SI8244BB-D-IS1R [SILICON]

Audio Amplifier, SOIC-16;
SI8244BB-D-IS1R
型号: SI8244BB-D-IS1R
厂家: SILICON    SILICON
描述:

Audio Amplifier, SOIC-16

放大器 商用集成电路
文件: 总30页 (文件大小:1557K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si824x  
CLASS D AUDIO DRIVER WITH PRECISION DEAD-TIME GENERATOR  
Features  
Input to output isolation for low noise  
(up to 2500 V)  
Up to 8 MHz operation  
Wide operating range  
–40 to +125 °C  
Transient immunity >45 kV/µs  
RoHS-compliant  
SOIC-16 narrow body  
0.5 A peak output (Si8241)  
4.0 A peak output (Si8244)  
PWM input  
High-precision linear programmable  
dead-time generator  
0.4 ns to 1 µs  
High latchup immunity >100 V/ns  
Up to 1500 Vrms output-output  
isolation, supply voltage of ±750 V  
Applications  
Ordering Information:  
Class D audio amplifiers  
See page 25.  
Description  
Pin Assignments  
The Si824x isolated driver family combines two isolated drivers in a single  
package. The Si8241/44 are high-side/low-side drivers specifically targeted at  
high-power (>30 W) audio applications. Versions with peak output currents of  
0.5 A (Si8241) and 4.0 A (Si8244) are available. All drivers operate with a  
maximum supply voltage of 24 V.  
SOIC-16 (Narrow)  
1
16  
15  
14  
13  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
Based on Silicon Labs' proprietary isolation technology, the Si824x audio drivers  
incorporate input-to-output and output-to-output isolation, which enables level-  
translation of signals without additional external circuits as well as use of bipolar  
supply voltage up to ±750 V. The Si824x audio drivers feature an integrated dead-  
time generator that provides highly precise control for achieving optimal THD.  
These products also have overlap protection that safeguards against shoot-  
through current damage. The CMOS-based design also provides robust immunity  
from latch-up and high-voltage transients. The extremely low propagation delays  
enable faster modulation frequencies for an enhanced audio experience. The TTL  
level compatible inputs with >400 mV hysteresis are available in PWM input  
configuration; other options include UVLO levels of 8 V or 10 V. These products  
are available in narrow body SOIC packages.  
2
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
Si8241/44  
12  
11  
10  
9
NC  
VDDB  
VOB  
GNDB  
NC  
VDDI  
Functional Block Diagram  
Patents Pending  
PWM  
VDDA  
VOA  
DT  
GNDA  
Programmable Dead  
Time, Control Gating  
VDDI  
UVLO  
VDDB  
DISABLE  
GNDI  
VOB  
GNDB  
Si8241/44  
Rev. 1.0 4/14  
Copyright © 2014 by Silicon Laboratories  
Si824x  
Si824x  
2
Rev. 1.0  
Si824x  
TABLE OF CONTENTS  
Section  
Page  
1. Top-Level Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
2.1. Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.1. Typical Performance Characteristics (0.5 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.2. Typical Performance Characteristics (4.0 Amp) . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.3. Family Overview and Logic Operation During Startup . . . . . . . . . . . . . . . . . . . . . . .17  
3.4. Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.5. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.7. Undervoltage Lockout Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3.8. Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . . . . . . . . . .22  
4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1. Class D Digital Audio Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
7. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
9. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
9.1. Si824x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
9.2. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .28  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Rev. 1.0  
3
Si824x  
1. Top-Level Block Diagram  
VDDI  
VDDA  
PWM  
LPWM  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
DISABLE  
GNDB  
LPWM  
GNDI  
Si8241/44  
Figure 1. Si8241/44 Single-Input High-Side/Low-Side Isolated Drivers  
4
Rev. 1.0  
Si824x  
2. Electrical Specifications  
Table 1. Electrical Characteristics1  
4.5 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max Units  
DC Specifications  
Input-Side Power Supply  
Voltage  
VDDI  
4.5  
6.5  
5.5  
24  
V
V
Voltage between VDDA and  
VDDA, VDDB GNDA, and VDDB and GNDB  
(See “6. Ordering Guide” )  
Driver Supply Voltage  
Input Supply Quiescent  
Current  
IDDI(Q)  
Si8241/44  
2
3
mA  
mA  
IDDA(Q),  
IDDB(Q)  
Output Supply Quiescent  
Current  
Current per channel  
3.0  
IDDI  
IDDO  
IPWM  
IDISABLE  
VIH  
PWM freq = 500 kHz  
PWM freq = 500 kHz  
2.5  
3.6  
mA  
mA  
µA dc  
µA dc  
V
Input Supply Active Current  
Output Supply Active Current  
Input Pin Leakage Current  
Input Pin Leakage Current  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
–10  
–10  
2.0  
+10  
+10  
VIL  
0.8  
V
VIHYST  
400  
450  
mV  
(VDDA  
/VDDB)  
— 0.04  
VOAH,  
VOBH  
IOA, IOB = –1 mA  
V
Logic High Output Voltage  
Logic Low Output Voltage  
VOAL, VOBL  
IOA, IOB = 1 mA  
Si8241, Figure 2  
Si8244, Figure 2  
Si8241, Figure 3  
Si8244, Figure 3  
Si8241  
0.5  
4.0  
0.25  
2.0  
5.0  
1.0  
15  
0.04  
V
A
A
A
A
IOA(SCL),  
IOB(SCL)  
Output Short-Circuit Pulsed  
Sink Current  
IOA(SCH),  
IOB(SCH)  
Output Short-Circuit Pulsed  
Source Current  
RON(SINK)  
Output Sink Resistance  
Si8244  
Si8241  
RON(SOURCE)  
Output Source Resistance  
Si8244  
2.7  
Notes:  
1. VDDA = VDDB = 12 V for 8 V UVLO and 10 V UVLO devices.  
2. The largest RDT resistor that can be used is 220 k.  
Rev. 1.0  
5
 
 
 
Si824x  
Table 1. Electrical Characteristics1 (Continued)  
4.5 V < VDDI < 5.5 V, VDDA = VDDB = 12 V or 15 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
VDDIUV+  
VDDIUV–  
VDDIHYS  
VDDAUV+  
Test Conditions  
VDDI rising  
Min  
3.60  
3.30  
Typ  
4.0  
Max Units  
4.45  
4.15  
V
V
VDDI Undervoltage Threshold  
VDDI Undervoltage Threshold  
VDDI Lockout Hysteresis  
VDDI falling  
3.70  
250  
mV  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB rising  
VDDBUV+  
See Figure 35 on page 21.  
See Figure 36 on page 21.  
7.50  
9.60  
8.60  
11.1  
9.40  
12.2  
V
V
8 V Threshold  
10 V Threshold  
VDDAUV–  
VDDBUV–  
,
VDDA, VDDB Undervoltage  
Threshold  
VDDA, VDDB falling  
See Figure 35 on page 21.  
See Figure 36 on page 21.  
7.20  
9.40  
8.10  
10.1  
8.70  
10.9  
V
V
8 V Threshold  
10 V Threshold  
VDDAHYS  
VDDBHYS  
,
VDDA, VDDB  
Lockout Hysteresis  
UVLO voltage = 8 V  
UVLO voltage = 10 V  
600  
mV  
mV  
VDDAHYS  
VDDBHYS  
,
VDDA, VDDB  
Lockout Hysteresis  
1000  
AC Specifications  
Minimum Pulse Width  
10  
25  
60  
ns  
ns  
ns  
t
PHL, tPLH  
PWD  
CL = 1 nF  
Propagation Delay  
Pulse Width Distortion  
1.0  
5.60  
|t  
- t  
|
PLH PHL  
Programmed Dead Time2  
DT  
See Figures 37 and 38  
CL = 1 nF (Si8241)  
CL = 1 nF (Si8244)  
0.4  
1000  
20  
ns  
ns  
ns  
tR,tF  
Output Rise and Fall Time  
12  
Shutdown Time from  
Disable True  
tSD  
5
60  
60  
7
ns  
ns  
µs  
Restart Time from  
Disable False  
tRESTART  
tSTART  
CMTI  
Time from VDD_ = VDD_UV+  
to VOA, VOB = VIA, VIB  
Device Start-up Time  
VIA, VIB, PWM = VDDI or 0 V  
VCM = 1500 V (see Figure 4)  
Common Mode  
Transient Immunity  
25  
45  
kV/µs  
Notes:  
1. VDDA = VDDB = 12 V for 8 V UVLO and 10 V UVLO devices.  
2. The largest RDT resistor that can be used is 220 k.  
6
Rev. 1.0  
Si824x  
2.1. Test Circuits  
Figures 2 and 3 depict sink current and source current test circuits.  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si824x  
INPUT  
SCHOTTKY  
+
8 V  
VSS  
100 µF  
_
1 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
50 ns  
RSNS  
0.1  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 2. IOL Sink Current Test Circuit  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si824x  
INPUT  
SCHOTTKY  
1 µF  
+
5.5 V  
VSS  
100 µF  
_
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 3. IOH Source Current Test Circuit  
Rev. 1.0  
7
 
