SI5369B-C-GQ [SILICON]

Processor Specific Clock Generator, 808MHz, CMOS, PQFP100, TQFP-100;
SI5369B-C-GQ
型号: SI5369B-C-GQ
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 808MHz, CMOS, PQFP100, TQFP-100

时钟 外围集成电路 晶体
文件: 总84页 (文件大小:1447K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5369  
ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER  
ATTENUATOR  
Features  
Generates any frequency from 2 kHz Five clock outputs with selectable  
to 945 MHz and select frequencies to  
1.4 GHz from an input frequency of  
2 kHz to 710 MHz  
Ultra-low jitter clock outputs with jitter  
generation as low as 300 fs rms  
(12 kHz–20 MHz)  
Integrated loop filter with selectable  
loop bandwidth (4 Hz to 525 Hz)  
Meets OC-192 GR-253-CORE jitter  
specifications  
Four clock inputs with manual or  
automatically controlled hitless  
switching and phase build-out  
Supports holdover and freerun  
modes of operation  
signal format (LVPECL, LVDS, CML,  
CMOS)  
Support for ITU G.709 and custom  
FEC ratios (253/226, 239/237,  
255/238, 255/237, 255/236)  
LOL, LOS, FOS alarm outputs  
Digitally-controlled output phase  
adjust  
I2C or SPI programmable settings  
On-chip voltage regulator for 1.8 V  
±5%, 2.5 V ±10%, or 3.3 V ±10%  
operation  
Ordering Information:  
See page 78.  
Small size: 14 x 14 mm 100-pin  
TQFP  
Pb-free, RoHS compliant  
SONET frame sync switching and  
regeneration  
Applications  
SONET/SDH OC-48/STM-16/OC-  
192/STM-64 line cards  
OTN/WDM Muxponder, MSPP,  
ROADM line cards  
GbE/10GbE, 1/2/4/8/10G FC line cards SONET/SDH + PDH clock  
synthesis  
ITU G.709 and custom FEC line cards  
Wireless repeaters/wireless backhaul  
Data converter clocking  
Test and measurement  
Synchronous Ethernet  
Broadcast video  
Description  
The Si5369 is a jitter-attenuating precision clock multiplier for applications  
requiring sub 1 ps rms jitter performance. The Si5369 accepts four clock inputs  
ranging from 2 kHz to 710 MHz and generates five clock outputs ranging from  
2 kHz to 945 MHz and select frequencies to 1.4 GHz. The device provides  
virtually any frequency translation combination across this operating range. The  
outputs are divided down separately from a common source. The Si5369 input  
clock frequency and clock multiplication ratio are programmable through an I2C or  
SPI interface. The Si5369 is based on Silicon Laboratories' third-generation  
DSPLL® technology, which provides any-frequency synthesis and jitter  
attenuation in a highly integrated PLL solution that eliminates the need for  
external VCXO and loop filter components. The DSPLL loop bandwidth is digitally  
programmable, providing jitter performance optimization at the application level.  
Operating from a single 1.8, 2.5 ,or 3.3 V supply, the Si5369 is ideal for providing  
clock multiplication and jitter attenuation in high performance timing applications.  
Rev. 1.0 1/13  
Copyright © 2013 by Silicon Laboratories  
Si5369  
Si5369  
Functional Block Diagram  
Xtal or Refclock  
CKIN1  
CKIN2  
÷ N31  
÷ N32  
÷ N33  
÷ N34  
÷ NC1_LS  
÷ NC2_LS  
÷ NC3_LS  
CKOUT1  
CKOUT2  
®
÷ N1_HS  
DSPLL  
CKIN3/FSYNC1  
CKIN4  
÷ N2  
CKOUT3  
CKOUT4  
CKOUT5  
I2C/SPI Port  
Rate Select  
÷ NC4_LS  
÷ NC5_LS  
Clock Select  
Control  
Skew Control  
Device Interrupt  
LOL/LOS/FOS Alarms  
VDD (1.8, 2.5, or 3.3 V)  
GND  
2
Rev. 1.0  
 
Si5369  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Phase Noise Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5. Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Pin Descriptions: Si5369 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78  
8. Package Outline: 100-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79  
9. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80  
10. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84  
Rev. 1.0  
3
Si5369  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient Temperature  
T
-40  
25  
85  
C
V
A
2
Supply Voltage during  
Normal Operation  
V
3.3 V Nominal  
2.97  
3.3  
3.63  
DD  
2.5 V Nominal  
1.8 V Nominal  
2.25  
1.71  
2.5  
1.8  
2.75  
1.89  
V
V
Notes:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 ºC unless otherwise stated.  
2. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
V
ICM , VOCM  
Differential I/Os  
VISE,VOSE  
SIGNAL –  
(SIGNAL +) – (SIGNAL –)  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
VICM, VOCM  
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. Differential Voltage Characteristics  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
4
Rev. 1.0  
 
 
Si5369  
Table 2. DC Characteristics  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1,6  
Supply Current  
I
LVPECL Format  
622.08 MHz Out  
394  
435  
mA  
DD  
All CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
1 CKOUT Enabled  
253  
278  
229  
165  
284  
400  
261  
mA  
mA  
mA  
mA  
CMOS Format  
19.44 MHz Out  
All CKOUTs Enabled  
CMOS Format  
19.44 MHz Out  
1 CKOUT Enabled  
Disable Mode  
2
CKINn Input Pins  
Input Common Mode  
Voltage (Input Thresh-  
old Voltage)  
V
1.8 V ± 5%  
2.5 V ± 10%  
3.3 V ± 10%  
Single-ended  
0.9  
1
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
1.1  
20  
0.2  
V
Input Resistance  
CKN  
k  
RIN  
Single-Ended Input  
Voltage Swing  
(See Absolute Specs)  
V
f
f
f
< 212.5 MHz  
V
V
V
V
ISE  
CKIN  
PP  
PP  
PP  
PP  
See Figure 1.  
> 212.5 MHz  
0.25  
0.2  
CKIN  
See Figure 1.  
< 212.5 MHz  
CKIN  
Differential Input  
Voltage Swing  
(See Absolute Specs)  
V
ID  
See Figure 1.  
fCKIN > 212.5 MHz  
See Figure 1.  
0.25  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
Rev. 1.0  
5
 
 
 
Si5369  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3,5,6  
Output Clocks (CKOUTn)  
Common Mode  
CKO  
LVPECL 100 load  
V
–1.42  
V –1.25  
DD  
V
VCM  
DD  
line-to-line  
Differential Output  
Swing  
CKO  
LVPECL 100 load  
1.1  
0.5  
1.9  
0.93  
500  
V
VD  
PP  
line-to-line  
Single Ended Output  
Swing  
CKO  
LVPECL 100 load  
V
VSE  
PP  
line-to-line  
Differential Output Volt-  
age  
CKO  
CML 100 load  
350  
425  
mV  
VD  
PP  
line-to-line  
Common Mode  
Output Voltage  
CKO  
CML 100 load  
V
–0.36  
DD  
V
VCM  
line-to-line  
Differential Output Volt-  
age  
CKO  
LVDS  
100 load line-to-line  
500  
350  
1.125  
700  
425  
1.2  
900  
500  
1.275  
mV  
mV  
VD  
PP  
PP  
Low Swing LVDS  
100 load line-to-line  
Common Mode  
Output Voltage  
CKO  
LVDS 100 load  
V
VCM  
line-to-line  
Differential  
Output Resistance  
CKO  
CML, LVPECL, LVDS  
200  
RD  
Output Voltage Low  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
Output Voltage High  
V
= 1.71 V  
0.8 x V  
DD  
VOHLH  
DD  
CMOS  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
6
Rev. 1.0  
Si5369  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
CKO  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Drive Current  
(CMOS driving into  
ICMOS[1:0] = 11  
7.5  
mA  
IO  
V
= 1.8 V  
DD  
CKO  
or CKO  
high. CKOUT+ and  
CKOUT– shorted exter-  
nally)  
for output low  
VOL  
ICMOS[1:0] = 10  
= 1.8 V  
5.5  
3.5  
1.75  
32  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
for output  
VOH  
V
DD  
ICMOS[1:0] = 01  
= 1.8 V  
V
DD  
ICMOS[1:0] = 00  
= 1.8 V  
V
DD  
ICMOS[1:0] = 11  
= 3.3 V  
V
DD  
ICMOS[1:0] = 10  
= 3.3 V  
24  
V
DD  
ICMOS[1:0] = 01  
= 3.3 V  
16  
V
DD  
ICMOS[1:0] = 00  
8
V
= 3.3 V  
DD  
2-Level LVCMOS Input Pins  
Input Voltage Low  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
0.5  
0.7  
0.8  
V
V
V
V
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
Input Voltage High  
V
1.4  
1.8  
2.5  
IH  
Notes:  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
Rev. 1.0  
7
Si5369  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
3-Level Input Pins  
Input Voltage Low  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
4
V
0.15 x V  
0.55 x V  
V
V
ILL  
DD  
Input Voltage Mid  
Input Voltage High  
V
0.45 x  
IMM  
DD  
V
DD  
V
0.85 x  
V
IHH  
ILL  
V
DD  
Input Low Current  
Input Mid Current  
Input High Current  
I
See Note 4  
See Note 4  
See Note 4  
–20  
–2  
+2  
20  
µA  
µA  
µA  
I
IMM  
I
IHH  
LVCMOS Output Pins  
Output Voltage Low  
V
IO = 2 mA  
0.4  
0.4  
V
V
V
V
OL  
V
= 1.71 V  
DD  
Output Voltage Low  
Output Voltage High  
Output Voltage High  
Notes:  
IO = 2 mA  
= 2.97 V  
V
DD  
V
IO = –2 mA  
= 1.71 V  
V
V
–0.4  
OH  
DD  
DD  
V
DD  
IO = –2 mA  
= 2.97 V  
–0.4  
V
DD  
1. Current draw is independent of supply voltage  
2. No under- or overshoot is allowed.  
3. LVPECL outputs require nominal VDD 2.5 V.  
4. This is the amount of leakage that the 3-Level inputs can tolerate from an external driver. See Si53xx Family  
Reference Manual for more details.  
5. LVPECL, CML, LVDS and low-swing LVDS measured with Fo = 622.08 MHz.  
6. The LVPECL and CMOS output formats draw more current than either LVDS or CML; however, there are restrictions in  
the allowed output format pin settings so that the maximum power dissipation for the TQFP devices is limited when  
they are operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output must be disabled.  
When there are five enabled outputs, there can be no more than three outputs that are either LVPECL or CMOS.  
8
Rev. 1.0  
Si5369  
Table 3. AC Specifications  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Single-Ended Reference Clock Input Pin XA (XB with cap to GND)  
Input Resistance  
XA  
RATE[1:0] = LM, MH,  
ac coupled  
12  
k  
RIN  
Input Voltage Swing  
XA  
RATE[1:0] = LM, MH,  
ac coupled  
0.5  
1.2  
V
VPP  
PP  
Differential Reference Clock Input Pins (XA/XB)  
Input Voltage Swing  
CKINn Input Pins  
Input Frequency  
XA/XB  
RATE[1:0] = LM, MH  
0.5  
2.4  
V
VPP  
PP  
CKN  
0.002  
40  
710  
60  
MHz  
%
F
Input Duty Cycle  
(Minimum Pulse  
Width)  
CKN  
Whichever is smaller  
(i.e., the 40% / 60%  
limitation applies only  
to high frequency  
clocks)  
DC  
2
3
ns  
pF  
ns  
Input Capacitance  
CKN  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
CKOUTn Output Pins  
(See ordering section for speed grade vs frequency limits)  
Output Frequency  
(Output not config-  
ured for CMOS or  
Disabled)  
CKO  
CKO  
N1 6  
N1 = 5  
N1 = 4  
0.002  
970  
945  
1134  
1.4  
MHz  
MHz  
GHz  
MHz  
F
1.213  
Maximum Output  
Frequency in CMOS  
Format  
212.5  
F
Output Rise/Fall  
(20–80 %) @  
622.08 MHz output  
CKO  
Output not configured for  
CMOS or Disabled  
See Figure 2  
230  
350  
ps  
TRF  
Notes:  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
Rev. 1.0  
9
 
 
 
Si5369  
Table 3. AC Specifications (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CKO  
CMOS Output  
8
ns  
TRF  
TRF  
V
= 1.71  
DD  
C
= 5 pF  
LOAD  
Output Rise/Fall  
(20–80%) @  
212.5 MHz output  
CKO  
CMOS Output  
= 2.97  
2
ns  
ps  
V
DD  
C
= 5 pF  
LOAD  
Output Duty Cycle  
Uncertainty @  
622.08 MHz  
CKO  
100 Load  
Line-to-Line  
Measured at 50% Point  
(Not for CMOS)  
±40  
DC  
LVCMOS Input Pins  
Minimum Reset Pulse  
Width  
t
1
µs  
ms  
pF  
RSTMN  
Reset to Microproces-  
sor Access Ready  
t
10  
3
READY  
Input Capacitance  
LVCMOS Output Pins  
Rise/Fall Times  
C
in  
t
C
= 20pf  
LOAD  
25  
ns  
RF  
See Figure 2  
LOSn Trigger Window  
LOS  
From last CKINn to   
Internal detection of LOSn  
N3 1  
4.5 x N3  
T
CKIN  
TRIG  
Time to Clear LOL  
after LOS Cleared  
t
LOS to LOL  
Fold = Fnew  
Stable Xa/XB reference  
10  
ms  
CLRLOL  
Device Skew  
Output Clock Skew  
t
of CKOUTn to of  
CKOUT_m, CKOUTn  
and CKOUT_m at same  
frequency and signal  
format  
100  
ps  
SKEW  
PHASEOFFSET = 0  
CKOUT_ALWAYS_ON = 1  
SQ_ICAL = 1  
Notes:  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
10  
Rev. 1.0  
Si5369  
Table 3. AC Specifications (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Phase Change due to  
Temperature  
Variation  
t
Max phase changes from  
–40 to +85 °C  
300  
500  
ps  
TEMP  
1
PLL Performance  
(fin = fout = 622.08 MHz; BW = 7 Hz; LVPECL, XAXB = 114.285 MHz)  
2
Lock Time  
t
Start of ICAL to of LOL  
0.8  
4.2  
1.0  
5.0  
s
s
LOCKMP  
2
Settle Time  
t
Start of ICAL to F  
SETTLE  
OUT  
within 5 ppm of final value  
Output Clock Phase  
Change  
t
After clock switch  
200  
ps  
P_STEP  
f3 128 kHz  
Closed Loop Jitter  
Peaking  
J
0.05  
0.1  
dB  
PK  
Jitter Tolerance  
J
Jitter Frequency Loop  
5000/BW  
ns pk-pk  
TOL  
Bandwidth  
100 Hz Offset  
1 kHz Offset  
–95  
–110  
–117  
–118  
–131  
–67  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
Phase Noise  
fout = 622.08 MHz  
10 kHz Offset  
100 kHz Offset  
1 MHz Offset  
CKO  
PN  
Spurious Noise  
SP  
Max spur @ n x F3  
SPUR  
(n 1, n x F3 < 100 MHz)  
Notes:  
1. Input to output phase skew after an ICAL is not controlled and can assume any value.  
2. Lock and settle time performance is dependent on the frequency plan and the XAXB reference frequency. Please visit  
the Silicon Labs Technical Support web page at: https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
to submit a technical support request regarding the lock time of your frequency plan.  
Rev. 1.0  
11  
Si5369  
Table 4. Microprocessor Control  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
2
I C Bus Lines (SDA, SCL)  
Input Voltage Low  
VIL  
0.25 x V  
V
V
V
V
V
I2C  
DD  
Input Voltage High  
VIH  
0.7 x V  
0.1 x V  
V
DD  
I2C  
DD  
DD  
Hysteresis of Schmitt  
trigger inputs  
VHYS  
V
= 1.8 V  
DD  
I2C  
V
V
= 2.5 or 3.3 V  
0.05 x V  
DD  
DD  
Output Voltage Low  
VOL  
V
= 1.8 V  
0.2 x V  
DD  
I2C  
DD  
IO = 3 mA  
= 2.5 or 3.3 V  
IO = 3 mA  
0.4  
V
DD  
12  
Rev. 1.0  
Si5369  
Table 4. Microprocessor Control (Continued)  
(VDD = 1.8 ± 5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SPI Specifications  
Duty Cycle, SCLK  
Cycle Time, SCLK  
Rise Time, SCLK  
Fall Time, SCLK  
Low Time, SCLK  
High Time, SCLK  
t
SCLK = 10 MHz  
40  
100  
60  
25  
25  
25  
%
ns  
ns  
ns  
ns  
ns  
ns  
DC  
t
c
t
20–80%  
20–80%  
20–20%  
80–80%  
r
t
f
t
30  
30  
lsc  
t
hsc  
Delay Time, SCLK Fall  
to SDO Active  
t
d1  
d2  
d3  
Delay Time, SCLK Fall  
to SDO Transition  
t
25  
20  
25  
20  
25  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay Time, SS Rise  
to SDO Tri-state  
t
Setup Time, SS to  
SCLK Fall  
t
su1  
Hold Time, SS to  
SCLK Rise  
t
h1  
Setup Time, SDI to  
SCLK Rise  
t
su2  
Hold Time, SDI to  
SCLK Rise  
t
h2  
Delay Time between  
Slave Selects  
t
cs  
Rev. 1.0  
13  
Si5369  
Table 5. Jitter Generation  
*
Parameter  
Symbol  
Min  
Typ  
Max  
GR-253-  
Specification  
Unit  
Test Condition  
Measurement  
Filter  
DSPLL  
2
BW  
Jitter Gen  
OC-192  
JGEN  
0.02–80 MHz  
120 Hz  
120 Hz  
120 Hz  
120 Hz  
4.2  
.27  
3.7  
.14  
4.4  
.26  
3.5  
.27  
30  
N/A  
10  
ps  
PP  
ps  
rms  
4–80 MHz  
ps  
PP  
N/A  
10  
ps  
rms  
0.05–80 MHz  
0.12–20 MHz  
ps  
PP  
1.0  
ps  
rms  
Jitter Gen  
OC-48  
JGEN  
40.2  
4.02  
ps  
PP  
ps  
rms  
*Note: Test conditions:  
1. fIN = fOUT = 622.08 MHz  
2. Clock input: LVPECL  
3. Clock output: LVPECL  
4. PLL bandwidth: 120 Hz  
5. 114.285 MHz 3rd OT crystal used as XA/XB input  
6. DD = 2.5 V  
7. TA = 85 °C  
V
8. Jitter integration bands include low-pass (-20 dB/dec) and high-pas (-60 dB/dec) roll-offs per Telecordia GR-253-  
CORE.  
14  
Rev. 1.0  
 
Si5369  
Table 6. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
Still Air  
31  
C°/W  
JA  
Table 7. Absolute Maximum Ratings*  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Voltage  
V
–0.5  
3.8  
V
DD  
LVCMOS Input Voltage  
V
–0.3  
0
V
+0.3  
DD  
V
V
DIG  
CKINn Voltage Level Limits  
XA/XB Voltage Level Limits  
Operating Junction Temperature  
Storage Temperature Range  
CKN  
V
DD  
VIN  
XA  
0
1.2  
150  
150  
V
VIN  
T
–55  
–55  
2
ºC  
ºC  
kV  
JCT  
T
STG  
ESD HBM Tolerance  
(100 pF, 1.5 k); All pins except  
CKIN+/CKIN–  
ESD MM Tolerance; All pins  
except CKIN+/CKIN–  
150  
700  
100  
V
V
V
ESD HBM Tolerance  
(100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance;  
CKIN+/CKIN–  
Latch-up Tolerance  
JESD78 Compliant  
*Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
Rev. 1.0  
15  
 
Si5369  
2. Typical Phase Noise Performance  
Figure 3. Broadcast Video*  
*Note: Phase noise plot RMS jitter value used brick wall integration.  
Jitter Bandwidth  
10 Hz to 20 MHz  
Jitter (peak-peak)  
Jitter (RMS)  
5.24 ps  
484  
Note: Number of samples: 8.91E9  
16  
Rev. 1.0  
Si5369  
Figure 4. OTN/SONET/SDH Phase Noise*  
*Note: Phase noise plot RMS jitter value uses brick wall integration.  
Jitter Bandwidth  
Jitter, RMS  
266 fs  
SONET_OC48, 12 kHz to 20 MHz  
SONET_OC192_A, 20 kHz to 80 MHz  
SONET_OC192_B, 4 MHz to 80 MHz  
SONET_OC192_C, 50 kHz to 80 MHz  
Brick Wall_800 Hz to 80 MHz  
283 fs  
155 fs  
275 fs  
287 fs  
Note: Jitter integration bands include low-pass (–20 dB/Dec) and hi-pass (–60 dB/Dec) roll-offs  
per Telecordia GR-253-CORE.  
Rev. 1.0  
17  
Si5369  
Figure 5. Wireless Base Station Phase Noise*  
*Note: Phase noise plot RMS jitter value uses brick wall integration.  
Jitter Bandwidth  
10 Hz to 20 MHz  
Jitter (peak-peak)  
Jitter (RMS)  
7.28 ps  
581  
Note: Number of samples: 8.91E9  
18  
Rev. 1.0  
Si5369  
Figure 6. 10 GbE Phase Noise*  
*Note: Phase noise plot RMS jitter value uses brick wall integration.  
Jitter Bandwidth  
Jitter (RMS)  
10 kHz to 10 MHz  
238 fs  
Rev. 1.0  
19  
Si5369  
C10  
System  
Power  
Supply  
Option 1:  
Crystal  
Option 2:  
Ext. Refclk  
Ferrite  
Bead  
1 µF  
C1–9  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
0.1 µF  
130  
82   
130   
CKIN1+  
0.1 µF  
100   
0.1 µF  
+
CKOUT1+  
CKOUT1–  
CKIN1–  
82   
0.1 µF  
CKOUT4+  
+
+
Input  
Clock  
Sources*  
Clock  
Outputs  
100   
VDD = 3.3 V  
CKOUT4–  
FS_OUT+  
0.1 µF  
0.1 µF  
130   
82   
130   
82   
CKIN4+  
CKIN4–  
Si5369  
100   
FS_OUT–  
0.1 µF  
Interrupt/Alarm Output  
Indicator  
INT_ALM  
CnB  
CKINn Invalid Indicator  
(n = 1 to 3)  
INC  
INC  
PLL Loss of Lock  
Indicator  
LOL  
DEC  
DEC  
Rate  
Serial Port  
Address  
I2C  
A[2:0]  
SDA  
SCL  
RATE[1:0]  
CMODE  
RST  
Serial Data  
Interface  
Control Mode (L)  
Reset  
Serial Clock  
*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.  
2
Figure 7. Si5369 Typical Application Circuit (I C Control Mode)  
C10  
System  
Option 1:  
Crystal  
Option 2:  
Ext. Refclk  
Power  
Supply  
Ferrite  
Bead  
1 µF  
C1–9  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
0.1 µF  
130  
82   
130   
82   
CKIN1+  
CKIN1–  
0.1 µF  
100   
0.1 µF  
CKOUT1+  
CKOUT1–  
+
0.1 µF  
+
+
CKOUT4+  
Input  
Clock  
Clock  
Sources*  
Outputs  
100   
VDD = 3.3 V  
CKOUT4–  
FS_OUT+  
0.1 µF  
0.1 µF  
130   
82   
130   
82   
CKIN4+  
CKIN4–  
100   
Si5369  
FS_OUT–  
0.1 µF  
Interrupt/Alarm Output  
Indicator  
INT_ALM  
CnB  
CKINn Invalid Indicator  
(n = 1 to 3)  
PLL Loss of Lock  
Indicator  
LOL  
INC  
INC  
DEC  
Rate  
SS  
SDO  
SDI  
Slave Select  
DEC  
Serial Data  
Out  
RATE[1:0]  
CMODE  
RST  
SPI  
Interface  
Serial Data  
In  
Control Mode (H)  
Reset  
SCL  
Serial Clock  
*Note: Assumes differential LVPECL termination (3.3 V) on clock inputs.  
Figure 8. Si5369 Typical Application Circuit (SPI Control Mode)  
Rev. 1.0  
20  
Si5369  
a historical average that existed a fixed amount of time  
before the error event occurred, eliminating the effects of  
phase and frequency transients that may occur  
immediately preceding digital hold.  
3. Functional Description  
The Si5369 is a jitter-attenuating precision clock multiplier  
for applications requiring sub 1 ps rms jitter performance.  
The Si5369 accepts four clock inputs ranging from 2 kHz  
to 710 MHz and generates five clock outputs ranging from  
2 kHz to 945 MHz and select frequencies to 1.4 GHz. The  
device provides virtually any frequency translation  
combination across this operating range. Independent  
dividers are available for every input clock and output  
clock, so the Si5369 can accept input clocks at different  
frequencies and it can generate output clocks at different  
frequencies. The Si5369 input clock frequency and clock  
The Si5369 has five differential clock outputs. The  
electrical format of the clock outputs is programmable to  
support LVPECL, LVDS, CML, or CMOS loads. If not  
required, unused clock outputs can be powered down to  
minimize power consumption. The phase difference  
between the selected input clock and the output clocks is  
adjustable in 200 ps increments for system skew control.  
In addition, the phase of one output clock may be  
adjusted in relation to the phase of the other output clock.  
The resolution varies from 800 ps to 2.2 ns depending on  
the PLL divider settings. Consult the DSPLLsim  
configuration software to determine the phase offset  
resolution for a given input clock/clock multiplication ratio  
combination. For system-level debugging, a bypass mode  
is available which drives the output clock directly from the  
input clock, bypassing the internal DSPLL. The device is  
powered by a single 1.8, 2.5, or 3.3 V supply.  
2
multiplication ratio are programmable through an I C or  
SPI interface. Optionally, the fifth clock output can be  
configured as a 2 to 512 kHz SONET/SDH frame  
synchronization output that is phase aligned with one of  
the high-speed output clocks. Silicon Laboratories offers a  
PC-based software utility, DSPLLsim, that can be used to  
determine the optimum PLL divider settings for a given  
input frequency/clock multiplication ratio combination that  
minimizes phase noise and power consumption. This  
3.1. External Reference  
utility  
can  
be  
downloaded  
from  
http://www.silabs.com/timing (click on Documentation).  
An external clock or a low-cost 114.285 MHz 3rd overtone  
crystal is typically used as part of a fixed-frequency  
oscillator within the DSPLL. This external reference is  
required for the device to operate. Silicon Laboratories  
The Si5369 is based on Silicon Laboratories' 3rd-  
®
generation DSPLL technology, which provides any-  
frequency synthesis and jitter attenuation in a highly  
integrated PLL solution that eliminates the need for  
external VCXO and loop filter components. The Si5369  
PLL loop bandwidth is digitally programmable and  
supports a range from 4 to 525 Hz. The DSPLLsim  
recommends using  
a high-quality crystal. Specific  
recommendations may be found in the Family Reference  
Manual. An external clock from a high-quality OCXO or  
TCXO can also be used as a reference for the device.  
software utility can be used to calculate valid loop If there is a need to use a reference oscillator instead of  
bandwidth settings for a given input clock frequency/clock a crystal, Silicon Labs does not recommend using  
MEMS based oscillators. Instead, Silicon Labs  
recommends the Si530EB121M109DG, which is a very  
low jitter/wander, LVPECL, 2.5 V crystal oscillator. The  
very low loop BW of the Si5369 means that it can be  
susceptible to XAXB reference sources that have high  
wander. Experience has shown that in spite of having  
low jitter, some MEMs oscillators have high wander, and  
these devices should be avoided. Contact Silicon Labs  
for details.  
In digital hold, the DSPLL remains locked to this external  
reference. Any changes in the frequency of this  
reference when the DSPLL is in digital hold, will be  
tracked by the output of the device. Note that crystals  
can have temperature sensitivities.  
multiplication ratio.  
The Si5369 supports hitless switching between input  
clocks in compliance with GR-253-CORE and GR-1244-  
CORE that greatly minimizes the propagation of phase  
transients to the clock outputs during an input clock  
transition (<200 ps typ). Manual, automatic revertive and  
non-revertive input clock switching options are available.  
The Si5369 monitors the four input clocks for loss-of-  
signal and provides a LOS alarm when it detects missing  
pulses on any of the four input clocks. The device  
monitors the lock status of the PLL. The lock detect  
algorithm works by continuously monitoring the phase of  
the input clock in relation to the phase of the feedback  
clock. The Si5369 monitors the frequency of CKIN1,  
CKIN2, CKIN3, and CKIN4 with respect to a selected  
reference frequency and generates a frequency offset  
alarm (FOS) if the threshold is exceeded. This FOS  
feature is available for SONET applications in which both  
the monitored frequency on CKIN1, CKIN3, and CKIN4  
and the reference frequency are integer multiples of 19.44  
MHz. Both Stratum 3/3E and SONET Minimum Clock  
(SMC) FOS thresholds are supported.  
3.2. Further Documentation  
Consult the Silicon Laboratories Any-Frequency  
Precision Clock Family Reference Manual (FRM) for  
detailed information about the Si5369. Additional design  
support is available from Silicon Laboratories through  
your distributor.  
Silicon Laboratories has developed  
a
PC-based  
software utility called DSPLLsim to simplify device  
configuration, frequency planning, and loop bandwidth  
selection. The FRM and this utility can be downloaded  
The Si5369 provides a digital hold capability that allows  
the device to continue generation of a stable output clock  
when the selected input reference is lost. During digital  
hold, the DSPLL generates an output frequency based on  
from  
http://www.silabs.com/timing;  
click  
on  
Documentation.  
Rev. 1.0  
21  
 
Si5369  
4. Register Map  
All register bits that are not defined in this map should always be written with the specified Reset Values. The  
writing to these bits of values other than the specified Reset Values may result in undefined device behavior.  
Registers not listed, such as Register 64, should never be written to.  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
FREE_RUN  
CKOUT_  
ALWAYS_  
ON  
BYPASS_  
REG  
1
2
CK_PRIOR4 [1:0]  
CK_PRIOR3 [1:0]  
CK_PRIOR2 [1:0]  
CK_PRIOR1 [1:0]  
BWSEL_REG [3:0]  
3
CKSEL_REG [1:0]  
AUTOSEL_REG [1:0]  
ICMOS [1:0]  
DHOLD  
SQ_ICAL  
4
HIST_DEL [4:0]  
SFOUT1_REG [2:0]  
5
SFOUT2_REG [2:0]  
SFOUT4_REG [2:0]  
SFOUT5_REG [2:0]  
6
SFOUT3_REG [2:0]  
FOSREFSEL [2:0]  
7
8
HLOG_4 [1:0]  
HLOG_3 [1:0]  
HLOG_2 [1:0]  
HLOG_1 [1:0]  
HLOG_5 [1:0]  
9
HIST_AVG [4:0]  
10  
DSBL5_  
REG  
DSBL4_  
REG  
DSBL3_  
REG  
DSBL2_  
REG  
DSBL1_  
REG  
11  
19  
20  
PD_CK4  
VALTIME [1:0]  
CK3_BAD_ CK2_BAD_ CK1_BAD_  
PD_CK3  
PD_CK2  
PD_CK1  
FOS_EN  
FOS_THR [1:0]  
LOCKT [2:0]  
LOL_PIN  
ALR-  
INT_PIN  
MOUT_PIN  
PIN  
PIN  
PIN  
21  
22  
CK4_ACT-  
V_PIN  
CK3_ACT-  
V_PIN  
CK2_ACT-  
V_PIN  
CK1_ACT- CKSEL_PIN  
V_PIN  
CK_ACTV_  
POL  
CK_BAD_  
POL  
LOL_POL  
INT_POL  
23  
24  
LOS4_MSK LOS3_MSK  
FOS4_MSK FOS3_MSK  
LOS2_MSK LOS1_MSK LOSX_MSK  
FOS2_MSK FOS1_MSK  
NC1_LS [19:16]  
LOL_MSK  
25  
26  
27  
28  
29  
30  
31  
N1_HS [2:0]  
NC1_LS [15:8]  
NC1_LS [7:0]  
NC2_LS [19:16]  
NC3_LS [19:16]  
NC2_LS [15:8]  
NC2_LS [7:0]  
22  
Rev. 1.0  
Si5369  
Register  
32  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
NC3_LS [15:8]  
33  
NC3_LS [7:0]  
34  
NC4_LS [19:16]  
NC5_LS [19:16]  
N2_LS [19:16]  
35  
NC4_LS [15:8]  
NC4_LS [7:0]  
36  
37  
38  
NC5_LS [15:8]  
NC5_LS [7:0]  
39  
40  
N2_HS [2:0]  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
128  
N2_LS [15:8]  
N2_LS [7:0]  
N31_ [18:16]  
N31_[15:8]  
N31_ [7:0]  
N32_ [18:16]  
N33_[18:16]  
N34_[18:16]  
N31_ [15:8]  
N32_[7:0]  
N33_[15:8]  
N33_[7:0]  
N34_[15:8]  
N34_[7:0]  
CLKIN2RATE_[2:0]  
CLKIN1RATE[2:0]  
CLKIN3RATE[2:0]  
CLKIN4RATE_[2:0]  
CK4_ACT-  
V_REG  
CK3_ACT-  
V_REG  
CK2_ACT-  
V_REG  
CK1_ACT-  
V_REG  
129  
130  
LOS4_INT  
FOS4_INT  
LOS3_INT  
FOS3_INT  
LOS2_INT  
FOS2_INT  
LOS1_INT  
FOS1_INT  
LOSX_INT  
LOL_INT  
DIGHOLD-  
VALID  
131  
LOS4_FLG LOS3_FLG LOS2_FLG LOS1_FLG LOSX_FLG  
Rev. 1.0  
23  
Si5369  
Register  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
132  
134  
135  
136  
137  
138  
FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG  
PARTNUM_RO [11:4]  
LOL_FLG  
PARTNUM_RO [3:0]  
ICAL  
REVID_RO [3:0]  
RST_REG  
FASTLOCK  
LOS4_EN  
[1:1]  
LOS3_EN  
[1:1]  
LOS2_EN  
[1:1]  
LOS1_EN  
[1:1]  
139  
LOS4_EN  
[0:0]  
LOS3_EN  
[0:0]  
LOS2_EN  
[0:0]  
LOS1_EN  
[0:0]  
FOS4_EN  
FOS3_EN  
FOS2_EN  
FOS1_EN  
140  
141  
142  
143  
144  
INDEPENDENTSKEW1 [7:0]  
INDEPENDENTSKEW2 [7:0]  
INDEPENDENTSKEW3 [7:0]  
INDEPENDENTSKEW4 [7:0]  
INDEPENDENTSKEW5 [7:0]  
24  
Rev. 1.0  
Si5369  
5. Register Descriptions  
Register 0.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FREE_RUN CKOUT_ALWAYS_ON  
BYPASS_REG  
R/W  
R
R/W  
R/W  
R
R
R
R
Reset value = 0001 0100  
Bit  
7
Name  
Function  
Reserved  
FREE_RUN  
6
Free Run.  
Internal to the device, route XA/XB to CKIN2. This allows the device to lock to its  
external reference.  
0: Disable Free Run  
1: Enable  
5
CKOUT_ALWAYS_ON CKOUT Always On.  
This will bypass the SQ_ICAL function. Output will be available even if SQ_ICAL  
is on and ICAL is not complete or successful. See Table 8.  
0: Squelch output until part is calibrated (ICAL).  
1: Provide an output. Note: The frequency may be significantly off until the part  
is calibrated.  
4:2  
1
Reserved  
BYPASS_REG  
Bypass Register.  
This bit enables or disables the PLL bypass mode. Use is only valid when the  
part is in digital hold or before the first ICAL.  
0: Normal operation  
1: Bypass mode. Selected input clock is connected to CKOUT buffers, bypass-  
ing PLL.  
0
Reserved  
Rev. 1.0  
25  
Si5369  
Register 1.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK_PRIOR4 [1:0]  
R/W  
CK_PRIOR3 [1:0]  
R/W  
CK_PRIOR2 [1:0]  
R/W  
CK_PRIOR1 [1:0]  
R/W  
Reset value = 1110 0100  
Bit  
Name  
CK_PRIOR4 [1:0] CK_PRIOR 4.  
Function  
7:6  
Selects which of the input clocks will be 4th priority in the autoselection state  
machine.  
00: CKIN1 is 4th priority.  
01: CKIN2 is 4th priority.  
10: CKIN3 is 4th priority.  
11: CKIN4 is 4th priority.  
5:4  
3:2  
1:0  
CK_PRIOR3 [1:0] CK_PRIOR 3.  
Selects which of the input clocks will be 3rd priority in the autoselection state  
machine.  
00: CKIN1 is 3rd priority.  
01: CKIN2 is 3rd priority.  
10: CKIN3 is 3rd priority.  
11: CKIN4 is 3rd priority.  
CK_PRIOR2 [1:0] CK_PRIOR 2.  
Selects which of the input clocks will be 2nd priority in the autoselection state  
machine.  
00: CKIN1 is 2nd priority.  
01: CKIN2 is 2nd priority.  
10: CKIN3 is 2nd priority.  
11: CKIN4 is 2nd priority.  
CK_PRIOR1 [1:0] CK_PRIOR 1.  
Selects which of the input clocks will be 1st priority in the autoselection state  
machine.  
00: CKIN1 is 1st priority.  
01: CKIN2 is 1st priority.  
10: CKIN3 is 1st priority.  
11: CKIN4 is 1st priority.  
26  
Rev. 1.0  
Si5369  
Register 2.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
BWSEL_REG [3:0]  
R/W  
R
R
R
R
Reset value = 0100 0010  
Bit  
Name  
BWSEL_REG [3:0] BWSEL_REG.  
Function  
7:4  
Selects nominal f3dB bandwidth for PLL. See the DSPLLsim for settings. After  
BWSEL_REG is written with a new value, an ICAL is required for the change to  
take effect.  
3:0  
Reserved  
Register 3.  
Bit  
D7  
D6  
D5  
DHOLD  
R/W  
D4  
SQ_ICAL  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CKSEL_REG [1:0]  
R/W  
R
R
R
R
Reset value = 0000 0101  
Bit  
Name  
CKSEL_REG [1:0] CKSEL_REG.  
If the device is operating in manual register-based clock selection mode  
Function  
7:6  
(AUTOSEL_REG = 00), and CKSEL_PIN = 0, then these bits select which input  
clock will be the active input clock. If CKSEL_PIN = 1, the CKSEL[1:0] input pins  
continue to control clock selection and CKSEL_REG is of no consequence.  
00: CKIN_1 selected.  
01: CKIN_2 selected.  
10: CKIN_3 selected.  
11: CKIN_4 selected.  
5
DHOLD  
DHOLD.  
Forces the part into digital hold. This bit overrides all other manual and automatic  
clock selection controls.  
0: Normal operation.  
1: Force digital hold mode. Overrides all other settings and ignores the quality of all  
of the input clocks.  
4
SQ_ICAL  
Reserved  
SQ_ICAL.  
This bit determines if the output clocks will remain enabled or be squelched (dis-  
abled) during an internal calibration. See Table 8.  
0: Output clocks enabled during ICAL.  
1: Output clocks disabled during ICAL.  
3:0  
Rev. 1.0  
27  
Si5369  
Register 4.  
Bit  
D7  
D6  
AUTOSEL_REG [1:0]  
R/W  
D5  
D4  
D3  
D2  
HIST_DEL [4:0]  
R/W  
D1  
D0  
Name  
Type  
R
Reset value = 0001 0010  
Bit  
7:6 AUTOSEL_REG [1:0] AUTOSEL_REG [1:0].  
Selects method of input clock selection to be used.  
Name  
Function  
00: Manual (either register or pin controlled. See CKSEL_PIN).  
01: Automatic Non-Revertive  
10: Automatic Revertive  
11: Reserved  
5
Reserved  
4:0  
HIST_DEL [4:0]  
HIST_DEL [4:0].  
Selects amount of delay to be used in generating the history information MHIST,  
the value of M used during Digital Hold.  
28  
Rev. 1.0  
Si5369  
Register 5.  
Bit  
D7  
ICMOS [1:0]  
R/W  
D6  
D5  
D4  
SFOUT2_REG [2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
SFOUT1_REG [2:0]  
R/W  
Reset value = 1110 1101  
Bit  
Name  
Function  
7:6  
ICMOS [1:0]  
ICMOS [1:0].  
When the output buffer is set to CMOS mode, these bits determine the output buf-  
fer drive strength. The first number below refers to 3.3 V operation; the second to  
1.8 V operation. These values assume CKOUT+ is tied to CKOUT-.  
00: 8 mA/2 mA  
01: 16 mA/4 mA  
10: 24 mA/6 mA  
11: 32 mA (3.3 V operation)/8mA (1.8 V operation)  
5:3  
SFOUT2_REG [2:0] SFOUT2_REG [2:0]  
Controls output signal format and disable for CKOUT2 output buffer. The LVPECL  
and CMOS output formats draw more current than either LVDS or CML; however,  
there are restrictions in the allowed output format pin settings so that the maximum  
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.  
When there are four enabled LVPECL or CMOS outputs, the fifth output must be  
disabled. When there are five enabled outputs, there can be no more than three  
outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
SFOUT1_REG [2:0] SFOUT1_REG [2:0]  
Controls output signal format and disable for CKOUT1 output buffer. The LVPECL  
and CMOS output formats draw more current than either LVDS or CML; however,  
there are restrictions in the allowed output format pin settings so that the maximum  
power dissipation for the TQFP devices is limited when they are operated at 3.3 V.  
When there are four enabled LVPECL or CMOS outputs, the fifth output must be  
disabled. When there are five enabled outputs, there can be no more than three  
outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
Rev. 1.0  
29  
Si5369  
Register 6.  
Bit  
D7  
D6  
D5  
D4  
SFOUT4_REG [2:0]  
R/W  
D3  
D2  
D1  
SFOUT3_REG [2:0]  
R/W  
D0  
Name  
Type  
R
R
Reset value = 0010 1100  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
SFOUT4_REG [2:0] SFOUT4_REG [2:0].  
Controls output signal format and disable for CKOUT4 output buffer. The LVPECL  
and CMOS output formats draw more current than either LVDS or CML; however,  
there are restrictions in the allowed output format pin settings so that the maxi-  
mum power dissipation for the TQFP devices is limited when they are operated at  
3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output  
must be disabled. When there are five enabled outputs, there can be no more  
than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
SFOUT3_REG [2:0] SFOUT3_REG [2:0].  
Controls output signal format and disable for CKOUT3 output buffer. The LVPECL  
and CMOS output formats draw more current than either LVDS or CML; however,  
there are restrictions in the allowed output format pin settings so that the maxi-  
mum power dissipation for the TQFP devices is limited when they are operated at  
3.3 V. When there are four enabled LVPECL or CMOS outputs, the fifth output  
must be disabled. When there are five enabled outputs, there can be no more  
than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
30  
Rev. 1.0  
Si5369  
Register 7.  
Bit  
D7  
D6  
D5  
D4  
SFOUT5_REG [2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
FOSREFSEL [2:0]  
R/W  
R
R
Reset value = 0010 1010  
Bit  
7:6  
5:3  
Name  
Function  
Reserved.  
SFOUT5_REG [2:0] SFOUT5_REG [2:0]  
Controls output signal format and disable for CKOUT5 output buffer. The  
LVPECL and CMOS output formats draw more current than either LVDS or CML;  
however, there are restrictions in the allowed output format pin settings so that  
the maximum power dissipation for the TQFP devices is limited when they are  
operated at 3.3 V. When there are four enabled LVPECL or CMOS outputs, the  
fifth output must be disabled. When there are five enabled outputs, there can be  
no more than three outputs that are either LVPECL or CMOS.  
000: Reserved  
001: Disable  
010: CMOS  
011: Low swing LVDS  
100: Reserved  
101: LVPECL  
110: CML  
111: LVDS  
2:0  
FOSREFSEL [2:0]  
FOSREFSEL [2:0].  
Selects which input clock is used as the reference frequency for Frequency Off-  
Set (FOS) alarms.  
000: XA/XB (External reference)  
001: CKIN1  
010: CKIN2  
011: CKIN3  
100: CKIN4  
101: Reserved  
110: Reserved  
111: Reserved  
Rev. 1.0  
31  
Si5369  
Register 8.  
Bit  
D7  
HLOG_4[1:0]  
R/W  
D6  
D5  
HLOG_3[1:0]  
R/W  
D4  
D3  
HLOG_2[1:0]  
R/W  
D2  
D1  
HLOG_1[1:0]  
R/W  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:6  
HLOG_4 [1:0] HLOG_4 [1:0].  
00: Normal operation  
01: Holds CKOUT4 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT4 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved  
5:4  
3:2  
1:0  
HLOG_3 [1:0] HLOG_3 [1:0].  
00: Normal operation  
01: Holds CKOUT3 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT3 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved.  
HLOG_2 [1:0] HLOG_2 [1:0].  
00: Normal operation  
01: Holds CKOUT2 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT2 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved.  
HLOG_1 [1:0] HLOG_1 [1:0].  
00: Normal operation  
01: Holds CKOUT1 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT1 output at static logic 1. Entrance and exit from this state will occur  
without glitches or runt pulses.  
11: Reserved  
32  
Rev. 1.0  
Si5369  
Register 9.  
Bit  
D7  
D6  
D5  
HIST_AVG [4:0]  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
HLOG_5 [1:0]  
R/W  
R
Reset value = 1100 0000  
Bit  
Name  
HIST_AVG [4:0] HIST_AVG [4:0].  
Function  
7:3  
Selects amount of averaging time to be used in generating MHIST, the value of M  
used  
during digital hold. See Family Reference Manual for settings.  
2
Reserved  
1:0  
HLOG_5 [1:0]  
HLOG_5 [1:0].  
00: Normal Operation  
01: Holds CKOUT5 output at static logic 0. Entrance and exit from this state will occur  
without glitches or runt pulses.  
10: Holds CKOUT5 output at static logic 1. Entrance and exit from this state will  
occur without glitches or runt pulses.  
11: Reserved  
Rev. 1.0  
33  
Si5369  
Register 10.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DSBL5_REG Reserved DSBL4_REG DSBL3_REG DSBL2_REG DSBL1_REG  
R
R/W  
R
R/W  
R/W  
R
R
R
Reset value = 0000 0000  
Bit  
7:6  
5
Name  
Function  
Reserved  
DSBL5_REG  
DSBL5_REG.  
This bit controls the powerdown and disable of the CKOUT5 output buffer. If disable  
mode is selected, the NC5_LS output divider is also powered down.  
0: CKOUT5 enabled.  
1: CKOUT5 disabled.  
4
3
Reserved  
DSBL4_REG  
DSBL4_REG.  
This bit controls the powerdown and disable of the CKOUT4 output buffer. If disable  
mode is selected, the NC4 output divider is also powered down.  
0'b=CKOUT4 enabled  
1'b=CKOUT4 disabled  
2
1
0
DSBL3_REG  
DSBL2_REG  
DSBL1_REG  
DSBL3_REG.  
This bit controls the powerdown and disable of the CKOUT3 output buffer. If disable  
mode is selected, the NC3 output divider is also powered down.  
0: CKOUT3 enabled  
1: CKOUT3 disabled  
DSBL2_REG.  
This bit controls the powerdown and disable of the CKOUT2 output buffer. If disable  
mode is selected, the NC2 output divider is also powered down.  
0: CKOUT2 enabled  
1: CKOUT2 disabled  
DSBL1_REG.  
This bit controls the powerdown and disable of the CKOUT1 output buffer. If disable  
mode is selected, the NC1 output divider is also powered down.  
0: CKOUT1 enabled  
1: CKOUT1 disabled  
34  
Rev. 1.0  
Si5369  
Register 11.  
Bit  
D7  
D6  
D5  
D4  
D3  
PD_CK4  
R/W  
D2  
PD_CK3  
R/W  
D1  
PD_CK2  
R/W  
D0  
PD_CK1  
R/W  
Name  
Type  
R
R
R
R
Reset value = 0100 0000  
Bit  
7:4  
3
Name  
Function  
Reserved  
PD_CK4  
PD_CK4.  
This bit controls the powerdown of the CKIN4 input buffer.  
0: CKIN4 enabled  
1: CKIN4 disabled  
2
1
0
PD_CK3  
PD_CK2  
PD_CK1  
PD_CK3.  
This bit controls the powerdown of the CKIN3 input buffer.  
0: CKIN3 enabled  
1: CKIN3 disabled  
PD_CK2.  
This bit controls the powerdown of the CKIN2 input buffer.  
0: CKIN2 enabled  
1: CKIN2 disabled  
PD_CK1.  
This bit controls the powerdown of the CKIN1 input buffer.  
0: CKIN1 enabled  
1: CKIN1 disabled  
Rev. 1.0  
35  
Si5369  
Register 19.  
Bit  
D7  
D6  
D5  
D4  
VALTIME [1:0]  
R/W  
D3  
D2  
D1  
LOCKT [2:0]  
R/W  
D0  
Name FOS_EN  
FOS_THR [1:0]  
R/W  
Type  
R/W  
Reset value = 0010 1100  
Bit  
Name  
Function  
7
FOS_EN  
FOS_EN.  
Frequency offset enable globally disables FOS. See the individual FOS enables (FOS-  
x_EN, register 139).  
00: FOS disable  
01: FOS enabled by FOSx_EN  
6:5  
4:3  
2:0  
FOS_THR [1:0] FOS_THR [1:0].  
Frequency Offset at which FOS is declared:  
00: ± 11 to 12 ppm Stratum 3/3E compliant, with a Stratum 3/3E used for REFCLK.  
01: ± 48 to 49 ppm (SMC).  
10: ± 30 ppm SONET Minimum Clock (SMC), with a Stratum 3/3E used for REFCLK.  
11: ± 200 ppm  
VALTIME [1:0] VALTIME [1:0].  
Sets amount of time for input clock to be valid before the associated alarm is removed.  
00: 2 ms  
01: 100 ms  
10: 200 ms  
11: 13 s  
LOCKT [2:0]  
LOCKT [2:0].  
Sets retrigger interval for one shot monitoring phase detector output. One shot is trig-  
gered by phase slip in DSPLL. Refer to the Family Reference Manual for more details.  
000: 106 ms  
001: 53 ms  
010: 26.5 ms  
011: 13.3 ms  
100: 6.6 ms  
101: 3.3 ms  
110: 1.66 ms  
111: 833 µs  
36  
Rev. 1.0  
Si5369  
Register 20.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ALRMOUT_PIN CK3_BAD_PIN CK2_BAD_PIN CK1_BAD_PIN LOL_PIN INT_PIN  
R/W R/W R/W R/W R/W R/W  
R
R
Reset value = 0011 1100  
Bit  
7:6  
5
Name  
Function  
Reserved  
ALRMOUT_PIN ALRMOUT_PIN.  
The ALRMOUT status can be reflected on the ALRMOUT output pin. The request to  
reflect the interrupt status on this pin (INT_PIN=1) overrides the ALRMOUT_PIN  
request.  
0: ALRMOUT not reflected on output pin. Output pin disabled if INT_PIN=0.  
1: ALRMOUT reflected to output pin if INT_PIN=0. If INT_PIN=1, interrupt status  
appears on the output pin and ALRMOUT is not available on an output pin.  
4
3
2
1
0
CK3_BAD_PIN CK3_BAD_PIN.  
The CK3_BAD status can be reflected on the C3B output pin.  
0: C3B output pin tristated  
1: C3B status reflected to output pin  
CK2_BAD_PIN CK2_BAD_PIN.  
The CK2_BAD status can be reflected on the C2B output pin.  
0: C2B output pin tristated  
1: C2B status reflected to output pin  
CK1_BAD_PIN CK1_BAD_PIN.  
The CK1_BAD status can be reflected on the C1B output pin.  
0: C1B output pin tristated  
1: C1B status reflected to output pin  
LOL_PIN  
INT_PIN  
LOL_PIN.  
The LOL_INT status bit can be reflected on the LOL output pin.  
0: LOL output pin tristated  
1: LOL_INT status reflected to output pin  
INT_PIN.  
Reflects the interrupt status on the INT output pin.  
0: Interrupt status not displayed on INT output pin. If ALRMOUT_PIN = 0, output pin is  
tristated.  
1: Interrupt status reflected to output pin. ALRMOUT_PIN ignored.  
Rev. 1.0  
37  
Si5369  
Register 21.  
Bit  
D7 D6 D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK4_ACTV_PIN CK3_ACTV_PIN CK2_ACTV_PIN CK1_ACTV_PIN CKSEL_ PIN  
R
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
Reset value = 1111 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
CK4_ACTV_PIN  
CK4_ACTV_PIN.  
If the CKSEL[1]/CK4_ACTV pin is functioning as the CK4_ACTV output (see  
CKSEL[1]/CK4_ACTV pin description on CK4_ACTV), the CK4_ACTV_REG sta-  
tus bit can be reflected to the CK4_ACTV output pin using the CK4_ACTV_PIN  
enable function.  
0: CK4_ACTV output pin tristated  
1: CK4_ACTV status reflected to output pin.  
3
2
CK3_ACTV_PIN  
CK2_ACTV_PIN  
CK3_ACTV_PIN.  
If the CKSEL[0]/CK3_ACTV pin is functioning as the CK3_ACTV output (see  
CKSEL[0]/CK3_ACTV pin description on CK3_ACTV), the CK3_ACTV_REG sta-  
tus bit can be reflected to the CK3_ACTV output pin using the CK3_ACTV_PIN  
enable function.  
0: CK3_ACTV output pin tristated.  
1: CK3_ACTV status reflected to output pin.  
CK2_ACTV_PIN.  
The CK2_ACTV_REG status bit can be reflected to the CK2_ACTV output pin  
using the  
CK2_ACTV_PIN enable function.  
0: CK2_ACTV output pin tristated.  
1: CK2_ACTV status reflected to output pin.  
1
0
CK1_ACTV_PIN  
CKSEL_PIN  
CK1_ACTV_PIN.  
The CK1_ACTV_REG status bit can be reflected to the CK1_ACTV output pin  
using the CK1_ACTV_PIN enable function.  
0: CK1_ACTV output pin tristated.  
1: CK1_ACTV status reflected to output pin.  
CKSEL_PIN.  
If manual clock selection is being used, clock selection can be controlled via the  
CKSEL_REG[1:0] register bits or the CKSEL[1:0] input pins. The CKx_ACTV_PIN  
bits in this register are of consequence only when CKSEL_PIN is 1.  
0: CKSEL pins ignored. CKSEL_REG[1:0] register bits control clock selection.  
1: CKSEL[1:0] input pins controls clock selection.  
38  
Rev. 1.0  
Si5369  
Register 22.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK_ACTV_POL CK_BAD_ POL LOL_POL INT_POL  
R/W R/W R/W R/W  
R
R
R
R
Reset value = 1101 1111  
Bit  
7:4  
3
Name  
Function  
Reserved  
CK_ACTV_ POL CK_ACTV_POL.  
Sets the active polarity for the CK1_ACTV, CK2_ACTV, CK3_ACTV, and CK4_ACTV  
signals when reflected on an output pin.  
0: Active low  
1: Active high  
2
CK_BAD_ POL CK_BAD_POL.  
Sets the active polarity for the C1B, C2B, C3B, and ALRMOUT signals when reflected  
on output pins.  
0: Active low  
1: Active high  
1
0
LOL_POL  
INT_POL  
LOL_POL.  
Sets the active polarity for the LOL status when reflected on an output pin.  
0: Active low  
1: Active high  
INT_POL.  
Sets the active polarity for the interrupt status when reflected on the INT_ALM output  
pin.  
0: Active low  
1: Active high  
Rev. 1.0  
39  
Si5369  
Register 23.  
Bit  
D7  
D6  
D5  
D4  
LOS4_MSK  
R/W  
D3  
LOS3_MSK  
R/W  
D2  
LOS2_ MSK  
R/W  
D1  
LOS1_ MSK  
R/W  
D0  
LOSX_ MSK  
R/W  
Name  
Type  
R
R
R
Reset value = 0001 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_MSK LOS4_MSK.  
Determines if a LOS on CKIN4 (LOS4_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS4_FLG register.  
0: LOS4 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS4_FLG ignored in generating interrupt output.  
3
2
1
0
LOS3_MSK LOS3_MSK.  
Determines if a LOS on CKIN3 (LOS3_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS3_FLG register.  
0: LOS3 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS3_FLG ignored in generating interrupt output.  
LOS2_MSK LOS2_MSK.  
Determines if a LOS on CKIN2 (LOS2_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS2_FLG register.  
0: LOS2 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS2_FLG ignored in generating interrupt output.  
LOS1_MSK LOS1_MSK.  
Determines if a LOS on CKIN1 (LOS1_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOS1_FLG register.  
0: LOS1 alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOS1_FLG ignored in generating interrupt output.  
LOSX_MSK LOSX_MSK.  
Determines if a LOS on XA/XB(LOSX_FLG) is used in the generation of an interrupt.  
Writes to this register do not change the value held in the LOSX_FLG register.  
0: LOSX alarm triggers active interrupt on INT output (if INT_PIN=1).  
1: LOSX_FLG ignored in generating interrupt output.  
40  
Rev. 1.0  
Si5369  
Register 24.  
Bit  
D7  
D6  
D5  
D4  
FOS4_MSK FOS3_MSK  
R/W R/W  
D3  
D2  
FOS2_MSK  
R/W  
D1  
FOS1_MSK  
R/W  
D0  
LOL_MSK  
R/W  
Name  
Type  
R
R
R
Reset value = 0011 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
FOS4_MSK FOS4_MSK.  
Determines if the FOS4_FLG is used to in the generation of an interrupt. Writes to this  
register do not change the value held in the FOS4_FLG register.  
0: FOS4 alarm triggers active interrupt on INToutput (if INT_PIN = 1).  
1: FOS4_FLG ignored in generating interrupt output.  
3
2
1
0
FOS3_MSK FOS3_MSK.  
Determines if the FOS3_FLG is used in the generation of an interrupt. Writes to this  
register do not change the value held in the FOS3_FLG register.  
0: FOS3 alarm triggers active interrupt on INT output (if INT_PIN = 1).  
1: FOS3_FLG ignored in generating interrupt output.  
FOS2_MSK FOS2_MSK.  
Determines if the FOS2_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS2_FLG register.  
0: FOS2 alarm triggers active interrupt on INT output (if INT_PIN = 1).  
1: FOS2_FLG ignored in generating interrupt output.  
FOS1_MSK FOS1_MSK.  
Determines if the FOS1_FLG is used in the generation of an interrupt. Writes to this reg-  
ister do not change the value held in the FOS1_FLG register.  
0: FOS1 alarm triggers active interrupt on INT output (if INT_PIN = 1).  
1: FOS1_FLG ignored in generating interrupt output.  
LOL_MSK  
LOL_MSK.  
Determines if the LOL_FLG is used in the generation of an interrupt. Writes to this regis-  
ter do not change the value held in the LOL_FLG register.  
0: LOL alarm triggers active interrupt on INT output (if INT_PIN = 1).  
1: LOL_FLG ignored in generating interrupt output.  
Rev. 1.0  
41  
Si5369  
Register 25.  
Bit  
D7  
D6  
N1_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [19:16]  
R/W  
R
Reset value = 0010 0000  
Bit  
Name  
Function  
7:5  
N1_HS [2:0]  
N1_HS [2:0].  
Sets value for N1 high speed divider which drives NCn_LS (n = 1 to 4) low-speed  
divider.  
000: N1 = 4 Note: Changing the coarse skew via the INC pin is disabled for this value.  
001: N1 = 5  
010: N1 = 6  
011: N1 = 7  
100: N1 = 8  
101: N1 = 9  
110: N1 = 10  
111: N1 = 11  
4
Reserved  
3:0  
NC1_LS [19:16] NC1_LS [19:0].  
Sets value for NC1 low-speed divider, which drives CKOUT1 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values=[1, 2, 4, 6, ..., 2 ].  
Register 26.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC1_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC1_LS [15:8] NC1_LS [15:8].  
See Register 25.  
42  
Rev. 1.0  
 
Si5369  
Register 27.  
Bit  
D7  
D6  
D5  
D4  
NC1_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC1_LS [7:0] NC1_LS [7:0].  
See Register 25.  
Function  
7:0  
Register 28.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC2_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC1_LS [19:0] NC2_LS [19:16].  
Sets value for NC2 low-speed divider, which drives CKOUT2 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
00000000000000000011 = 4  
00000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ]  
Rev. 1.0  
43  
 
Si5369  
Register 29.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
NC2_LS [15:8]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC2_LS [15:8] NC2_LS [15:8].  
See Register 28.  
Register 30.  
Bit  
D7  
D6  
D5  
D4  
NC2_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC2_LS [7:0] NC2_LS [7:0].  
See Register 28.  
Function  
7:0  
44  
Rev. 1.0  
Si5369  
Register 31.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC3_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC3_LS [19:0] NC3_LS [19:0.  
Sets value for NC3 low-speed divider, which drives CKOUT3 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
Register 32.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC3_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC3_LS [15:8] NC3_LS [15:8].  
See Register 31.  
Rev. 1.0  
45  
 
Si5369  
Register 33.  
Bit  
D7  
D6  
D5  
D4  
NC3_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC3_LS [7:0] NC3_LS [7:0].  
See Register 31.  
Function  
7:0  
Register 34.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC4_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC4_LS [19:0] NC4_LS [19:0].  
Sets value for NC4 low-speed divider, which drives CKOUT4 output. Must be 0 or odd.  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
46  
Rev. 1.0  
 
Si5369  
Register 35.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC4_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC4_LS [15:8] NC4_LS [15:8].  
See Register 34.  
Register 36.  
Bit  
D7  
D6  
D5  
D4  
NC4_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC4_LS [7:0] NC4_LS [7:0].  
See Register 34.  
Function  
7:0  
Rev. 1.0  
47  
Si5369  
Register 37.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC5_LS [19:16]  
R/W  
R
R
R
R
Reset value = 0000 0000  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
NC5_LS [19:0] NC5_LS [19:0].  
Sets value for NC5 low-speed divider, which drives CKOUT5 output. Must be 0 or odd.  
When CK_CONFIG=0:  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
When CK_CONFIG = 1, maximum value limited to 2 .:  
19  
00000000000000000000 = 1  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
19  
01111111111111111111 = 2  
19  
Valid divider values = [1, 2, 4, 6, ..., 2 ].  
Register 38.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
NC5_LS [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
NC5_LS [15:8] NC5_LS [15:8].  
See Register 37.  
48  
Rev. 1.0  
 
Si5369  
Register 39.  
Bit  
D7  
D6  
D5  
D4  
NC5_LS [7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0011 0001  
Bit  
Name  
NC5_LS [7:0] NC5_LS [7:0].  
See Register 37.  
Function  
7:0  
Register 40.  
Bit  
D7  
D6  
N2_HS [2:0]  
R/W  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N2_LS [19:16]  
R/W  
R
Reset value = 1100 0000  
Bit  
Name  
Function  
7:5  
N2_HS [2:0] N2_HS [2:0].  
Sets value for N2 high speed divider which drives NCn_LS (n = 1 to 4) low-speed divider.  
000:4  
001:5  
010:6  
011:7  
100:8  
101:9  
110:10  
111:11.  
4
Reserved  
3:0 N2_LS [19:16] NC2_LS [19:0].  
Sets value for N2 low-speed divider, which drives phase detector.  
00000000000000000001 = 2  
000000000000000000011 = 4  
000000000000000000101 = 6  
...  
20  
11111111111111111111 = 2  
20  
Valid divider values = [2, 4, 6, ..., 2 ].  
Rev. 1.0  
49  
 
Si5369  
Register 41.  
Bit  
D7  
D6  
D5  
D4  
N2_LS [15:8]  
R/W  
D3  
D2  
D2  
D2  
D1  
D0  
D0  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N2_LS [15:8] N2_LS [15:8].  
See Register 40.  
Function  
7:0  
Register 42.  
Bit  
D7  
D6  
D5  
D4  
D3  
D1  
Name  
Type  
N2_LS [7:0]  
R/W  
Reset value = 1111 1001  
Bit  
Name  
Function  
7:0  
N2_LS [7:0] N2_LS [7:0].  
See Register 40.  
Register 43.  
Bit  
D7  
D6  
D5  
D4  
D3  
D1  
N31 [18:16]  
R/W  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N31 [18:0]  
N31 [18:0].  
Sets value for input divider for CKIN1.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ].  
50  
Rev. 1.0  
 
Si5369  
Register 44.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [15:8]  
R/W  
Reset value = 0000 0000  
Bit  
Name  
Function  
7:0  
N31 [15:8]  
N31 [15:8].  
See Register 43.  
Register 45.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N31 [7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N31 [7:0]  
N31 [7:0].  
See Register 43.  
Rev. 1.0  
51  
Si5369  
Register 46.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
N32_[18:16]  
R/W  
D0  
Name  
Type  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N32_[18:0] N32_[18:0].  
Sets value for input divider for CKIN2.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ].  
Register 47.  
Bit  
D7  
D6  
D5  
D4  
N32_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N32_[15:8] N32_[15:8].  
See Register 46.  
Function  
7:0  
52  
Rev. 1.0  
 
Si5369  
Register 48.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N32_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N32_[7:0]  
N32_[7:0].  
See Register 46.  
Register 49.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N33_[18:0]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
N33_[18:0] N33_[18:0].  
Function  
18:0  
Sets value for input divider for CKIN3.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ].  
Rev. 1.0  
53  
 
Si5369  
Register 50.  
Bit  
D7  
D6  
D5  
D4  
N33_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N33_[15:8] N33_[15:8].  
See Register 49.  
Function  
7:0  
Register 51.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N33_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
Function  
7:0  
N33_[7:0]  
N33_[7:0].  
See Register 49.  
54  
Rev. 1.0  
Si5369  
Register 52.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N34_[18:16]  
R/W  
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:3  
2:0  
Name  
Function  
Reserved  
N34_[18:0] N34_[18:0].  
Sets value for input divider for CKIN4.  
0000000000000000000 = 1  
0000000000000000001 = 2  
0000000000000000010 = 3  
...  
19  
1111111111111111111 = 2  
19  
Valid divider values=[1, 2, 3, ..., 2 ].  
Register 53.  
Bit  
D7  
D6  
D5  
D4  
N34_[15:8]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset value = 0000 0000  
Bit  
Name  
N34_[15:8] N34_[15:8].  
See Register 52.  
Function  
7:0  
Rev. 1.0  
55  
 
Si5369  
Register 54.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
N34_[7:0]  
R/W  
Reset value = 0000 1001  
Bit  
Name  
N34_[15:8] N34_[7:0].  
See Register 52.  
Function  
7:0  
Register 55.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
CLKIN1RATE[2:0]  
R/W  
D0  
Name  
Type  
CLKIN2RATE_[2:0]  
R/W  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
CLKIN2RATE[2:0] CLKIN2RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0 CLKIN1RATE [2:0] CLKIN1RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
56  
Rev. 1.0  
Si5369  
Register 56.  
Bit  
D7  
D6  
D5  
D4  
CLKIN4RATE_[2:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
CLKIN3RATE[2:0]  
R/W  
R
R
Reset value = 0000 0000  
Bit  
7:6  
5:3  
Name  
Function  
Reserved  
CLKIN4RATE[2:0] CLKIN4RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
2:0 CLKIN3RATE [2:0] CLKIN3RATE[2:0].  
CKINn frequency selection for FOS alarm monitoring.  
000: 10–27 MHz  
001: 25–54 MHz  
002: 50–105 MHz  
003: 95–215 MHz  
004: 190–435 MHz  
005: 375–710 MHz  
006: Reserved  
007: Reserved  
Rev. 1.0  
57  
Si5369  
Register 128.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CK4_ACTV_REG CK3_ACTV_REG CK2_ACTV_REG CK1_ACTV_REG  
R
R
R
R
R
R
R
R
Reset value = 0010 0000  
Bit  
7:4  
3
Name  
Function  
Reserved  
CK4_ACTV_REG CK4_ACTV_REG.  
Indicates if CKIN4 is currently the active clock for the PLL input.  
0: CKIN4 is not the active input clock. Either it is not selected or LOS4_INT is 1.  
1: CKIN_4 is the active input clock.  
2
1
0
CK3_ACTV_REG CK3_ACTV_REG.  
Indicates if CKIN3 is currently the active clock for the PLL input.  
0: CKIN3 is not the active input clock - either it is not selected or LOS3_INT is 1.  
1: CKIN3 is the active input clock.  
CK2_ACTV_REG CK2_ACTV_REG.  
Indicates if CKIN2 is currently the active clock for the PLL input.  
0: CKIN2 is not the active input clock. Either it is not selected or LOS2_INT is 1.  
1: CKIN2 is the active input clock.  
CK1_ACTV_REG CK1_ACTV_REG.  
Indicates if CKIN1 is currently the active clock for the PLL input.  
0: CKIN1 is not the active input clock. Either it is not selected or LOS1_INT is 1.  
1: CKIN1 is the active input clock.  
58  
Rev. 1.0  
Si5369  
Register 129.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOS4_INT LOS3_INT  
Name  
Type  
LOS2_INT LOS1_INT LOSX_INT  
R
R
R
R
R
R
R
R
Reset value = 0001 1110  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_INT LOS4_INT.  
Indicates the LOS status on CKIN4.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN4 input.  
3
2
1
0
LOS3_INT LOS3_INT.  
Indicates the LOS status on CKIN3.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN3 input.  
LOS2_INT LOS2_INT.  
Indicates the LOS status on CKIN2.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN2 input.  
LOS1_INT LOS1_INT.  
Indicates the LOS status on CKIN1.  
0: Normal operation.  
1: Internal loss-of-signal alarm on CKIN1 input.  
LOSX_INT LOSX_INT.  
Indicates the LOS status of the external reference on the XA/XB pins.  
0: Normal operation.  
1: Internal loss-of-signal alarm on XA/XB reference clock input.  
Rev. 1.0  
59  
Si5369  
Register 130.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LOL_INT  
R
Name  
Type  
DIGHOLDVALID  
R
FOS4_INT FOS3_INT FOS2_INT FOS1_INT  
R
R
R
R
R
R
Reset value = 0000 0001  
Bit  
7
Name  
Function  
Reserved  
6
DIGHOLDVALID Digital Hold Valid.  
Indicates if the digital hold circuit has enough samples of a valid clock to meet digital  
hold specifications.  
0: Indicates digital filter has not been filled. The digital hold output frequency (from the  
filter) is not valid.  
1: Indicates digital hold filter has been filled. The digital hold output frequency is valid.  
5
4
Reserved  
FOS4_INT  
FOS4_INT.  
CKIN4 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN4 input.  
3
2
1
0
FOS3_INT  
FOS2_INT  
FOS1_INT  
LOL_INT  
FOS3_INT.  
CKIN3 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN3 input.  
FOS2_INT.  
CKIN2 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN2 input.  
FOS1_INT.  
CKIN1 Frequency Offset Status.  
0: Normal operation.  
1: Internal frequency offset alarm on CKIN1 input.  
LOL_INT.  
PLL Loss of Lock Status.  
0: PLL locked.  
1: PLL unlocked.  
60  
Rev. 1.0  
Si5369  
Register 131.  
Bit  
D7  
D6  
D5  
D4  
LOS4_FLG  
R/W  
D3  
LOS3_FLG  
R/W  
D2  
LOS2_FLG  
R/W  
D1  
LOS1_FLG  
R/W  
D0  
LOSX_FLG  
R/W  
Name  
Type  
R
R
R
Reset value = 0001 1111  
Bit  
7:5  
4
Name  
Function  
Reserved  
LOS4_FLG LOS4_FLG.  
CKIN4 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS4_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS4_MSK bit. Flag cleared by writing  
location to 0.  
3
2
1
0
LOS3_FLG LOS3_FLG.  
CKIN3 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS3_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS3_MSK bit. Flag cleared by writing  
location to 0.  
LOS2_FLG LOS2_FLG.  
CKIN2 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS2_MSK bit. Flag cleared by writing  
location to 0.  
LOS1_FLG LOS1_FLG.  
CKIN1 Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOS1_MSK bit. Flag cleared by writing  
location to 0.  
LOSX_FLG LOSX_FLG.  
External reference (signal on pins XA/XB) Loss-of-Signal Flag.  
0: Normal operation.  
1: Held version of LOSX_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by LOSX_MSK bit. Flag cleared by writing  
location to 0.  
Rev. 1.0  
61  
Si5369  
Register 132.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOS4_FLG FOS3_FLG FOS2_FLG FOS1_FLG LOL_FLG  
R
R
R/W  
R/W  
R/W  
R/W  
R/W  
R
Reset value = 0000 0010  
Bit  
7:6  
5
Name  
Function  
Reserved  
FOS4_FLG FOS4_FLG.  
CLKIN_4 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS4_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by FOS4_MSK bit. Flag cleared by writing  
location to 0.  
4
3
2
1
0
FOS3_FLG FOS3_FLG.  
CLKIN_3 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS3_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN=1) and if not masked by FOS3_MSK bit. Flag cleared by writing  
location to 0.  
FOS2_FLG FOS2_FLG.  
CLKIN_2 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS2_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by FOS2_MSK bit. Flag cleared by writing  
location to 0.  
FOS1_FLG FOS1_FLG.  
CLKIN_1 Frequency Offset Flag.  
0: Normal operation.  
1: Held version of FOS1_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by FOS1_MSK bit. Flag cleared by writing  
location to 0.  
LOL_FLG  
Reserved  
LOL_FLG.  
PLL Loss of Lock Flag.  
0: PLL locked  
1: Held version of LOL_INT. Generates active output interrupt if output interrupt pin is  
enabled (INT_PIN = 1) and if not masked by LOL_MSK bit. Flag cleared by writing  
location to 0.  
62  
Rev. 1.0  
Si5369  
Register 134.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
PARTNUM_RO [11:4]  
R
Reset value = 0000 0100  
Bit  
Name  
Function  
7:0  
PARTNUM_RO [11:0] PARTNUM_RO [11:0].  
Device ID:  
0000 0100 0100'b=Si5369  
Register 135.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
PARTNUM_RO [3:0]  
R
REVID_RO [3:0]  
R
Type  
Reset value = 0100 0010  
Bit  
Name  
Function  
7:4  
PARTNUM_RO [3:0] PARTNUM_RO [3:0].  
See Register 134.  
3:0  
REVID_RO [3:0]  
REVID_RO [3:0].  
Indicates revision number of device.  
0000: Revision A  
0001: Revision B  
0010: Revision C  
Other codes: Reserved  
Rev. 1.0  
63  
 
Si5369  
Register 136.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name RST_REG  
ICAL  
R/W  
Type  
R/W  
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
Name  
Function  
7
RST_REG  
RST_REG.  
Internal Reset.  
0: Normal operation.  
1: Reset of all internal logic. Outputs tristated or disabled during reset.  
6
ICAL  
ICAL.  
Start an Internal Calibration Sequence.  
For proper operation, the device must go through an internal calibration sequence. ICAL  
is a self-clearing bit. Writing a one to this location initiates an ICAL. The calibration is  
complete once the LOL alarm goes low. A valid stable clock (within 100 ppm) must be  
present to begin ICAL.  
Note: Any divider, CLKINn_RATE or BWSEL_REG changes require an ICAL to take effect.  
Changes in SFOUTn_REG, PD_CKn, or DSBLn_REG will cause a random change in skew  
until an ICAL is completed.  
0: Normal operation.  
1: Writing a "1" initiates internal self-calibration. Upon completion of internal self-  
calibration, ICAL is internally reset to zero.  
5:0  
Reserved  
64  
Rev. 1.0  
Si5369  
Register 137.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FASTLOCK  
R/W  
Name  
Type  
R
R
R
R
R
R
R
Reset value = 0000 0000  
Bit  
7:1  
0
Name  
Function  
Reserved  
FASTLOCK  
Do not modify.  
This bit must be set to 1 to enable FASTLOCK. This improves initial lock time by  
dynamically changing the loop bandwidth.  
Register 138.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LOS4_EN[1:1] LOS3_EN[1:1] LOS2_EN[1:1] LOS1_EN [1:1]  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reset value = 0000 1111  
Bit  
7:4  
3
Name  
Function  
Reserved  
LOS4_EN [1:0] LOS4_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Man-  
ual for details.  
2
LOS3_EN [1:0] LOS3_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Man-  
ual for details.  
Rev. 1.0  
65  
Si5369  
1
LOS2_EN [1:0] LOS2_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Man-  
ual for details.  
0
LOS1_EN [1:0] LOS1_EN [1:0].  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the Family Reference Man-  
ual for details.  
66  
Rev. 1.0  
Si5369  
Register 139.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name LOS4_EN [0:0] LOS3_EN [0:0] LOS2_EN [0:0] LOS1_EN [0:0] FOS4_EN FOS3_EN FOS2_EN FOS1_EN  
Type R/W R/W R/W R/W R/W R/W R/W R/W  
Reset value = 1111 1111  
Bit  
Name  
LOS4_EN [0:0] LOS4_EN [0:0].  
Function  
7
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
6
5
4
LOS3_EN [0:0] LOS3_EN [0:0].  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
LOS2_EN [0:0] LOS2_EN.  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
LOS1_EN [0:0] LOS1_EN [0:0].  
Enable CKIN1 LOS Monitoring on the Specified Input (1 of 2).  
Note: LOS1_EN is split between two registers.  
00: Disable LOS monitoring.  
01: Reserved.  
10: Enable LOSA monitoring.  
11: Enable LOS monitoring.  
LOSA is a slower and less sensitive version of LOS. See the family reference manual  
for details.  
Rev. 1.0  
67  
Si5369  
Bit  
Name  
Function  
3
FOS4_EN  
FOS3_EN  
FOS2_EN  
FOS1_EN  
FOS4_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
2
1
0
FOS3_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
FOS2_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
FOS1_EN.  
Enables FOS on a Per Channel Basis.  
0: Disable FOS monitoring.  
1: Enable FOS monitoring.  
Register 140.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW1[7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW1[7:0] INDEPENDENTSKEW1 [7:0].  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in  
terms of clocks from the high speed output divider.  
68  
Rev. 1.0  
Si5369  
Register 141.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW2[7:0]  
R/W  
Type  
Reset value = 0000 0001  
Bit  
Name  
INDEPENDENTSKEW2[7:0] INDEPENDENTSKEW2.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider.  
Register 142.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW3 [7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW3[7:0] INDEPENDENTSKEW3 .  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider.  
Register 143.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW4[7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPEND-ENTSKEW4[7:0] INDEPENDENTSKEW4.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider.  
Rev. 1.0  
69  
Si5369  
Register 144.  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
INDEPENDENTSKEW5[7:0]  
R/W  
Type  
Reset value = 0000 0000  
Bit  
Name  
INDEPENDENTSKEW5[7:0] INDEPENDENTSKEW5.  
Function  
7:0  
8 bit field that represents a twos complement of the phase offset in terms  
of clocks from the high speed output divider when CK_CONFIG = 0.  
70  
Rev. 1.0  
Si5369  
Table 8. CKOUT_ALWAYS_ON and SQICAL Truth Table  
CKOUT_ALWAYS_ON SQICAL  
Results  
Output to Output Skew  
Preserved?  
0
0
0
1
CKOUT OFF until after the first ICAL  
N
Y
CKOUT OFF until after the first successful  
ICAL (i.e., when LOL is low)  
1
1
0
1
CKOUT always ON, including during an ICAL  
CKOUT always ON, including during an ICAL  
N
Y
Table 9 lists all of the register locations that should be followed by an ICAL after their contents are changed.  
Table 9. Register Locations Requiring ICAL  
Addr  
Register  
0
0
BYPASS_REG  
CKOUT_ALWAYS_ON  
CK_PRIOR4  
CK_PRIOR3  
CK_PRIOR2  
CK_PRIOR1  
BWSEL_REG  
HIST_DEL  
ICMOS  
1
1
1
1
2
4
5
7
FOSREFSEL  
HIST_AVG  
DSBL5_REG  
DSBL4_REG  
DSBL3_REG  
DSBL2_REG  
DSBL1_REG  
PD_CK2  
9
10  
10  
10  
10  
10  
11  
11  
19  
19  
19  
19  
25  
26  
28  
31  
34  
37  
PD_CK1  
FOS_EN  
FOS_THR  
VALTIME  
LOCKT  
N1_HS  
NC1_LS  
NC2_LS  
NC3_LS  
NC4_LS  
NC5_LS  
Rev. 1.0  
71  
 
Si5369  
Table 9. Register Locations Requiring ICAL  
Addr  
Register  
40  
40  
43  
46  
49  
51  
55  
55  
56  
56  
N2_HS  
N2_LS  
N31  
N32  
N33  
N34  
CLKIN2RATE  
CLKIN1RATE  
CLKIN4RATE  
CLKIN3RATE  
72  
Rev. 1.0  
Si5369  
6. Pin Descriptions: Si5369  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
NC  
NC  
NC  
NC  
74  
73  
2
NC  
3
RST  
NC  
NC  
72  
71  
4
SDI  
VDD  
5
70  
69  
A2_SS  
6
VDD  
A1  
A0  
NC  
GND  
GND  
7
68  
67  
8
9
C1B  
66  
65  
NC  
10  
11  
12  
13  
14  
15  
C2B  
C3B  
GND  
GND  
64  
63  
INT_ALM  
CS0_C3A  
GND  
VDD  
Si5369  
62  
61  
VDD  
SDA_SDO  
VDD  
XA  
60  
59  
SCL  
C2A  
C1A  
16  
17  
XB  
58  
57  
18  
19  
20  
21  
GND  
GND  
NC  
GND PAD  
CS1_C4A  
NC  
56  
55  
GND  
GND  
NC  
GND  
NC  
22  
23  
54  
53  
NC  
NC  
NC  
52  
51  
24  
25  
NC  
NC  
47  
49 50  
48  
41  
42 43 44 45 46  
40  
36  
39  
37 38  
26 27 28 29 30 31 32 33 34 35  
Table 10. Si5369 Pin Descriptions  
Pin #  
Pin Name  
I/O Signal Level  
Description  
1, 2, 4, 20,  
22, 23, 24,  
25, 37, 47,  
48, 50, 51,  
52, 53, 56,  
66, 67, 72,  
73, 74, 75,  
80, 85, 95  
3
NC  
No Connect.  
These pins must be left unconnected for normal operation.  
I
LVCMOS External Reset.  
RST  
Active low input that performs external hardware reset of  
device. Resets all internal logic to a known state and forces the  
device registers to their default value. Clock outputs are dis-  
abled during reset. The part must be programmed after a reset  
or power-on to get a clock output. See Family Reference Man-  
ual for details.  
This pin has a weak pull-up.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.  
Rev. 1.0  
73  
Si5369  
Table 10. Si5369 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
5, 6, 15, 27,  
62, 63, 76,  
79, 81, 84,  
86, 89, 91,  
94, 96, 99,  
100  
V
Vdd  
Supply  
V
.
DD  
DD  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass  
capacitors should be associated with the following V pins:  
Pins  
5, 6  
15  
DD  
Bypass Cap  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
1.0 µF  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
27  
62, 63  
76, 79  
81, 84  
86, 89  
91, 94  
96, 99, 100  
Ground.  
7, 8, 14, 18,  
19, 21, 26,  
28, 31, 33,  
36, 38, 41,  
43, 46, 54,  
55, 64, 65  
9
GND  
C1B  
GND  
Supply  
This pin must be connected to system ground. Minimize the  
ground path impedance for optimal performance.  
O
LVCMOS CKIN1 Invalid Indicator.  
This pin performs the CK1_BAD function if CK1_BAD_PIN = 1  
and is tristated if CK1_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN1.  
1 = Alarm on CKIN1.  
10  
11  
12  
C2B  
O
LVCMOS CKIN2 Invalid Indicator.  
This pin performs the CK2_BAD function if CK2_BAD_PIN = 1  
and is tristated if CK2_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN2.  
1 = Alarm on CKIN2.  
C3B  
O
LVCMOS CKIN3 Invalid Indicator.  
This pin performs the CK3_BAD function if CK3_BAD_PIN = 1  
and is tristated if CK3_BAD_PIN = 0. Active polarity is con-  
trolled by CK_BAD_POL.  
0 = No alarm on CKIN3.  
1 = Alarm on CKIN3.  
INT_ALM  
O
LVCMOS Interrupt/Alarm Output Indicator.  
This pin functions as a maskable interrupt output with active  
polarity controlled by the INT_POL register bit. The INT output  
function can be turned off by setting INT_PIN = 0. If the ALR-  
MOUT function is desired instead on this pin, set  
ALRMOUT_PIN = 1 and INT_PIN = 0.  
0 = ALRMOUT not active.  
1 = ALRMOUT active.  
The active polarity is controlled by CK_BAD_POL. If no function  
is selected, the pin tristates.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.  
74  
Rev. 1.0  
Si5369  
Table 10. Si5369 Pin Descriptions (Continued)  
Pin #  
13  
57  
Pin Name  
CS0_C3A  
CS1_C4A  
I/O Signal Level  
Description  
I/O  
LVCMOS Input Clock Select/CKIN3 or CKIN4 Active Clock Indicator.  
Input: If manual clock selection is chosen, and if  
CKSEL_PIN = 1, the CKSEL pins control clock selection and  
the CKSEL_REG bits are ignored.  
CS[1:0]  
00  
Active Input Clock  
CKIN1  
01  
CKIN2  
10  
CKIN3  
11  
CKIN4  
If CKSEL_PIN = 0, the CKSEL_REG register bits control this  
function and these inputs tristate. If configured as inputs, these  
pins must not float.  
Output: If auto clock selection is enabled, then they serve as  
the CKIN_n active clock indicator.  
0 = CKIN3 (CKIN4) is not the active input clock  
1 = CKIN3 (CKIN4) is currently the active input to the PLL  
The CKn_ACTV_REG bit always reflects the active clock status  
for CKIN_n. If CKn_ACTV_PIN = 1, this status will also be  
reflected on the CnA pin with active polarity controlled by the  
CK_ACTV_POL bit. If CKn_ACTV_PIN = 0, this output tristates.  
ANALOG External Crystal or Reference Clock.  
External crystal should be connected to these pins to use inter-  
nal oscillator based reference. Refer to Family Reference Man-  
ual for interfacing to an external reference. External reference  
must be from a high-quality clock source (TCXO, OCXO). Fre-  
quency of crystal or external clock is set by the RATE pins.  
16  
17  
XA  
XB  
I
29  
30  
CKIN4+  
CKIN4–  
I
I
MULTI  
Clock Input 4.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal. CKIN4 serves as the frame sync input associ-  
ated with the CKIN2 clock when CK_CONFIG_REG = 1.  
External Crystal or Reference Clock Rate.  
Three level inputs that select the type and rate of external crys-  
tal or reference clock to be applied to the XA/XB port. Refer to  
the Family Reference Manual for settings. These pins have both  
a weak pull-up and a weak pull-down; they default to M.  
Clock Input 2.  
Differential input clock. This input can also be driven with a sin-  
gle-ended signal.  
Clock Input 3.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal. CKIN3 serves as the frame sync input associ-  
ated with the CKIN1 clock when CK_CONFIG_REG = 1.  
Clock Input 1.  
Differential clock input. This input can also be driven with a sin-  
gle-ended signal.  
32  
42  
RATE0  
RATE1  
3-Level  
34  
35  
CKIN2+  
CKIN2–  
I
I
MULTI  
MULTI  
39  
40  
CKIN3+  
CKIN3–  
44  
45  
CKIN1+  
CKIN1–  
I
MULTI  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.  
Rev. 1.0  
75  
Si5369  
Table 10. Si5369 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O Signal Level  
Description  
49  
LOL  
O
LVCMOS PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock indicator if  
the LOL_PIN register bit is set to one.  
0 = PLL locked.  
1 = PLL unlocked.  
If LOL_PIN = 0, this pin will tristate.  
Active polarity is controlled by the LOL_POL bit. The PLL lock  
status will always be reflected in the LOL_INT read only register  
bit.  
58  
59  
C1A  
C2A  
O
O
LVCMOS CKIN1 Active Clock Indicator.  
This pin serves as the CKIN1 active clock indicator. The  
CK1_ACTV_REG bit always reflects the active clock status for  
CKIN1. If CK1_ACTV_PIN = 1, this status will also be reflected  
on the C1A pin with active polarity controlled by the CK_ACT-  
V_POL bit. If CK1_ACTV_PIN = 0, this output tristates.  
LVCMOS CKIN2 Active Clock Indicator.  
This pin serves as the CKIN2 active clock indicator. The  
CK2_ACTV_REG bit always reflects the active clock status for  
CKIN_2. If CK2_ACTV_PIN = 1, this status will also be reflected  
on the C2A pin with active polarity controlled by the CK_ACT-  
V_POL bit. If CK2_ACTV_PIN = 0, this output tristates.  
60  
61  
SCL  
I
LVCMOS Serial Clock.  
This pin functions as the serial port clock input for both SPI and  
2
I C modes.  
This pin has a weak pull-down.  
SDA_SDO  
I/O  
LVCMOS Serial Data.  
2
In I C microprocessor control mode (CMODE = 0), this pin func-  
tions as the bidirectional serial data port. In SPI microprocessor  
control mode (CMODE = 1), this pin functions as the serial data  
output.  
68  
69  
A0  
A1  
I
I
I
LVCMOS Serial Port Address.  
2
In I C microprocessor control mode (CMODE = 0), these pins  
function as hardware controlled address bits. The I C address  
is 1101 [A2] [A1] [A0]. In SPI microprocessor control mode  
(CMODE = 1), these pins are ignored.  
This pin has a weak pull-down.  
2
70  
71  
A2_SS  
SDI  
LVCMOS Serial Port Address/Slave Select.  
2
In I C microprocessor control mode (CMODE = 0), this pin func-  
tions as a hardware controlled address bit [A2].  
In SPI microprocessor control mode (CMODE = 1), this pin  
functions as the slave select input.  
This pin has a weak pull-down.  
LVCMOS Serial Data In.  
In SPI microprocessor control mode (CMODE = 1), this pin  
functions as the serial data input.  
2
In I C microprocessor control mode (CMODE = 0), this pin is  
ignored.  
This pin has a weak pull-down.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.  
76  
Rev. 1.0  
Si5369  
Table 10. Si5369 Pin Descriptions (Continued)  
Pin #  
77  
78  
Pin Name  
CKOUT3+  
CKOUT3–  
I/O Signal Level  
Description  
O
O
O
MULTI  
MULTI  
MULTI  
Clock Output 3.  
Differential clock output. Output signal format is selected by  
SFOUT3_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
Clock Output 1.  
Differential clock output. Output signal format is selected by  
SFOUT1_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
Frame Sync Output.  
Differential frame sync output or fifth high-speed clock output.  
Output signal format is selected by SFOUT_FSYNC_REG reg-  
ister bits. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs. Duty cycle and active  
polarity are controlled by FSYNC_PW and FSYNC_POL bits,  
respectively. Detailed operations and timing characteristics for  
these pins may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
82  
83  
CKOUT1–  
CKOUT1+  
87  
88  
FS_OUT–  
FS_OUT+  
90  
CMODE  
I
O
LVCMOS Control Mode.  
2
Selects I C or SPI control mode for the device.  
2
0 = I C Control Mode.  
1 = SPI Control Mode.  
This pin must be tied high or low.  
92  
93  
CKOUT2+  
CKOUT2–  
MULTI  
MULTI  
Supply  
Clock Output 2.  
Differential clock output. Output signal format is selected by  
SFOUT2_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
Clock Output 4.  
Differential clock output. Output signal format is selected by  
SFOUT4_REG register bits. Output is differential for LVPECL,  
LVDS, and CML compatible modes. For CMOS format, both  
output pins drive identical single-ended clock outputs.  
Ground Pad.  
97  
98  
CKOUT4–  
CKOUT4+  
O
GND PAD  
GND PAD  
GND  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
Note: Internal register names are indicated by underlined italics, e.g., INT_PIN. See Si5369 Register Map.  
Rev. 1.0  
77  
Si5369  
7. Ordering Guide  
Ordering Part  
Number  
Output Clock  
Frequency Range  
Package  
ROHS6, Temperature Range  
Pb-Free  
Si5369A-C-GQ  
2 kHz–945 MHz  
970–1134 MHz  
1.213–1.417 GHz  
100-Pin 14 x 14 mm TQFP  
Yes  
–40 to 85 °C  
Si5369B-C-GQ  
Si5369C-C-GQ  
Si5369D-C-GQ  
2 kHz–808 MHz  
2 kHz–346 MHz  
2 kHz–243 MHz  
100-Pin 14 x 14 mm TQFP  
100-Pin 14 x 14 mm TQFP  
100-Pin 14 x 14 mm TQFP  
Yes  
Yes  
Yes  
–40 to 85 °C  
–40 to 85 °C  
–40 to 85 °C  
Note: Add an R at the end of the device to denote tape and reel options (for example, Si5369D-C-GQ).  
78  
Rev. 1.0  
 
Si5369  
8. Package Outline: 100-Pin TQFP  
Figure 9 illustrates the package details for the Si5369. Table 11 lists the values for the dimensions shown in the  
illustration.  
Figure 9. 100-Pin Thin Quad Flat Package (TQFP)  
Table 11. 100-Pin Package Diagram Dimensions  
Dimension  
Min  
Nom  
Max  
1.20  
0.15  
1.05  
0.27  
0.20  
Dimension  
Min  
Nom  
Max  
A
E
E1  
E2  
L
16.00 BSC.  
A1  
0.05  
0.95  
0.17  
0.09  
14.00 BSC.  
A2  
1.00  
3.85  
0.45  
4.00  
0.60  
4.15  
0.75  
0.20  
0.20  
0.08  
0.08  
7º  
b
0.22  
c
D
aaa  
bbb  
ccc  
ddd  
16.00 BSC.  
14.00 BSC.  
4.00  
D1  
D2  
3.85  
4.15  
e
0.50 BSC.  
0º  
3.5º  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This package outline conforms to JEDEC MS-026, variant AED-HD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.0  
79  
 
 
Si5369  
9. Recommended PCB Layout  
Figure 10. PCB Land Pattern Diagram  
80  
Rev. 1.0  
Si5369  
Table 12. PCB Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
E
0.50 BSC.  
15.40 REF.  
15.40 REF.  
D
E2  
D2  
GE  
GD  
X
3.90  
3.90  
13.90  
13.90  
4.10  
4.10  
0.30  
Y
1.50 REF.  
0.15 REF  
ZE  
ZD  
R1  
R2  
16.90  
16.90  
1.00  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition  
(LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder  
mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
9. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the center  
ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
Rev. 1.0  
81  
Si5369  
10. Top Marking  
Mark Method:  
Logo Size:  
Laser  
9.2 x 3.1 mm  
Center-Justified  
Font Size:  
3.0 Point (1.07 mm)  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si5369x-C-GQ  
X = Speed Grade  
See "7. Ordering Guide" on page 78.  
YY = Year  
WW = Workweek  
Assigned by the Assembly Supplier.  
Corresponds to the year and work-  
week of the mold date.  
R = Die Revision  
TTTTT = Mfg Code  
Manufacturing Code  
“e3” Pb-Free Symbol  
Line 3 Marking:  
Circle = 1.8 mm Diameter  
Center-Justified  
Country of Origin  
ISO Code Abbreviation  
82  
Rev. 1.0  
 
Si5369  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.4  
Updated Table 3, “AC Specifications,” on page 9.  
Added table note.  
Revision 0.4 to Revision 1.0  
Updated " Functional Block Diagram" on page 2.  
Updated specification Tables 2, 4, 5, and 6.  
Added maximum lock and settle time specs to  
Table 3.  
Updated Register 21 description.  
Updated "10. Top Marking" on page 82.  
Added warning about MEMS oscillators to "3.1.  
External Reference" on page 21.  
Rev. 1.0  
83  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5369B-C-GQR

Processor Specific Clock Generator, 808MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369C-C-GQ

Processor Specific Clock Generator, 346MHz, CMOS, PQFP100, TQFP-100
SILICON

SI5369D-C-GQ

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5374B-A-GL

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, ROHS COMPLIANT, PLASTIC, MO-192, BGA-80
SILICON

SI5375

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5375-EVB

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI5375B-A-BL

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, PLASTIC, MO-192, BGA-80
SILICON

SI5375B-A-GL

Processor Specific Clock Generator, 808MHz, CMOS, PBGA80, 10 X 10 MM, ROHS COMPLIANT, PLASTIC, MO-192, BGA-80
SILICON

SI5376

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376-EVB

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376B-A-BL

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

Si5376B-A-GL

4-PLL ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON