SI5383A-D07172-GMR [SILICON]

Telecom Circuit,;
SI5383A-D07172-GMR
型号: SI5383A-D07172-GMR
厂家: SILICON    SILICON
描述:

Telecom Circuit,

电信 电信集成电路
文件: 总55页 (文件大小:919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5383/84 Rev D Data Sheet  
Network Synchronizer Clocks Supporting 1 PPS to 750 MHz  
Inputs  
KEY FEATURES  
• One or three independent DSPLLs in a  
single monolithic IC supporting flexible  
SyncE/IEEE 1588 and SETS architectures  
The Si5383/84 combines the industry’s smallest footprint and lowest power network syn-  
chronizer clock with unmatched frequency synthesis flexibility and ultra-low jitter. The  
Si5383/84 is ideally suited for wireless backhaul, IP radio, small and macro cell wireless  
communications systems, and data center switches requiring both traditional and packet  
based network synchronization.  
• Input frequency range:  
• External crystal: 25-54 MHz  
• REF clock: 5-250 MHz  
The three independent DSPLLs are individually configurable as a SyncE PLL, IEEE 1588  
DCO, or a general-purpose PLL for processor/FPGA clocking. The Si5383/84 can also  
be used in legacy SETS systems needing Stratum 3/3E compliance. In addition, locking  
to a 1 PPS input frequency is available on DSPLL D. The DCO mode provides precise  
timing adjustment to 1 part per trillion (ppt). The unique design of the Si5383/84 allows  
the device to accept a TCXO/OCXO reference with a wide frequency range, and the ref-  
erence clock jitter does not degrade the output performance. The Si5383/84 is configura-  
ble via a serial interface and programming the Si5383/84 is easy with ClockBuilder Pro  
software. Factory pre-programmed devices are also available.  
• Diff clock: 8 kHz - 750 MHz  
• LVCMOS clock: 1 PPS, 8 kHz - 250  
MHz  
• Output frequency range:  
• Differential: 1 PPS, 100 Hz - 718.5 MHz  
• LVCMOS: 1 PPS, 100 Hz - 250 MHz  
• Ultra-low jitter of less than 150 fs  
Applications  
• Synchronous Ethernet (SyncE) ITU-T G.8262 EEC Option 1 & 2  
• Telecom Grand Master Clock (T-GM) as defined by ITU-T G.8273.1  
• Telecom Boundary Clock and Slave Clock (T-BC, T-TSC) as defined by ITU-T G.  
8273.2  
• IEEE 1588 (PTP) slave clock synchronization  
• Stratum 3/3E, G.812, G.813, GR-1244, GR-253 network synchronization  
• 1 Hz/1 PPS Clock Multiplier  
XTAL  
OCXO/  
TCXO  
REF  
REFb  
XA  
XB  
OSC  
Si5383/84  
IN4  
IN3  
÷INT  
OUT0  
DSPLL  
D
÷INT  
÷INT  
÷INT  
÷INT  
OUT1  
OUT2  
OUT3  
OUT4  
IN2  
IN1  
IN0  
÷FRAC  
÷FRAC  
÷FRAC  
I2C  
DSPLL A  
÷INT  
÷INT  
OUT5  
OUT6  
DSPLL C  
Control/  
Status  
silabs.com | Building a more connected world.  
Rev. 1.0  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1 Ordering Part Number Fields . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1 Standards Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.3 DSPLL Loop Bandwidth in Standard Input Mode . . . . . . . . . . . . . . . . . . 4  
3.3.1 Fastlock Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.4 DSPLL Loop Bandwidth in 1 PPS Mode . . . . . . . . . . . . . . . . . . . . . 4  
3.4.1 Smartlock Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.5.1 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.5.2 Free-run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.5.3 Lock Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.5.4 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.5.5 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.6 Digitally-Controlled Oscillator (DCO) Mode . . . . . . . . . . . . . . . . . . . . 7  
3.6.1 Frequency Increment/Decrement Using Pin Controls (FINC, FDEC) . . . . . . . . . . . 7  
3.6.2 Frequency Increment/Decrement Using the Serial Interface . . . . . . . . . . . . . . 8  
3.7 External Reference (XA/XB, REF/REFb) . . . . . . . . . . . . . . . . . . . . . 8  
3.7.1 External Crystal (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.7.2 External Reference (REF/REFb) . . . . . . . . . . . . . . . . . . . . . . .10  
3.8 Inputs (IN0, IN1, IN2, IN3, IN4) . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.1 Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.2 Manual Input Selection . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.3 Automatic Input Selection in Standard Input Mode . . . . . . . . . . . . . . . . .11  
3.8.4 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . . .12  
3.8.5 Hitless Input Switching in Standard Input Mode . . . . . . . . . . . . . . . . . .13  
3.8.6 Ramped Input Switching in Standard Input Mode . . . . . . . . . . . . . . . . .13  
3.8.7 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.8.8 Synchronizing to Gapped Input Clocks in Standard Input Mode . . . . . . . . . . . .13  
3.9 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.1 Input LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.2 XA/XB LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.4 Precision OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.5 Fast OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.6 LOL Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.9.6.1 LOL Detection Standard Input Mode . . . . . . . . . . . . . . . . . . . . .17  
3.9.6.2 LOL Detection in 1 PPS Mode . . . . . . . . . . . . . . . . . . . . . . .17  
3.9.7 Interrupt Pin (INTRb) . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.10 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
silabs.com | Building a more connected world.  
Rev. 1.0  
3.10.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.10.2 Support For 1 Hz Output . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.10.3 Differential Output Terminations. . . . . . . . . . . . . . . . . . . . . . .21  
3.10.4 Output Signal Format . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.10.5 Programmable Common-Mode Voltage For Differential Outputs . . . . . . . . . . . .21  
3.10.6 LVCMOS Output Impedance Selection . . . . . . . . . . . . . . . . . . . .22  
3.10.7 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .22  
3.10.8 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.10.9 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.10.10 Output Disable During LOL . . . . . . . . . . . . . . . . . . . . . . . .22  
3.10.11 Output Disable During XAXB_LOS . . . . . . . . . . . . . . . . . . . . .22  
3.10.12 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .22  
3.10.13 Synchronous/Asynchronous Output Disable . . . . . . . . . . . . . . . . . .22  
3.10.14 Output Divider (R) Synchronization . . . . . . . . . . . . . . . . . . . . .23  
3.10.15 Programmable Phase Offset in 1 PPS Mode . . . . . . . . . . . . . . . . . .23  
3.11 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.12 In-Circuit Programming . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.13 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.14 Custom Factory Preprogrammed Parts . . . . . . . . . . . . . . . . . . . . .23  
3.15 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-  
programmed Devices . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4. Register Map  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6. Typical Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 38  
7. Detailed Block Diagram  
. . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8. Typical Operating Characteristics (Jitter and Phase Noise) . . . . . . . . . . . . . 41  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
14. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
14.1 Revision 0.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
14.2 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
silabs.com | Building a more connected world.  
Rev. 1.0  
Si5383/84 Rev D Data Sheet  
Feature List  
1. Feature List  
The Si5383/84 highlighted features are listed below.  
• One or three DSPLLs in a single monolithic IC supporting  
flexible SyncE/IEEE 1588 and SETS architectures  
• TCXO/OCXO reference input determines DSPLL free-run/hold-  
over accuracy and stability  
• Meets the requirements of:  
• Excellent jitter performance  
• ITU-T G.8273.1 T-GM  
• Programmable loop bandwidth per DSPLL:  
• 1 PPS inputs: 1 mHz and 10 mHz  
• All other inputs: 1 mHz to 4 kHz  
• ITU-T G.8273.2 T-BC, T-TSC  
• ITU-T G.8262 (SyncE) EEC Options 1 & 2  
• ITU-T G.812 Type III, IV  
• Highly configurable output drivers: LVDS, LVPECL, LVCMOS,  
HCSL, CML  
• ITU-T G.813 Option 1  
• Telcordia GR-1244, GR-253 (Stratum-3/3E)  
• Core voltage:  
• Each DSPLL generates any output frequency from any input  
frequency  
• VDD: 1.8 V ±5%  
• VDDA: 3.3 V ±5%  
• Input frequency range:  
• Independent output supply pins: 3.3 V, 2.5 V, or 1.8 V  
• Built-in power supply filtering  
• Status monitoring:  
• External crystal: 25 - 54 MHz  
• REF clock: 5 - 250 MHz  
• Diff clock: 8 kHz - 750 MHz  
• LOS, LOL: 1 PPS-750 MHz  
• OOF: 8 kHz-750 MHz  
I2C Serial Interface  
ClockBuilderTM Pro software tool simplifies device configura-  
tion  
• LVCMOS clock: 1 PPS, 8 kHz - 250 MHz  
• Output frequency range:  
• Differential: 1 PPS, 100 Hz - 718.5 MHz  
• LVCMOS: 1 PPS, 100 Hz - 250 MHz  
• Pin or software controllable DCO on each DSPLL with typical  
resolution to 1 ppt/step  
• 5 input, 7 output, 56-pin LGA  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
silabs.com | Building a more connected world.  
Rev. 1.0 | 1  
 
