SI8055CA-B-IU [SILICON]

1 KV THREE TO SIX-CHANNEL DIGITAL ISOLATORS;
SI8055CA-B-IU
型号: SI8055CA-B-IU
厂家: SILICON    SILICON
描述:

1 KV THREE TO SIX-CHANNEL DIGITAL ISOLATORS

文件: 总23页 (文件大小:1552K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si80xx-1kV  
1 KV THREE TO SIX-CHANNEL DIGITAL ISOLATORS  
Features  
High-speed operation  
DC to 10 Mbps  
Default high or low output  
Precise timing (typical)  
No start-up initialization required  
Wide Operating Supply Voltage  
3.15 – 5.5 V  
40 ns propagation delay  
20 ns pulse width distortion  
100 ns minimum pulse width  
Transient Immunity 50 kV/µs  
Up to 1000 V  
isolation  
RMS  
AEC-Q100 qualification  
Wide temperature range  
–40 to 125 °C  
High electromagnetic immunity  
Low power consumption (typical)  
2.3 mA per channel at 10 Mbps  
Tri-state outputs with ENABLE  
Schmitt trigger inputs  
Ordering Information:  
RoHS-compliant packages  
QSOP-16  
See page 18.  
Applications  
Industrial automation systems  
Medical electronics  
Isolated ADC, DAC  
Power inverters  
Hybrid electric vehicles  
Communication systems  
Description  
Silicon Lab's family of low-power digital isolators are CMOS devices  
offering substantial data rate, propagation delay, power, size, reliability,  
and external BOM advantages over legacy isolation technologies. The  
operating parameters of these products remain stable across wide  
temperature ranges and throughout device service life for ease of  
design and highly uniform performance. All device versions have  
Schmitt trigger inputs for high noise immunity and only require VDD  
bypass capacitors. Data rates up to 10 Mbps are supported, and all  
devices achieve propagation delays of less than 65 ns. Enable inputs  
provide a single point control for enabling and disabling output drive.  
Ordering options include a choice of 1kV  
isolation ratings.  
RMS  
Rev. 1.0 1/14  
Copyright © 2014 by Silicon Laboratories  
Si80xx-1kV  
Si80xx  
2
Rev. 1.0  
Si80xx  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4. Pin Descriptions (Si8030/35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
5. Pin Descriptions (Si8040/45) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
6. Pin Descriptions (Si8050) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
7. Pin Descriptions (Si8055) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
8. Pin Descriptions (Si8065) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
9. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
10. Package Outline: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
11. Land Pattern: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
12. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
12.1. Top Marking (16-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
12.2. Top Marking Explanation (16-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Rev. 1.0  
3
Si80xx  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature*  
Supply Voltage  
Symbol  
Min  
–40  
Typ  
25  
Max  
125  
5.5  
Unit  
ºC  
V
T
A
V
3.15  
3.15  
DD1  
DD2  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Electrical Characteristics  
(VDD1 = 3.15 to 5.5 V, VDD2 = 3.15 to 5.5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Threshold  
VDDUV+  
V
, V  
rising  
2.65  
2.80  
3.05  
V
DD1  
DD2  
VDD Undervoltage  
Threshold  
VDDUV–  
V
, V  
falling  
2.2  
2.50  
270  
1.6  
2.75  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Threshold Hysteresis  
VDD  
HYS  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.9  
1.4  
Negative-Going  
Input Threshold  
All inputs falling  
1.2  
V
Input Hysteresis  
V
2.0  
0.40  
V
V
V
V
HYS  
High Level Input Voltage  
Low Level input voltage  
High Level Output Voltage  
V
IH  
V
0.8  
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
4.8  
OH  
DD1 DD2  
0.4  
Low Level Output Voltage  
Input Leakage Current  
V
0.2  
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
50  
2.0  
16  
O
Enable Input High Current  
Enable Input Low Current  
Supply Current (DC)  
I
V
= V  
IH  
µA  
µA  
ENH  
ENx  
I
V
= V  
IL  
ENL  
ENx  
V
V
V = 0, 1  
4.4  
7.5  
7.5  
10  
mA  
mA  
DD1  
DD2  
I
C = 15 pF  
L
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.0  
Si80xx  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.15 to 5.5 V, VDD2 = 3.15 to 5.5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Supply Current (10 Mbps)  
V
V
V = 5 MHz  
4.4  
9.4  
7.5  
12  
mA  
mA  
DD1  
DD2  
I
C = 15 pF  
L
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
40  
20  
10  
100  
65  
Mbps  
ns  
20  
t
, t  
See Figure 2  
See Figure 2  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
30  
ns  
|t  
– t  
|
PLH  
PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Output Rise Time  
t
20  
20  
30  
30  
ns  
ns  
ns  
PSK(P-P)  
t
PSK  
t
C = 15 pF  
See Figure 2  
r
L
2.5  
4.0  
Output Fall Time  
t
C = 15 pF  
See Figure 2  
ns  
f
L
2.5  
50  
4.0  
Common Mode  
CMTI  
V = V or 0 V  
35  
kV/µs  
I
DD  
Transient Immunity  
V
= 1500 V (see Figure 3)  
CM  
Enable to Data Valid  
t
t
See Figure 1  
10  
10  
40  
ns  
ns  
µs  
en1  
Enable to Data Tri-State  
See Figure 1  
en2  
3
Start-up Time  
t
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
ENABLE  
OUTPUTS  
ten1  
ten2  
Figure 1. ENABLE Timing Diagram  
Rev. 1.0  
5
Si80xx  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 2. Propagation Delay Timing  
3.15 to 5.5 V  
Supply  
Si80xx  
VDD1  
VDD2  
Input  
Signal  
Switch  
INPUT  
OUTPUT  
3.15 to 5.5 V  
Isolated Supply  
Oscilloscope  
GND1  
GND2  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 3. Common Mode Transient Immunity Test Circuit  
6
Rev. 1.0  
Si80xx  
Table 3. Thermal Characteristics  
Parameter  
Symbol  
QSOP-16  
Unit  
IC Junction-to-Air Thermal Resistance  
105  
ºC/W  
JA  
Table 4. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
Typ  
Max  
150  
125  
150  
7.0  
Unit  
ºC  
ºC  
°C  
V
2
Storage Temperature  
T
–65  
–40  
STG  
Ambient Temperature Under Bias  
Junction Temperature  
Supply Voltage  
T
A
T
J
V
, V  
–0.5  
–0.5  
–0.5  
DD1  
DD2  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
I
22  
mA  
V/ns  
ºC  
O
3
Latchup Immunity  
100  
260  
Lead Solder Temperature (10 s)  
Maximum Isolation (Input to Output) (1 sec)  
QSOP-16  
1500  
V
RMS  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. Latchup immunity specification is for slew rate applied across GND1 and GND2.  
Rev. 1.0  
7
Si80xx  
2. Functional Description  
2.1. Theory of Operation  
The Si80xx comprises a transmitter and a receiver separated by a semiconductor-based isolation barrier. The  
Si80xx uses a high-frequency internal oscillator on the transmitter to modulate digital input signals across the  
capacitive isolation barrier. On the receiver side, these signals are demodulated back to the corresponding digital  
output signals that are galvanically isolated from the input. This simple and elegant architecture provides a robust  
data path and requires no special considerations or initialization at start-up. A simplified block diagram for an  
Si80xx data channel is shown in Figure 4.  
Si80xx  
Transmitter  
Receiver  
Serializer  
High  
Demodulator  
Deserializer  
Frequency  
Oscillator  
Clock  
Recovery and  
Demodulator  
Output  
Latch  
Packet  
Decoder  
Input  
Latch  
Input  
Selector  
B
A
Modulator/  
Packet  
Encoder  
Figure 4. Simplified Channel Diagram  
The transmitter consists of an input stage that latches in data from up to six asynchronous channels, followed by a  
serializer stage where the data is compressed into serial data packets that are then coupled across the capacitive  
isolation barrier. The receiver consists of a demodulator block that converts the modulated signal back into serial  
data packets that are then deserialized and latched to the output.  