 
Si824x  
12 V  
Supply  
Si824x  
VDDA  
VDDI  
Input Signal  
Switch  
INPUT  
VOA  
5V  
DISABLE GNDA  
Isolated  
Supply  
DT  
VDDB  
VOB  
Oscilloscope  
100k  
GNDI  
GNDB  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 4. Common Mode Transient Immunity Test Circuit  
Table 2. Regulatory Information*  
CSA  
The Si824x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 300 V  
60950-1: Up to 300 V  
VDE  
reinforced insulation working voltage; up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
basic insulation working voltage.  
RMS  
RMS  
RMS  
RMS  
The Si824x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 560 V  
for basic insulation working voltage.  
peak  
UL  
The Si824x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 2500 V isolation voltage for basic protection.  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices, which are production tested to 3.0 kVRMS for 1 sec.  
For more information, see "6.Ordering Guide" on page 25.  
8
Rev. 1.0  
 
 
Si824x  
Table 3. Insulation and Safety-Related Specifications  
Value  
Parameter  
Symbol  
Test Condition  
Unit  
NBSOIC-16  
2.5 kV  
RMS  
Nominal Air Gap  
(Clearance)  
L(1O1)  
L(1O2)  
4.01  
4.01  
mm  
mm  
mm  
1
1
Nominal External Tracking (Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
0.011  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
V
mm  
0.019  
Erosion Depth  
Resistance  
12  
R
10  
IO  
2
(Input-Output)  
Capacitance  
(Input-Output)  
C
1.4  
4.0  
pF  
pF  
IO  
2
3
C
Input Capacitance  
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “7. Package Outline:  
16-Pin Narrow Body SOIC” . VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB SOIC-16.  
UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the clearance  
and creepage limits as 3.9 mm minimum for the NB SOIC 16.  
2. To determine resistance and capacitance, the Si824x is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 4. IEC 60664-1 (VDE 0884 Part 2) Ratings  
Specification  
Parameter  
Test Conditions  
NB SOIC-16  
Basic Isolation Group  
Material Group  
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Rev. 1.0  
9
 
 
 
Si824x  
Table 5. IEC 60747-5-2 Insulation Characteristics*  
Characteristic  
NB SOIC-16  
560  
Parameter  
Symbol  
Test Condition  
Unit  
V
V peak  
Maximum Working Insulation Voltage  
IORM  
Method b1  
(V  
x 1.875 = V  
100%  
,
PR  
IORM  
V
1050  
V peak  
V peak  
Input to Output Test Voltage  
Transient Overvoltage  
PR  
Production Test, t = 1 sec,  
Partial Discharge < 5 pC)  
m
V
t = 60 sec  
4000  
2
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at T ,  
9
S
R
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si824x provides a climate classification of  
40/125/21.  
Table 6. IEC Safety Limiting Values1  
Symbol  
Test Condition  
NB SOIC-16  
Unit  
Parameter  
TS  
150  
°C  
Case Temperature  
JA = 105 °C/W (NB SOIC-16),  
VDDI = 5.5 V,  
IS  
50  
mA  
W
Safety Input Current  
VDDA = VDDB= 24 V,  
TJ = 150 °C, TA = 25 °C  
Device Power Dissipation2  
PD  
1.2  
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 5.  
2. The Si82xx is tested with VDDI = 5.5 V, VDDA = VDDB = 24 V, TJ = 150 ºC, CL = 100 pF, input 2 MHz 50% duty cycle  
square wave.  
10  
Rev. 1.0  
 
 
Si824x  
Table 7. Thermal Characteristics  
Parameter  
NB  
SOIC-16  
Symbol  
Unit  
IC Junction-to-Air  
Thermal Resistance  
105  
°C/W  
JA  
60  
50  
40  
30  
20  
10  
VDDI = 5.5 V  
VDDA, VDDB = 24 V  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 5. NB SOIC-16, Thermal Derating Curve, Dependence of Safety Limiting Values with Case  
Temperature per DIN EN 60747-5-2  
Table 8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.6  
–0.6  
–0.5  
Typ  
Max  
+150  
+125  
6.0  
Units  
°C  
2
Storage Temperature  
T
STG  
Ambient Temperature under Bias  
Input-side Supply Voltage  
T
°C  
A
VDDI  
VDDA, VDDB  
VIN  
V
Driver-side Supply Voltage  
30  
V
Voltage on any Pin with respect to Ground  
Output Drive Current per Channel  
Lead Solder Temperature (10 sec)  
VDD + 0.5  
10  
V
I
mA  
°C  
O
260  
3
Latchup Immunity  
100  
V/ns  
Maximum Isolation (Input to Output)  
Maximum Isolation (Output to Output)  
Notes:  
2500  
1500  
V
V
RMS  
RMS  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. Latchup immunity specification is for slew rate applied across GNDI and GNDA or GNDB.  
Rev. 1.0  
11  
 
 
 
 
 
Si824x  
3. Functional Description  
The operation of an Si824x channel is analogous to that of an opto coupler and gate driver, except an RF carrier is  
modulated instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si824x channel is shown in  
Figure 6.  
Transmitter  
Receiver  
Driver  
VDD  
RF Oscillator  
Modulator  
Semiconductor-  
Based Isolation  
Barrier  
Dead  
Time  
Generator  
B
Demodulator  
A
0.5 to 4 A  
peak  
Gnd  
Figure 6. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 7 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 7. Modulation Scheme  
12  
Rev. 1.0  
 
 
Si824x  
3.1. Typical Performance Characteristics (0.5 Amp)  
The typical performance characteristics depicted in Figures 8 through 19 are for information purposes only. Refer  
to Table 1 on page 5 for actual specification limits.  
10  
7
Duty Cycle = 50%  
CL = 100 pF  
1 Channel Switching  
8
6
4
2
0
1MHz  
500kHz  
100kHz  
6
5
4
3
2
1
0
Tfall  
Trise  
50 kHz  
VDD=12V, 25°C  
CL = 100 pF  
9
14  
19  
24  
VDDA Supply Voltage (V)  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 11. Supply Current vs. Supply Voltage  
Figure 8. Rise/Fall Time vs. Supply Voltage  
30  
25  
5
4
H-L  
3
20  
VDDA = 15V,  
f = 250kHz, CL = 0 pF  
2
1
Duty Cycle = 50%  
2 Channels Switching  
L-H  
15  
VDD=12V, 25°C  
CL = 100 pF  
-50  
0
50  
Temperature (°C)  
100  
10  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Figure 12. Supply Current vs. Temperature  
Figure 9. Propagation Delay vs. Supply Voltage  
40  
35  
4
Trise  
Duty Cycle = 50%  
30  
CL = 0 pF  
3.5  
3
1 Channel Switching  
25  
1MHz  
20  
15  
10  
5
Tfall  
500kHz  
100kHz  
50 kHz  
2.5  
2
1.5  
1
VDD=12V, 25°C  
0
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 13. Rise/Fall Time vs. Load  
Figure 10. Supply Current vs. Supply Voltage  
Rev. 1.0  
13  
 