Si5383/84 Rev D Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide  
Ordering Part Number (OPN)1,2  
# of DSPLLs Maximum Out-  
Package  
RoHS-6, Pb- Temperature Range  
Free  
put Frequency  
718.5 MHz  
350 MHz  
718.5 MHz  
350 MHz  
Si5383A-Dxxxxx-GM  
Si5383B-Dxxxxx-GM  
Si5384A-Dxxxxx-GM  
Si5384B-Dxxxxx-GM  
3
1
56-Lead 8×8 LGA  
Yes  
–40 to 85 °C  
Si5383-D-EVB3  
SiOCXO1-EVB  
Evaluation Board  
OCXO Evaluation  
Board  
Notes:  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory preprogrammed devices are available as well as unconfigured base devices. See figures below for 5-digit numer-  
ical sequence nomenclature.  
3. The Si5383-D-EVB ships with an SiOCXO1-EVB board included. Additional SiOCXO1-EVB boards may be ordered separately if  
needed.  
2.1 Ordering Part Number Fields  
Si538fg  
R00xxx-GM  
-
Timing product family  
f = Network Sync family member (3, 4)  
g = Device grade (A, B)  
Product Die Revision (D)  
Base device indicator*  
Firmware revision indicator**  
Package, ambient temperature range (LGA, -40°C to + 85°C)  
* Firmware is preprogrammed into base devices, but no configuration settings are present in the device  
** 3 digits corresponding to the firmware revision preprogrammed into base devices  
Figure 2.1. Ordering Guide Part Number Fields for Base Devices  
silabs.com | Building a more connected world.  
Rev. 1.0 | 2  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Ordering Guide  
Si538fg  
-
-GM  
Rxxxxx  
Timing product family  
f = Network Sync family member (3, 4)  
g = Device grade (A, B)  
Product Die Revision (D)  
Custom ordering part number (OPN) sequence ID**  
Package, ambient temperature range (LGA, -40°C to +85°C)  
** 5 digits; assigned by ClockBuilder Pro for custom, factory-preprogrammed OPN devices.  
The firmware revision for custom OPN devices is determined by ClockBuilder Pro when a custom part number is created.  
Figure 2.2. Ordering Guide Part Number Fields for Custom OPN Devices  
silabs.com | Building a more connected world.  
Rev. 1.0 | 3  
Si5383/84 Rev D Data Sheet  
Functional Description  
3. Functional Description  
The Si5383 offers three DSPLLs and the Si5384 offers one DSPLL that can be independently configured and controlled through the  
serial interface. In standard input mode, all DSPLLs support high frequency inputs. DSPLL D can be configured to operate in 1 PPS  
input mode to lock to a 1 Hz input clock. Regardless of the input mode, any of the DSPLLs can be used to generate any valid output  
frequency.  
Each of the DSPLLs have locked, free-run, and holdover modes of operation with an optional DCO mode for IEEE 1588 applications.  
The device requires an external crystal and an external reference (TCXO or OCXO) to operate. The reference input (REF/REFb) deter-  
mines the frequency accuracy and stability while in free-run and holdover modes. The external crystal completes the internal oscillator  
circuit (OSC) which is used by the DSPLL for intrinsic jitter performance. There are three main inputs (IN0 - IN2) for synchronizing the  
DSPLLs. Input selection can be manual or automatically controlled using an internal state machine. Two additional single-ended inputs  
are available to DSPLL D. Any of the output clocks (OUT0 to OUT6) can be configured to any of the DSPLLs using a flexible crosspoint  
connection. Output 5 is the only output that can be configured for a 1 Hz output to support 1 PPS.  
3.1 Standards Compliance  
Each of the DSPLLs meet the applicable requirements of ITU-T G.8262 (SyncE), G.812, G.813, G.8273.2 (T-BC), in addition to Telcor-  
dia GR-1244 and GR-253 as shown in the compliance report for standard input mode. The DCO feature enables IEEE1588 (PTP) im-  
plementations in addition to hybrid SyncE + IEEE1588 (T-BC).  
3.2 Frequency Configuration  
The frequency configuration for each of the DSPLLs is programmable through the serial interface and can also be stored in non-volatile  
memory. The combination of fractional input dividers (Pn/Pd), fractional frequency multiplication (Mn/Md), and integer output division  
(Rn) allows each of the DSPLLs to lock to any input frequency and generate virtually any output frequency. All divider values for a  
specific frequency plan are easily determined using the ClockBuilder Pro utility.  
3.3 DSPLL Loop Bandwidth in Standard Input Mode  
The DSPLL loop bandwidth determines the amount of input clock jitter and wander attenuation. Register configurable DSPLL loop  
bandwidth settings of 1 mHz to 4 kHz are available for selection for each of the DSPLLs. Since the loop bandwidth is controlled digitally,  
each of the DSPLLs will always remain stable with less than 0.1 dB of peaking regardless of the loop bandwidth selection.  
Table 3.1. Loop Bandwidth Requirements  
SONET (Telcordia)  
GR-253 Stratum 3E  
GR-253 Stratum 3  
SDH (ITU-T)  
G.812 Type III  
G.812 Type IV  
G.813 Option 1  
SyncE (ITU-T)  
Loop Bandwidth  
0.001 Hz  
G.8262 EEC Option 2  
G.8262 EEC Option 1  
< 0.1 Hz  
1 - 10 Hz  
3.3.1 Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g. 0.1 Hz) will generally lengthen the lock acquisition time. In standard input mode, the fast-  
lock feature allows setting a temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop  
bandwidth settings will enable the DSPLLs to lock faster. Fastlock Loop Bandwidth settings in the range of 100 Hz to 4 kHz are availa-  
ble for selection. Once lock acquisition has completed, the DSPLL’s loop bandwidth will automatically revert to the DSPLL Loop Band-  
width setting. The fastlock feature can be enabled or disabled independently for each of the DSPLLs for input frequencies > 8 kHz..  
3.4 DSPLL Loop Bandwidth in 1 PPS Mode  
When operating in 1 PPS input mode, the Si5383/84 offers two choices of loop bandwidth for DSPLL D: 1 mHz or 10 mHz.  
3.4.1 Smartlock Feature  
When operating in 1 PPS input mode, the Si5383/84 offers the Smartlock feature to achieve fast locking to 1 PPS inputs. The Smart-  
lock feature locks to 1 PPS inputs in two phases. During the first phase, large adjustments are made to eliminate the majority of the  
frequency and phase error. During the second phase, finer adjustments are made until the PLL is locked. Once the PLL is locked, the  
DSPLLs loop bandwidth will automatically revert to the DSPLL loop bandwidth setting.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 4  
 
 
 
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.5 Modes of Operation  
Once initialization is complete, each of the DSPLLs operates independently in one of four modes: Free-run Mode, Lock Acquisition  
Mode, Locked Mode, or Holdover Mode. A state diagram showing the modes of operation is shown in Figure 3.1 Modes of Operation  
on page 5. The following sections describe each of these modes in greater detail.  
3.5.1 Initialization and Reset  
Once power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks will be generated until the initialization is complete. There are two types of resets available. A hard  
reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM, and all circuits will be re-  
stored to their initial state including the serial interface. A hard reset is initiated using the RSTb pin or by asserting the hard register  
reset bit. A soft reset bypasses the NVM download. It is simply used to initiate register configuration changes. A hard reset affects all  
DSPLLs, while a soft reset can either affect all or each DSPLL individually. It is recommended that the device be held in reset during  
power-up by asserting the RSTb pin. RSTb should be released once all supplies have reached operational levels. The RSTb pin func-  
tions as an open-drain output, which drives low during POR. External devices must be configured as open-drain to avoid contention.  
Power-Up  
Reset and  
Initialization  
No valid input  
Free-run  
clocks selected  
An input is  
qualified and  
available for  
selection  
Valid input clock  
selected  
Lock Acquisition  
(Fast Lock or  
Smart Lock)  
Phase lock on  
selected input  
clock is achieved  
An input is  
qualified and  
available for  
selection  
No valid input  
clocks available  
for selection  
Holdover  
Mode (1 PPS)  
Locked  
Mode  
No valid input  
clocks available  
for selection  
Holdover  
Mode  
Selected input  
clock fails (1 PPS  
input mode)  
Selected input clock fails  
(Standard input mode)  
Input Clock  
Switch  
Yes  
No  
Other Valid  
Clock Inputs  
Available?  
Yes  
Holdover  
History  
Valid?  
No  
Figure 3.1. Modes of Operation  
3.5.2 Free-run Mode  
Once power is applied to the Si5383/84 and initialization is complete, all three DSPLLs will automatically enter freerun if no clock input  
is applied. The frequency accuracy of the generated output clocks in freerun mode is entirely dependent on the frequency accuracy of  
the clock source at the reference inputs (REF/REFb). A TCXO or OCXO is recommended for applications that need frequency accuracy  
and stability to meet the synchronization standards as shown in the following table:  
silabs.com | Building a more connected world.  
Rev. 1.0 | 5  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
Table 3.2. Free-run Accuracy for North American and European Synchronization Standards  
SONET (Telcordia)  
GR-253 Stratum 3E  
GR-253 Stratum 3  
SDH (ITU-T)  
G.812 Type III  
G.812 Type IV  
G.813 Option 1  
SyncE (ITU-T)  
Free-run Accuracy  
±4.6 ppm  
G.8262 EEC Option 2  
G.8262 EEC Option 1  
3.5.3 Lock Acquisition Mode  
Each of the DSPLLs independently monitors its configured inputs for a valid clock. If at least one valid clock is available for synchroni-  
zation, a DSPLL will automatically start the lock acquisition process.If the fast lock feature is enabled for inputs > 8 kHz, a DSPLL will  
acquire lock using the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Bandwidth setting when lock acquisition  
is complete. If the input frequency is configured for 1 PPS, the Smartlock mode is used. During lock acquisition the outputs will gener-  
ate a clock that follows the VCO frequency change as it pulls-in to the input clock frequency.  
3.5.4 Locked Mode  
Once locked, a DSPLL will generate output clocks that are both frequency and phase locked to their selected input clocks. At this point,  
any XTAL frequency drift will not affect the output frequency. Each DSPLL has its own LOLb pin and status bit to indicate when lock is  
achieved. Refer to Section 3.9.6 LOL Detection for more details on the operation of the loss of lock circuit.  
3.5.5 Holdover Mode  
Any of the DSPLLs will automatically enter Holdover Mode when the selected input clock becomes invalid and no other valid input  
clocks are available for selection. Each DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the  
disturbance of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit for each DSPLL stores  
several seconds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is calcula-  
ted from a programmable window within the stored historical frequency data. Both the window size and delay are programmable as  
shown in the figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring  
frequency data that may be corrupt just before the input clock failure.  
Clock Failure and Entry  
into Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window used to  
Programmable delay  
determine the final holdover value  
(Seconds)  
0s  
(Seconds)  
Figure 3.2. Programmable Holdover Window  
When entering holdover, a DSPLL will pull its output clock frequency to the calculated averaged holdover frequency. While in holdover,  
the output frequency drift is entirely dependent on the external reference clock connected to the REF/REFb pins. When the clock input  
becomes valid, a DSPLL will automatically exit the holdover mode and re-acquire lock to the new input clock. This process involves  
pulling the output clock frequencies to achieve frequency and phase lock with the input clock. This pull-in process is glitchless.  
In standard input mode, the DSPLL output frequency when exiting holdover can be ramped (recommended). Just before the exit is initi-  
ated, the difference between the current holdover frequency and the new desired frequency is measured. Using the calculated differ-  
ence and a user-selectable ramp rate, the output is linearly ramped to the new frequency. The ramp rate can be 0.2 ppm/s, 40,000  
ppm/s, or any of about 40 values in between. The DSPLL loop BW does not limit or affect ramp rate selections (and vice versa). CBPro  
defaults to ramped exit from holdover. The same ramp rate settings are used for both exit from holdover and ramped input switching.  
For more information on ramped input switching see Section 3.8.6 Ramped Input Switching in Standard Input Mode.  
Note: If ramped holdover exit is not selected, the holdover exit is governed either by (1) the DSPLL loop BW or (2) a user-selectable  
holdover exit BW.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 6  
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.6 Digitally-Controlled Oscillator (DCO) Mode  
The DSPLLs support a DCO mode where their output frequencies are adjustable in pre-defined steps defined by frequency step words  
(FSW). The frequency adjustments are controlled through the serial interface or by pin control using frequency increments (FINC) or  
decrements (FDEC). However due to slower update rates over the I2C interface, it is recommended to use pin controls for adjusting the  
frequency in DCO mode. A FINC will add the frequency step word to the DSPLL output frequency, while a FDEC will decrement it.  
The DCO mode is available when the DSPLL is operating in locked mode. The DCO mode is mainly used with standard input mode in  
IEEE1588 (PTP) applications where a clock needs to be generated based on recovered timestamps. In this case timestamps are recov-  
ered by the PHY/MAC. A processor containing servo software controls the DCO to close the timing loop between the master and slave  
nodes. The processor has the option of using the FINC/FDEC pin controls to update the DCO frequency or by controlling it through the  
serial interface.  
When operating in 1 PPS input mode, an additional enhanced DCO mode is enabled in the holdover state to facilitate DCO steering.  
This is useful for applications that require Assisted Partial Timing Support (APTS).  
3.6.1 Frequency Increment/Decrement Using Pin Controls (FINC, FDEC)  
Controlling the output frequency with pin controls is available in standard input mode. This feature involves asserting the FINC or FDEC  
pins to step (increment or decrement) the DSPLL’s output frequency. Both the step size and DSPLL selection (A, C, D) is made through  
the serial interface by writing to register bits.  
Si5383/84  
PD  
LPF  
FSW_MASK_A  
0x0422  
Mn_A  
Md_A  
÷
DSPLL A  
+
-
Frequency  
Step Word  
FINC  
FDEC  
0x0423 – 0x0429  
0x001D  
PD  
LPF  
FSW_MASK_C  
0x0622  
Mn_C  
Md_C  
÷
DSPLL C  
+
-
Frequency  
Step Word  
0x0623 – 0x0629  
PD  
LPF  
FSW_MASK_D  
0x0723  
Mn_D  
Md_D  
÷
DSPLL D  
SDA  
SCL  
I2C  
+
-
Frequency  
Step Word  
0x0724 – 0x072A  
Figure 3.3. Controlling the DCO Mode By Pin Control  
silabs.com | Building a more connected world.  
Rev. 1.0 | 7  
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.6.2 Frequency Increment/Decrement Using the Serial Interface  
Controlling the DSPLL frequency through the serial interface is available. This feature involves asserting the FINC or FDEC bits to acti-  
vate the frequency change defined by the frequency step word. A set of mask bits selects the DSPLL(s) that is affect by the frequency  
change.  
3.7 External Reference (XA/XB, REF/REFb)  
The external crystal at the XA/XB pins determines jitter performance of the output clocks, and the external reference clock at the REF/  
REFb pins determines the frequency accuracy and stability during free-run or holdover modes, and the MTIE/TDEV performance when  
the DSPLL is locked. Jitter from the external clock on the REF/REFb pins will have little to no effect on the output jitter performance,  
depending upon the selected bandwidth. This allows using a lower-cost TCXO/OCXO with a higher phase noise floor or an external  
reference clock distributed over long PCB traces or across a backplane, without impacting output jitter.  
External Reference Clock  
Determines  
Output Frequency  
Accuracy and Stability,  
and MTIE/TDEV  
XTAL + OSC Determines  
Output  
XTAL  
Jitter Performance  
TCXO/  
OCXO  
Performance  
XA  
XB  
REF REFb  
OSC  
Si5383/84  
Figure 3.4. External Reference Connections  
silabs.com | Building a more connected world.  
Rev. 1.0 | 8  
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.7.1 External Crystal (XA/XB)  
The external crystal (XTAL) is used in combination with the internal oscillator (OSC) to produce an ultra low jitter reference clock for the  
DSPLLs. The device includes internal XTAL loading capacitors which eliminates the need for external capacitors and also has the ben-  
efit of reduced noise coupling from external sources. A crystal in the range of 48 to 54 MHz is recommended for best jitter performance.  
Although the device includes built-in XTAL load capacitors (CL) of 8 pF, crystals with load capacitances up to 18 pF can also be accom-  
modated. Frequency offsets due to CL mismatch can be adjusted using the frequency adjustment feature which allows frequency ad-  
justments of ±1000 ppm. The Si5383/84 Reference Manual provides additional information on PCB layout recommendations for the  
crystal to ensure optimum jitter performance. Although it is not recommended, the device can also accommodate an external clock at  
the XA/XB pins instead of a crystal. Selection between the external crystal or clock is controlled by register configuration. The internal  
crystal loading capacitors (CL) are disabled in this mode. Refer to Chapter 5. Electrical Specifications for reference clock requirements  
when using this mode. The Si5383/84 Reference Manual provides additional information on PCB layout recommendations for the crys-  
tal to ensure optimum jitter performance.  
48-54 MHz  
XTAL  
XA  
XB  
2xCL  
2xCL  
OSC  
PXAXB  
÷
Si5383/84  
Crystal Resonator  
Connection  
Figure 3.5. Crystal Resonator Connections  
silabs.com | Building a more connected world.  
Rev. 1.0 | 9  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.7.2 External Reference (REF/REFb)  
The external reference at the REF/REFb pins is used to determine output frequency accuracy and stability during free-run and holdover  
modes. This reference is usually from a TCXO or OCXO and can be connected differentially or single-ended as shown in the figure  
below:  
5 – 250 MHz  
TCXO/OCXO  
5 – 250 MHz  
TCXO/OCXO  
100  
REF  
REFb  
REFb  
REF  
Si5383/84  
Si5383/84  
Differential External  
Reference  
Single-ended  
External Reference  
Connection  
Connection  
Figure 3.6. External Reference Connections  
silabs.com | Building a more connected world.  
Rev. 1.0 | 10  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.8 Inputs (IN0, IN1, IN2, IN3, IN4)  
Inputs IN0, IN1 and IN2 can be used to synchronize any of the DSPLLs. The inputs accept both differential and single-ended clocks. A  
crosspoint between the inputs and the DSPLLs allows inputs IN0-IN2 to connect to any of the DSPLLs as shown in the figure below.  
DSPLL D has two additional inputs (IN3-IN4) that are CMOS only inputs. If both IN3 and IN4 are used, they must be the same frequen-  
cy.  
Si5383/84  
Input  
Crosspoint  
IN0  
P0n  
P0d  
0
1
2
÷
DSPLL  
IN0b  
A
0
1
2
P1n  
P1d  
DSPLL  
C
IN1  
÷
÷
IN1b  
0
1
2
IN2  
P2n  
P2d  
DSPLL  
D
IN2b  
3
4
IN3  
IN4  
Figure 3.7. Si5383/84 DSPLL Input Selection Crosspoint  
3.8.1 Input Selection  
Input selection for each of the DSPLLs can be made manually through register control or automatically using an internal state machine.  
3.8.2 Manual Input Selection  
In manual mode the input selection is made by writing to a register. IN0-IN2 is available to DSPLL A and C, IN0-IN4 is available to  
DSPLL D. If there is no clock signal on the selected input, the DSPLL will automatically enter holdover mode.  
3.8.3 Automatic Input Selection in Standard Input Mode  
When configured in this mode, a DSPLL automatically selects a valid input that has the highest configured priority. The priority scheme  
is independently configurable for each DSPLL and supports revertive or non-revertive selection. All inputs are continuously monitored  
for loss of signal (LOS) and inputs IN0-IN2 can be monitored for invalid frequency range (OOF). Only inputs that do not assert both the  
LOS and OOF monitors can be selected for synchronization by the automatic state machine. The DSPLL(s) will enter either holdover or  
freerun mode if there are no valid inputs available.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 11  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.8.4 Input Configuration and Terminations  
Inputs IN0-IN2 can be configured as differential or single-ended LVCMOS. Inputs IN3-IN4 are single-ended only. The recommended  
input termination schemes are shown in the figure below. Inputs IN0-IN2 can be disabled and left unconnected when not in use.  
LVCMOS inputs IN3-IN4 should be externally pulled low when not in use.  
Standard AC-coupled Differential LVDS (IN0-IN2)  
Si5383/84  
Standard  
50  
INx  
100  
INxb  
3.3 V, 2.5 V  
LVDS or  
50  
CML  
Pulsed CMOS  
Standard AC-coupled Differential LVPECL (IN0-IN2)  
Si5383/84  
Standard  
50  
INx  
100  
INxb  
50  
3.3 V, 2.5 V  
LVPECL  
Pulsed CMOS  
Standard AC-coupled Single-Ended (IN0-IN2)  
Si5383/84  
Standard  
INx  
50  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
Pulsed CMOS  
Pulsed CMOS DC-coupled Single-Ended  
(IN0-IN2)  
Si5383/84  
R1  
Standard  
INx  
50  
R2  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
VDD  
R1 (Ω)  
324  
511  
R2 (Ω)  
665  
475  
Pulsed CMOS  
1.8 V  
2.5 V  
3.3 V  
Resistor values for  
fIN_PULSED < 1 MHz  
634  
365  
IN3, IN4 DC-coupled LVCMOS  
Si5383/84  
INx  
50  
Figure 3.8. Termination of Differential and LVCMOS Input Signals  
silabs.com | Building a more connected world.  
Rev. 1.0 | 12  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.8.5 Hitless Input Switching in Standard Input Mode  
Hitless switching is a feature that prevents a phase offset from propagating to the output when switching between two clock inputs that  
have a fixed phase relationship. A hitless switch can only occur when the two input frequencies are frequency locked, meaning that  
they have to be exactly at the same frequency, or at an integer frequency relationship to each other. When hitless switching is enabled,  
the DSPLL simply absorbs the phase difference between the two input clocks during an input switch. When disabled, the phase differ-  
ence between the two inputs is propagated to the output at a rate determined by the DSPLL Loop Bandwidth. The hitless switching  
feature is not available in 1 PPS input mode. Hitless switching can be enabled on a per DSPLL basis.  
3.8.6 Ramped Input Switching in Standard Input Mode  
When switching between two plesiochronous input clocks (i.e., the frequencies are "almost the same" but not quite), ramped input  
switching should be enabled to ensure a smooth transition between the two inputs. Ramped input switching avoids frequency transients  
and overshoot when switching between frequencies and so is the default switching mode in CBPro. The feature should be turned off  
when switching between input clocks that are always frequency locked (i.e., are always the same exact frequency). The same ramp  
rate settings are used for both holdover exit and clock switching. For more information on ramped exit from holdover, see Section  
3.5.5 Holdover Mode.  
3.8.7 Glitchless Input Switching  
The DSPLLs have the ability of switching between two input clock frequencies that are up to ±500 ppm apart for standard input mode,  
and ±10 ppm apart for 1 PPS input mode. The DSPLL will pull-in to the new frequency using the DSPLL Loop Bandwidth or using the  
Fastlock or Smartlock Loop Bandwidth if it is enabled. The loss of lock (LOL) indicator will assert while the DSPLL is pulling-in to the  
new clock frequency. There will be no output runt pulses generated at the output during the transition. All clock inputs, including 3 and  
4, support glitchless input switching.  
3.8.8 Synchronizing to Gapped Input Clocks in Standard Input Mode  
Each of the DSPLLs support locking to an input clock that has missing periods in standard input mode. This is also referred to as a  
gapped clock. The purpose of gapped clocking is to modulate the frequency of a periodic clock by selectively removing some of its  
cycles. Gapping a clock severely increases its jitter, so a phase-locked loop with high jitter tolerance and low loop bandwidth is required  
to produce a low-jitter periodic clock. The resulting output will be a periodic non-gapped clock with an average frequency of the input  
with its missing cycles. For example, an input clock of 100 MHz with one cycle removed every 10 cycles will result in a 90 MHz periodic  
non-gapped output clock. This is shown in the figure below:  
Gapped Input Clock  
Periodic Output Clock  
100 MHz clock  
1 missing period every 10  
90 MHz non-gapped clock  
100 ns  
100 ns  
DSPLL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
Period Removed  
10 ns  
11.11111... ns  
Figure 3.9. Generating an Averaged Clock Output Frequency from a Gapped Clock Input  
A valid gapped clock input must have a minimum frequency of 10 MHz with a maximum of two missing cycles out of every eight. Lock-  
ing to a gapped clock will not trigger the LOS, OOF, and LOL fault monitors. Clock switching between gapped clocks may violate the  
hitless switching specification in Table 5.8 Performance Characteristics on page 33 when the switch occurs during a gap in either  
input clock.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 13  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.9 Fault Monitoring  
All input clocks and the reference input (REF/REFb) are monitored for loss of signal (LOS). In addition, inputs IN0-IN2 and REF/REFb  
are monitored for out-of-frequency (OOF) as shown in the figure below. The reference at the XA/XB pins is also monitored for LOS  
since it provides a critical reference clock for the DSPLLs. Each of the DSPLLs also has an LOL indicator, which is asserted when  
synchronization is lost with their selected input clock.  
XA XB  
REFb  
REF  
Si5383/84  
OSC  
LOS  
LOS  
DSPLL A  
DSPLL C  
DSPLL D  
LOL  
PD  
IN0  
Precision  
Fast  
P0n  
÷
OOF  
0
1
2
LOS  
IN0b  
P0d  
LPF  
÷M  
LOL  
PD  
0
1
2
Precision  
Fast  
P1n  
÷
IN1  
LOS  
LOS  
OOF  
OOF  
LPF  
÷M  
P1d  
IN1b  
0
1
2
LOL  
PD  
IN2  
Precision  
Fast  
P2n  
÷
IN2b  
P2d  
LPF  
÷M  
3
4
IN3  
IN4  
LOS  
LOS  
Figure 3.10. Si5383/84 Fault Monitors  
3.9.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits has its own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status  
register. The live LOS register always displays the current LOS state and a sticky register always stays asserted until cleared. An option  
to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.11. LOS Status Indicators  
silabs.com | Building a more connected world.  
Rev. 1.0 | 14  
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.9.2 XA/XB LOS Detection  
A LOS monitor is available to ensure that the external crystal or reference clock is valid. By default the output clocks are disabled when  
XAXB_LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB_LOS is  
detected.  
3.9.3 OOF Detection  
In standard input mode, input clocks IN0, IN1, IN2 are monitored for frequency accuracy with respect to an OOF reference, which it  
considers as its “0_ppm” reference. The final OOF status is determined by the combination of both a precise OOF monitor and a fast  
OOF monitor as shown in the figure below. An option to disable either monitor is also available. The live OOF register always displays  
the current OOF state and its sticky register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 3.12. OOF Status Indicator  
3.9.4 Precision OOF Monitor  
The precision OOF monitor circuit measures the frequency of all input clocks to within ±1/16 ppm accuracy with respect to the selected  
OOF frequency reference. A valid input clock frequency is one that remains within the OOF frequency range, which is register configu-  
rable up to ±500 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from tog-  
gling at the failure boundary. An example is shown in the figure below. In this case, the OOF monitor is configured with a valid frequen-  
cy range of ±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0 – IN2) as the 0 ppm OOF reference  
instead of the REF/REFb pins is available. This option is register-configurable. XA/XB can also be used as the 0 ppm reference.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF Reference  
Figure 3.13. Example of Precise OOF Monitor Assertion and De-assertion Triggers  
3.9.5 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1 ppm of frequency measurement accuracy, it must measure the monitored input  
clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in frequen-  
cy. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quickly detect  
a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by greater than ±4000  
ppm.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 15  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.9.6 LOL Detection  
There is an LOL monitor for each of the DSPLLs. The LOL monitor asserts the LOL register bits when a DSPLL has lost synchroniza-  
tion with its selected input clock. Separate LOL register bits are used to indicate LOL for standard input mode versus 1 PPS mode.  
There is also a dedicated LOL pin that reflects the loss of lock condition for each of the DSPLLs (LOL_Ab, LOL_Cb, LOL_Db) and also  
for the reference.  
Sticky  
Si5383/84  
LOL Status Registers  
Live  
DSPLL A (Si5383)  
DSPLL C (Si5383)  
DSPLL D (Si5383/84)  
Standard Input Mode  
LOL Monitor (DSPLLs A, C, D)  
LOL_Ab  
LOL  
Clear  
LOL_Cb  
LOL_Db  
t
LOL  
Set  
1 PPS Input Mode  
LOL Monitor (DSPLL D)  
LOL  
Clear  
t
LOL  
Set  
t
DSPLL D  
fIN  
PD  
LPF  
÷M  
Figure 3.14. Si5383/84 LOL Status Indicators  
silabs.com | Building a more connected world.  
Rev. 1.0 | 16  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.9.6.1 LOL Detection Standard Input Mode  
There are two LOL frequency monitors, one that sets the LOL indicator (LOL Set) and another that clears the indicator (LOL Clear). An  
optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input  
clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The  
live LOL register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOLb pin reflects  
the current state of the LOL monitor.  
Each of the LOL frequency monitors has adjustable sensitivity, which is register-configurable from 0.1 ppm to 10,000 ppm. Having two  
separate frequency monitors allows for hysteresis to help prevent chattering of LOL status. An example configuration where LOCK is  
indicated when there is less than 0.1 ppm frequency difference at the inputs of the phase detector and LOL is indicated when there is  
more than 1 ppm frequency difference is shown in the figure below.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
Lost Lock  
LOL  
Hysteresis  
LOCKED  
0
0.1  
1
10,000  
Phase Detector Frequency Difference (ppm)  
Figure 3.15. LOL Set and Clear Thresholds  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input  
clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The  
configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calculated using  
the ClockBuilderPro utility.  
3.9.6.2 LOL Detection in 1 PPS Mode  
DSPLL D implements a phase-based LOL detector when operating in PPS mode. Two independent phase error thresholds are inclu-  
ded: one for LOL trigger and one for LOL clear. Having two separate phase error thresholds allows for hysteresis to help prevent chat-  
tering of the LOL status. An additional level of filtering is provided with trigger and clear counters. These counters represent the number  
of consecutive clock cycles a threshold must be met before the LOL alarm changes state. These counters prove useful when dealing  
with transient events, fault conditions, and locking to inputs with noise. For example, the DSPLL may see a large phase error between  
the time the input signal is lost and the LOS alarm is raised. The user must ensure LOL does not occur during this time to guarantee  
entry into holdover. This is accomplished by adjusting the LOL trigger counter to a larger value to compensate for this interval.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 17  
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.9.7 Interrupt Pin (INTRb)  
In standard input mode, an interrupt pin (INTRb) indicates a change in state with any of the status indicators for any of the DSPLLs. All  
status indicators are maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the sticky status  
registers.  
In 1 PPS input mode, the INTRb pin does not provide status indication for DSPLL D. When operating in this mode, loss of lock for  
DSPLL D can be monitored using the LOL_Db pin.  
Si5383/84  
LOSXAXB_FLG  
(IN0) LOS_FLG[0]  
(IN1) LOS_FLG[1]  
(IN2) LOS_FLG[2]  
LOS  
(REF) LOS_FLG[3]  
(IN3) LOS_CMOS[0]  
LOS_CMOS  
(IN4) LOS_CMOS[1]  
OOF_FLG[0]  
OOF  
OOF_FLG[1]  
OOF_FLG[2]  
LOL_FLG_PLLA1  
INTRb  
LOL_FLG_PLLB  
LOL_FLG_PLLC1  
LOL_FLG_PLLD2  
LOL  
HOLD_FLG_PLLA1  
HOLD_FLG_PLLC1  
HOLD_FLG_PLLD2  
HOLD  
CAL_FLG_PLLA1  
CAL_FLG_PLLB  
CAL_FLG_PLLC1  
CAL  
CAL_FLG_PLLD2  
SYSINCAL_FLG  
Notes:  
1. Si5383 only  
2. Standard input mode only  
Figure 3.16. Interrupt Triggers and Masks  
3.10 Outputs  
The Si5383/84 supports seven differential output drivers. Each driver has a configurable voltage amplitude and common-mode voltage  
covering a wide variety of differential signal formats including LVPECL, LVDS, HCSL, and CML. In addition to supporting differential  
signals, any of the outputs can be configured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 14 single-ended outputs,  
or a combination of differential and single-ended outputs. LVMOS outputs can also be set for in-phase or complementary mode.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 18  
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.10.1 Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the DSPLLs as shown in the figure below. The crosspoint configura-  
tion is programmable and can be stored in NVM so that the desired output configuration is ready at power-up.  
Si5383/84  
Output  
Crosspoint  
VDDO0  
OUT0  
A
C
D
÷R0  
÷R1  
OUT0b  
VDDO1  
OUT1  
OUT1b  
A
C
D
DSPLL  
A
VDDO2  
OUT2  
A
C
D
÷R2  
÷R3  
OUT2b  
VDDO3  
OUT3  
OUT3b  
A
C
D
DSPLL  
C
A
C
D
VDDO4  
OUT4  
DSPLL  
D
÷R4  
÷R5  
OUT4b  
VDDO5  
OUT5  
OUT5b  
A
C
D
R6  
VDDO6  
OUT6  
OUT6b  
A
C
D
÷R6  
Figure 3.17. DSPLL to Output Driver Crosspoint  
silabs.com | Building a more connected world.  
Rev. 1.0 | 19  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.10.2 Support For 1 Hz Output  
Output 5 of the Si5383/84 can be configured to generate a 1 Hz clock by cascading the R6 and R5 dividers. Output 6 cannot be pow-  
ered down if Output 5 is used for generating a 1Hz clock. Output 6 is still usable in this case but is limited to a maximum frequency of  
33.5 MHz. ClockBuilder Pro automatically determines the optimum configuration when generating a 1 Hz output (1 PPS).  
VDDO4  
OUT4  
OUT4b  
A
C
D
÷R4  
÷R5  
VDDO5  
OUT5  
OUT5b  
A
C
D
R6  
VDDO6  
OUT6  
OUT6b  
A
C
D
÷R6  
Figure 3.18. Generating a 1 Hz Output using the Si5383/84  
silabs.com | Building a more connected world.  
Rev. 1.0 | 20  
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.10.3 Differential Output Terminations  
Note: In this document, the terms LVDS and LVPECL refer to driver formats that are compatible with these signaling standards.  
The differential output drivers support both ac-coupled and dc-coupled terminations as shown in the figure below:  
AC-coupled LVDS/LVPECL  
DC-coupled LVDS  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
50  
50  
50  
50  
OUTx  
OUTx  
100  
OUTxb  
100  
OUTxb  
Internally  
self-biased  
Si5383/84  
Si5383/84  
AC-coupled LVPECL  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
VDD – 1.3 V  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
Rs  
Rs  
OUTx  
50  
OUTx  
OUTxb  
OUTxb  
50  
Si5383/84  
Si5383/84  
AC-coupled HCSL  
VDDRX  
VDDO  
= 3.3 V, 2.5 V, 1.8 V  
R1  
R1  
R2  
OUTx  
50  
50  
Standard  
HCSL  
Receiver  
OUTxb  
Si5383/84  
R2  
For VCM = 0.35 V  
VDDRX  
R1  
R2  
56.2 Ω  
59 Ω  
442 Ω  
332 Ω  
3.3 V  
2.5 V  
1.8 V  
243 Ω  
63.4 Ω  
Figure 3.19. Supported Differential Output Terminations  
3.10.4 Output Signal Format  
The differential output amplitude and common-mode voltage are both programmable and compatible with a wide variety of signal for-  
mats, including LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3  
V, 2.5 V, or 1.8 V) drivers providing up to 14 single-ended outputs or a combination of differential and single-ended outputs.  
3.10.5 Programmable Common-Mode Voltage For Differential Outputs  
The common-mode voltage (VCM) for the differential modes is programmable and depends on the voltage available at the output’s  
VDDO pin. Setting the common-mode voltage is useful when dc-coupling the output drivers.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 21  
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.10.6 LVCMOS Output Impedance Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance. There are three programma-  
ble output impedance selections for each VDDO options as shown in the table below. Note that selecting a lower source impedance  
may result in higher output power consumption.  
Table 3.3. Typical Output Impedance (ZS)  
VDDO  
CMOS_DRIVE_Selection  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
3.3 V  
2.5 V  
1.8 V  
38 Ω  
43 Ω  
30 Ω  
35 Ω  
46 Ω  
22 Ω  
24 Ω  
31 Ω  
3.10.7 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.  
3.10.8 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output, it generates a clock signal on both pins (OUTx and OUTxb). By default the clock on  
the OUTxb pin is generated with the same polarity (in phase) with the clock on the OUTx pin. The polarity of these clocks is configura-  
ble, which enables complementary clock generation and/or inverted polarity with respect to other output drivers.  
3.10.9 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling the output drivers. When the OEb pin is held high, all outputs are  
disabled. When held low, the outputs are enabled. Outputs in the enabled state can be individually disabled through register control.  
3.10.10 Output Disable During LOL  
By default, a DSPLL that is out of lock will generate either free-running clocks or generate clocks in holdover mode. In standard input  
mode, there is an option to disable the outputs when a DSPLL is LOL. This option can be useful to force a downstream PLL into hold-  
over.  
3.10.11 Output Disable During XAXB_LOS  
The internal oscillator circuit (OSC) in combination with the external crystal (XTAL) provides a critical function for the operation of the  
DSPLLs. In the event of a crystal failure the device will assert an XAXB_LOS alarm. By default all outputs will be disabled during asser-  
tion of the XAXB_LOS alarm. There is an option to leave the outputs enabled during an XAXB_LOS alarm, but the frequency accuracy  
and stability will be indeterminate during this fault condition.  
3.10.12 Output Driver State When Disabled  
The disabled state of an output driver is register configurable as disable low or high.  
3.10.13 Synchronous/Asynchronous Output Disable  
Outputs can be configured to disable synchronously or asynchronously. In synchronous disable mode the output will wait until a clock  
period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. In  
asynchronous disable mode, the output clock will disable immediately without waiting for the period to complete. By default, ClockBuild-  
er Pro configures outputs for synchronous disable.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 22  
 
 
 
 
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.10.14 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the hard reset bit will have the same  
result.  
3.10.15 Programmable Phase Offset in 1 PPS Mode  
When 1 PPS mode is enabled, the Si5383/84 can be programmed to provide a static phase offset on all outputs generated by DSPLL  
D. This can be used for compensation of PCB trace delays to achieve accurate system phase alignment for 1 PPS.  
3.11 Power Management  
Unused inputs, output drivers, and DSPLLs can be powered down when unused. Consult the Si5383/84 Reference Manual and Clock-  
Builder Pro configuration utility for details.  
3.12 In-Circuit Programming  
The Si5383/84 is fully configurable using the I2C interface. At power-up the device downloads its default register values from internal,  
flash-based, non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to gen-  
erate specific clock frequencies at power-up. Firmware updates may also be written into NVM.  
The NVM is in-circuit programmable with normal operating power supply voltages using the I2C interface. The NVM update process  
starts by using ClockBuilder Pro to generate a boot record file. Once the boot record has been generated, it is necessary to place the  
device into bootloader mode via one of the following methods:  
• Pin control: Drive the BLMDb pin low prior to negating the RSTb pin  
Register control: Write a boot reset sequence to the device over I2C  
Once the device has entered bootloader mode, the boot record file can be written to the device over I2C. Refer to the Si5383/84 Refer-  
ence Manual for a detailed procedure for writing registers to NVM.  
3.13 Serial Interface  
Configuration and operation of the Si5383/84 is controlled by reading and writing registers using the I2C interface. Communication re-  
quires a 3.3 V I/O voltage. The A0 and A1 pins may be used to set the lower two bits of the I2C base address if desired. Alternatively,  
the entire I2C base address may be configured using ClockBuilder Pro.  
3.14 Custom Factory Preprogrammed Parts  
Custom pre-programmed parts can be ordered with a specific configuration written into NVM. A factory pre-programmed part will gener-  
ate clocks at power-up. Use the ClockBuilder Pro custom part number wizard (www.silabs.com/clockbuilderpro) to quickly and easily  
request and generate a custom part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your pre-programmed device will typically ship in two weeks.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 23  
 
 
 
 
 
 
Si5383/84 Rev D Data Sheet  
Functional Description  
3.15 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-programmed Devices  
As with essentially all modern software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at www.si-  
labs.com, you will be notified whenever changes are made and what the impact of those changes are. This update process will ulti-  
mately enable ClockBuilder Pro users to access all features and register setting values documented in this data sheet and the  
Si5383/84 Reference Manual.  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is not yet available in CBPro, you must contact a Silicon Labs applications engineer for assis-  
tance. One example of this type of feature or custom setting is the customizable output amplitude and common-mode voltages for the  
clock outputs. After careful review of your project file and requirements, the Silicon Labs applications engineer will email back your  
CBPro project file with your specific features and register settings enabled using what is referred to as the manual "settings override"  
feature of CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in  
a CBPro design report are shown in the table below:  
Table 3.4. Setting Overrides  
Location  
0x0435[0]  
0x0B48[4:0]  
Customer Name  
FORCE_HOLD_PLLA  
OOF_DIV_CLK_DIS  
Type  
No NVM  
User  
Target  
N/A  
Dec Value  
Hex Value  
0x1  
1
OPN and EVB  
31  
0x1F  
Once you receive the updated design file, simply open it in CBPro. The device will begin operation after startup with the values in the  
NVM file. The flowchart for this process is shown in the figure below:  
End: Place  
sample order  
Start  
Do I need a  
pre-programmed device  
with a feature or setting  
which is unavailable in  
ClockBuilder Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon  
Labs Technical  
Support to submit  
& review your  
non-standard  
Yes  
configuration  
request & CBPro  
project file  
Receive  
updated  
CBPro project  
file from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and  
test  
requirements?  
Figure 3.20. Process for Requesting Non-Standard CBPro Features  
silabs.com | Building a more connected world.  
Rev. 1.0 | 24  
 
Si5383/84 Rev D Data Sheet  
Register Map  
4. Register Map  
Registers in the Si5383/84 require an I2C command sequence to enable the reading and writing. Once the I2C command sequences  
have been sent, it is necessary for the host to poll the status bits to indicate that the read or write command is complete. For read  
commands, data is available once the status bit indicates the command is complete. Refer to the Si5383/84 Reference Manual for a  
complete list of register descriptions and settings.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 25  
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
Ambient Temperature  
Junction Temperature  
Core Supply Voltage  
TJMAX  
VDD  
125  
1.89  
3.47  
3.47  
2.62  
1.89  
1.71  
3.14  
3.14  
2.37  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
VDDA  
VDDO  
V
Output Driver Supply Voltage  
V
V
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 5.2. DC Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5383, 1 PPS Input Mode1  
Si5383, Standard Input Mode2  
Si5384, 1 PPS Input Mode1  
Si5383, 1 PPS Input Mode1  
Si5383, Standard Input Mode2  
Si5384, 1 PPS Input Mode1  
LVPECL Output3 @ 156.25 MHz  
LVDS Output3 @ 156.25 MHz  
Core Supply Current  
IDD  
245  
390  
mA  
240  
165  
160  
160  
155  
22  
380  
265  
190  
190  
180  
26  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
IDDA  
Output Buffer Supply Current  
IDDOx  
15  
18  
3.3 V LVCMOS4  
22  
30  
Output @ 156.25 MHz  
2.5 V LVCMOS4  
Output @ 156.25 MHz  
18  
12  
23  
16  
mA  
mA  
1.8 V LVCMOS4  
Output @ 156.25 MHz  
Total Power Dissipation5  
Si5383, 1 PPS Input Mode1  
Si5383, Standard Input Mode2  
Pd  
10  
1265  
1255  
1100  
1620  
1610  
1410  
mW  
mW  
mW  
µs  
Si5384, 1 PPS Input Mode1  
Time to VDDA > 2.2 V  
Analog Supply Voltage Ramp  
Time  
tRMP_VDDA  
silabs.com | Building a more connected world.  
Rev. 1.0 | 26  
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Notes:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Test configuration: 7 x 2.5 V LVDS outputs enabled @156.25 MHz. 1 PPS input enabled on DSPLL D. Excludes power in termi-  
nation resistors.  
2. Test configuration: 7 x 2.5 V LVDS outputs enabled @156.25 MHz. 1 PPS input not enabled. Excludes power in termination re-  
sistors.  
3. Differential outputs terminated into an AC coupled 100 Ω load.  
4. LVCMOS outputs measured into a 5-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to OUTx_CMOS_DRV=  
3, which is the strongest driver setting. Refer to the Si5383/84 Reference Manual for more details on register settings.  
5. Detailed power consumption for any configuration can be estimated using ClockBuilderPro when an evaluation board (EVB) is not  
available. All EVBs support detailed current measurements for any configuration.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
0.1 uF  
56 Ω  
0.1 uF  
56 Ω  
IDDO  
499 Ω  
4.7 pF  
IDDO  
0.1 uF  
0.1 uF  
50  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
OUTb  
OUT  
100  
OUTb  
499 Ω  
4.7 pF  
50  
silabs.com | Building a more connected world.  
Rev. 1.0 | 27  
 
 
 
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.3. Input Clock Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Input Buffer with Differential or Single-Ended/LVCMOS Configuration - AC-Coupled (IN0, IN1, IN2, REF)  
Input Frequency Range  
Voltage Swing 1  
fIN  
Differential  
Single-ended/LVCMOS  
REF  
0.008  
0.008  
5
750  
250  
MHz  
250  
VIN  
Differential AC-coupled  
fIN< 250 MHz  
100  
1800  
mVpp_se  
mVpp_se  
mVpp_se  
V/μs  
Differential AC-coupled  
250 MHz < fIN< 750 MHz  
225  
100  
400  
1800  
3600  
Single-Ended AC-coupled  
fIN < 250 MHz  
Slew Rate 2,3  
SR  
Duty Cycle  
DC  
CIN  
RIN  
40  
0.3  
16  
8
60  
%
pF  
kΩ  
Input Capacitance  
Input Resistance  
Differential  
Single-ended/LVCMOS  
Pulsed CMOS - DC-coupled (IN0, IN1, IN2) 4  
Input Frequency  
fIN_  
Standard Mode  
1 PPS Mode  
0.008  
1
250  
MHz  
Hz  
V
PULSED  
Input Voltage  
VIL  
VIH  
SR  
PW  
0.4  
0.8  
400  
V
Slew Rate 2,3  
V/μs  
Minimum Pulse Width  
Standard Mode  
1 PPS Mode  
1.6  
10  
8
ns  
us  
kΩ  
Input Resistance  
RIN  
LVCMOS - DC Coupled (IN3, IN4)  
Input Frequency  
fIN_PULSE  
Standard Mode  
1 PPS Mode  
0.008  
1
2.048  
MHz  
Hz  
V
D
Input Voltage  
VIL  
VIH  
PW  
0.7xVDDA  
50  
20  
0.3xVDDA  
V
Minimum Pulse Width  
Input Resistance  
Standard Mode, Pulse Input  
1 PPS Mode, Pulse Input  
ns  
us  
kΩ  
10  
RIN  
XA/XB (if driven from external oscillator)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 28  
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
XA/XB Frequency  
fIN_XAXB  
Full operating range. Jitter  
24.97  
54.06  
MHz  
performance may be reduced.  
Frequency range for best output jitter  
performance.  
48  
54  
MHz  
Input Voltage Swing  
VIN_SE  
VIN_DIFF  
SR  
Single-ended  
Differential  
365  
365  
400  
40  
2000  
2500  
mVpp_se  
mVpp_diff  
V/μs  
Slew rate 2,3  
Input Duty Cycle  
Note:  
Imposed for best jitter performance  
DC  
60  
%
1. Voltage swing is specified as single-ended mVpp.  
OUTx  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
Vcm  
OUTxb  
2. Imposed for jitter performance.  
3. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 - 0.2) x VIN_Vpp_se) / SR.  
4. Pulsed CMOS mode is intended primarily for single-ended LVCMOS input clocks < 1 MHz, which must be dc-coupled because  
they have a duty cycle significantly less than 50%. A typical application example is a low frequency video frame sync pulse. Since  
the input thresholds (VIL, VIH) of this buffer are non-standard (0.4 and 0.8 V, respectively), refer to the input attenuator circuit for  
DC-coupled Pulsed LVCMOS in the Si5383/84 Reference Manual. Otherwise, for standard LVCMOS input clocks, use the Stand-  
ard AC-coupled, Single-ended input mode.  
Table 5.4. Control Input Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5383/84 Control Input Pins (FINC, FDEC, OEb)  
Input Voltage  
VIL  
VIH  
0.3 x  
VDDA  
V
V
0.7 x  
VDDA  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Update Rate  
CIN  
RL  
2
1
pF  
kΩ  
20  
PW  
FUR  
FINC, FDEC  
FINC, FDEC  
100  
ns  
MHz  
Si5383/84 Control Input Pin (SCL, SDA, A1, A0, BLMDb, RSTb)  
Input Voltage  
VIL  
0.3 x  
VDDA  
V
V
VIH  
0.7 x  
VDDA  
Input Capacitance  
CIN  
PW  
7
pF  
μs  
Minimum Reset Pulse Width  
15  
silabs.com | Building a more connected world.  
Rev. 1.0 | 29  
 
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Standard input mode  
DSPLL D in 1 PPS mode  
Min  
0.0001  
0.0001  
Typ  
1
Max  
718.5  
685  
Unit  
MHz  
MHz  
Hz  
Output Frequency  
fOUT  
fOUT1Hz  
1 PPS signal only available on  
Output 5  
Duty Cycle  
DC  
fOUT < 400 MHz  
48  
45  
52  
55  
65  
%
%
ps  
400 MHz < fOUT < 712.5 MHz  
Output-Output Skew  
OUT-OUTb Skew  
TSK  
TSK_OUT  
VOUT  
Outputs on same DSPLL  
(measured at 712.5 MHz)  
Measured from the positive to negative  
output pins  
0
50  
ps  
Output Voltage Amplitude 1  
Common-Mode Voltage 1  
VDDO = 3.3 V, 2.5 V, or 1.8 V  
VDDO = 3.3 V, or 2.5 V  
VDDO = 3.3 V  
LVDS  
350  
640  
430  
750  
510  
900  
mVpp_se  
LVPECL  
LVDS  
VCM  
1.10  
1.90  
1.10  
1.20  
2.00  
1.20  
1.30  
2.10  
1.30  
V
LVPECL  
VDDO = 2.5 V  
VDDO = 1.8 V  
LVPECL  
, LVDS  
sub-  
LVDS  
0.80  
0.90  
100  
1.00  
150  
Rise and Fall Times  
(20% to 80%)  
tR/tF  
ps  
Differential Output Impedance  
ZO  
100  
–99  
–96  
–94  
–93  
–86  
Ω
Power Supply Noise  
Rejection 2  
PSRR  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
dBc  
Output-output Crosstalk 3  
Measured spur from adjacent output 3  
XTALK  
dBc  
Notes:  
1. Output amplitude and common-mode voltage are programmable through register settings and can be stored in NVM. Each output  
driver can be programmed independently. The maximum LVDS single-ended amplitude can be up to 110 mV higher than the TIA/  
EIA-644 maximum. Refer to the Si5383/84 Family Reference Manual for more suggested output settings. Not all combinations of  
voltage amplitude and common-mode voltages settings are possible.  
2. Measured for 156.25 MHz carrier frequency. 100mVpp of sinewave noise added to VDDO = 3.3V and noise spur amplitude  
measured.  
3. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25  
MHz. Refer to application note, AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems,  
for guidance on crosstalk minimization. Note that all active outputs must be terminated when measuring crosstalk.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTxb  
silabs.com | Building a more connected world.  
Rev. 1.0 | 30  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.6. LVCMOS Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
fOUT  
Test Condition  
Min  
0.0001  
Typ  
1
Max  
250  
Unit  
MHz  
Hz  
Output Frequency  
fOUT1Hz  
DC  
Only Available on Output 5  
fOUT <100 MHz  
Duty Cycle  
48  
30  
52  
%
100 MHz < fOUT < 250 MHz  
45  
55  
Output-to-Output Skew  
TSK  
When outputs are on same DSPLLs  
with the same R dividers  
140  
ps  
V
Output Voltage High 1 ,2 ,3  
VOH  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1 IOH = -10 mA  
OUTx_CMOS_DRV=2 IOH = -12 mA  
OUTx_CMOS_DRV=3 IOH = -17 mA  
VDDO  
0.85  
x
VDDO = 2.5 V  
OUTx_CMOS_DRV=1 IOH = -6 mA  
OUTx_CMOS_DRV=2 IOH = -8 mA  
OUTx_CMOS_DRV=3 IOH = -11 mA  
VDDO  
0.85  
x
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2 IOH = -4 mA  
OUTx_CMOS_DRV=3 IOH = -5 mA  
VDDO  
0.85  
x
V
V
Output Voltage Low 1 ,2 ,3  
VOL  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1 IOL = 10 mA  
OUTx_CMOS_DRV=2 IOL = 12 mA  
OUTx_CMOS_DRV=3 IOL = 17 mA  
VDDO  
0.15  
x
x
x
VDDO = 2.5 V  
OUTx_CMOS_DRV=1 IOL = 6 mA  
OUTx_CMOS_DRV=2 IOL = 8 mA  
OUTx_CMOS_DRV=3 IOL = 11 mA  
VDDO  
0.15  
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2 IOL = 4 mA  
OUTx_CMOS_DRV=3 IOL = 5 mA  
VDDO = 3.3 V  
VDDO  
0.15  
V
LVCMOS Rise and Fall Times 3  
(20% to 80%)  
tr/tf  
400  
450  
550  
600  
600  
750  
ps  
ps  
ps  
VDDO = 2.5 V  
VDDO = 1.8 V  
silabs.com | Building a more connected world.  
Rev. 1.0 | 31  
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5383/84 Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
DC Test Configuration  
IOL/IOH  
Zs  
VOL/VOH  
3. A 5 pF capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3, at 156.25 MHz.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
0.1 uF  
56 Ω  
0.1 uF  
56 Ω  
IDDO  
499 Ω  
4.7 pF  
IDDO  
0.1 uF  
0.1 uF  
50  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
OUTb  
OUT  
100  
OUTb  
499 Ω  
4.7 pF  
50  
silabs.com | Building a more connected world.  
Rev. 1.0 | 32  
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.7. Output Status Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5383/84 Status Output Pins ( INTRb, LOL_Ab, LOL_Cb, LOL_Db, and LOL_REF)  
Output Voltage  
VOH  
VOL  
IOH = -2 mA  
IOL = 2 mA  
VDDA x 0.85  
V
VDDA x 0.15  
V
Si5383/84 Status Output Pins (SDA, SCL and RSTb)1, 2  
Output Voltage  
VOL  
IOL = 6.5 mA  
0.6  
V
Note:  
1. VOH specifications do not apply apply to open-drain outputs.  
2. SCL driven low during clock stretching. RSTb driven low during power up and when VDDA falls below minimum operating thresh-  
old.  
Table 5.8. Performance Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Loop Bandwidth Pro-  
gramming Range 2  
fBW  
0.001  
4000  
Hz  
Initial Start-Up Time1  
tSTART  
1 PPS Input Mode, after  
Power-Up or Hardware  
Reset  
3.1  
0.04  
280  
4.25  
0.17  
300  
s
s
Standard Input Mode, after  
Power-Up or Hardware  
Reset  
PLL Lock Time  
tACQ  
Standard Mode, with  
Fastlock enabled 3  
ms  
1 PPS Mode 9  
5
min  
ms  
Serial Interface Ready  
Time 4  
tRDY  
After Power-Up  
or Hardware Reset  
75  
Flash Memory Endurance  
(Write/Erase Cycles)  
NWE  
20 k  
100 k  
Cycles  
dB  
Jitter Peaking  
JPK  
Measured with a frequency  
plan running a 25 MHz in-  
put, 25 MHz output, and a  
loop bandwidth of 4 Hz  
0.1  
Jitter Tolerance  
JTOL  
Compliant with G.8262 Op-  
tions 1&2, Standard Input  
Mode  
3180  
UI pk-pk  
Carrier Frequency =  
10.3125 GHz  
Jitter Modulation Frequency  
= 10 Hz  
silabs.com | Building a more connected world.  
Rev. 1.0 | 33  
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Maximum Phase Transient  
During a Hitless Switch 7  
tSWITCH  
Standard input mode, single  
manual or automatic switch  
between two input clocks at  
same frequency.  
1.2  
ns  
Pull-in Range 6  
ωP  
Standard mode  
1 PPS mode  
-500  
-10  
0
+500  
+10  
1.8  
ppm  
ppm  
ns  
ωP1PPS  
tIODELAY  
Input-to-Output Delay Varia-  
tion8  
Standard input mode  
1 PPS Input-to-Output  
Phase Delay  
tDELAY_1PPS  
1 PPS mode. Assumes  
noise-free 1 PPS and refer-  
ence inputs. Measured be-  
tween a 1 PPS input and 1  
PPS output from DSPLL D  
after fully settling.  
-10  
10  
ns  
RMS Phase Jitter 5  
JGEN  
12 kHz to 20 MHz  
0.130  
ps RMS  
Notes:  
1. Time from hardware reset or when VDD reaches 90% of nominal value to when the device generates free-running clocks.  
2. Actual loop bandwidth might be lower; please refer to CBPro for actual value on your frequency plan.  
3. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with fastlock bandwidth set to 100 Hz, LOL set/clear thresholds of 3/0.3 ppm respectively, using IN0 as clock  
reference by removing the reference and enabling it again, then measuring the delta time between the first rising edge of the  
clock reference and the LOL indicator de-assertion.  
4. Time from hardware reset or when VDD reaches 90% of nominal value to when the serial interface is ready to respond to com-  
mands.  
5. Jitter generation test conditions: fIN = 19.44 MHz, fOUT = 156.25 MHz LVPECL. (Does not include jitter from input reference).  
6. With respect to 0 ppm assuming REF input is ±5 ppm.  
7. For input frequency configurations which have FPFD > 1 MHz. Consult your CBPro design report for the FPFD frequency of your  
configuration.  
8. Measured from input to one or more outputs with the same input and output frequencies and FPFD > 1 MHz. Higher variation may  
be present when FPFD < 1 MHz.  
9. Assumes noise-free 1 PPS and reference inputs, and 1 mHz or 10 mHz loop bandwidth. Lock declared when the settling error is  
below 75/FVCO  
.
silabs.com | Building a more connected world.  
Rev. 1.0 | 34  
 
 
 
 
 
 
 
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.9. I2C Timing Specifications (SCL,SDA)  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Con-  
dition  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Max  
Unit  
Min  
-
Max  
100  
Min  
SCL Clock Frequency  
fSCL  
tHD:STA  
tLOW  
400  
kHz  
μs  
Hold time (repeated) START condition  
Low period of the SCL clock  
HIGH period of the SCL clock  
4.0  
4.7  
4.0  
4.7  
0.6  
1.3  
0.6  
0.6  
μs  
tHIGH  
μs  
Set-up time for a repeated START  
condition  
tSU:STA  
μs  
Data hold time  
tHD:DAT  
tSU:DAT  
tSU:STO  
tBUF  
100  
250  
4.0  
100  
100  
0.6  
ns  
ns  
μs  
μs  
Data set-up time  
Set-up time for STOP condition  
Bus free time between a STOP and  
START condition  
4.7  
1.3  
Figure 5.1. I2C Serial Port Timing Standard and Fast Modes  
silabs.com | Building a more connected world.  
Rev. 1.0 | 35  
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.10. Crystal Specifications1  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Crystal Frequency Range  
fXTAL  
Full operating range. Jitter  
24.97  
54.06  
MHz  
performance may be reduced.  
Range for best jitter.  
48  
8
54  
MHz  
pF  
Load Capacitance  
Crystal Drive Level  
CL  
dL  
200  
μW  
Equivalent Series Resistance  
Shunt Capacitance  
rESR CO Refer to the Si5383/84 Reference Manual to determine ESR and shunt capacitance.  
Note:  
1. Refer to the Si534x/8x Jitter Attenuating Clock, Recommended Crystal, TCXO and OCXO Reference Manual for recommended  
48 to 54 MHz crystals. The Si5383 and Si5384 are designed to work with crystals that meet these specifications.  
Table 5.11. Thermal Characteristics  
Test Condition 1  
Parameter  
Symbol  
Value  
Unit  
Si5383-56LGA and Si5384-56LGA  
Thermal Resistance Junction to Ambient  
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Board  
Thermal Resistance Junction to Top Center  
Note:  
ϴJA  
ϴJC  
ϴJB  
ΨJT  
24.0  
9.5  
7.7  
0.5  
Still Air  
°C/W  
1. Based on PCB Dimension: 4" × 4.5", PCB Thickness: 1.6 mm, Number of Cu Layers: 4.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 36  
 
 
 
Si5383/84 Rev D Data Sheet  
Electrical Specifications  
Table 5.12. Absolute Maximum Ratings 1, 2, 3  
Parameter  
Symbol  
TSTG  
VDD  
Test Condition  
Value  
Unit  
°C  
V
Storage Temperature Range  
DC Supply Voltage  
–55 to 150  
–0.3 to 3.8  
–0.3 to 3.8  
–0.3 to 3.8  
VDDA  
VDDO  
VI1  
V
V
Input Voltage Range  
IN0 - IN2, REF  
–1.0 to VDDA  
0.3  
+
+
V
VI2  
IN3, IN4, OEb, FINC, FDEC  
–0.5 to VDDA  
0.3  
V
VI3  
VI4  
XA/XB  
–0.5 to 2.7  
V
V
RSTb, SDA, SCL, A1, A0, BLMDb  
–0.3 to VDDA  
0.3  
+
Latch-up Tolerance  
LU  
JESD78 Compliant  
ESD Tolerance  
HBM  
TJCT  
TPEAK  
100 pF, 1.5 kΩ  
2.0  
125  
260  
kV  
°C  
°C  
Max Junction Temperature in Operation  
Soldering Temperature (Pb-free profile) 3  
Soldering Temperature Time at TPEAK (Pb-  
free profile) 4  
TP  
20-40  
s
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 56-LGA package is RoHS-6 compliant.  
3. For detailed MSL and packaging information, go to www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 37  
 
 
 
 
Si5383/84 Rev D Data Sheet  
Typical Application Diagrams  
6. Typical Application Diagrams  
Telecom Boundary Clock (T-BC)  
Master Ports  
Slave Ports  
Ethernet  
Packets  
Ethernet  
Packets  
FPGA/CPU  
1588 Stack  
PHY  
PHY  
1588 Servo  
Loop  
MAC  
MAC  
DCO  
Control  
Si5383  
DSPLL D  
1 PPS  
÷
÷
1 PPS  
GPS  
System  
Clock(s)  
DSPLL C  
÷
÷
General Purpose  
Clocks or  
Wireless/LTE Clocks  
DSPLL A  
Figure 6.1. Using the Si5383/84 as a Telecom Boundary Clock  
SyncE Jitter/Wander Attenuator  
Master Ports  
Slave Ports  
Ethernet  
Packets  
Ethernet  
Packets  
PHY  
PHY  
FPGA/CPU  
MAC  
MAC  
Si5384  
DSPLL  
÷
÷
System  
Clock(s)  
Figure 6.2. Si5384 as a SyncE Jitter/Wander Attenuator  
silabs.com | Building a more connected world.  
Rev. 1.0 | 38  
 
Si5383/84 Rev D Data Sheet  
Typical Application Diagrams  
IEEE 1588 DCO  
FPGA/CPU  
1588 Stack  
PHY  
1588 Servo  
Loop  
MAC  
DCO Control  
Si5384  
1 PPS  
System Clocks  
DSPLL  
÷
÷
TCXO/  
OCXO  
Figure 6.3. Si5384 as an IEEE 1588 DCO  
GPS 1 PPS Clock Multiplier  
Si5384  
1 PPS  
DSPLL  
÷
÷
1 PPS  
GPS  
System Clocks  
Figure 6.4. Si5384 as a 1 Hz/1 PPS Clock Multiplier  
silabs.com | Building a more connected world.  
Rev. 1.0 | 39  
Si5383/84 Rev D Data Sheet  
Detailed Block Diagram  
7. Detailed Block Diagram  
5MHz – 250MHz  
TCXO/OCXO  
or REFCLK  
XTAL  
XB  
REF  
XA  
REFb  
Si5383/84  
OSC  
Output  
Crosspoint  
DSPLL_A  
PD LPF  
DCO  
VDDO0  
OUT0  
OUT0b  
A
C
D
÷R0  
f
Mn_A  
VDDO1  
OUT1  
OUT1b  
÷
A
C
D
Md_A  
÷R1  
IN0  
IN0b  
P0n  
P0d  
÷
DSPLL_C  
PD LPF  
DCO  
f
VDDO2  
OUT2  
OUT2b  
A
C
D
IN1  
P1n  
P1d  
÷
÷
÷R2  
÷R3  
IN1b  
IN2  
P2n  
P2d  
VDDO3  
OUT3  
OUT3b  
IN2b  
Mn_C  
A
C
D
÷
Md_C  
VDDO4  
OUT4  
OUT4b  
A
C
D
DSPLL_D  
PD LPF  
DCO  
f
÷R4  
÷R5  
IN3  
IN4  
VDDO5  
OUT5  
OUT5b  
Mn_D  
A
C
D
÷
Md_D  
R6  
SDA  
SCL  
VDDO6  
OUT6  
OUT6b  
I2C  
D
C
A
A0  
A1  
÷R6  
Status  
Monitors  
BLMDb  
RSTb  
NVM  
Figure 7.1. Si5383/84 Detailed Block Diagram  
silabs.com | Building a more connected world.  
Rev. 1.0 | 40  
 
 
Si5383/84 Rev D Data Sheet  
Typical Operating Characteristics (Jitter and Phase Noise)  
8. Typical Operating Characteristics (Jitter and Phase Noise)  
Figure 8.1. FIN = 19.44 MHz; FOUT = 156.25 MHz, 3.3 V LVPECL with Rakon 12.8 MHz Reference, 48 MHz Crystal  
silabs.com | Building a more connected world.  
Rev. 1.0 | 41  
 
 
Si5383/84 Rev D Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
Si5383 56LGA  
Top View  
Si5384 56LGA  
Top View  
1
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
42  
IN1  
IN1  
IN1b  
RSVD  
IN3  
IN4  
X1  
LOL_REFb  
LOL_REFb  
2
41  
IN1b  
LOL_Ab  
VDD  
RSVD  
VDD  
3
4
3
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
LOL_Cb  
IN3  
IN4  
X1  
4
OUT4  
OUT4  
OUT4b  
VDDO4  
OUT3  
5
5
OUT4b  
VDDO4  
OUT3  
6
6
7
7
GND  
Pad  
GND  
Pad  
XA  
XA  
8
8
XB  
XB  
OUT3b  
VDDO3  
OUT2  
OUT3b  
VDDO3  
OUT2  
9
9
X2  
X2  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
INTRb  
VDDA  
IN2  
INTRb  
VDDA  
IN2  
OUT2b  
VDDO2  
A0  
OUT2b  
VDDO2  
A0  
IN2b  
FINC  
IN2b  
FINC  
RSTb  
RSTb  
Figure 9.1. Si5383 Pins  
Figure 9.2. Si5384 Pins  
Table 9.1. Si5383/84 Pin Descriptions 1  
Pin Name1  
Inputs  
Pin Type 2  
Pin Number  
Function  
XA  
XB  
X1  
X2  
7
8
6
9
I
I
I
I
Crystal Input. Input pin for external crystal (XTAL).  
XTAL Shield. Connect these pins directly to the XTAL ground pins. The  
XTAL ground pins should be separated from the PCB ground plane. Re-  
fer to the Si5383/84 Reference Manual for layout guidelines.  
IN0  
IN0b  
IN1  
55  
56  
1
I
I
I
I
I
I
I
I
I
I
Clock Inputs. IN0-IN2 accept an input clock for synchronizing the device.  
They support both differential and single-ended clock signals. Refer to In-  
put Configuration and Terminations input termination options. These pins  
are high-impedance and must be terminated externally. The negative side  
of the differential input must be grounded through a capacitor when ac-  
cepting a single-ended clock. IN3 and IN4 only support single ended  
LVCMOS signals.These pins are high-impedance and must be termina-  
ted externally. IN0-IN2 can be disabled by register configuration and the  
pins left unconnected if unused. IN3 and IN4 must be externally pulled  
low when unused.  
IN1b  
IN2  
2
12  
13  
4
IN2b  
IN3  
IN4  
5
REF  
REFb  
53  
54  
Reference Input. This input accepts a reference clock from a stable  
source (eg. TCXO or OCXO) that is used to determine free-run frequency  
accuracy and stability during free-run or holdover of the DSPLL or DCO.  
These inputs can accept differential or single-ended connections. Refer to  
the Si5383/84 Reference Manual for recommended TCXOs and OCXOs.  
Outputs  
silabs.com | Building a more connected world.  
Rev. 1.0 | 42  
 
 
Si5383/84 Rev D Data Sheet  
Pin Descriptions  
Pin Name1  
OUT0  
Pin Type 2  
Pin Number  
Function  
24  
23  
27  
26  
33  
32  
36  
35  
39  
38  
45  
44  
48  
47  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Output Clocks. These output clocks support a programmable signal am-  
plitude and common-mode voltage. Desired output signal format is con-  
figurable using register control.Termination recommendations are provi-  
ded in Differential Output Terminations. Unused outputs should be left un-  
connected.  
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
Serial Interface  
SDA  
Serial Data Interface. This is the bidirectional data pin (SDA) for the I2C  
interface. This pin must be pulled high to VDDA using an external resistor  
of at least 1 kΩ.  
51  
50  
I/O  
I/O  
Serial Clock Input Interface. This is the bidirectional I2C clock pin. Clock  
stretching (i.e., driving SCL low to insert wait-states) will be utilized when  
operating at rates greater than 100 kHz. This pin must be pulled up to  
VDDA using an external resistor of at least 1 kΩ.  
SCL  
A1  
I2C Address Select 1. This pin functions as the optional A1 I2C address  
input pin. Attach a 4.7 kΩ pull-up resistor to VDDA, or a 4.7 kΩ pull-down  
resistor to ground to select the I2C slave address. This pin can be left  
floating if unused.  
17  
30  
I/O  
I/O  
I2C Address Select 0. This pin functions as the optional A0 I2C address  
A0  
input pin. Attach a 4.7 kΩ pull-up resistor to VDDA, or a 4.7 kΩ pull-down  
resistor to ground to select the I2C slave address. This pin can be left  
floating if unused.  
Control/Status  
INTRb  
10  
29  
O
Interrupt. This pin is asserted low when a change in device status has  
occurred. It should be left unconnected when not in use.  
RSTb  
I/O  
Device Reset. This pin functions as an active-low reset input/output. As  
an input, the pin is used to generate a device reset when held low for  
more than 15 us. This resets all internal logic to a known state and forces  
device registers to their default values. Clock outputs are disabled during  
reset. As an open-drain output, the pin will be driven low during POR. Ex-  
ternal devices must be configured as open-drain to avoid contention.  
OEb  
15  
I
Output Enable. This output enable pin has a programmable register  
mask which allows it to control any of the output clocks. By default the  
OEb pin enables all output clocks. This pin must be externally pulled low  
when not in use.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 43  
Si5383/84 Rev D Data Sheet  
Pin Descriptions  
Pin Name1  
LOL_Ab  
Pin Type 2  
Pin Number  
Function  
41  
O
Loss of Lock_A/C/D/REF. These output pins indicate when DSPLL A, C,  
D and the REF input is out-of-lock (low) or locked (high). They can be left  
unconnected when not in use.  
(Si5383 only)  
LOL_Cb  
3
O
(Si5383 only)  
LOL_Db  
21  
42  
16  
O
O
I
LOL_REF  
FDEC  
Frequency Decrement Pin. This pin is used to step-down the output fre-  
quency of a selected DSPLL. The frequency change step size is register  
configurable. This pin must be externally pulled low when not in use.  
FINC  
14  
19  
I
I
Frequency Increment Pin . This pin is used to step-up the output fre-  
quency of a selected DSPLL. The frequency change step size is register  
configurable. This pin must be externally pulled low when not in use.  
BLMDb  
Bootloader Enable. This pin should be driven low on reset negation to  
enable bootloader mode. Under normal operation, this pin should be  
pulled up to VDDA with a 4.7K resistor.  
RSVD  
41  
3
Reserved. Leave disconnected.  
(Si5384 only)  
Power  
VDD  
28  
40  
52  
11  
18  
49  
20  
22  
25  
31  
34  
37  
43  
46  
P
P
Core Supply Voltage. The device core operates from a 1.8 V supply.  
See the Si5383/84 Reference Manual for power supply filtering recom-  
mendations. A 0402 1 μF capacitor should be placed very near each of  
these pins.  
VDDA  
Core Supply Voltage 3.3 V. This core supply pin requires a 3.3 V power  
source. See the Si5383/84 Reference Manual for power supply filtering  
recommendations. A 0402 1 μF capacitor should be placed very near  
each of these pins.  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
GND PAD  
P
P
P
P
P
P
P
P
Output Clock Supply Voltage 0-6. Supply voltage (3.3 V, 2.5 V, 1.8 V)  
for OUTn outputs. Leave VDDO pins of unused output drivers unconnec-  
ted. An alternate option is to connect the VDDO pin to a power supply  
and disable the output driver to minimize current consumption. A 0402 1  
μF capacitor should be placed very near each of these pins.  
Ground Pad. This pad provides connection to ground and must be con-  
nected for proper operation. Use as many vias as practical and keep the  
via length to an internal ground plane as short as possible.  
Note:  
1. Refer to the Si5383/84 Reference Manual for more information on register setting names.  
2. I = Input, O = Output, P = Power.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 44  
 
 
Si5383/84 Rev D Data Sheet  
Package Outline  
10. Package Outline  
The figure below illustrates the package details for the Si5383/84. The table below lists the values for the dimensions shown in the  
illustration.  
Figure 10.1. Si5383/84 8x8 mm 56-Pin LGA  
Table 10.1. Package Dimensions  
Dimension  
Min  
0.90  
0.22  
0.20  
Nom  
0.95  
Max  
1.00  
0.30  
0.30  
A
A1  
b
0.26  
0.25  
D
8.00 BSC  
4.90  
D2  
e
4.80  
4.80  
5.00  
5.00  
0.50 BSC  
8.00 BSC  
4.90  
E
E2  
L
0.363 BSC  
0.12  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.00  
0.18  
0.10  
0.15  
0.10  
0.15  
0.05  
silabs.com | Building a more connected world.  
Rev. 1.0 | 45  
 
Si5383/84 Rev D Data Sheet  
Package Outline  
Dimension  
Min  
Nom  
Max  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 46  
Si5383/84 Rev D Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
The figure below illustrates the PCB land pattern details for the devices. The table below lists the values for the dimensions shown in  
the illustration. Refer to the Si5383/84 Reference Manual for information about thermal via recommendations.  
Figure 11.1. Si5383/84 PCB Land Pattern  
silabs.com | Building a more connected world.  
Rev. 1.0 | 47  
 
Si5383/84 Rev D Data Sheet  
PCB Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Si5383/84 IPC-7351  
(Max)  
Si5383/84 Alternative Dimensions with  
Larger Pads  
(Max)1  
7.90  
7.90  
0.50  
0.30  
0.85  
4.95  
4.95  
C1  
C2  
E
7.50  
7.50  
0.50  
0.30  
0.45  
4.95  
4.95  
X1  
Y1  
X2  
Y2  
Note:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted. Least Material Condition (LMC) is calculated based on a  
Fabrication Allowance of 0.05 mm.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 3x3 array of 1.45 mm square openings on 2.0 mm pitch should be used for the center ground pad to achieve a target of ~50%  
solder coverage.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Alternative Land Pattern  
1. This alternative land pattern may be used if desired to facilitate easier rework and/or manual soldering  
silabs.com | Building a more connected world.  
Rev. 1.0 | 48  
 
Si5383/84 Rev D Data Sheet  
Top Marking  
12. Top Marking  
Figure 12.1. Si5383 Top Marking  
Figure 12.2. Si5384 Top Marking  
Table 12.1. Top Marking  
Line  
Characters  
Si5383g-  
Description  
1
Base part number and Device Grade.  
Si5384g-  
Si5383: 3-PLL Packet Network Synchronizer for SyncE/1588  
Si5384: 1-PLL Packet Network Synchronizer for SyncE/1588  
g = Device Grade. See Chapter 2. Ordering Guide for more information.  
– = Dash character.  
2
Rxxxxx-GM  
R = Product revision. (See Chapter 2. Ordering Guide for current revision.)  
xxxxx = Customer specific NVM sequence number or firmware revision number.  
-GM = Package (LGA) and temperature range (–40 to +85 °C).  
3
4
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW) of package as-  
sembly.  
TTTTTT = Manufacturing trace code.  
Pin 1 indicator; left-justified  
Circle w/ 1.6 mm diameter  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Building a more connected world.  
Rev. 1.0 | 49  
 
Si5383/84 Rev D Data Sheet  
Device Errata  
13. Device Errata  
Please log in or register at www.silabs.com to access the device errata document.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 50  
 
Si5383/84 Rev D Data Sheet  
Revision History  
14. Revision History  
14.1 Revision 0.8  
• Added Si5384 part number and related specifications to all tables and figures.  
• Updated description on front page.  
• Updated values in Table 2.1.  
• Updated text and corrected typographical errors in Section 3.  
• Updated Figure 3.1 and Figure 3.4.  
• Updated resistor values in Figure 3.8.  
• Added Section 3.8.6 and 3.10.15.  
• Updated Figures 3.14, 3.15, and 3.16.  
• Removed a figure that incorrectly described OEb functionality.  
• Added Section 3.12  
• Updated values in Table 5.1, Table 5.2, Table 5.3, Table 5.4, Table 5.5, Table 5.6, Table 5.7, Table 5.8, Table 5.9, Table 5.10, Table  
5.11, and Table 5.12.  
• Updated Figure 6.1  
• Added Figure 6.2  
• Updated Figure 7.1  
• Added Figure 8.1  
• Updated Figure 9.1  
• Added Figure 9.2  
• Updated pin descriptions in Table 9.1  
• Updated Figure 10.1  
• Updated Table 10.1  
• Updated Table 11.1.  
• Updated Figure 12.1  
• Added Figure 12.2  
• Updated Table 12.1  
14.2 Revision 1.0  
April 27, 2017  
• Updated 1. Feature List.  
• Updated OPN information in section 2. Ordering Guide and 2.1 Ordering Part Number Fields.  
• Added text about device reset recommendations in section 3.5.1 Initialization and Reset.  
• Updated sections 3.10.9 Output Enable/Disable and 3.10.13 Synchronous/Asynchronous Output Disable.  
• Updated values and added new test conditions to Table 5.2 DC Characteristics on page 26.  
• Updated values in Table 5.5 Differential Clock Output Specifications on page 30.  
• Update values and added new test conditions and footnotes 7-9 in Table 5.8 Performance Characteristics on page 33.  
• Updated values in Table 5.11 Thermal Characteristics on page 36.  
Removed tVD:DAT from Figure 5.1 I2C Serial Port Timing Standard and Fast Modes on page 35.  
• Updated and added new diagrams in section 6. Typical Application Diagrams.  
• Updated Figure 7.1 Si5383/84 Detailed Block Diagram on page 40.  
• Updated Figure 8.1 FIN = 19.44 MHz; FOUT = 156.25 MHz, 3.3 V LVPECL with Rakon 12.8 MHz Reference, 48 MHz Crystal on page  
41.  
• Corrected the name of pin 19 in Figure 9.1 Si5383 Pins on page 42 and Figure 9.2 Si5384 Pins on page 42.  
silabs.com | Building a more connected world.  
Rev. 1.0 | 51  
 
 
 
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of  
Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or  
brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5383A-D10188-GM

Telecom Circuit,
SILICON

SI5383A-D10188-GMR

Telecom Circuit,
SILICON

SI5383A-D10809-GM

Telecom Circuit,
SILICON

SI5383A-D10809-GMR

Telecom Circuit,
SILICON

SI5394B-A10605-GM

Processor Specific Clock Generator,
SILICON

SI5394B-A10663-GM

Processor Specific Clock Generator,
SILICON

SI5394P-A10073-GM

Processor Specific Clock Generator,
SILICON

SI5394P-A10073-GMR

Processor Specific Clock Generator,
SILICON

SI5394P-A10075-GM

Processor Specific Clock Generator,
SILICON

SI5394P-A10075-GMR

Processor Specific Clock Generator,
SILICON

SI5395B-A10490-GM

Processor Specific Clock Generator,
SILICON

SI5395B-A10490-GMR

Processor Specific Clock Generator,
SILICON