8
Rev. 1.0  
Si80xx  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 5, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Refer to Table 5 to determine outputs when  
power supply (VDD) is not present. Additionally, refer to Table 6 for logic conditions when enable pins are used.  
Table 5. Si80xx Logic Operation  
1,2  
V
EN  
VDDI  
VDDO  
Comments  
I
V Output  
O
1,2,3,4  
1,5,6  
1,5,6  
1,2  
Input  
State  
State  
Input  
H
L
H or NC  
H or NC  
L
P
P
P
P
P
P
H
L
Enabled, normal operation.  
7
8
X
P
Hi-Z  
Disabled.  
7
X
H or NC  
UP  
Upon transition of VDDI from unpowered to pow-  
ered, V returns to the same state as V after Start-  
9
L
9
O
I
H
up Time, t  
SU  
7
8
X
L
UP  
P
P
Hi-Z  
Disabled.  
7
7
X
X
UP  
Undetermined Upon transition of VDDO from unpowered to pow-  
ered, V returns to the same state as V after Start-  
O
I
up Time, t , if EN is in either the H or NC state.  
SU  
Upon transition of VDDO from unpowered to pow-  
ered, V returns to Hi-Z after Start-up Time, t , if  
O
SU  
EN is L.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN  
is the enable control input located on the same output side.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si80xx is  
operating in noisy environments.  
4. No Connects are not internally connected and can be left floating, tied to VDD, or tied to GND.  
5. “Powered” state (P) is defined as 3.15 V < VDD < 5.5 V.  
6. “Unpowered” state (UP) is defined as VDD = 0 V.  
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is  
disabled (EN = 0).  
9. See "9. Ordering Guide" on page 18 for details. This is the selectable fail-safe operating mode (ordering option). Some  
devices have default output state = H, and some have default output state = L, depending on the ordering part number  
(OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data  
channels have pull-downs on inputs/outputs.  
Rev. 1.0  
9
Si80xx  
Table 6. Enable Input Truth1  
Operation  
1,2  
P/N  
EN2  
H
Si8030  
Si8040  
Si8050  
Outputs B1, B2, B3, B4, B5, B6 are enabled and follow input state.  
3
L
Outputs B1, B2, B3, B4, B5, B6 are disabled and Logic Low or in high impedance state.  
Si8035  
Si8045  
Si8055  
Si8065  
Outputs B1, B2, B3, B4, B5, B6 are enabled and follow input state.  
Notes:  
1. Enable, EN, can be used for multiplexing, for clock sync, or other output control. EN is internally pulled-up to local VDD  
by a 16 µA current source allowing it to be connected to an external logic level (high or low) or left floating. To minimize  
noise coupling, do not connect circuit traces to EN if it is left floating. If EN is unused, it is recommended that it be  
connected to an external logic level, especially if the Si80xx is operating in a noisy environment.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is  
disabled (EN = 0).  
10  
Rev. 1.0  
Si80xx  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following  
this, the outputs follow the states of inputs.  
3.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own  
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A  
unconditionally enters UVLO when V  
falls below V  
and exits UVLO when V  
rises above  
DD1  
DD1(UVLO–)  
DD1  
V
. Side B operates the same as Side A with respect to its V  
supply. See Figure 5 for more details.  
DD1(UVLO+)  
DD2  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 5. Device Behavior during Normal Operation  
Rev. 1.0  
11  
Si80xx  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Refer to the end-system specification (61010-1, 60950-1,  
60601-1, etc.) requirements before starting any design that uses a digital isolator.  
3.3.1. Supply Bypass  
The Si80xx family requires a 0.1 µF bypass capacitor between V  
and GND1 and V  
and GND2. The  
DD2  
DD1  
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user  
may also include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy.  
3.3.2. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3.4. Fail-Safe Operating Mode  
Si80xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is not powered) can either be a logic high or logic low when the output supply is powered. See Table 5 on  
page 9 and "9. Ordering Guide" on page 18 for more information.  
12  
Rev. 1.0  
Si80xx  
4. Pin Descriptions (Si8030/35)  
VDD1  
VDD2  
GND2  
B1  
GND1  
I
s
o
l
RF  
XMITR  
RF  
RCVR  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
B2  
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
A3  
NC  
B3  
NC  
EN2/NC  
GND2  
NC  
GND1  
Si8030/35  
Name  
Pin#  
1
Type  
Description  
V
Supply  
Ground  
Digital Input  
Digital Input  
Digital Input  
NA  
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
2
3
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
No Connect.  
A2  
4
A3  
5
NC*  
6
NC*  
7
NA  
No Connect.  
GND1  
GND2  
EN2/NC*  
NC*  
8
Ground  
Ground  
Digital Input  
NA  
Side 1 ground.  
9
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Side 2 active high enable on Si8030. NC on Si8035.  
No Connect.  
B3  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B2  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
Rev. 1.0  
13  
Si80xx  
5. Pin Descriptions (Si8040/45)  
VDD1  
VDD2  
GND2  
B1  
GND1  
I
s
o
l
RF  
XMITR  
RF  
RCVR  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
B2  
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
A3  
A4  
B3  
RF  
XMITR  
RF  
RCVR  
B4  
EN2/NC  
GND2  
NC  
GND1  
Si8040/45  
Name  
Pin#  
1
Type  
Supply  
Description  
V
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
2
Ground  
3
Digital Input  
Digital Input  
Digital Input  
Digital Input  
NA  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
No Connect.  
A2  
4
A3  
5
A4  
6
NC*  
GND1  
GND2  
EN2/NC*  
B4  
7
8
Ground  
Side 1 ground.  
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Side 2 active high enable on Si8040. NC on Si8045.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B3  
B2  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
14  
Rev. 1.0  
Si80xx  
6. Pin Descriptions (Si8050)  
VDD1  
VDD2  
B1  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
I
s
o
l
RF  
XMITR  
RF  
RCVR  
B2  
RF  
XMITR  
RF  
RCVR  
B3  
A3  
a
t
RF  
XMITR  
RF  
RCVR  
A4  
B4  
i
o
n
RF  
XMITR  
RF  
RCVR  
A5  
B5  
EN2  
NC  
GND2  
GND1  
Si8050  
Name  
Pin#  
1
Type  
Description  
V
Supply  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
NA  
Side 1 power supply.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
No connect.  
DD1  
A1  
A2  
2
3
A3  
4
A4  
5
A5  
6
NC*  
GND1  
GND2  
EN2  
B5  
7
8
Ground  
Side 1 ground.  
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Side 2 active high enable on Si8050.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B4  
B3  
B2  
B1  
V
Supply  
Side 2 power supply.  
DD2  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
Rev. 1.0  
15  
Si80xx  
7. Pin Descriptions (Si8055)  
VDD1  
VDD2  
GND2  
B1  
GND1  
A1  
I
s
o
l
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
A2  
B2  
a
t
i
o
n
RF  
XMITR  
RF  
RCVR  
B3  
A3  
A4  
RF  
XMITR  
RF  
RCVR  
B4  
RF  
RCVR  
RF  
XMITR  
A5  
B5  
GND2  
GND1  
Si8055  
Name  
Pin#  
1
Type  
Description  
V
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
2
3
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Ground  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 ground.  
A2  
4
A3  
5
A4  
6
A5  
7
GND1  
GND2  
B5  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B4  
B3  
B2  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
16  
Rev. 1.0  
Si80xx  
8. Pin Descriptions (Si8065)  
VDD1  
VDD2  
B1  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
I
s
o
l
RF  
XMITR  
RF  
RCVR  
B2  
RF  
XMITR  
RF  
RCVR  
B3  
A3  
a
t
RF  
XMITR  
RF  
RCVR  
A4  
B4  
i
o
n
RF  
XMITR  
RF  
RCVR  
A5  
B5  
RF  
XMITR  
RF  
B6  
A6  
RCVR  
GND2  
GND1  
Si8065  
Name  
Pin#  
1
Type  
Description  
V
Supply  
Side 1 power supply.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 ground.  
DD1  
A1  
A2  
2
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Ground  
3
A3  
4
A4  
5
A5  
6
A6  
7
GND1  
GND2  
B6  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B5  
B4  
B3  
B2  
B1  
V
Supply  
Side 2 power supply.  
DD2  
Rev. 1.0  
17  
Si80xx  
9. Ordering Guide  
Table 7. Ordering Guide for Valid OPNs1,2,3  
Ordering Part  
Number (OPN)  
Number of  
Inputs/Outputs  
DefaultOutput  
State  
Output  
Enable  
Yes/No  
Isolation  
Rating  
(kVrms)  
Package  
Si803x  
Si8030AA-B-IU  
Si8030CA-B-IU  
Si8035AA-B-IU  
Si8035CA-B-IU  
3
3
3
3
Low  
High  
Low  
High  
Yes  
Yes  
No  
1
1
1
1
QSOP-16  
QSOP-16  
QSOP-16  
QSOP-16  
No  
Si804x  
Si8040AA-B-IU  
Si8040CA-B-IU  
Si8045AA-B-IU  
Si8045CA-B-IU  
4
4
4
4
Low  
High  
Low  
High  
Yes  
Yes  
No  
1
1
1
1
QSOP-16  
QSOP-16  
QSOP-16  
QSOP-16  
No  
Si805x  
Si8050AA-B-IU  
Si8050CA-B-IU  
Si8055AA-B-IU  
Si8055CA-B-IU  
5
5
5
5
Low  
High  
Low  
High  
Yes  
Yes  
No  
1
1
1
1
QSOP-16  
QSOP-16  
QSOP-16  
QSOP-16  
No  
Si806x  
Si8065AA-B-IU  
Si8065CA-B-IU  
6
6
Low  
No  
No  
1
1
QSOP-16  
QSOP-16  
High  
Notes:  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
Moisture sensitivity level is MSL3 for QSOP-16 packages.  
2. All devices >1 kVRMS are AEC-Q100 qualified.  
3. “Si” and “SI” are used interchangeably.  
18  
Rev. 1.0  
Si80xx  
10. Package Outline: 16-Pin QSOP  
Figure 6 illustrates the package details for the Si80xx in a 16-pin QSOP package. Table 8 lists the values for the  
dimensions shown in the illustration.  
Figure 6. 16-pin QSOP Package  
Rev. 1.0  
19  
Si80xx  
Table 8. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.20  
0.17  
0.30  
0.25  
c
D
4.89 BSC  
6.00 BSC  
3.90 BSC  
0.635 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AB.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
20  
Rev. 1.0  
Si80xx  
11. Land Pattern: 16-Pin QSOP  
Figure 7 illustrates the recommended land pattern details for the Si80xx in a 16-pin QSOP package. Table 9 lists  
the values for the dimensions shown in the illustration.  
Figure 7. 16-Pin QSOP PCB Land Pattern  
Table 9. 16-Pin QSOP Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
C1  
E
0.635  
0.40  
X1  
Y1  
Pad Length  
1.55  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOP63P602X173-16N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.0  
21  
Si80xx  
12. Top Markings  
12.1. Top Marking (16-Pin QSOP)  
80XYSV  
RTTTTT  
YYWW  
12.2. Top Marking Explanation (16-Pin QSOP)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
80 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (6, 5, 4, 3)  
Y = # of reverse channels (0)*  
S = operating mode:  
(See Ordering Guide for more  
information).  
A = default output = low  
C = default output = high  
V = Insulation rating  
A = 1 kV  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
*Note: Si8035/45/55/65 have 0 reverse channels.  
22  
Rev. 1.0  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY