SI5368B-C-GQ [SILICON]

Support Circuit, 1-Func, PQFP100, 14 X 14 MM, ROHS COMPLIANT, MS-026AED-HD, TQFP-100;
SI5368B-C-GQ
型号: SI5368B-C-GQ
厂家: SILICON    SILICON
描述:

Support Circuit, 1-Func, PQFP100, 14 X 14 MM, ROHS COMPLIANT, MS-026AED-HD, TQFP-100

ATM 异步传输模式 电信 电信集成电路
文件: 总92页 (文件大小:1088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5368  
ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER  
ATTENUATOR  
Features  
Generates any frequency from  
2 kHz to 945 MHz and select  
frequencies to 1.4 GHz from an  
input frequency of 2 kHz to  
710 MHz  
Ultra-low jitter clock outputs with  
jitter generation as low as 300 fs  
rms (12 kHz–20 MHz)  
Integrated loop filter with selectable  
loop bandwidth (60 Hz to 8.4 kHz)  
Meets OC-192 GR-253-CORE jitter  
specifications  
Supports holdover and freerun  
modes of operation  
Five clock outputs with  
selectable signal format  
(LVPECL, LVDS, CML, CMOS)  
SONET frame sync switching  
and regeneration  
Support for ITU G.709 and  
custom FEC ratios (253/226,  
239/237, 255/238, 255/237,  
255/236)  
Ordering Information:  
LOL, LOS, FOS alarm outputs  
See page 79.  
Four clock inputs with manual or Digitally-controlled output phase  
automatically controlled hitless  
switching and phase build-out  
Small size: 14 x 14 mm 100-pin  
TQFP  
adjust  
I2C or SPI programmable  
settings  
Pb-free, RoHS compliant  
Pin Assignments  
Applications  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
NC  
NC  
NC  
NC  
SONET/SDH OC-48/STM-16/OC-Data converter clocking  
74  
73  
2
NC  
3
RST  
NC  
192/STM-64 line cards  
GbE/10GbE, 1/2/4/8/10/16G Fibre  
Channel  
ITU G.709 and custom FEC line  
cards  
OTN/WDM Muxponder, MSPP,  
ROADM line cards  
SONET/SDH + PDH clock  
synthesis  
Test and measurement  
Synchronous Ethernet  
Broadcast video  
NC  
4
72  
71  
70  
SDI  
VDD  
5
A2_SS  
VDD  
6
A1  
A0  
NC  
GND  
GND  
7
69  
68  
67  
8
C1B  
9
66  
65  
NC  
10  
11  
12  
13  
14  
15  
C2B  
C3B  
GND  
GND  
64  
63  
T_ALM  
0_C3A  
GND  
VDD  
Si5368  
62  
61  
VDD  
SDA_SDO  
VDD  
XA  
Wireless basestations  
60  
59  
SCL  
C2A  
C1A  
16  
17  
XB  
58  
57  
GND  
GND  
NC  
18  
19  
20  
21  
GND PAD  
CS1_C4A  
NC  
56  
55  
INC  
ALIGN  
NC  
DEC  
NC  
22  
23  
54  
53  
NC  
Description  
NC  
NC  
52  
51  
24  
25  
NC  
NC  
47  
42 43 44 45 46  
49 50  
48  
41  
40  
37 38 39  
36  
26 27 28 29 30 31 32 33 34 35  
The Si5368 is a jitter-attenuating precision clock multiplier for applications  
requiring sub 1 ps rms jitter performance. The Si5368 accepts four clock  
inputs ranging from 2 kHz to 710 MHz and generates five clock outputs  
ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The  
device provides virtually any frequency translation combination across this  
operating range. The outputs are divided down separately from a common  
source. The Si5368 input clock frequency and clock multiplication ratio are  
programmable through an I2C or SPI interface. The Si5368 is based on  
Silicon Laboratories' third-generation DSPLL® technology, which provides  
any-frequency synthesis and jitter attenuation in a highly integrated PLL  
solution that eliminates the need for external VCXO and loop filter  
components. The DSPLL loop bandwidth is digitally programmable,  
providing jitter performance optimization at the application level. Operating  
from a single 1.8, 2.5 ,or 3.3 V supply, the Si5368 is ideal for providing  
clock multiplication and jitter attenuation in high performance timing  
applications.  
Rev. 1.0 8/12  
Copyright © 2012 by Silicon Laboratories  
Si5368  
Si5368  
Functional Block Diagram  
Xtal or Refclock  
CKIN1  
CKIN2  
÷ N31  
÷ N32  
÷ N33  
÷ N34  
÷ NC1_LS  
÷ NC2_LS  
÷ NC3_LS  
CKOUT1  
CKOUT2  
®
÷ N1_HS  
DSPLL  
CKIN3/FSYNC1  
CKIN4  
÷ N2  
CKOUT3  
I2C/SPI Port  
Rate Select  
CKOUT4  
÷ NC4_LS  
÷ NC5_LS  
Clock Select  
Skew Control  
Control  
CKOUT5/FS_OUT  
FSYNC Realignment  
Device Interrupt  
LOL/LOS/FOS Alarms  
VDD (1.8, 2.5, or 3.3 V)  
GND  
Input Clock 3  
Frame sync  
mode only  
Input Clock 4  
{
Output Clock 2  
2
Rev. 1.0  
Si5368  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3. Typical Application Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
7. Pin Descriptions: Si5368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86  
9. Package Outline: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87  
10. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
11. Top Marking: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
11.1. Si5368 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
Document Change list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92  
Rev. 1.0  
3
Si5368  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient Temperature  
T
–40  
25  
85  
C
V
A
2
Supply Voltage during  
Normal Operation  
V
3.3 V Nominal  
2.97  
3.3  
3.63  
DD  
2.5 V Nominal  
1.8 V Nominal  
2.25  
1.71  
2.5  
1.8  
2.75  
1.89  
V
V
Notes:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
Table 2. DC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1,6  
Supply Current  
I
LVPECL Format  
622.08 MHz Out  
394  
435  
mA  
DD  
All CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
1 CKOUT Enabled  
253  
278  
229  
165  
284  
400  
261  
mA  
mA  
mA  
mA  
CMOS Format  
19.44 MHz Out  
All CKOUTs Enabled  
CMOS Format  
19.44 MHz Out  
1 CKOUT Enabled  
Disable Mode  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
4
Rev. 1.0  
Si5368  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
CKINn Input Pins  
Input Common Mode  
Voltage (Input Thresh-  
old Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
3.3 V ± 10%  
Single-ended  
0.9  
1
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
1.1  
20  
0.2  
V
Input Resistance  
CKN  
k  
RIN  
Single-Ended Input  
Voltage Swing  
(See Absolute Specs)  
V
f
f
f
< 212.5 MHz  
V
V
V
V
ISE  
CKIN  
PP  
PP  
PP  
PP  
See Figure 1.  
> 212.5 MHz  
0.25  
0.2  
CKIN  
See Figure 1.  
< 212.5 MHz  
CKIN  
Differential Input  
Voltage Swing  
(See Absolute Specs)  
V
ID  
See Figure 1.  
fCKIN > 212.5 MHz  
See Figure 1.  
0.25  
3,5,6  
Output Clocks (CKOUTn)  
Common Mode  
CKO  
LVPECL 100 load  
V
–1.42  
V –1.25  
DD  
V
VCM  
DD  
line-to-line  
Differential Output  
Swing  
CKO  
CKO  
LVPECL 100 load  
1.1  
0.5  
350  
1.9  
0.93  
500  
V
VD  
PP  
PP  
line-to-line  
Single Ended Output  
Swing  
LVPECL 100 load  
V
VSE  
line-to-line  
Differential Output Volt-  
age  
CKO  
CML 100 load line-  
425  
mV  
PP  
VD  
to-line  
Common Mode Output  
Voltage  
CKO  
CML 100 load line-  
V
-0.36  
DD  
V
VCM  
to-line  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
Rev. 1.0  
5
Si5368  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Differential Output Volt-  
age  
CKO  
LVDS  
100 load line-to-line  
500  
700  
900  
mV  
VD  
PP  
Low Swing LVDS  
100 load line-to-line  
350  
425  
1.2  
500  
1.275  
mV  
PP  
Common Mode Output  
Voltage  
CKO  
LVDS 100 load line-  
1.125  
V
VCM  
to-line  
Differential Output  
Resistance  
CKO  
CML, LVPECL, LVDS  
200  
RD  
Output Voltage Low  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
Output Voltage High  
V
= 1.71 V  
0.8 x V  
VOHLH  
DD  
DD  
CMOS  
ICMOS[1:0] =11  
= 1.8 V  
Output Drive Current  
(CMOS driving into  
CKO  
7.5  
5.5  
3.5  
1.75  
32  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IO  
V
DD  
CKO  
for output low  
VOL  
ICMOS[1:0] =10  
= 1.8 V  
or CKO  
for output  
VOH  
V
DD  
high. CKOUT+ and  
CKOUT– shorted  
externally)  
ICMOS[1:0] =01  
= 1.8 V  
V
DD  
ICMOS[1:0] =00  
= 1.8 V  
V
DD  
ICMOS[1:0] =11  
= 3.3 V  
V
DD  
ICMOS[1:0] =10  
= 3.3 V  
24  
V
DD  
ICMOS[1:0] =01  
= 3.3 V  
16  
V
DD  
ICMOS[1:0] =00  
= 3.3 V  
8
V
DD  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
6
Rev. 1.0  
Si5368  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2-Level LVCMOS Input Pins  
Input Voltage Low  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
0.5  
0.7  
0.8  
V
V
V
V
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
Input Voltage High  
V
1.4  
1.8  
2.5  
IH  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
Rev. 1.0  
7
Si5368  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
3-Level Input Pins  
Input Voltage Low  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
4
V
0.15 x V  
0.55 x V  
V
V
ILL  
DD  
Input Voltage Mid  
Input Voltage High  
V
0.45 x  
IMM  
DD  
V
DD  
V
0.85 x  
V
IHH  
ILL  
V
DD  
Input Low Current  
Input Mid Current  
Input High Current  
I
See Note 4  
See Note 4  
See Note 4  
–20  
–2  
+2  
20  
µA  
µA  
µA  
I
IMM  
I
IHH  
LVCMOS Output Pins  
Output Voltage Low  
V
IO = 2 mA  
0.4  
0.4  
V
V
V
V
OL  
V
V
= 1.71 V  
DD  
Output Voltage Low  
Output Voltage High  
Output Voltage High  
Notes:  
IO = 2 mA  
= 2.97 V  
DD  
V
IO = –2 mA  
= 1.71 V  
V
V
–0.4  
OH  
DD  
DD  
V
DD  
IO = –2 mA  
= 2.97 V  
–0.4  
V
DD  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
8
Rev. 1.0  
Si5368  
Table 3. AC Specifications  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)  
Input Resistance  
XA  
RATE[1:0] = LM, MH,  
ac coupled  
12  
k  
RIN  
Input Voltage Swing  
XA  
RATE[1:0] = LM, MH,  
ac coupled  
0.5  
1.2  
V
VPP  
PP  
Differential Reference Clock Input Pins (XA/XB)  
Input Voltage Swing  
CKINn Input Pins  
Input Frequency  
XA/XB  
RATE[1:0] = LM, MH  
0.5  
2.4  
V
VPP  
PP  
CKN  
Input frequency and clock  
multiplication ratio deter-  
mined by programming  
device PLL dividers. Con-  
sult Silicon Laboratories  
configuration software  
DSPLLsim or Any-Fre-  
quency Precision Clock  
Family Reference Manual  
at www.silabs.com/timing  
(click on Documentation)  
to determine PLL divider  
settings for a given input  
frequency/clock multiplica-  
tion ratio combination  
0.002  
0.002  
710  
MHz  
MHz  
F
Input Clock Frequency  
(CKIN3, CKIN4 used  
as FSYNC inputs)  
CK  
0.512  
F
Input Duty Cycle  
(Minimum Pulse  
Width)  
CKN  
Whichever is smaller  
(i.e., the 40% / 60%  
limitation applies only  
to high frequency  
clocks)  
40  
2
60  
%
DC  
ns  
Input Capacitance  
CKN  
3
pF  
ns  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.  
Rev. 1.0  
9
Si5368  
Table 3. AC Specifications (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
CKOUTn Output Pins  
(See ordering section for speed grade vs frequency limits)  
Output Frequency  
(Output not config-  
ured for CMOS or  
Disabled)  
CKO  
N1 6  
N1 = 5  
N1 = 4  
0.002  
970  
945  
1134  
1.4  
MHz  
MHz  
GHz  
MHz  
F
1.213  
Maximum Output  
Frequency in CMOS  
Format  
CKO  
212.5  
F
Output Rise/Fall  
(20–80 %) @  
622.08 MHz output  
CKO  
CKO  
CKO  
Output not configured for  
CMOS or Disabled  
See Figure 2  
230  
350  
8
ps  
ns  
ns  
ps  
TRF  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CMOS Output  
TRF  
TRF  
V
= 1.71  
DD  
C
= 5 pF  
LOAD  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CMOS Output  
= 2.97  
2
V
DD  
C
= 5 pF  
LOAD  
Output Duty Cycle  
Uncertainty @  
622.08 MHz  
CKO  
100 Load  
Line-to-Line  
Measured at 50% Point  
(Not for CMOS)  
±40  
DC  
LVCMOS Input Pins  
Minimum Reset Pulse  
Width  
t
1
µs  
ms  
pF  
RSTMN  
Reset to Microproces-  
sor Access Ready  
t
10  
3
READY  
Input Capacitance  
LVCMOS Output Pins  
Rise/Fall Times  
C
in  
t
C
= 20pf  
LOAD  
25  
ns  
RF  
See Figure 2  
LOSn Trigger Window  
LOS  
From last CKINn to   
Internal detection of LOSn  
N3 1  
4.5 x N3  
T
CKIN  
TRIG  
Time to Clear LOL  
after LOS Cleared  
t
LOS to LOL  
Fold = Fnew  
10  
ms  
CLRLOL  
Stable Xa/XB reference  
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.  
10  
Rev. 1.0  
Si5368  
Table 3. AC Specifications (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Device Skew  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Clock Skew  
t
of CKOUTn to of  
CKOUT_m, CKOUTn  
and CKOUT_m at same  
frequency and signal  
format  
100  
ps  
SKEW  
PHASEOFFSET = 0  
CKOUT_ALWAYS_ON = 1  
SQ_ICAL = 1  
Phase Change due to  
Temperature  
t
Max phase changes from  
–40 to +85 °C  
300  
500  
ps  
TEMP  
Variation*  
PLL Performance  
(fin = fout = 622.08 MHz; BW = 120 Hz; LVPECL)  
Lock Time  
t
Start of ICAL to of LOL  
35  
1200  
ms  
ps  
LOCKMP  
Output Clock Phase  
Change  
t
After clock switch  
200  
P_STEP  
f3 128 kHz  
Closed Loop Jitter  
Peaking  
J
0.05  
0.1  
dB  
PK  
Jitter Tolerance  
J
Jitter Frequency Loop  
5000/BW  
ns pk-pk  
TOL  
Bandwidth  
1 kHz Offset  
–106  
dBc/Hz  
Phase Noise  
fout = 622.08 MHz  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
–121  
–132  
–132  
–93  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
CKO  
PN  
Spurious Noise  
SP  
Max spur @ n x F3  
–70  
SPUR  
(n 1, n x F3 < 100 MHz)  
*Note: Input to output phase skew after an ICAL is not controlled and can assume any value.  
Rev. 1.0  
11  
Si5368  
Table 4. Microprocessor Control  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
I C Bus Lines (SDA, SCL)  
Input Voltage Low  
VIL  
0.25 x V  
V
V
V
V
V
I2C  
DD  
Input Voltage High  
VIH  
0.7 x V  
0.1 x V  
V
DD  
I2C  
DD  
Hysteresis of Schmitt  
trigger inputs  
VHYS  
V
= 1.8V  
DD  
I2C  
DD  
V
V
= 2.5 or 3.3 V  
0.05 x V  
DD  
DD  
Output Voltage Low  
VOL  
V
= 1.8 V  
0.2 x V  
DD  
I2C  
DD  
IO = 3 mA  
= 2.5 or 3.3 V  
IO = 3 mA  
0.4  
V
DD  
12  
Rev. 1.0  
Si5368  
Table 4. Microprocessor Control (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SPI Specifications  
Duty Cycle, SCLK  
Cycle Time, SCLK  
Rise Time, SCLK  
Fall Time, SCLK  
Low Time, SCLK  
High Time, SCLK  
t
SCLK = 10 MHz  
40  
100  
60  
25  
25  
25  
%
ns  
ns  
ns  
ns  
ns  
ns  
DC  
t
c
t
20–80%  
20–80%  
20–20%  
80–80%  
r
t
f
t
30  
30  
lsc  
t
hsc  
Delay Time, SCLK Fall  
to SDO Active  
t
d1  
d2  
d3  
Delay Time, SCLK Fall  
to SDO Transition  
t
25  
20  
25  
20  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay Time, SS Rise  
to SDO Tri-state  
t
Setup Time, SS to  
SCLK Fall  
t
su1  
Hold Time, SS to  
SCLK Rise  
t
h1  
Setup Time, SDI to  
SCLK Rise  
t
su2  
Hold Time, SDI to  
SCLK Rise  
t
h2  
Delay Time between  
Slave Selects  
t
cs  
Rev. 1.0  
13  
Si5368  
Table 5. Jitter Generation  
*
Parameter  
Symbol  
Min  
Typ  
Max  
GR-253-  
Specification  
Unit  
Test Condition  
Measurement  
Filter  
DSPLL  
2
BW  
Jitter Gen  
OC-192  
JGEN  
0.02–80 MHz  
120 Hz  
120 Hz  
120 Hz  
120 Hz  
4.2  
.27  
3.7  
.14  
4.4  
.26  
3.5  
.27  
6.2  
0.42  
6.4  
30  
N/A  
10  
ps  
PP  
ps  
rms  
4–80 MHz  
ps  
PP  
0.31  
6.9  
N/A  
10  
ps  
rms  
0.05–80 MHz  
0.12–20 MHz  
ps  
PP  
0.41  
5.4  
1.0  
ps  
rms  
PP  
Jitter Gen  
OC-48  
JGEN  
40.2  
4.02  
ps  
ps  
0.41  
rms  
*Note: Test conditions:  
1. fIN = fOUT = 622.08 MHz  
2. Clock input: LVPECL  
3. Clock output: LVPECL  
4. PLL bandwidth: 120 Hz  
5. 114.285 MHz 3rd OT crystal used as XA/XB input  
6. DD = 2.5 V  
7. TA = 85 °C  
V
8. Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs per Telecordia  
GR-253-CORE.  
Table 6. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
Still Air  
31  
C°/W  
JA  
14  
Rev. 1.0  
Si5368  
Table 7. Absolute Maximum Limits  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
3.8  
Unit  
DC Supply Voltage  
V
–0.5  
V
DD  
LVCMOS Input Voltage  
V
–0.3  
0
V
+0.3  
DD  
V
V
DIG  
CKINn Voltage Level Limits  
XA/XB Voltage Level Limits  
Operating Junction Temperature  
Storage Temperature Range  
CKN  
V
DD  
VIN  
XA  
0
1.2  
V
VIN  
T
–55  
–55  
2
150  
150  
ºC  
ºC  
kV  
JCT  
T
STG  
ESD HBM Tolerance  
(100 pF, 1.5 k); All pins except  
CKIN+/CKIN–  
ESD MM Tolerance; All pins  
except CKIN+/CKIN–  
150  
700  
100  
V
V
V
ESD HBM Tolerance  
(100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance;  
CKIN+/CKIN–  
Latch-up Tolerance  
JESD78 Compliant  
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions specified in the operations sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
Rev. 1.0  
15  
Si5368  
V
SIGNAL +  
ICM , VOCM  
SIGNAL –  
Single-Ended  
Peak-to-Peak Voltage  
V
Differential I/Os  
VISE,VOSE  
(SIGNAL +) – (SIGNAL –)  
ICM, VOCM  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
V
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. Differential Voltage Characteristics  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
16  
Rev. 1.0  
Si5368  
2. Typical Phase Noise Performance  
Figure 3. Typical Phase Noise Plot  
Table 8. RMS Jitter by Band  
Jitter Band  
Jitter, RMS  
249 fs  
SONET_OC48, 12 kHz to 20 MHz  
SONET_OC192_A, 20 kHz to 80 MHz  
SONET_OC192_B, 4 MHz to 80 MHz  
SONET_OC192_C, 50 kHz to 80 MHz  
Brick Wall_800 Hz to 80 MHz  
274 fs  
166 fs  
267 fs  
274 fs  
*Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass  
(–60 dB/Dec) roll-offs per Telecordia GR-253-CORE.  
Rev. 1.0  
17  
Si5368  
3. Typical Application Circuits  
C10  
System  
Option 1:  
Crystal  
Option 2:  
Power  
Ferrite  
Supply  
Ext. Refclk  
1 µF  
C1–9  
Bead  
114.285 MHz  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
0.1 µF  
130  
82   
130   
82   
CKIN1+  
CKIN1–  
0.1 µF  
100   
0.1 µF  
+
CKOUT1+  
CKOUT1–  
0.1 µF  
CKOUT4+  
+
+
Input  
Clock  
Sources*  
Clock  
Outputs  
100   
VDD = 3.3 V  
CKOUT4–  
FS_OUT+  
0.1 µF  
0.1 µF  
130   
82   
130   
82   
CKIN4+  
CKIN4–  
Si5368  
100   
FS_OUT–  
0.1 µF  
Interrupt/Alarm Output  
Indicator  
INT_ALM  
CnB  
CKINn Invalid Indicator  
(n = 1 to 3)  
INC  
INC  
PLL Loss of Lock  
Indicator  
LOL  
DEC  
DEC  
Rate  
Serial Port  
Address  
I2C  
A[2:0]  
SDA  
SCL  
RATE[1:0]  
CMODE  
RST  
Serial Data  
Interface  
Control Mode (L)  
Reset  
Serial Clock  
*Note:  
Assumes differential LVPECL termination (3.3 V) on clock inputs.  
2
Figure 4. Si5368 Typical Application Circuit (I C Control Mode)  
18  
Rev. 1.0  
Si5368  
C10  
System  
Power  
Supply  
Option 1:  
Option 2:  
Ferrite  
Bead  
Crystal  
Ext. Refclk  
1 µF  
C1–9  
114.285 MHz  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
0.1 µF  
130  
82   
130   
82   
CKIN1+  
CKIN1–  
0.1 µF  
100   
0.1 µF  
+
CKOUT1+  
CKOUT1–  
0.1 µF  
+
+
CKOUT4+  
Input  
Clock  
Clock  
Sources*  
Outputs  
100   
VDD = 3.3 V  
CKOUT4–  
FS_OUT+  
0.1 µF  
0.1 µF  
130   
82   
130   
82   
CKIN4+  
CKIN4–  
100   
Si5368  
FS_OUT–  
0.1 µF  
Interrupt/Alarm Output  
Indicator  
INT_ALM  
CnB  
CKINn Invalid Indicator  
(n = 1 to 3)  
PLL Loss of Lock  
Indicator  
LOL  
INC  
INC  
DEC  
Rate  
Slave Select  
SS  
SDO  
SDI  
DEC  
Serial Data  
Out  
RATE[1:0]  
CMODE  
RST  
SPI  
Interface  
Serial Data  
In  
Control Mode (H)  
Reset  
SCL  
Serial Clock  
*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.  
Figure 5. Si5368 Typical Application Circuit (SPI Control Mode)  
Rev. 1.0  
19  
Si5368  
4. Functional Description  
The Si5368 is a jitter-attenuating precision clock multiplier for applications requiring sub 1 ps rms jitter  
performance. The Si5368 accepts four clock inputs ranging from 2 kHz to 710 MHz and generates five clock  
outputs ranging from 2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides virtually any  
frequency translation combination across this operating range. Independent dividers are available for every input  
clock and output clock, so the Si5368 can accept input clocks at different frequencies and it can generate output  
clocks at different frequencies. The Si5368 input clock frequency and clock multiplication ratio are programmable  
2
through an I C or SPI interface. Optionally, the fifth clock output can be configured as a 2 to 512 kHz SONET/SDH  
frame synchronization output that is phase aligned with one of the high-speed output clocks. Silicon Laboratories  
offers a PC-based software utility, DSPLLsim, that can be used to determine the optimum PLL divider settings for a  
given input frequency/clock multiplication ratio combination that minimizes phase noise and power consumption.  
This utility can be downloaded from http://www.silabs.com/timing (click on Documentation).  
®
The Si5368 is based on Silicon Laboratories' 3rd-generation DSPLL technology, which provides any-frequency  
synthesis and jitter attenuation in a highly integrated PLL solution that eliminates the need for external VCXO and  
loop filter components. The Si5368 PLL loop bandwidth is digitally programmable and supports a range from 60 Hz  
to 8.4 kHz. The DSPLLsim software utility can be used to calculate valid loop bandwidth settings for a given input  
clock frequency/clock multiplication ratio.  
The Si5368 supports hitless switching between input clocks in compliance with GR-253-CORE and GR-1244-  
CORE that greatly minimizes the propagation of phase transients to the clock outputs during an input clock  
transition (<200 ps typ). Manual, automatic revertive and non-revertive input clock switching options are available.  
The Si5368 monitors the four input clocks for loss-of-signal and provides a LOS alarm when it detects missing  
pulses on any of the four input clocks. The device monitors the lock status of the PLL. The lock detect algorithm  
works by continuously monitoring the phase of the input clock in relation to the phase of the feedback clock. The  
Si5368 monitors the frequency of CKIN1, CKIN2, CKIN3, and CKIN4 with respect to a selected reference  
frequency and generates a frequency offset alarm (FOS) if the threshold is exceeded. This FOS feature is available  
for SONET applications in which both the monitored frequency on CKIN1, CKIN3, and CKIN4 and the reference  
frequency are integer multiples of 19.44 MHz. Both Stratum 3/3E and SONET Minimum Clock (SMC) FOS  
thresholds are supported.  
The Si5368 provides a digital hold capability that allows the device to continue generation of a stable output clock  
when the selected input reference is lost. During digital hold, the DSPLL generates an output frequency based on  
a historical average that existed a fixed amount of time before the error event occurred, eliminating the effects of  
phase and frequency transients that may occur immediately preceding digital hold.  
Fine phase adjustment is available and is set using the FLAT register bits. The nominal range and resolution of the  
FLAT[14:0] latency adjustment word are: ±110 ps and 3 ps, respectively.  
The Si5368 has five differential clock outputs. The electrical format of the clock outputs is programmable to support  
LVPECL, LVDS, CML, or CMOS loads. If not required, unused clock outputs can be powered down to minimize  
power consumption. The phase difference between the selected input clock and the output clocks is adjustable in  
200 ps increments for system skew control. In addition, the phase of one output clock may be adjusted in relation  
to the phase of the other output clock. The resolution varies from 800 ps to 2.2 ns depending on the PLL divider  
settings. Consult the DSPLLsim configuration software to determine the phase offset resolution for a given input  
clock/clock multiplication ratio combination. For system-level debugging, a bypass mode is available which drives  
the output clock directly from the input clock, bypassing the internal DSPLL. The device is powered by a single 1.8,  
2.5, or 3.3 V supply.  
4.1. External Reference  
An external, 38.88 MHz clock or a low-cost 114.285 MHz 3rd overtone crystal is used as part of a fixed-frequency  
oscillator within the DSPLL. This external reference is required for the device to operate. Silicon Laboratories  
recommends using a high-quality crystal. Specific recommendations may be found in the Family Reference  
Manual. An external clock from a high-quality OCXO or TCXO can also be used as a reference for the device.  
In digital hold, the DSPLL remains locked to this external reference. Any changes in the frequency of this reference  
when the DSPLL is in digital hold, will be tracked by the output of the device. Note that crystals can have  
temperature sensitivities.  
20  
Rev. 1.0  
Si5368  
4.2. Further Documentation  
Consult the Silicon Laboratories Any-Frequency Precision Clock Family Reference Manual (FRM) for detailed  
information about the Si5368. Additional design support is available from Silicon Laboratories through your  
distributor.  
Silicon Laboratories has developed a PC-based software utility called DSPLLsim to simplify device configuration,  
including frequency planning and loop bandwidth selection. The FRM and this utility can be downloaded from  
http://www.silabs.com/timing; click on Documentation.  
Rev. 1.0  
21  
Si5368  
5. Register Map  
All register bits that are not defined in this map should always be written with the specified Reset Values. The  
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.  
Registers not listed, such as Register 64, should never be written to.  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
FREE_RUN  
CKOUT_  
ALWAYS_  
ON  
CK_CON-  
FIG_REG  
BYPASS_  
REG  
1
2
CK_PRIOR4 [1:0]  
CK_PRIOR3 [1:0]  
CK_PRIOR2 [1:0]  
CK_PRIOR1 [1:0]  
BWSEL_REG [3:0]  
3
CKSEL_REG [1:0]  
AUTOSEL_REG [1:0]  
ICMOS [1:0]  
DHOLD  
SQ_ICAL  
4
HIST_DEL [4:0]  
SFOUT1_REG [2:0]  
5
SFOUT2_REG [2:0]  
SFOUT4_REG [2:0]  
SFOUT5_REG [2:0]  
6
SFOUT3_REG [2:0]  
FOSREFSEL [2:0]  
7
8
HLOG_4 [1:0]  
HLOG_3 [1:0]  
HLOG_2 [1:0]  
HLOG_1 [1:0]  
HLOG_5 [1:0]  
9
HIST_AVG [4:0]  
10  
DSBL5_  
REG  
DSBL4_  
REG  
DSBL3_  
REG  
DSBL2_  
REG  
DSBL1_  
REG  
11  
12  
ALIGN_THR [2:0]  
PD_CK4  
PD_CK3  
PD_CK2  
PD_CK1  
FPW_VALID  
FSYNC_  
FSYNC_  
ALIGN_  
MODE  
FSYNC_  
SWTCH_  
REG  
FSKEW_  
VALID  
FSYNC_  
SKEW  
[16:16]  
FSYNC_PW [9:8]  
ALIGN_REG  
13  
14  
15  
16  
17  
18  
19  
20  
FSYNC_PW [7:0]  
FSYNC_SKEW [15:8]  
FSYNC_SKEW [7:0]  
CLAT [7:0]  
FLAT_VALID  
FOS_EN  
FLAT [14:8]  
FLAT [7:0]  
FOS_THR [1:0]  
VALTIME [1:0]  
LOCKT [2:0]  
LOL_PIN  
ALR-  
CK3_BAD_ CK2_BAD_ CK1_BAD_  
INT_PIN  
MOUT_PIN  
PIN  
PIN  
PIN  
21  
22  
INCDEC_  
PIN  
CK4_ACT-  
V_PIN  
CK3_ACT-  
V_PIN  
CK2_ACT-  
V_PIN  
CK1_ACT- CKSEL_PIN  
V_PIN  
FSYNC_  
ALIGN_PIN  
FSYNC_  
ALIGN_POL  
FSYNC_  
POL  
FSYNCO-  
UT_POL  
CK_ACTV_  
POL  
CK_BAD_  
POL  
LOL_POL  
INT_POL  
22  
Rev. 1.0  
Si5368  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
23  
LOS4_MSK LOS3_MSK  
LOS2_MSK LOS1_MSK LOSX_MSK  
24  
ALIGN_MSK FOS4_MSK FOS3_MSK  
FOS2_MSK FOS1_MSK  
NC1_LS [19:16]  
LOL_MSK  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
N1_HS [2:0]  
NC1_LS [15:8]  
NC1_LS [7:0]  
NC2_LS [19:16]  
NC3_LS [19:16]  
NC4_LS [19:16]  
NC5_LS [19:16]  
N2_LS [19:16]  
NC2_LS [15:8]  
NC2_LS [7:0]  
NC3_LS [15:8]  
NC3_LS [7:0]  
NC4_LS [15:8]  
NC4_LS [7:0]  
NC5_LS [15:8]  
NC5_LS [7:0]  
N2_HS [2:0]  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
N2_LS [15:8]  
N2_LS [7:0]  
N31_ [18:16]  
N32_ [18:16]  
N33_[18:16]  
N34_[18:16]  
N31_[15:8]  
N31_ [7:0]  
N31_ [15:8]  
N32_[7:0]  
N33_[15:8]  
N33_[7:0]  
N34_[15:8]  
Rev. 1.0  
23  
Si5368  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
54  
55  
N34_[7:0]  
CLKIN2RATE_[2:0]  
CLKIN4RATE_[2:0]  
CLKIN1RATE[2:0]  
CLKIN3RATE[2:0]  
56  
128  
CK4_ACT-  
V_REG  
CK3_ACT-  
V_REG  
CK2_ACT-  
V_REG  
CK1_ACT-  
V_REG  
129  
130  
LOS4_INT  
FOS4_INT  
LOS3_INT  
FOS3_INT  
LOS2_INT  
FOS2_INT  
LOS1_INT  
FOS1_INT  
LOSX_INT  
LOL_INT  
CLATPROG- DIGHOLD- ALIGN_INT  
RESS  
VALID  
131  
132  
LOS4_FLG LOS3_FLG LOS2_FLG LOS1_FLG LOSX_FLG  
ALIGN_FLG FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG  
LOL_FLG  
AIGN_ERR  
[8:8]  
133  
134  
135  
136  
138  
ALIGN_ERR [7:0]  
PARTNUM_RO [11:4]  
PARTNUM_RO [3:0]  
ICAL  
REVID_RO [3:0]  
RST_REG  
LOS4_EN  
[1:1]  
LOS3_EN  
[1:1]  
LOS2_EN  
[1:1]  
LOS1_EN  
[1:1]  
139  
LOS4_EN  
[0:0]  
LOS3_EN  
[0:0]  
LOS2_EN  
[0:0]  
LOS1_EN  
[0:0]  
FOS4_EN  
FOS3_EN  
FOS2_EN  
FOS1_EN  
140  
141  
142  
143  
144  
INDEPENDENTSKEW1 [7:0]  
INDEPENDENTSKEW2 [7:0]  
INDEPENDENTSKEW3 [7:0]  
INDEPENDENTSKEW4 [7:0]  
INDEPENDENTSKEW5 [7:0]  
24  
Rev. 1.0  
Si5368  
6. Register Descriptions  
Register 0.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
FREE_  
RUN  
CKOUT_  
ALWAYS_ON  
CK_CON-  
FIG_REG  
BYPASS_  
REG  
Type  
R
R/W  
R/W  
R
R/W  
R
R/W  
R
Reset value = 0001 0100  
Bit  
7
Name  
Function  
Reserved  
6
FREE_RUN Free Run.  
Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its external  
reference.  
0: Disable Free Run  
1: Enable  
5
CKOUT_  
CKOUT Always On.  
ALWAYS_ON This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL is on  
and ICAL is not complete or successful. See Table 9.  
0: Squelch output until part is calibrated (ICAL).  
1: Provide an output. Note: The frequency may be significantly off until the part is  
calibrated.  
4
3
Reserved  
CK_CON-  
FIG_REG  
CK_CONFIG_REG.  
This bit controls the input clock configuration for either normal CLKIN function or FSYNC  
operation. Whenever CK_CONFIG_REG = 1, FSYNC_ALIGN_MODE must not be set to  
1.  
0: CKIN_1, 2, 3, 4 inputs do not have a synchronized relationship. CLKOUT5 is an inde-  
pendent output. There is no FSYNCOUT.  
1: CKIN_1, 3 and CKIN_2, 4 Clock/FSYNC pairs. CKOUT5 is configured as the FSYNC  
output.  
2
1
Reserved  
BYPASS_  
REG  
Bypass Register.  
This bit enables or disables the PLL bypass mode. Use is only valid when the part is in  
digital hold or before the first ICAL.  
0: Normal operation  
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypassing PLL.  
Bypass mode does not support CMOS clock outputs.  
0
Reserved  
Rev. 1.0  
25  
Si5368  
Register 1.  
Bit  
D7  
D6  
D5  
CK_PRIOR3 [1:0]  
R/W R/W  
D4  
D3  
CK_PRIOR2 [1:0]  
R/W R/W  
D2  
D1  
CK_PRIOR1 [1:0]  
R/W R/W  
D0  
Name  
Type  
CK_PRIOR4 [1:0]  
R/W  
R/W  
Reset value = 1110 0100  
Bit  
Name  
Function  
7:6  
CK_PRIOR4 [1:0] Selects which of the input clocks will be 4th priority in the autoselection state  
machine.  
00: CKIN1 is 4th priority  
01: CKIN2 is 4th priority  
10: CKIN3 is 4th priority  
11: CKIN4 is 4th priority  
5:4  
3:2  
CK_PRIOR3 [1:0] Selects which of the input clocks will be 3rd priority in the autoselection state  
machine.  
00: CKIN1 is 3rd priority  
01: CKIN2 is 3rd priority  
10: CKIN3 is 3rd priority  
11: CKIN4 is 3rd priority  
CK_PRIOR2 [1:0] CK_PRIOR 2.  
Selects which of the input clocks will be 2nd priority in the autoselection state  
machine.  
00: CKIN1 is 2nd priority  
01: CKIN2 is 2nd priority  
10: CKIN3 is 2nd priority  
11: CKIN4 is 2nd priority  
1:0  
CK_PRIOR1 [1:0] CK_PRIOR 1.  
Selects which of the input clocks will be 1st priority in the autoselection state  
machine.  
00: CKIN1 is 1st priority  
01: CKIN2 is 1st priority  
10: CKIN3 is 1st priority  
11: CKIN4 is 1st priority  
26  
Rev. 1.0  
Si5368  
Register 2.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BWSEL_REG [3:0]  
R/W  
R
R
R
R
Reset value = 0100 0010  
Bit  
Name  
BWSEL_REG [3:0] BWSEL_REG.  
Function  
7:4  
Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After  
BWSEL_REG is written with a new value, an ICAL is required for the change to take  
effect.  
3:0  
Reserved  
Rev. 1.0  
27  
Si5368  
Register 3.  
Bit  
D7  
D6  
CKSEL_REG [1:0]  
R/W  
D5  
DHOLD  
R/W  
D4  
SQ_ICAL  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
R
R
R
R
Reset value = 0000 0101  
Bit  
Name  
CKSEL_REG [1:0] CKSEL_REG.  
If the device is operating in manual register-based clock selection mode  
Function  
7:6  
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input  
clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins  
continue to control clock selection and CKSEL_REG is of no consequence.  
00: CKIN_1 selected.  
01: CKIN_2 selected.  
10: CKIN_3 selected.  
11: CKIN_4 selected.  
5
DHOLD  
DHOLD.  
Forces the part into digital hold. This bit overrides all other manual and automatic  
clock selection controls.  
0: Normal operation.  
1: Force digital hold mode. Overrides all other settings and ignores the quality of all  
of the input clocks.  
4
SQ_ICAL  
Reserved  
SQ_ICAL.  
This bit determines if the output clocks will remain enabled or be squelched (dis-  
abled) during an internal calibration. See Table 9.  
0: Output clocks enabled during ICAL.  
1: Output clocks disabled during ICAL.  
3:0  
28  
Rev. 1.0  
Si5368  
Register 4.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
HIST_DEL [4:0]  
R/W  
D1  
D0  
Name  
Type  
AUTOSEL_REG [1:0]  
R/W  
R
Reset value = 0001 0010  
Bit  
Name  
AUTOSEL_REG [1:0] AUTOSEL_REG [1:0].  
Selects method of input clock selection to be used.  
Function  
7:6  
00: Manual (either register or pin controlled. See CKSEL_PIN).  
01: Automatic Non-Revertive  
10: Automatic Revertive  
11: Reserved  
5
Reserved  
4:0  
HIST_DEL [4:0]  
HIST_DEL [4:0].  
Selects amount of delay to be used in generating the history information  
MHIST, the value of M used during Digital Hold.  
Rev. 1.0  
29  
Si5368  
Register 5.  
Bit  
D7  
ICMOS [1:0]  
R/W  
D6  
D5  
D4  
SFOUT2_REG [2:0]  
R/W  
D3  
D2  
D1  
SFOUT1_REG [2:0]  
R/W  
D0  
Name  
Type  
Reset value = 1110 1101  
Bit  
Name  
Function  
7:6  
ICMOS [1:0] ICMOS [1:0].  
When the output buffer is set to CMOS mode, these bits determine the output buffer drive  
strength. The first number below refers to 3.3 V operation; the second to 1.8 V operation.  
These values assume CKOUT+ is tied to CKOUT–.  
00: 8 mA/2 mA  
01: 16 mA/4 mA  
10: 24 mA/6 mA  
11: 32 mA (3.3 V operation)/8 mA (1.8 V operation)  
5:3  
SFOUT2_  
REG [2:0]  
SFOUT2_REG [2:0].  
Controls output signal format and disable for CKOUT2 output buffer. The LVPECL and  
CMOS output formats draw more current than either LVDS or CML; however, there are  
restrictions in the allowed output format pin settings so that the maximum power dissipa-  
tion for the TQFP devices is limited when they are operated at 3.3 V. When there are four  
enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are  
five enabled outputs, there can be no more than three outputs that are either LVPECL or  
CMOS.  
000: Reserved  
001: Disable  
010: CMOS (Bypass mode not supported.)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
SFOUT1_  
REG [2:0]  
SFOUT1_REG [2:0].  
Controls output signal format and disable for CKOUT1 output buffer. The LVPECL and  
CMOS output formats draw more current than either LVDS or CML; however, there are  
restrictions in the allowed output format pin settings so that the maximum power dissipa-  
tion for the TQFP devices is limited when they are operated at 3.3 V. When there are four  
enabled LVPECL or CMOS outputs, the fifth output must be disabled. When there are  
five enabled outputs, there can be no more than three outputs that are either LVPECL or  
CMOS.  
000: Reserved  
001: Disable  
010: CMOS (Bypass mode not supported.)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
30  
Rev. 1.0  
Si5368  
Register 6.  
Bit  
D7  
D6  
D5  
D4  
SFOUT4_REG [2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
SFOUT3_REG [2:0]  
R/W  
R
R
Reset value = 0010 1100  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
SFOUT4_REG [2:0] SFOUT4_REG [2:0].  
Controls output signal format and disable for CKOUT4 output buffer. The  
LVPECL and CMOS output formats draw more current than either LVDS or  
CML; however, there are restrictions in the allowed output format pin settings so  
that the maximum power dissipation for the TQFP devices is limited when they  
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs,  
the fifth output must be disabled. When there are five enabled outputs, there can  
be no more than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS (Bypass mode not supported.)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
SFOUT3_REG [2:0] SFOUT3_REG [2:0].  
Controls output signal format and disable for CKOUT3 output buffer. The  
LVPECL and CMOS output formats draw more current than either LVDS or  
CML; however, there are restrictions in the allowed output format pin settings so  
that the maximum power dissipation for the TQFP devices is limited when they  
are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs,  
the fifth output must be disabled. When there are five enabled outputs, there can  
be no more than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS (Bypass mode not supported.)  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
Rev. 1.0  
31  
Si5368  
Register 7.  
Bit  
D7  
D6  
D5  
D4  
SFOUT5_REG [2:0]  
R/W  
D3  
D2  
D1  
FOSREFSEL [2:0]  
R/W  
D0  
Name  
Type  
R
R
Reset value = 0010 1010  
Bit  
7:6  
5:3  
Name  
Function  
Reserved.  
Reserved.  
SFOUT5_REG [2:0] SFOUT5_REG [2:0]  
Controls output signal format and disable for CKOUT5 output buffer. The  
LVPECL and CMOS output formats draw more current than either LVDS or CML;  
however, there are restrictions in the allowed output format pin settings so that  
the maximum power dissipation for the TQFP devices is limited when they are  
operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the  
fifth output must be disabled. When there are five enabled outputs, there can be  
no more than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
FOSREFSEL [2:0] FOSREFSEL [2:0].  
Selects which input clock is used as the reference frequency for Frequency Off-  
Set (FOS) alarms.  
000: XA/XB (External reference)  
001: CKIN1  
010: CKIN2  
011: CKIN3  
100: CKIN4  
101: Reserved  
110: Reserved  
111: Reserved  
32  
Rev. 1.0  
Si5368  
Register 8.  
Bit  
D7  
HLOG_4[1:0]  
R/W  
D6  
D5  
HLOG_3[1:0]  
R/W  
D4  
D3  
HLOG_2[1:0]  
R/W  
D2  
D1  
D0  
Name  
Type  
HLOG_1[1:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:6  
HLOG_4 [1:0] HLOG_4 [1:0].  
00: Normal operation  
01: Holds CKOUT4 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT4 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved  
5:4  
3:2  
1:0  
HLOG_3 [1:0] HLOG_3 [1:0].  
00: Normal operation  
01: Holds CKOUT3 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT3 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved.  
HLOG_2 [1:0] HLOG_2 [1:0].  
00: Normal operation  
01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved.  
HLOG_1 [1:0] HLOG_1 [1:0].  
00: Normal operation  
01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved  
Rev. 1.0  
33  
Si5368  
Register 9.  
Bit  
D7  
D6  
D5  
HIST_AVG [4:0]  
R/W  
D4  
D3  
D2  
D1  
HLOG_5 [1:0]  
R/W  
D0  
Name  
Type  
R
Reset value = 1100 0000  
Bit  
Name  
HIST_AVG [4:0] HIST_AVG [4:0].  
Function  
7:3  
Selects amount of averaging time to be used in generating MHIST, the value of M  
used  
during digital hold. See Family Reference Manual for settings.  
2
Reserved  
1:0  
HLOG_5 [1:0]  
HLOG_5 [1:0].  
00: Normal Operation  
01: Holds CKOUT5 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT5 output at static logic 1. Entrance and exit from this state will  
occur without glitches or runt pulses.  
11: Reserved  
34  
Rev. 1.0  
Si5368  
Register 10.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
DSBL5_  
REG  
DSBL4_  
REG  
DSBL3_  
REG  
DSBL2_  
REG  
DSBL1_  
REG  
Type  
R
R
R/W  
R
R/W  
R/W  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5
Name  
Function  
Reserved  
DSBL5_REG DSBL5_REG.  
This bit controls the powerdown and disable of the CKOUT5 output buffer. If disable  
mode is selected, the NC5_LS output divider is also powered down.  
0: CKOUT5 enabled.  
1: CKOUT5 disabled.  
4
3
Reserved  
DSBL4_REG DSBL4_REG.  
This bit controls the powerdown and disable of the CKOUT4 output buffer. If disable  
mode is selected, the NC4 output divider is also powered down.  
0'b=CKOUT4 enabled  
1'b=CKOUT4 disabled  
2
1
0
DSBL3_REG DSBL3_REG.  
This bit controls the powerdown and disable of the CKOUT3 output buffer. If disable  
mode is selected, the NC3 output divider is also powered down.  
0: CKOUT3 enabled  
1: CKOUT3 disabled  
DSBL2_REG DSBL2_REG.  
This bit controls the powerdown and disable of the CKOUT2 output buffer. If disable  
mode is selected, the NC2 output divider is also powered down.  
0: CKOUT2 enabled  
1: CKOUT2 disabled  
DSBL1_REG DSBL1_REG.  
This bit controls the powerdown and disable of the CKOUT1 output buffer. If disable  
mode is selected, the NC1 output divider is also powered down.  
0: CKOUT1 enabled  
1: CKOUT1 disabled  
Rev. 1.0  
35  
Si5368  
Register 11.  
Bit  
D7  
D6  
ALIGN_THR [2:0]  
R/W  
D5  
D4  
D3  
PD_CK4  
R/W  
D2  
PD_CK3  
R/W  
D1  
PD_CK2  
R/W  
D0  
PD_CK1  
R/W  
Name  
Type  
R/W  
R/W  
R
Reset value = 0100 0000  
Bit  
Name  
ALIGN_THR [2:0] ALIGN_THR [2:0].  
Function  
7:5  
These bits control the threshold for the alignment error alarm. Input to output sync  
phase skews that deviate more than the alignment threshold from the ideal value  
(set by FSYNC_SKEW[16:0]) in either the leading or lagging direction trigger the  
alignmentalarm. Value is in units of Tclkout2.  
000: 4  
001: 8  
010: 16  
011: 32  
100: 48  
101: 64  
110: 96  
111: 128  
4
3
Reserved  
PD_CK4  
PD_CK4.  
This bit controls the powerdown of the CKIN4 input buffer.  
0: CKIN4 enabled  
1: CKIN4 disabled  
2
1
0
PD_CK3  
PD_CK2  
PD_CK1  
PD_CK3.  
This bit controls the powerdown of the CKIN3 input buffer.  
0: CKIN3 enabled  
1: CKIN3 disabled  
PD_CK2.  
This bit controls the powerdown of the CKIN2 input buffer.  
0: CKIN2 enabled  
1: CKIN2 disabled  
PD_CK1.  
This bit controls the powerdown of the CKIN1 input buffer.  
0: CKIN1 enabled  
1: CKIN1 disabled  
36  
Rev. 1.0  
Si5368  
Register 12.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
FPW_  
VALID  
FSYNC_  
ALIGN_  
REG  
FSYNC_  
ALIGN_  
MODE  
FSYNC_  
SWTCH_  
REG  
FSKEW_  
VALID  
FSYNC_  
SKEW  
[16:16]  
FSYNC_PW [9:8]  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 1000 1000  
Bit  
Name  
FPW_VALID FPW_VALID.  
Function  
7
When in frame sync mode (CK_CONFIG_REG=1), before writing either a new FSYN-  
C_PW[9:0] or NC5_LS [19:0] value, this bit must be set to zero. This causes the existing  
FSYNC_PW [9:0] or NC5_LS[19:0] value to be held by the internal state machine for use  
while the new values are written. Once the new FSYNC_PW [9:0] or NC5_LS [19:0] val-  
ues are completely written, set FPW_VALID = 1 to enable their use.  
0: Memorize existing FSYNC_PW[9:0] and NC5_LS [19:0] values and ignore  
intermediate register values during write of new FSYNC_PW [9:0] and NC5_LS [19:0]  
values.  
1: Use FSYNC_PW[9:0] value directly from registers  
6
FSYNC_  
FSYNC_ALIGN_REG.  
ALIGN_REG  
If FSYNC_ALIGN_PIN=0, this bit controls realignment of FSYNCOUT to the active sync  
input (CKIN_3 or CKIN_4). If FSYNC_ALIGN_PIN=1, the FSYNC_ALIGN pin controls  
this function.  
0: No realignment  
1: Active  
5
4
FSYNC_  
ALIGN_  
MODE  
FSYNC_ALIGN_MODE.  
This bit must be set to 1 when in frame sync mode (when CK_CONFIG_REG = 1).  
FSYNC_  
FSYNC_SWTCH_REG.  
SWTCH_REG  
Enables or disables the use of the CKIN3 and CKIN4 loss-of-signal indicators as inputs to  
the automatic clock selection state machine for the clock configuration mode supporting  
frame sync switching (CK_CONFIG=1 or CK_CONFIG_REG=1).  
0: CKIN3 and CKIN4 status not used in clock selection  
1: CKIN3 and CKIN4 status used in clock selection  
3
FSKEW_  
VALID  
FSKEW_VALID.  
Before writing a new FSYNC_SKEW[16:0] value, this bit must be set to zero, which  
causes the existing FSYNC_SKEW[16:0] value to be held internally by the skew  
alignment state machine for use while the new value is being written. Once the new  
FSYNC_SKEW[16:0] is completely written, set FSKEW_VALID=1 to enable its use.  
0: Memorize existing FSYNC_SKEW[16:0] value and ignore intermediate register values  
during write of new FSYNC_SKEW value.  
1: Use FSYNC_SKEW[[16:0] value directly from registers.  
Rev. 1.0  
37  
Si5368  
Bit  
Name  
Function  
2
FSYNC_  
FSYNC_SKEW [16:0].  
SKEW [16:0]  
Phase skew control for FSYNCOUT. The resolution of the skew control is 1/fCKOUT2.  
Entered values should be less than the FSYNCOUT period.  
0 0000 0000 0000 0000=Zero phase skew.  
0 0000 0000 0000 0001=Delay of 1 period of CLKOUT_2.  
1 0010 1111 1011 1111=Delay of 77,759 periods of CKOUT2. If CKOUT2=622.08 MHz  
and FSYNCOUT=8 kHz, this delay equals 125 ms - 1/fCKOUT2 and is the maximum  
value that should be entered.  
1 1111 1111 1111 1111=Delay of 131,071 periods of CKOUT2.  
1:0  
FSYNC_  
PW [9:0]  
FSYNC_PW [9:0].  
These bits control the pulse width of the FSYNCOUT signal. The resolution of the pulse  
width control is 1/fCKOUT2.  
0000000000=50% duty cycle.  
0000000001=1 period of CKOUT2.  
0000000010=2 periods of CKOUT2.  
1111111111=1023 periods of CKOUT2.  
Register 13.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FSYNC_PW [7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
Function  
7:0  
FSYNC_PW [7:0] FSYNC_PW [7:0].  
See Register 12.  
Register 14.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FSYNC_SKEW [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
FSYNC_SKEW [15:8] FSYNC_SKEW [15:8].  
See Register 12.  
38  
Rev. 1.0  
Si5368  
Register 15.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FSYNC_SKEW [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
FSYNC_SKEW [7:0] FSYNC_SKEW [7:0].  
See Register 12.  
Register 16.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CLAT [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
CLAT [7:0]  
CLAT [7:0].  
With INCDEC_PIN=0, this register sets the phase delay for CKOUT_n in units of  
N1_HS/Fosc. Note: This can take as long as 20 seconds.  
01111111: +127 x 1/fOSC (2s compliment)  
00000000: 0  
1000000: –128 x 1/fOSC (2s compliment)  
If N2–HS[2:0] = 000, CLAT does not work.  
Rev. 1.0  
39  
Si5368  
Register 17.  
Bit  
D7  
D6  
D5  
D4  
D3  
FLAT [14:8]  
R/W  
D2  
D1  
D0  
Name FLAT_VALID  
Type  
R/W  
Reset value = 1000 0000  
Bit  
Name  
FLAT_VAILD FLAT_VAILD.  
Function  
7
Before writing a new FLAT[14:0] value, this bit must be set to zero, which causes the  
existing FLAT[14:0] value to be held internally for use while the new value is being writ-  
ten. Once the new FLAT[14:0] value is completely written, set FLAT_VALID = 1 to enable  
its use.  
0: Memorize existing FLAT[14:0] value and ignore intermediate register values during  
write of new FLAT[14:0] value.  
1: Use FLAT[14:0] value directly from registers.  
6:0  
FLAT [14:0] FLAT [14:0].  
Fine resolution control for overall device latency from input clocks to output clocks.  
Positive values increase the skew. See DSPLLsim for details.  
Register 18.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FLAT [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
FLAT [7:0]  
FLAT [7:0].  
See Register 17.  
40  
Rev. 1.0  
Si5368  
Register 19.  
Bit  
D7  
D6  
D5  
D4  
VALTIME [1:0]  
R/W  
D3  
D2  
D1  
D0  
Name FOS_EN  
Type R/W  
FOS_THR [1:0]  
R/W  
LOCKT [2:0]  
R/W  
Reset value = 0010 1100  
Bit  
Name  
Function  
7
FOS_EN  
FOS_EN.  
Frequency offset enable globally disables FOS. See the individual FOS enables (FOS-  
x_EN, register 139).  
00: FOS disable  
01: FOS enabled by FOSx_EN  
6:5  
4:3  
2:0  
FOS_THR [1:0] FOS_THR [1:0].  
Frequency Offset at which FOS is declared:  
00: ± 11 to 12 ppm Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK.  
01: ± 48 to 49 ppm (SMC).  
10: ± 30 ppm SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.  
11: ± 200 ppm  
VALTIME [1:0] VALTIME [1:0].  
Sets amount of time for input clock to be valid before the associated alarm is removed.  
00: 2 ms  
01: 100 ms  
10: 200 ms  
11: 13 seconds  
LOCKT [2:0]  
LOCKT [2:0].  
Sets retrigger interval for one shot monitoring phase detector output. One shot is trig-  
gered by phase slip in DSPLL. Refer to the Family Reference Manual for more details.  
000: 106 ms  
001: 53 ms  
010: 26.5 ms  
011: 13.3 ms  
100: 6.6 ms  
101: 3.3 ms  
110: 1.66 ms  
111: 833 us  
Rev. 1.0  
41  
Si5368  
Register 20.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
ALR-  
CK3_BAD_ CK2_BAD_ CK1_BAD_ LOL_PIN  
INT_PIN  
MOUT_PIN  
PIN  
PIN  
PIN  
Type  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 0011 1100  
Bit  
7:6  
5
Name  
Function  
Reserved  
ALRMOUT_PIN ALRMOUT_PIN.  
The ALRMOUT status can be reflected on the ALRMOUT output pin. The request to  
reflect the interrupt status on this pin (INT_PIN=1) overrides the ALRMOUT_PIN  
request.  
0: ALRMOUT not reflected on output pin. Output pin disabled if INT_PIN=0.  
1: ALRMOUT reflected to output pin if INT_PIN=0. If INT_PIN=1, interrupt status  
appears on the output pin and ALRMOUT is not available on an output pin.  
4
3
2
1
0
CK3_BAD_PIN CK3_BAD_PIN.  
The CK3_BAD status can be reflected on the C3B output pin.  
0: C3B output pin tristated  
1: C3B status reflected to output pin  
CK2_BAD_PIN CK2_BAD_PIN.  
The CK2_BAD status can be reflected on the C2B output pin.  
0: C2B output pin tristated  
1: C2B status reflected to output pin  
CK1_BAD_PIN CK1_BAD_PIN.  
The CK1_BAD status can be reflected on the C1B output pin.  
0: C1B output pin tristated  
1: C1B status reflected to output pin  
LOL_PIN  
INT_PIN  
LOL_PIN.  
The LOL_INT status bit can be reflected on the LOL output pin.  
0: LOL output pin tristated  
1: LOL_INT status reflected to output pin  
INT_PIN.  
Reflects the interrupt status on the INT output pin.  
0: Interrupt status not displayed on INT output pin. If ALRMOUT_PIN = 0, output pin is  
tristated.  
1: Interrupt status reflected to output pin. ALRMOUT_PIN ignored.  
42  
Rev. 1.0  
Si5368  
Register 21.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name INCDEC_  
FSYNC_ CK4_ACT- CK3_ACT- CK2_ACT- CK1_ACT-  
CKSEL_  
PIN  
PIN  
ALIGN_PIN  
R/W  
V_PIN  
R/W  
V_PIN  
R/W  
V_PIN  
R/W  
V_PIN  
R/W  
Type  
R/W  
Force 1  
R/W  
Reset value = 1111 1111  
Bit  
Name  
Function  
7
INCDEC_PIN  
INCDEC_PIN.  
Determines how coarse skew adjustments can be made. The adjustments can be  
made via hardware using the INC/DEC pins or with software via the CLAT register.  
0: INC and DEC inputs ignored; use CLAT register to adjust skew.  
1: INC and DEC inputs control output phase increment/decrement.  
6
5
Reserved  
FSYNC_ALIGN_PIN FSYNC_ALIGN_PIN.  
Realignment of FSYNCOUT can be controlled by the FSYNC_ALIGN input pin  
instead of the FSYNC_ALIGN_REG register bit.  
0: FSYNC_ALIGN pin ignored. FSYNC_ALIGN_REG register bit controls  
FSYNCOUT realignment.  
1: FSYNC_ALIGN pin controls FSYNCOUT realignment.  
4
3
2
CK4_ACTV_PIN  
CK3_ACTV_PIN  
CK2_ACTV_PIN  
CK4_ACTV_PIN.  
If the CKSEL[1]/CK4_ACTV pin is functioning as the CK4_ACTV output (see  
CKSEL[1]/CK4_ACTV pin description on CK4_ACTV), the CK4_ACTV_REG sta-  
tus bit can be reflected to the CK4_ACTV output pin using the CK4_ACTV_PIN  
enable function.  
0: CK4_ACTV output pin tristated  
1: CK4_ACTV status reflected to output pin.  
CK3_ACTV_PIN.  
If the CKSEL[0]/CK3_ACTV pin is functioning as the CK3_ACTV output (see  
CKSEL[0]/CK3_ACTV pin description on CK3_ACTV), the CK3_ACTV_REG sta-  
tus bit can be reflected to the CK3_ACTV output pin using the CK3_ACTV_PIN  
enable function.  
0: CK3_ACTV output pin tristated.  
1: CK3_ACTV status reflected to output pin.  
CK2_ACTV_PIN.  
The CK2_ACTV_REG status bit can be reflected to the CK2_ACTV output pin  
using the  
CK2_ACTV_PIN enable function.  
0: CK2_ACTV output pin tristated.  
1: CK2_ACTV status reflected to output pin.  
Rev. 1.0  
43  
Si5368  
Bit  
Name  
Function  
1
CK1_ACTV_PIN  
CK1_ACTV_PIN.  
The CK1_ACTV_REG status bit can be reflected to the CK1_ACTV output pin  
using the CK1_ACTV_PIN enable function.  
0: CK1_ACTV output pin tristated.  
1: CK1_ACTV status reflected to output pin.  
0
CKSEL_PIN  
CKSEL_PIN.  
If manual clock selection is being used, clock selection can be controlled via the  
CKSEL_REG[1:0] register bits or the CKSEL[1:0] input pins.  
0: CKSEL pins ignored. CKSEL_REG[1:0] register bits control clock selection.  
1: CKSEL[1:0] input pins controls clock selection.  
Note: The CKx_ACTV_PIN bits in this register are of consequence only when CKSEL_PIN is 0.  
Register 22.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name FSYNC_  
ALIGN_  
FSYNC_  
POL  
FSYNCO-  
UT_POL  
CK_ACT-  
V_POL  
CK_BAD_ LOL_POL INT_POL  
POL  
POL  
Type  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 1101 1111  
Bit  
Name  
FSYNC_ALIGN_POL FSYNC_ALIGN_POL.  
Function  
7
Sets the active polarity or edge for the FSYNC_ALIGN input pin.  
0: Active low (falling edge).  
1: Active high (rising edge).  
6
FSYNC_POL  
FSYNC_POL.  
Sets the active polarity and edge for the CKIN_3 and CKIN_4 inputs when used  
as frame  
sync inputs.  
0: Active low (falling edge).  
1: Active high (rising edge).  
5
4
Reserved  
FSYNCOUT_POL  
FSYNCOUT_POL.  
Controls active polarity of FSYNCOUT.  
0: Active low  
1: Active high  
44  
Rev. 1.0  
Si5368  
Bit  
Name  
Function  
3
CK_ACTV_ POL  
CK_ACTV_POL.  
Sets the active polarity for the CK1_ACTV, CK2_ACTV, CK3_ACTV, and  
CK4_ACTV  
signals when reflected on an output pin.  
0: Active low  
1: Active high  
2
CK_BAD_ POL  
CK_BAD_POL.  
Sets the active polarity for the C1B, C2B, C3B, and ALRMOUT signals when  
reflected  
on output pins.  
0: Active low  
1: Active high  
1
0
LOL_POL  
INT_POL  
LOL_POL.  
Sets the active polarity for the LOL status when reflected on an output pin.  
0: Active low  
1: Active high  
INT_POL.  
Sets the active polarity for the interrupt status when reflected on the INT_ALM  
output pin.  
0: Active low  
1: Active high  
Register 23.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LOS4_  
MSK  
LOS3_  
MSK  
LOS2_  
MSK  
LOS1_  
MSK  
LOSX_  
MSK  
Type  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 0001 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_MSK LOS4_MSK.  
Determines if a LOS on CKIN4 (LOS4_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS4_FLG register.  
0: LOS4 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS4_FLG ignored in generating interrupt output.  
3
LOS3_MSK LOS3_MSK.  
Determines if a LOS on CKIN3 (LOS3_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS3_FLG register.  
0: LOS3 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS3_FLG ignored in generating interrupt output.  
Rev. 1.0  
45  
Si5368  
2
1
0
LOS2_MSK LOS2_MSK.  
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS2_FLG register.  
0: LOS2 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS2_FLG ignored in generating interrupt output.  
LOS1_MSK LOS1_MSK.  
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS1_FLG register.  
0: LOS1 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS1_FLG ignored in generating interrupt output.  
LOSX_MSK LOSX_MSK.  
Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOSX_FLG register.  
0: LOSX alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOSX_FLG ignored in generating interrupt output.  
Register 24.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
ALIGN_  
MSK  
FOS4_  
MSK  
FOS3_  
MSK  
FOS2_  
MSK  
FOS1_  
MSK  
LOL_MSK  
Type  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 0011 1111  
Bit  
7:6  
5
Name  
Function  
Reserved  
ALIGN_MSK ALIGN_MSK.  
Determines if an alignment alarm (ALIGN_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the ALIGN_FLG register.  
0: FSYNC alignment alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: ALIGN_FLG ignored in generating interrupt output.  
4
3
FOS4_MSK FOS4_MSK.  
Determines if the FOS4_FLG is used to in the generation of an interrupt. Writes to this  
register do not change the value held in the FOS4_FLG register.  
0: FOS4 alarm triggers active interrupt on INToutput (if INT_PIN=1).  
1: FOS4_FLG ignored in generating interrupt output.  
FOS3_MSK FOS3_MSK.  
Determines if the FOS3_FLG is used in the generation of an interrupt. Writes to this  
register do not change the value held in the FOS3_FLG register.  
0: FOS3 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: FOS3_FLG ignored in generating interrupt output.  
46  
Rev. 1.0  
Si5368  
2
1
0
FOS2_MSK FOS2_MSK.  
Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS2_FLG register.  
0: FOS2 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: FOS2_FLG ignored in generating interrupt output.  
FOS1_MSK FOS1_MSK.  
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS1_FLG register.  
0: FOS1 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: FOS1_FLG ignored in generating interrupt output.  
LOL_MSK  
LOL_MSK.  
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis-  
ter do not change the value held in the LOL_FLG register.  
0: LOL alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOL_FLG ignored in generating interrupt output.  
Register 25.  
Bit  
D7  
D6  
N1_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [19:16]  
R/W  
R
Reset value = 0010 0000  
Bit  
Name  
Function  
7:5  
N1_HS [2:0] N1_HS [2:0].  
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 4) low-speed divider.  
000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value.  
001: N1 = 5  
010: N1 = 6  
011: N1 = 7  
100: N1 = 8  
101: N1 = 9  
110: N1 = 10  
111: N1 = 11  
4
Reserved  
3:0  
NC1_LS  
[19:16]  
NC1_LS [19:0].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
Rev. 1.0  
47  
Si5368  
Register 26.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC1_LS [15:8]  
NC1_LS [15:8].  
See Register 25.  
Register 27.  
Bit  
D7  
D6  
D5  
D4  
NC1_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
NC1_LS [7:0] NC1_LS [7:0].  
See Register 25.  
48  
Rev. 1.0  
Si5368  
Register 28.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC1_LS [19:0] NC2_LS [19:16].  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or  
odd.  
00000000000000000000=1  
00000000000000000001=2  
00000000000000000011=4  
00000000000000000101=6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
Rev. 1.0  
49  
Si5368  
Register 29.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC2_LS [15:8] NC2_LS [15:8].  
See Register 28.  
Register 30.  
Bit  
D7  
D6  
D5  
D4  
NC2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
NC2_LS [7:0] NC2_LS [7:0].  
See Register 28.  
50  
Rev. 1.0  
Si5368  
Register 31.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC3_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC3_LS [19:0] NC3_LS [19:0.  
Sets value for NC3 low-speed divider, which drives CKOUT3 output. Must be 0 or odd.  
00000000000000000000=1  
00000000000000000001=2  
000000000000000000011=4  
000000000000000000101=6  
...  
20  
11111111111111111111=2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ].  
Register 32.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC3_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC3_LS [15:8] NC3_LS [15:8].  
See Register 31.  
Rev. 1.0  
51  
Si5368  
Register 33.  
Bit  
D7  
D6  
D5  
D4  
NC3_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC3_LS [7:0] NC3_LS [7:0].  
See Register 31.  
Function  
7:0  
Register 34.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC4_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC4_LS [19:0]  
NC4_LS [19:0].  
Sets value for NC4 low-speed divider, which drives CKOUT4 output. Must be 0 or  
odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
52  
Rev. 1.0  
Si5368  
Register 35.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC4_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC4_LS [15:8] NC4_LS [15:8].  
See Register 34.  
Register 36.  
Bit  
D7  
D6  
D5  
D4  
NC4_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
Function  
7:0  
NC4_LS [7:0] NC4_LS [7:0].  
See Register 34.  
Rev. 1.0  
53  
Si5368  
Register 37.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC5_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC5_LS [19:0] NC5_LS [19:0].  
Sets value for NC5 low-speed divider, which drives CKOUT5 output. Must be 0 or  
odd.  
When CK_CONFIG = 0:  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ].  
When CK_CONFIG=1, maximum value limited to 2 .:  
19  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
19  
01111111111111111111 = 2  
19  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
Register 38.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC5_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC5_LS [15:8]  
NC5_LS [15:8].  
See Register 37.  
54  
Rev. 1.0  
Si5368  
Register 39.  
Bit  
D7  
D6  
D5  
D4  
NC5_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC5_LS [7:0] NC5_LS [7:0].  
See Register 37.  
Function  
7:0  
Register 40.  
Bit  
D7  
D6  
N2_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
N2_LS [19:16]  
R/W  
D1  
D0  
Name  
Type  
R
Reset value = 1100 0000  
Bit  
Name  
Function  
7:5  
N2_HS [2:0] N2_HS [2:0].  
Sets value for N2 high speed divider which drives NCn_LS (n = 1 to 4) low-speed divider.  
000:4  
001:5  
010:6  
011:7  
100:8  
101:9  
110:10  
111:11.  
4
Reserved  
3:0 N2_LS [19:16] NC2_LS [19:0].  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ].  
Rev. 1.0  
55  
Si5368  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N2_LS [15:8] N2_LS [15:8].  
See Register 40.  
Function  
7:0  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N2_LS [7:0]  
R/W  
Reset value = 1111 1001  
Bit  
Name  
Function  
7:0  
N2_LS [7:0] N2_LS [7:0].  
See Register 40.  
56  
Rev. 1.0  
Si5368  
Register 43.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N31 [18:0]  
N31 [18:0].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ].  
Register 44.  
Bit  
D7  
D6  
D5  
D4  
N31 [15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
N31 [15:8]  
N31 [15:8].  
See Register 43.  
Rev. 1.0  
57  
Si5368  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N31 [7:0]  
N31 [7:0].  
See Register 43.  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N32_[18:16]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N32_[18:0] N32_[18:0].  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ].  
58  
Rev. 1.0  
Si5368  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
N32_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N32_[15:8] N32_[15:8].  
See Register 46.  
Function  
7:0  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N32_[7:0]  
N32_[7:0].  
See Register 46.  
Rev. 1.0  
59  
Si5368  
Register 49.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N33_[18:0]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
N33_[18:0] N33_[18:0].  
Function  
18:0  
Sets value for input divider for CKIN3.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ].  
Register 50.  
Bit  
D7  
D6  
D5  
D4  
N33_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N33_[15:8] N33_[15:8].  
See Register 49.  
Function  
7:0  
60  
Rev. 1.0  
Si5368  
Register 51.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N33_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N33_[7:0]  
N33_[7:0].  
See Register 49.  
Register 52.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N34_[18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
N34_[18:0] N34_[18:0].  
Function  
7:0  
Sets value for input divider for CKIN4.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values = [1, 2, 3, ..., 2 ].  
Rev. 1.0  
61  
Si5368  
Register 53.  
Bit  
D7  
D6  
D5  
D4  
N34_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N34_[15:8] N34_[15:8].  
See Register 52.  
Function  
7:0  
Register 54.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N34_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
N34_[15:8] N34_[7:0].  
See Register 52.  
Function  
7:0  
62  
Rev. 1.0  
Si5368  
Register 55.  
Bit  
D7  
D6  
D5  
D4  
CLKIN2RATE_[2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CLKIN1RATE[2:0]  
R/W  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
CLKIN2RATE[2:0]  
CLKIN2RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0  
CLKIN1RATE [2:0]  
CLKIN1RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
Rev. 1.0  
63  
Si5368  
Register 56.  
Bit  
D7  
D6  
D5  
D4  
CLKIN4RATE_[2:0]  
R/W  
D3  
D2  
D1  
CLKIN3RATE[2:0]  
R/W  
D0  
Name  
Type  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
CLKIN4RATE[2:0] CLKIN4RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0  
CLKIN3RATE [2:0] CLKIN3RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
64  
Rev. 1.0  
Si5368  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
CK4_ACT- CK3_ACT- CK2_ACT- CK1_ACT-  
V_REG  
V_REG  
V_REG  
V_REG  
Type  
R
R
R
R
R
R
R
R
Reset value = 0010 0000  
Bit  
7:4  
3
Name  
Function  
Reserved  
CK4_ACTV_REG CK4_ACTV_REG.  
Indicates if CKIN4 is currently the active clock for the PLL input.  
0: CKIN4 is not the active input clock. Either it is not selected or LOS4_INT is 1.  
1: CKIN_4 is the active input clock.  
2
1
0
CK3_ACTV_REG CK3_ACTV_REG.  
Indicates if CKIN3 is currently the active clock for the PLL input.  
0: CKIN3 is not the active input clock - either it is not selected or LOS3_INT is 1.  
1: CKIN3 is the active input clock.  
CK2_ACTV_REG CK2_ACTV_REG.  
Indicates if CKIN2 is currently the active clock for the PLL input.  
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.  
1: CKIN2 is the active input clock.  
CK1_ACTV_REG CK1_ACTV_REG.  
Indicates if CKIN1 is currently the active clock for the PLL input.  
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.  
1: CKIN1 is the active input clock.  
Rev. 1.0  
65  
Si5368  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOS4_INT LOS3_INT  
Name  
Type  
LOS2_INT LOS1_INT LOSX_INT  
R
R
R
R
R
R
R
R
Reset value = 0001 1110  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_INT LOS4_INT.  
Indicates the LOS status on CKIN4.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN4 input.  
3
2
1
0
LOS3_INT LOS3_INT.  
Indicates the LOS status on CKIN3.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN3 input.  
LOS2_INT LOS2_INT.  
Indicates the LOS status on CKIN2.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN2 input.  
LOS1_INT LOS1_INT.  
Indicates the LOS status on CKIN1.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN1 input.  
LOSX_INT LOSX_INT.  
Indicates the LOS status of the external reference on the XA/XB pins.  
0: Normal operation.  
1: Internal loss-of-signal alarm on XA/XB reference clock input.  
66  
Rev. 1.0  
Si5368  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name CLATPROG- DIGHOLD-  
ALIGN_ FOS4_INT FOS3_INT FOS2_INT FOS1_INT LOL_INT  
INT  
RESS  
R
VALID  
R
Type  
R
R
R
R
R
R
Reset value = 0000 0001  
Bit  
Name  
CLATPROGRESS CLAT Progress.  
Function  
7
Indicates if the last change in the CLAT register has been processed.  
0: Coarse skew adjustment not in progress.  
1: Coarse skew adjustment in progress.  
6
DIGHOLDVALID  
Digital Hold Valid.  
Indicates if the digital hold circuit has enough samples of a valid clock to meet dig-  
ital hold specifications.  
0: Indicates digital filter has not been filled. The digital hold output frequency (from  
the filter) is not valid.  
1: Indicates digital hold filter has been filled. The digital hold output frequency is  
valid.  
5
4
3
2
1
0
ALIGN_INT  
FOS4_INT  
FOS3_INT  
FOS2_INT  
FOS1_INT  
LOL_INT  
ALIGN_INT.  
Alignment Alarm Status.  
0: Normal operation.  
1: Alignment alarm between input and output frame sync signals.  
FOS4_INT.  
CKIN4 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN4 input.  
FOS3_INT.  
CKIN3 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN3 input.  
FOS2_INT.  
CKIN2 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN2 input.  
FOS1_INT.  
CKIN1 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN1 input.  
LOL_INT.  
PLL Loss of Lock Status.  
0: PLL locked.  
1: PLL unlocked.  
Rev. 1.0  
67  
Si5368  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LOS4_  
FLG  
LOS3_  
FLG  
LOS2_  
FLG  
LOS1_  
FLG  
LOSX_  
FLG  
Type  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 0001 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_FLG LOS4_FLG.  
CKIN4 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS4_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS4_MSK bit. Flag cleared by writing  
location to 0.  
3
2
1
0
LOS3_FLG LOS3_FLG.  
CKIN3 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS3_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS3_MSK bit. Flag cleared by writing  
location to 0.  
LOS2_FLG LOS2_FLG.  
CKIN2 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS2_MSK bit. Flag cleared by writing  
location to 0.  
LOS1_FLG LOS1_FLG.  
CKIN1 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS1_MSK bit. Flag cleared by writing  
location to 0.  
LOSX_FLG LOSX_FLG.  
External reference (signal on pins XA/XB) Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOSX_MSK bit. Flag cleared by writing  
location to 0.  
68  
Rev. 1.0  
Si5368  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
ALIGN_  
FLG  
FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG LOL_FLG  
ALIGN_  
ERR [8,8]  
Type  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Reset value = 0000 0010  
Bit  
7
Name  
Function  
Reserved  
ALIGN_FLG  
6
ALIGN_FLG.  
Alignment Alarm Flag.  
0: Normal operation.  
1: Held version of ALIGN_INT. Generates active output interrupt if output interrupt  
pin is enabled (INT_PIN=1) and if not masked by ALIGN_MSK bit. Flag cleared by  
writing  
location to 0.  
5
4
3
FOS4_FLG  
FOS3_FLG  
FOS2_FLG  
FOS4_FLG.  
CLKIN_4 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS4_INT. Generates active output interrupt if output interrupt pin  
is enabled (INT_PIN=1) and if not masked by FOS4_MSK bit. Flag cleared by writ-  
ing  
location to 0.  
FOS3_FLG.  
CLKIN_3 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS3_INT. Generates active output interrupt if output interrupt pin  
is enabled (INT_PIN=1) and if not masked by FOS3_MSK bit. Flag cleared by writ-  
ing  
location to 0.  
FOS2_FLG.  
CLKIN_2 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin  
is enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writ-  
ing  
location to 0.  
Rev. 1.0  
69  
Si5368  
Bit  
Name  
FOS1_FLG  
Function  
2
1
0
FOS1_FLG.  
CLKIN_1 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin  
is enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writ-  
ing  
location to 0.  
LOL_FLG  
LOL_FLG.  
PLL Loss of Lock Flag.  
0: PLL locked  
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin  
is enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writ-  
ing  
location to 0.  
ALIGN_ERR [8,8] ALIGN_ERR [8:0].  
Indicates the magnitude of the deviation of the input to output frame sync phase  
alignment from the ideal value set in the FSYNC_SKEW[16:0] registers. The align-  
ment error is given in units of tCKOUT_2.  
If the alignment error exceeds 255 fCKOUT_2 clock cycles, ALIGN_ERR[7:0] limits  
to its maximum value (11111111). The polarity of the phase deviation (leading or lag-  
ging) is given by the ALIGN_ERR[8] bit.  
00000000=0  
11111111=255  
Register 133.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ALIGN_ERR [7:0]  
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
ALIGN_ERR [7:0] ALIGN_ERR [7:0].  
See Register 132.  
70  
Rev. 1.0  
Si5368  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PARTNUM_RO [11:4]  
R
Reset value = 0000 0100  
Bit  
Name  
Function  
7:0  
PARTNUM_RO [11:4] PARTNUM_RO [11:4].  
Device ID:  
0000 0100 0100'b=Si5368  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PARTNUM_RO [3:0]  
R
REVID_RO [3:0]  
R
Reset value = 0100 0010  
Bit  
Name  
Function  
7:4  
PARTNUM_RO [3:0] PARTNUM_RO [3:0].  
See Register 134.  
3:0  
REVID_RO [3:0]  
REVID_RO [3:0].  
Indicates revision number of device.  
0000: Revision A  
0001: Revision B  
0010: Revision C  
Other codes: Reserved  
Rev. 1.0  
71  
Si5368  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name RST_REG  
ICAL  
R/W  
Type  
R/W  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7
RST_REG  
RST_REG.  
Internal Reset.  
0: Normal operation.  
1: Reset of all internal logic. Outputs tristated or disabled during reset.  
6
ICAL  
ICAL.  
Start an Internal Calibration Sequence.  
For proper operation, the device must go through an internal calibration sequence. ICAL  
is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is  
complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be  
present to begin ICAL.  
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect.  
Changes in SFOUTn_REG, PD_CKn, or DSBLn_REG will cause a random change in skew  
until an ICAL is completed.  
0: Normal operation.  
1: Writing a “1” initiates internal self-calibration. Upon completion of internal self-  
calibration, ICAL is internally reset to zero.  
5:0  
Reserved  
72  
Rev. 1.0  
Si5368  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
LOS4_EN LOS3_EN LOS2_EN LOS1_EN  
[1:1]  
[1:1]  
[1:1]  
[1:1]  
Type  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reset value = 0000 1111  
Bit  
7:4  
3
Name  
Function  
Reserved  
LOS4_EN [1:0]  
LOS3_EN [1:0]  
LOS2_EN [1:0]  
LOS1_EN [1:0]  
LOS4_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference  
Manual for details.  
2
1
0
LOS3_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference  
Manual for details.  
LOS2_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference  
Manual for details.  
LOS1_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference  
Manual for details.  
Rev. 1.0  
73  
Si5368  
Register 139.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name LOS4_EN LOS3_EN LOS2_EN LOS1_EN FOS4_EN FOS3_EN FOS2_EN FOS1_EN  
[0:0]  
R/W  
[0:0]  
R/W  
[0:0]  
R/W  
[0:0]  
R/W  
Type  
R/W  
R/W  
R/W  
R/W  
Reset value = 1111 1111  
Bit  
Name  
Function  
7
LOS4_EN [0:0]  
LOS4_EN [0:0].  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference man-  
ual for details.  
6
5
4
LOS3_EN [0:0]  
LOS2_EN [0:0]  
LOS1_EN [0:0]  
LOS3_EN [0:0].  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference man-  
ual for details.  
LOS2_EN.  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference man-  
ual for details.  
LOS1_EN [0:0].  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference man-  
ual for details.  
74  
Rev. 1.0  
Si5368  
Bit  
Name  
Function  
3
FOS4_EN  
FOS4_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
2
1
0
FOS3_EN  
FOS2_EN  
FOS1_EN  
FOS3_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
FOS2_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
FOS1_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
Register 140.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDEPENDENTSKEW1 [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
INDEPEND-ENTSKEW1 [7:0]  
Function  
INDEPENDENTSKEW1 [7:0].  
7:0  
8 bit field that represents a twos complement of the phase offset in  
terms of clocks from the high speed output divider.  
Rev. 1.0  
75  
Si5368  
Register 141.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDEPENDENTSKEW2 [7:0]  
R/W  
Reset value = 0000 0001  
Bit  
Name  
INDEPEND-ENTSKEW2 [7:0] INDEPENDENTSKEW2 [7:0].  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in  
terms of clocks from the high speed output divider.  
Register 142.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDEPENDENTSKEW3 [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0 INDEPEND-ENTSKEW3 [7:0] INDEPENDENTSKEW3 [7:0].  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider.  
Register 143.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDEPENDENTSKEW4 [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
INDEPEND-ENTSKEW4 [7:0] INDEPENDENTSKEW4 [7:0].  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider.  
76  
Rev. 1.0  
Si5368  
Register 144.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
INDEPENDENTSKEW5 [7:0]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
INDEPEND-ENTSKEW5 [7:0] INDEPENDENTSKEW5 [7:0].  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in  
terms of clocks from the high speed output divider when  
CK_CONFIG = 0.  
Table 9. CKOUT_ALWAYS_ON and SQICAL Truth Table  
CKOUT_ALWAYS_ON SQICAL  
Results  
Output to Output Skew  
Preserved?  
0
0
0
1
CKOUT OFF until after the first ICAL  
N
Y
CKOUT OFF until after the first successful  
ICAL (i.e., when LOL is low)  
1
1
0
1
CKOUT always ON, including during an ICAL  
CKOUT always ON, including during an ICAL  
N
Y
Table 10 lists all of the register locations that should be followed by an ICAL after their contents are changed.  
Rev. 1.0  
77  
Si5368  
Table 10. Register Locations Requiring ICAL  
Address  
Register  
0
BYPASS_REG  
CKOUT_ALWAYS_ON  
CK_PRIOR4  
CK_PRIOR3  
CK_PRIOR2  
CK_PRIOR1  
BWSEL_REG  
HIST_DEL  
ICMOS  
0
1
1
1
1
2
4
5
7
FOSREFSEL  
HIST_AVG  
DSBL5_REG  
DSBL4_REG  
DSBL3_REG  
DSBL2_REG  
DSBL1_REG  
PD_CK2  
9
10  
10  
10  
10  
10  
11  
11  
19  
19  
19  
19  
21  
25  
26  
28  
31  
34  
37  
40  
40  
43  
46  
49  
51  
55  
55  
56  
56  
PD_CK1  
FOS_EN  
FOS_THR  
VALTIME  
LOCKT  
INCDEC_PIN  
N1_HS  
NC1_LS  
NC2_LS  
NC3_LS  
NC4_LS  
NC5_LS  
N2_HS  
N2_LS  
N31  
N32  
N33  
N34  
CLKIN2RATE  
CLKIN1RATE  
CLKIN4RATE  
CLKIN3RATE  
78  
Rev. 1.0  
Si5368  
7. Pin Descriptions: Si5368  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
NC  
NC  
NC  
NC  
74  
73  
2
NC  
3
RST  
NC  
NC  
72  
71  
4
SDI  
VDD  
5
70  
69  
A2_SS  
6
VDD  
A1  
A0  
NC  
GND  
GND  
7
68  
67  
8
9
C1B  
66  
65  
NC  
10  
11  
12  
13  
14  
15  
C2B  
C3B  
GND  
GND  
64  
63  
INT_ALM  
CS0_C3A  
GND  
VDD  
Si5368  
62  
61  
VDD  
SDA_SDO  
VDD  
XA  
60  
59  
SCL  
C2A  
C1A  
16  
17  
XB  
58  
57  
18  
19  
20  
21  
GND  
GND  
GND PAD  
CS1_C4A  
NC  
56  
55  
NC  
INC  
FS_ALIGN  
NC  
DEC  
NC  
22  
23  
54  
53  
NC  
NC  
NC  
52  
51  
24  
25  
NC  
NC  
47  
49 50  
48  
41  
42 43 44 45 46  
40  
36  
39  
37 38  
26 27 28 29 30 31 32 33 34 35  
Rev. 1.0  
79  
Si5368  
Table 11. Si5368 Pin Descriptions  
Pin #  
Pin Name  
I/O Signal Level  
Description  
1, 2, 4, 20,  
22, 23, 24,  
25, 37, 47,  
48, 50, 51,  
52, 53, 56,  
66, 67, 72,  
73, 74, 75,  
80, 85, 95  
NC  
No Connect.  
These pins must be left unconnected for normal operation.  
3
I
LVCMOS External Reset.  
RST  
Active low input that performs external hardware reset of  
device. Resets all internal logic to a known state and forces the  
device registers to their default value. Clock outputs are dis-  
abled during reset. The part must be programmed after a reset  
or power-on to get a clock output. See Family Reference Man-  
ual for details.  
This pin has a weak pull-up.  
5, 6, 15, 27,  
62, 63, 76,  
79, 81, 84,  
86, 89, 91,  
94, 96, 99,  
100  
V
Vdd  
Supply  
V
.
DD  
DD  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass  
capacitors should be associated with the following V pins:  
Pins  
5, 6  
15  
DD  
Bypass Cap  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
1.0 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
27  
62, 63  
76, 79  
81, 84  
86, 89  
91, 94  
96, 99, 100  
7, 8, 14, 18,  
19, 26, 28,  
31, 33, 36,  
38, 41, 43,  
46, 64, 65  
GND  
C1B  
GND  
O
Supply  
Ground.  
This pin must be connected to system ground. Minimize the  
ground path impedance for optimal performance.  
9
LVCMOS CKIN1 Invalid Indicator.  
This pin performs the CK1_BAD function if CK1_BAD_PIN = 1  
and is tristated if CK1_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN1.  
1 = Alarm on CKIN1.  
10  
C2B  
O
LVCMOS CKIN2 Invalid Indicator.  
This pin performs the CK2_BAD function if CK2_BAD_PIN = 1  
and is tristated if CK2_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN2.  
1 = Alarm on CKIN2.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
80  
Rev. 1.0  
Si5368  
Table 11. Si5368 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
11  
C3B  
O
LVCMOS CKIN3 Invalid Indicator.  
This pin performs the CK3_BAD function if CK3_BAD_PIN = 1  
and is tristated if CK3_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN3.  
1 = Alarm on CKIN3.  
12  
INT_ALM  
O
LVCMOS Interrupt/Alarm Output Indicator.  
This pin functions as a maskable interrupt output with active  
polarity controlled by the INT_POL register bit. The INT output  
function can be turned off by setting INT_PIN = 0. If the ALR-  
MOUT function is desired instead on this pin, set  
ALRMOUT_PIN = 1 and INT_PIN = 0.  
0 = ALRMOUT not active.  
1 = ALRMOUT active.  
The active polarity is controlled by CK_BAD_POL. If no function  
is selected, the pin tristates.  
13  
57  
CS0_C3A  
CS1_C4A  
I/O  
LVCMOS Input Clock Select/CKIN3 or CKIN4 Active Clock Indicator.  
Input: If manual clock selection is chosen, and if  
CKSEL_PIN = 1, the CKSEL pins control clock selection and  
the CKSEL_REG bits are ignored.  
CS[1:0]  
00  
Active Input Clock  
CKIN1  
01  
CKIN2  
10  
CKIN3  
11  
CKIN4  
If CKSEL_PIN = 0, the CKSEL_REG register bits control this  
function and these inputs tristate. If configured as inputs, these  
pins must not float.  
Output: If auto clock selection is enabled, then they serve as  
the CKIN_n active clock indicator.  
0 = CKIN3 (CKIN4) is not the active input clock  
1 = CKIN3 (CKIN4) is currently the active input to the PLL  
The CKn_ACTV_REG bit always reflects the active clock status  
for CKIN_n. If CKn_ACTV_PIN = 1, this status will also be  
reflected on the CnA pin with active polarity controlled by the  
CK_ACTV_POL bit. If CKn_ACTV_PIN = 0, this output tristates.  
16  
17  
XA  
XB  
I
ANALOG External Crystal or Reference Clock.  
External crystal should be connected to these pins to use inter-  
nal oscillator based reference. Refer to Family Reference Man-  
ual for interfacing to an external reference. External reference  
must be from a high-quality clock source (TCXO, OCXO). Fre-  
quency of crystal or external clock is set by the RATE pins.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
Rev. 1.0  
81  
Si5368  
Table 11. Si5368 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
21  
FS_ALIGN  
I
LVCMOS FSYNC Alignment Control.  
If FSYNC_ALIGN_PIN = 1 and CK_CONFIG = 1, a logic high  
on this pin causes the FS_OUT phase to be realigned to the ris-  
ing edge of the currently active input sync (CKIN_3 or CKIN_4).  
If FSYNC_ALIGN_PIN = 0, this pin is ignored and the FSYN-  
C_ALIGN_REG bit performs this function.  
0 = No realignment.  
1 = Realign.  
This pin has a weak pull-down.  
29  
30  
CKIN4+  
CKIN4–  
I
I
MULTI  
Clock Input 4.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal. CKIN4 serves as the frame sync input associ-  
ated with the CKIN2 clock when CK_CONFIG_REG = 1.  
32  
42  
RATE0  
RATE1  
3-Level  
External Crystal or Reference Clock Rate.  
Three level inputs that select the type and rate of external crys-  
tal or reference clock to be applied to the XA/XB port. Refer to  
the Family Reference Manual for settings. These pins have both  
a weak pull-up and a weak pull-down; they default to M.  
34  
35  
CKIN2+  
CKIN2–  
I
I
MULTI  
MULTI  
Clock Input 2.  
Differential input clock. This input can also be driven with a sin-  
gle-ended signal.  
39  
40  
CKIN3+  
CKIN3–  
Clock Input 3.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal. CKIN3 serves as the frame sync input associ-  
ated with the CKIN1 clock when CK_CONFIG_REG = 1.  
44  
45  
CKIN1+  
CKIN1–  
I
MULTI  
Clock Input 1.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal.  
49  
LOL  
O
LVCMOS PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock indicator if  
the LOL_PIN register bit is set to one.  
0 = PLL locked.  
1 = PLL unlocked.  
If LOL_PIN = 0, this pin will tristate.  
Active polarity is controlled by the LOL_POL bit. The PLL lock  
status will always be reflected in the LOL_INT read only register  
bit.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
82  
Rev. 1.0  
Si5368  
Table 11. Si5368 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
54  
DEC  
I LVCMOS Coarse Latency Decrement.  
A pulse on this pin decreases the input to output device latency  
by 1/fOSC (approximately 200 ps). Detailed operations and tim-  
ing characteristics for this pin may be found in the Any-Fre-  
quency Precision Clock Family Reference Manual. There is no  
limit on the range of latency adjustment by this method. Pin con-  
trol is enabled by setting INCDEC_PIN = 1 (default).  
If INCDEC_PIN = 0, this pin is ignored and coarse output  
latency is controlled via the CLAT register.  
If both INC and DEC are tied high, phase buildout is disabled  
and the device maintains a fixed-phase relationship between  
the selected input clock and the output clock during an input  
clock switch. Detailed operations and timing characteristics for  
these pins may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
This pin has a weak pull-down.  
55  
INC  
I
LVCMOS Coarse Latency Increment.  
A pulse on this pin increases the input to output device latency  
by 1/fOSC (approximately 200 ps). Detailed operations, restric-  
tions, and timing characteristics for this pin may be found in the  
Any-Frequency Precision Clock Family Reference Manual.  
There is no limit on the range of latency adjustment by this  
method. Pin control is enabled by setting INCDEC_PIN = 1  
(default).  
Note: INC does not increase latency if NI_HS = 4.  
If INCDEC_PIN = 0, this pin is ignored and coarse output  
latency is controlled via the CLAT register.  
If both INC and DEC are tied high, phase buildout is disabled  
and the device maintains a fixed-phase relationship between  
the selected input clock and the output clock during an input  
clock switch. Detailed operations and timing characteristics for  
these pins may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
This pin has a weak pull-down.  
58  
59  
C1A  
C2A  
O
O
LVCMOS CKIN1 Active Clock Indicator.  
This pin serves as the CKIN1 active clock indicator. The  
CK1_ACTV_REG bit always reflects the active clock status for  
CKIN1. If CK1_ACTV_PIN = 1, this status will also be reflected  
on the C1A pin with active polarity controlled by the CK_ACT-  
V_POL bit. If CK1_ACTV_PIN = 0, this output tristates.  
LVCMOS CKIN2 Active Clock Indicator.  
This pin serves as the CKIN2 active clock indicator. The  
CK2_ACTV_REG bit always reflects the active clock status for  
CKIN_2. If CK2_ACTV_PIN = 1, this status will also be reflected  
on the C2A pin with active polarity controlled by the CK_ACT-  
V_POL bit. If CK2_ACTV_PIN = 0, this output tristates.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
Rev. 1.0  
83  
Si5368  
Table 11. Si5368 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
60  
SCL  
I
LVCMOS Serial Clock.  
This pin functions as the serial port clock input for both SPI and  
2
I C modes.  
This pin has a weak pull-down.  
61  
SDA_SDO  
I/O  
LVCMOS Serial Data.  
2
In I C microprocessor control mode (CMODE = 0), this pin func-  
tions as the bidirectional serial data port. In SPI microprocessor  
control mode (CMODE = 1), this pin functions as the serial data  
output.  
68  
69  
A0  
A1  
I
I
I
LVCMOS Serial Port Address.  
2
In I C microprocessor control mode (CMODE = 0), these pins  
function as hardware controlled address bits. The I C address  
is 1101 [A2] [A1] [A0]. In SPI microprocessor control mode  
(CMODE = 1), these pins are ignored.  
This pin has a weak pull-down.  
2
70  
71  
A2_SS  
LVCMOS Serial Port Address/Slave Select.  
2
In I C microprocessor control mode (CMODE = 0), this pin func-  
tions as a hardware controlled address bit [A2].  
In SPI microprocessor control mode (CMODE = 1), this pin  
functions as the slave select input.  
This pin has a weak pull-down.  
SDI  
LVCMOS Serial Data In.  
In SPI microprocessor control mode (CMODE = 1), this pin  
functions as the serial data input.  
2
In I C microprocessor control mode (CMODE = 0), this pin is  
ignored.  
This pin has a weak pull-down.  
77  
78  
CKOUT3+  
CKOUT3–  
O
O
O
MULTI  
MULTI  
MULTI  
Clock Output 3.  
Differential clock output. Output signal format is selected by  
SFOUT3_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
82  
83  
CKOUT1–  
CKOUT1+  
Clock Output 1.  
Differential clock output. Output signal format is selected by  
SFOUT1_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
87  
88  
FS_OUT–  
FS_OUT+  
Frame Sync Output.  
Differential frame sync output or fifth high-speed clock output.  
Output signal format is selected by SFOUT_FSYNC_REG reg-  
ister bits. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs. Duty cycle and active  
polarity are controlled by FSYNC_PW and FSYNC_POL bits,  
respectively. Detailed operations and timing characteristics for  
these pins may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
84  
Rev. 1.0  
Si5368  
Table 11. Si5368 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
90  
CMODE  
I
LVCMOS Control Mode.  
2
Selects I C or SPI control mode for the device.  
2
0 = I C Control Mode.  
1 = SPI Control Mode.  
This pin must be tied high or low.  
92  
93  
CKOUT2+  
CKOUT2–  
O
MULTI  
MULTI  
Supply  
Clock Output 2.  
Differential clock output. Output signal format is selected by  
SFOUT2_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
97  
98  
CKOUT4–  
CKOUT4+  
O
Clock Output 4.  
Differential clock output. Output signal format is selected by  
SFOUT4_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
GND PAD  
GND PAD  
GND  
Ground Pad.  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
Note: Internal register names are indicated by underlined italics, e.g. INT_PIN. See Si5368 Register Map.  
Rev. 1.0  
85  
Si5368  
8. Ordering Guide  
Ordering Part  
Number  
Output Clock  
Frequency Range  
Package  
ROHS6, Temperature Range  
Pb-Free  
Si5368A-C-GQ  
2 kHz–945 MHz  
970–1134 MHz  
1.213–1.417 GHz  
100-Pin 14 x 14 mm TQFP  
Yes  
–40 to 85 °C  
Si5368B-C-GQ  
Si5368C-C-GQ  
2 kHz–808 MHz  
2 kHz–346 MHz  
100-Pin 14 x 14 mm TQFP  
100-Pin 14 x 14 mm TQFP  
Yes  
Yes  
–40 to 85 °C  
–40 to 85 °C  
Note: Add an R at the end of the device to denote tape and reel options (for example, Si5368-C-GMR).  
86  
Rev. 1.0  
Si5368  
9. Package Outline: 100-Pin TQFP  
Figure 6 illustrates the package details for the Si5368. Table 12 lists the values for the dimensions shown in the  
illustration.  
Figure 6. 100-Pin Thin Quad Flat Package (TQFP)  
Table 12. 100-Pin Package Diagram Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
Dimension  
Min  
Nom  
Max  
A
E
E1  
E2  
L
16.00 BSC.  
A1  
0.05  
0.95  
0.17  
0.09  
14.00 BSC.  
A2  
1.00  
3.85  
0.45  
4.00  
0.60  
4.15  
0.75  
0.20  
0.20  
0.08  
0.08  
7º  
b
0.22  
c
D
aaa  
bbb  
ccc  
ddd  
16.00 BSC.  
14.00 BSC.  
4.00  
D1  
D2  
3.85  
4.15  
e
0.50 BSC.  
0º  
3.5º  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant AED-HD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body  
Components.  
Rev. 1.0  
87  
Si5368  
10. Recommended PCB Layout  
Figure 7. PCB Land Pattern Diagram  
88  
Rev. 1.0  
Si5368  
Table 13. PCB Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
E
0.50 BSC.  
15.40 REF.  
15.40 REF.  
3.90  
D
E2  
D2  
GE  
GD  
X
4.10  
4.10  
3.90  
13.90  
13.90  
0.30  
Y
1.50 REF.  
ZE  
ZD  
R1  
R2  
16.90  
16.90  
0.15 REF  
1.00  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition  
(LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask  
and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to  
assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center  
ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small  
Body Components.  
Rev. 1.0  
89  
Si5368  
11. Top Marking: 100-Pin TQFP  
11.1. Si5368 Top Marking  
11.2. Top Marking Explanation  
Mark Method:  
Logo Size:  
Laser  
9.2 x 3.1 mm  
Center-Justified  
Font Size:  
3.0 Point (1.07 mm)  
Right-Justified  
Line 1 Marking:  
Device Part Number  
X = Speed Grade  
See "7. Pin Descriptions: Si5368" on  
page 79.  
Line 2 Marking:  
YY = Year  
WW = Workweek  
R=Die Revision  
Assigned by the Assembly Supplier.  
Corresponds to the year and work-  
week of the mold date.  
TTTTT = Mfg Code  
Manufacturing Code  
“e3” Pb-Free Symbol  
Line 3 Marking:  
Circle = 1.8 mm Diameter  
Center-Justified  
Country of Origin  
ISO Code Abbreviation  
90  
Rev. 1.0  
Si5368  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Changed LVTTL to LVCMOS in Table 9, “Absolute  
Maximum Ratings,” on page 18.  
Updated Figure 4 and Figure 5 on page 19.  
Updated “5. Register Map”.  
Added RATE0 to pin description. By changing  
RATE[1:0] the part can emulate a Si5367.  
Changed XA/XB pin description to support both  
differential and single ended external REFCLK.  
Revision 0.2 to Revision 0.3  
Added Figure on p..8.  
Updated Figure 4, “Si5368 Typical Application  
2
Circuit (I C Control Mode),” and Figure 5, “Si5368  
Typical Application Circuit (SPI Control Mode),” on  
page 19 to show INC and DEC.  
Updated “5. Register Map”.  
Changed font of register names to underlined italics.  
Updated "7. Pin Descriptions: Si5368" on page 79.  
Added “10. Recommended PCB Layout”.  
Revision 0.3 to Revision 0.4  
Changed V specification for 1.8 V.  
DD  
Updated Table 8 on page 16.  
Updated Table 9 on page 18.  
Added table under Figure on page 8.  
Updated "4. Functional Description" on page 20.  
Clarified "5. Register Map" on page 22 including  
correcting pin assignments for RATE0 and RATE1.  
Revision 0.4 to Revision 0.41  
Added register map.  
Added 3.3 V operation.  
Removed some TBDs from the AC specifications.  
Revision 0.41 to Revision 1.0  
Expanded spec tables.  
Added device top mark drawing.  
Changed “any-rate” to “any-frequency” throughout.  
Added No Bypass mode with CMOS outputs.  
Minor updates to Table 2 on page 4 and Table 6 on  
page 14.  
Removed “2. Typical Phase Noise Performance”.  
Updated "4. Functional Description" on page 20.  
Revised "5. Register Map" on page 22.  
Revised "11. Top Marking: 100-Pin TQFP" on page  
90.  
Rev. 1.0  
91  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5368C-B-GQ

ANY-RATE PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5368C-B-GQR

Support Circuit, 1-Func, PQFP100, 14 X 14 MM, ROHS COMPLIANT, MS-026AED-HD, TQFP-100
SILICON

SI5368C-C-GQ

Support Circuit, 1-Func, PQFP100, 14 X 14 MM, ROHS COMPLIANT, MS-026AED-HD, TQFP-100
SILICON

SI5368C-C-GQR

Support Circuit, 1-Func, PQFP100, 14 X 14 MM, ROHS COMPLIANT, MS-026AED-HD, TQFP-100
SILICON

SI5369

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5369A-C-GQ

Processor Specific Clock Generator, 1417MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369A-C-GQR

Processor Specific Clock Generator, 1417MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369B-C-GQ

Processor Specific Clock Generator, 808MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369B-C-GQR

Processor Specific Clock Generator, 808MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369C-C-GQ

Processor Specific Clock Generator, 346MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369D-C-GQ

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5374B-A-GL

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, ROHS COMPLIANT, PLASTIC, MO-192, BGA-80
SILICON