to each of the two clocks used, and one of the clocks in the pair  
must also be inverted to generate a differential pair.  
ZO = 70  
R1  
Multi  
Synth  
0
PLLA  
PLLB  
0   
0   
511   
240   
R2  
OSC  
HCSL  
CLKIN  
ZO = 70   
R1  
Multi  
Synth  
1
511   
240   
R2  
Multi  
Synth  
N
Note: The complementary -180 degree  
out of phase output clock is generated  
using the INV function  
Figure 3. Si5350B Output is HCSL Compatible  
Rev. 0.9  
9
Si5350B  
3. Functional Description  
The Si5350B features a high-frequency PLL, a high-frequency VCXO and a high-resolution fractional MultiSynthTM  
divider on each output. A block diagram of both the 3-output and the 8-output clock generators are shown in  
Figure 4. Free-running clocks are generated from the on-chip oscillator + PLL, and a separate voltage controlled  
oscillator (VCXO) is used to generate synchronous clocks. A fixed-frequency non-pullable standard AT-cut crystal  
provides frequency stability for both the internal oscillator and VCXO. The flexible synthesis architecture of the  
Si5350B generates up to eight non-integer related frequencies and any combination of free-running and/or  
synchronous clocks.  
VDDO  
VDD  
10-MSOP  
MultiSynth 0  
F1_0  
XA  
XB  
PLL  
R0  
R1  
R2  
CLK0  
CLK1  
CLK2  
OSC  
F2_0  
FS  
FS  
FS  
MultiSynth 1  
F1_1  
VCXO  
VC  
F2_1  
MultiSynth 2  
F1_2  
Control  
Logic  
P0  
F2_2  
MultiSynth 3  
GND  
VDD  
20-QFN, 24-QSOP  
MultiSynth 0  
VDDOA  
CLK0  
F1_0  
R0  
F2_0  
XA  
XB  
PLL  
FS  
FS  
FS  
FS  
FS  
FS  
OSC  
MultiSynth 1  
CLK1  
F1_1  
R1  
VCXO  
VC  
F2_1  
MultiSynth 2  
VDDOB  
CLK2  
F1_2  
R2  
F2_2  
MultiSynth 3  
CLK3  
F1_3  
R3  
F2_3  
MultiSynth 4  
VDDOC  
CLK4  
F1_4  
R4  
F2_4  
MultiSynth 5  
CLK5  
P0  
P1  
P2  
P3  
F1_5  
R5  
F2_5  
Control  
Logic  
VDDOD  
CLK6  
MultiSynth 6  
F1_6  
R6  
R7  
MultiSynth 7  
CLK7  
F1_7  
GND  
Figure 4. Block Diagram of the 3 and 8 Output Si5350B Devices  
10  
Rev. 0.9  
Si5350B  
4. Configuring the Si5350B  
The Si5350B is a factory-programmed custom clock generator that is user definable with a simple to use web-  
based utility (www.silabs.com/ClockBuilder). The ClockBuilder utility provides a simple graphical interface that  
allows the user to enter input and output frequencies along with other custom features as described in the following  
sections. All synthesis calculations are automatically performed by ClockBuilder to ensure an optimum  
configuration. A unique part number is assigned to each custom configuration.  
4.1. Crystal Inputs (XA, XB)  
The Si5350B uses a fixed-frequency non-pullable standard AT-cut crystal as a reference to synthesize its output  
clocks and to provide the frequency stability for the VCXO.  
4.1.1. Crystal Frequency  
The Si5350B can operate using either a 25 MHz or a 27 MHz crystal.  
4.1.2. Internal XTAL Load Capacitors  
Internal load capacitors (C ) are provided to eliminate the need for external components when connecting a XTAL  
L
to the Si5350B. Options for internal load capacitors are 6, 8, or 10 pF. XTALs with alternate load capacitance  
requirements are supported using external load capacitors < 2 pF as shown in Figure 5.  
CL  
XA  
XB  
CL  
Optional internal  
load capacitors  
6 pF, 8 pF, 10 pF  
Optional additional  
external load  
capacitors  
CL  
CL  
(< 2 pF)  
Figure 5. External XTAL with Optional Load Capacitors  
4.2. Output Clocks (CLK0–CLK7)  
The Si5350B is orderable as a 3-output (10-MSOP) or 8-output (24-QSOP, 20-QFN) clock generator. Output clocks  
CLK0 to CLK5 can be ordered with two clock frequencies (F1_x, F2_x) which are selectable with the optional  
frequency select pins (FS0/1). See “4.3.2. Frequency Select (FS_0, FS_1)” for more details on the operation of the  
frequency select pins. Each output clock can select its reference either from the PLL or from the VCXO.  
4.2.1. Output Clock Frequency  
Outputs can be configured at any frequency from 8 kHz up to 100 MHz. In addition, the device can generate any  
two non-integer related frequencies up to 160 MHz. See “AN554: Si5350/51 PCB Layout Guide” for details.  
4.2.2. .Spread Spectrum  
Spread spectrum can be enabled on any of the clock outputs that use PLLA as its reference. Spread spectrum is  
useful for reducing electromagnetic interference (EMI). Enabling spread spectrum on an output clock modulates its  
frequency, which effectively reduces the overall amplitude of its radiated energy. See AN554 for details. Note that  
spread spectrum is not available on clocks synchronized to PLLB or to the VCXO.  
The Si5350B supports several levels of spread spectrum allowing the designer to choose an ideal compromise  
between system performance and EMI compliance. An optional spread spectrum enable pin (SSEN) is  
configurable to enable or disable the spread spectrum feature. See “4.3.1. Spread Spectrum Enable (SSEN)” for  
details.  
Rev. 0.9  
11  
Si5350B  
Reduced  
Amplitude  
and EMI  
Center  
Frequency  
Amplitude  
fc  
fc  
No Spread  
Spectrum  
Down Spread  
Figure 6. Available Spread Spectrum Profiles  
4.2.3. Invert/Non-Invert  
By default, each of the output clocks are generated in phase (non-inverted) with respect to each other. An option to  
invert any of the clock outputs is also available.  
4.2.4. Output State When Disabled  
There are up to three output enable pins configurable on the Si5350B as described in “5. Pin Descriptions (20-  
QFN, 24-QSOP)” . The output state when disabled for each of the outputs is configurable as one of the following:  
disable low, disable high, or disable in high-impedance.  
4.2.5. Powering Down Unused Outputs  
Unused clock outputs can be completely powered down to conserve power.  
4.3. Programmable Control Pins (P0–P3) Options  
Up to four programmable control pins (P0-P3) are configurable allowing direct pin control of the following features:  
4.3.1. Spread Spectrum Enable (SSEN)  
An optional control pin allows disabling the spread spectrum feature for all outputs that were configured with  
spread spectrum enabled. Hold SSEN low to disable spread spectrum. The SSEN pin provides a convenient  
method of evaluating the effect of using spread spectrum clocks during EMI compliance testing.  
4.3.2. Frequency Select (FS_0, FS_1)  
The Si5350B offers the option of configuring up to two frequencies per clock output (CLK0-CLK5) for either free-  
running or synchronous clocks. This is a useful feature for applications that need to support more than one free-  
running or synchronous clock rate on the same output. An example of this is shown in Figure 7. The FS pins select  
which frequency is generated from the clock output. In this example FS0 select the output frequency on CLK0, and  
FS1 selects the frequency on CLK1.  
27 MHz  
FS0  
Bit Level  
XA  
XB  
Free-running Frequency  
0
F1_0:  
F2_0:  
74.25 MHz  
Free-running Clock  
74.25  
74.25  
MHz  
1.001  
1
MHz  
74.25 MHz or  
FS0  
FS1  
1.001  
CLK0  
CLK1  
Video/Audio  
Processor  
Si5350B  
Synchronous Clock  
24.576 MHz or 22.5792 MHz  
FS1  
Bit Level  
Synchronous Frequency  
0
1
F1_1:  
F2_1:  
24.576 MHz  
VC  
22.5792 MHz  
Figure 7. Example of Generating Two Clock Frequencies from the Same Clock Output  
12  
Rev. 0.9  
Si5350B  
Up to two frequency select pins are available on the Si5350B. Each of the frequency select pins can be linked to  
any of the clock outputs as shown in Figure 8. For example, FS_0 can be linked to control clock frequency  
selection on CLK0, CLK3, and CLK5; FS_1 can be used to control clock frequency selection on CLK1, CLK2, and  
CLK4. Any other combination is also possible.  
The Si5350B uses control circuitry to ensure that frequency changes are glitchless. This ensures that the clock  
always completes its last cycle before starting a new clock cycle of a different frequency.  
Customizable FS Control  
Glitchless Frequency Changes  
FS  
MultiSynth 0  
CLK0  
CLK1  
FS  
New frequency starts  
at its leading edge  
MultiSynth 1  
FS_0  
FS_1  
FS_0  
Output Frequency  
F1_0, F1_3, F1_5  
F2_0, F2_3, F2_5  
0
1
FS  
MultiSynth 2  
CLK2  
CLK3  
Frequency_A  
Frequency_B  
FS  
Frequency_A  
MultiSynth 3  
CLKx  
FS  
MultiSynth 4  
CLK4  
CLK5  
CLK6  
CLK7  
FS_1  
Output Frequency  
F1_1, F1_2, F1_4  
F2_1, F2_2, F2_4  
0
1
MultiSynth 5  
FS  
Full cycle completes before  
changing to a new frequency  
Cannot be controlled  
by FS pins  
Figure 8. Example Configuration of a Pin-Controlled Frequency Select (FS)  
4.3.3. Output Enable (OEB_0, OEB_1, OEB_2)  
Up to three output enable pins (OEB_0/1/2) are available on the Si5350B. Similar to the FS pins, each OEB pin can  
be linked to any of the output clocks. In the example shown in Figure 9, OEB_0 is linked to control CLK0, CLK3,  
and CLK5; OEB_1 is linked to control CLK6 and CLK7, and OEB_2 is linked to control CLK1, CLK2, CLK4, and  
CLK5. Any other combination is also possible. If more than one OEB pin is linked to the same CLK output, the pin  
forcing a disable state will be dominant. Clock outputs are enabled when the OEB pin is held low.  
The output enable control circuitry ensures glitchless operation by starting the output clock cycle on the first leading  
edge after OEB is asserted (OEB = low). When OEB is released (OEB = high), the clock is allowed to complete its  
full clock cycle before going into a disabled state. This is shown in Figure 9. When disabled, the output state is  
configurable as disabled high, disabled low, or disabled in high-impedance.  
Customizable OEB Control  
Glitchless Output Enable  
CLK0  
OEB  
OEB_0  
Output State  
CLK Enabled  
CLK Disabled  
OEB_0  
OEB_1  
CLK1  
0
1
OEB  
Clock continues until  
cycle is complete  
Clock starts on the  
first leading edge  
CLK2  
CLK3  
OEB  
OEB  
OEB_1  
Output State  
CLK Enabled  
CLK Disabled  
CLKx  
OEBx  
0
1
CLK4  
CLK5  
CLK6  
CLK7  
OEB  
OEB  
OEB_2  
Output State  
CLK Enabled  
CLK Disabled  
OEB_2  
OEB  
OEB  
0
1
Figure 9. Example Configuration of a Pin-Controlled Output Enable  
Rev. 0.9  
13  
Si5350B  
4.3.4. Power Down (PDN)  
An optional power down control pin allows a full shutdown of the Si5350B to minimize power consumption when its  
output clocks are not being used. The Si5350B is in normal operation when the PDN pin is held low and is in power  
down mode when held high. Power consumption when the device is in power down mode is indicated in Table 2 on  
page 4.  
4.4. Voltage Control Input (VC)  
The VCXO architecture of the Si5350B eliminates the need for an external pullable crystal. Only a standard, low-  
cost, fixed-frequency (25 or 27 MHz) AT-cut crystal is required.  
The tuning range of the VCXO is configurable allowing for a wide variety of applications. Key advantages of the  
VCXO design in the Si5351 include high linearity, a wide operating range (linear from 10 to 90% of VDD), and  
reliable startup and operation. Refer to Table 3 on page 5 for VCXO specification details.  
A unique feature of the Si5350B is its ability to generate multiple output frequencies controlled by the same control  
voltage applied to the VC pin. This replaces multiple PLLs or VCXOs that would normally be locked to the same  
reference. An example is illustrated in Figure 10.  
XA  
XB  
Fixed Frequency  
Crystal (non-pullable)  
Multi  
Synth  
1
OSC  
CLK0  
CLK1  
CLK2  
VC  
Multi  
Synth  
0
Control  
Voltage  
VCXO  
Additional MultiSynths can be  
added to generate multiple  
synchronous clocks with  
Multi  
Synth  
2
different output frequencies  
Figure 10. Generating One Or More Synchronous Clocks  
4.4.1. Control Voltage Gain (kV)  
The voltage level on the VC pin directly controls the output frequency. The rate of change in output clock frequency  
(kv) is configurable from 18 ppm/V up to 150 ppm/V. This allows a configurable pull range from ±30 ppm to  
±150 ppm @ V = 3.3 V as shown in Figure 11. Consult the factory for other pull range values.  
DD  
A key advantage of the VCXO design in the Si5350B is its highly linear tuning range. This allows better control of  
PLL stability and jitter performance over the entire control voltage range.  
14  
Rev. 0.9  
Si5350B  
Pull-in Range  
@ VDD = 3.3 V  
1000  
750  
500  
250  
0
10  
-10  
-250  
VDD  
2
VDD  
-500  
-750  
-1000  
VC (Volts)  
Figure 11. User-definable VCXO Pull Range  
4.5. Design Considerations  
The Si5350B is a self-contained clock generator that requires very few external components. The following general  
guidelines are recommended to ensure optimum performance.  
4.5.1. Power Supply Decoupling/Filtering  
The Si5350B has built-in power supply filtering circuitry to help keep the number of external components to a  
minimum. All that is recommended is one 0.1 µF decoupling capacitor per power supply pin. This capacitor should  
be mounted as close to the VDD and VDDO pins as possible without using vias.  
4.5.2. Power Supply Sequencing  
The VDD and VDDOx (i.e., VDDO0, VDDO1, VDDO2, VDDO3) power supply pins have been separated to allow  
flexibility in output signal levels. It is important that power is applied to all supply pins (VDD, VDDOx) at the same  
time. Unused VDDOx pins should be tied to VDD.  
4.5.3. External Crystal  
The external crystal should be mounted as close to the pins as possible using short PCB traces. The XA and XB  
traces should be kept away from other high-speed signal traces. See “AN551: Crystal Selection Guide” for more  
details.  
4.5.4. External Crystal Load Capacitors  
The Si5350B provides the option of using internal and external crystal load capacitors. If external load capacitors  
are used, they should be placed as close to the XA/XB pads as possible. See “AN551: Crystal Selection Guide” for  
more details.  
4.5.5. Unused Pins  
Unused control pins (P0–P4) should be tied to GND.  
Unused voltage control pin should be tied to GND.  
Unused output pins (CLK0–CLK7) should be left floating.  
4.5.6. Trace Characteristics  
The Si5350B features various output current drives ranging from 2 to 8 mA (default). It is recommended to  
configure the trace characteristics as shown in Figure 12 when an output drive setting of 8 mA is used.  
Rev. 0.9  
15  
Si5350B  
ZO = 85 ohms  
R = 0 ohms  
CLK  
(Optional resistor for  
EMI management)  
Length = No Restrictions  
Figure 12. Recommended Trace Characteristics with 8 mA Drive Strength Setting  
Note: Jitter is only specified at 6 and 8 mA drive strength.  
16  
Rev. 0.9  
Si5350B  
5. Pin Descriptions (20-QFN, 24-QSOP)  
Si5350B 20-QFN  
Top View  
Si5350B 24-QSOP  
Top View  
CLK5  
VDDOC  
CLK4  
CLK6  
1
2
3
24  
23  
22  
CLK7  
VDD0D  
XA  
XB  
VC  
P0  
P1  
1
2
3
4
5
15 CLK7  
VDD  
GND  
XA  
CLK0  
CLK1  
GND  
4
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
VDDOD  
CLK0  
5
GND  
PAD  
6
CLK1  
XB  
VDDOA  
GND  
7
11 VDDOA  
GND  
VC  
8
VDD0B  
CLK2  
9
P0  
10  
P1  
P2  
CLK3  
P3  
11  
12  
14  
13  
Pin Name  
Pin Number  
Pin Type*  
Function  
QFN-20  
1
QSOP-24  
XA  
XB  
6
7
I
I
Input pin for external XTAL  
Input pin for external XTAL  
VCXO control voltage input  
Output clock 0  
2
VC  
3
9
I
CLK0  
CLK1  
CLK2  
CLK3  
CLK4  
CLK5  
CLK6  
CLK7  
P0  
13  
12  
9
21  
20  
15  
14  
3
O
O
O
O
O
O
O
O
I
Output clock 1  
Output clock 2  
8
Output clock 3  
19  
17  
16  
15  
4
Output clock 4  
1
Output clock 5  
24  
23  
10  
11  
12  
13  
4
Output clock 6  
Output clock 7  
User configurable input pin 0  
User configurable input pin 1  
User configurable input pin 2  
User configurable input pin 3  
Core voltage supply pin  
P1  
5
I
P2  
6
I
P3  
7
I
VDD  
VDDOA  
VDDOB  
VDDOC  
VDDOD  
GND  
20  
11  
10  
18  
14  
P
P
P
P
P
P
18  
16  
2
Output voltage supply pin for CLK0 and CLK1  
Output voltage supply pin for CLK2 and CLK3  
Output voltage supply pin for CLK4 and CLK5  
Output voltage supply pin for CLK6 and CLK7  
Ground  
22  
Center Pad 5, 8, 17, 19  
*Note: Pin Types: I = Input, O = Output, P = Power.  
Rev. 0.9  
17  
Si5350B  
6. Pin Descriptions (10-Pin MSOP)  
Si5350B 10-MSOP  
Top View  
VDD  
XA  
CLK0  
CLK1  
GND  
1
2
3
10  
9
8
XB  
VC  
P0  
VDDO  
CLK2  
4
5
7
6
Pin Name  
Pin  
Pin Type*  
Function  
Number  
MSOP-10  
XA  
XB  
2
3
I
I
Input pin for external XTAL  
Input pin for external XTAL  
VCXO control voltage input  
Output clock 0  
Vc  
4
I
CLK0  
CLK1  
CLK2  
P0  
10  
9
O
O
O
I
Output clock 1  
6
Output clock 2  
5
User configurable input pin 0  
Core voltage supply pin  
VDD  
VDDO  
GND  
1
P
P
P
7
Output supply pin for CLK0, CLK1, and CLK2  
Ground  
8
*Note: Pin Types: I = Input, O = Output, P = Power.  
18  
Rev. 0.9  
Si5350B  
7. Ordering Information  
Factory programmed Si5350B devices can be requested using the ClockBuilder web-based utility available at:  
www.silabs.com/ClockBuilder. A unique part number is assigned to each custom configuration as indicated in  
Figure 13.  
XX  
Si5350B  
AXXXXX  
GT - 10-MSOP  
GM - 20-QFN  
GU – 24-QSOP  
A
= Product Revision A  
XXXXX = Unique Custom Code. A five character code will be  
assigned for each unique custom configuration  
Figure 13. Custom Clock Part Numbers  
An evaluation kit containing ClockBuilder Desktop software and hardware allows easy evaluation of the Si5350B.  
Rev. 0.9  
19  
Si5350B  
8. Package Outline (24-Pin QSOP)  
Table 10. 24-QSOP Package Dimensions  
Dimension  
Min  
Nom  
Max  
A
A1  
b
1.75  
0.25  
0.30  
0.25  
8.75  
0.10  
0.19  
0.15  
8.55  
c
D
8.65  
E
6.00 BSC  
3.90  
E1  
e
3.81  
0.40  
0
3.99  
1.27  
8
0.635 BSC  
L
L2  
0.25 BSC  
aaa  
bbb  
ccc  
0.10  
0.17  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
20  
Rev. 0.9  
Si5350B  
9. Package Outline (20-Pin QFN)  
Table 11. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
A
A1  
b
0.90  
0.05  
0.30  
0.02  
0.25  
D
4.00 BSC  
2.70  
D2  
e
2.65  
2.75  
0.50 BSC  
4.00 BSC  
2.70  
E
E2  
L
2.65  
0.30  
2.75  
0.50  
0.10  
0.10  
0.08  
0.10  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Outline MO-220, variation VGGD-8.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small  
Body Components.  
Rev. 0.9  
21  
Si5350B  
10. Package Outline (10-Pin MSOP)  
Table 12. 24-QSOP Package Dimensions  
Dimension  
Min  
Nom  
Max  
1.10  
0.15  
0.95  
0.33  
0.23  
A
A1  
A2  
b
0.00  
0.75  
0.17  
0.08  
0.85  
c
D
3.00 BSC  
4.90 BSC  
3.00 BSC  
0.50 BSC  
0.60  
E
E1  
e
L
0.40  
0.80  
L2  
q
0.25 BSC  
0
8
aaa  
bbb  
ccc  
ddd  
0.20  
0.25  
0.10  
0.08  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation C  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
22  
Rev. 0.9  
Si5350B  
DOCUMENT CHANGE LIST  
Revision 0.2 to Revision 0.9  
Updated maximum output frequency.  
Updated kV values in Table 3 on page 5.  
Added "2.3. HCSL Compatible Outputs" on page 9.  
Updated "4.2.2. .Spread Spectrum" on page 11.  
Added "4.5.6. Trace Characteristics" on page 15.  
Rev. 0.9  
23  
Si5350B  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
24  
Rev. 0.9  

相关型号:

SI5350B-A01218-GT

Clock Generator
SILICON

SI5350B-A01230-GT

Clock Generator
SILICON

SI5350B-A01643-GMR

Clock Generator
SILICON

Si5350B-B

I2C-PROGRAMMABLE ANY-FREQUENCY CMOS CLOCK GENERATOR VCXO
SILICON

SI5350B-B07683-GT

Processor Specific Clock Generator,
SILICON

SI5350B-B10401-GMR

Processor Specific Clock Generator,
SILICON

SI5350B-B10734-GTR

Processor Specific Clock Generator,
SILICON

Si5350C

Timing Selector Guide
SILICON

SI5350C-A-GM

Processor Specific Clock Generator, 133MHz, CMOS, 4 X 4 MM, MO-220VGGD-8, QFN-20
SILICON

SI5350C-A-GMR

Clock Generator
SILICON

Si5350C-A-GT

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC

Si5350C-A-GU

Factory-Programmable Any-Frequency CMOS Clock Generator
ETC