Si824x  
4
3.75  
3.5  
3.25  
3
50  
45  
40  
35  
30  
25  
20  
15  
L-H  
H-L  
2.75  
2.5  
2.25  
2
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
0.0  
0.5  
1.0  
Load (nF)  
1.5  
2.0  
10  
15  
20  
25  
Supply Voltage (V)  
Figure 14. Propagation Delay vs. Load  
Figure 17. Output Source Current vs. Supply  
Voltage  
30  
7
6.75  
6.5  
25  
20  
15  
10  
L-H  
6.25  
6
5.75  
5.5  
H-L  
5.25  
5
4.75  
4.5  
VDD=12V, Load = 200pF  
4.25  
VDD=12V, Vout=5V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
4
-40  
-10  
20  
50  
80  
110  
Temperature (°C)  
Temperature (°C)  
Figure 15. Propagation Delay vs. Temperature  
Figure 18. Output Sink Current vs. Temperature  
9
8
7
6
5
3.5  
3.25  
3
2.75  
2.5  
VDD=12V, Vout=5V  
2.25  
4
VDD=12V, Vout=VDD-5V  
10  
12  
14  
16  
18  
20  
22  
24  
2
-40  
-10  
20  
50  
80  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 16. Output Sink Current vs. Supply  
Voltage  
Figure 19. Output Source Current vs.  
Temperature  
14  
Rev. 1.0  
Si824x  
3.2. Typical Performance Characteristics (4.0 Amp)  
The typical performance characteristics depicted in Figures 20 through 31 are for information purposes only. Refer  
to Table 1 on page 5 for actual specification limits.  
10  
14  
12  
10  
8
Duty Cycle = 50%  
CL = 100 pF  
1 Channel Switching  
1MHz  
8
6
4
2
0
Tfall  
500kHz  
6
Trise  
100kHz  
50 kHz  
4
2
0
9
14  
19  
24  
VDD=12V, 25°C  
CL = 100 pF  
VDDA Supply Voltage (V)  
Figure 23. Supply Current vs. Supply Voltage  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
10  
8
Figure 20. Rise/Fall Time vs. Supply Voltage  
30  
6
VDDA = 15V,  
4
2
0
f = 250kHz, CL = 0 pF  
Duty Cycle = 50%  
2 Channels Switching  
25  
L-H  
20  
-50  
0
50  
Temperature (°C)  
100  
H-L  
15  
Figure 24. Supply Current vs. Temperature  
VDD=12V, 25°C  
CL = 100 pF  
10  
40  
35  
9
12  
15  
18  
21  
24  
VDDA Supply (V)  
Trise  
30  
Figure 21. Propagation Delay vs. Supply  
Voltage  
25  
20  
15  
10  
5
Tfall  
14  
12  
10  
8
Duty Cycle = 50%  
CL = 0 pF  
1 Channel Switching  
1MHz  
VDD=12V, 25°C  
0
500kHz  
0
1
2
3
4
5
6
7
8
9
10  
6
Load (nF)  
4
100kHz  
50 kHz  
2
Figure 25. Rise/Fall Time vs. Load  
0
9
14  
19  
24  
VDDA Supply Voltage (V)  
Figure 22. Supply Current vs. Supply Voltage  
Rev. 1.0  
15  
 
Si824x  
4
3.75  
3.5  
3.25  
3
50  
45  
40  
35  
30  
25  
20  
15  
10  
H-L  
L-H  
2.75  
2.5  
2.25  
2
VDD=12V, Vout=VDD-5V  
VDD=12V, 25°C  
10  
15  
20  
25  
0
1
2
3
4
5
6
7
8
9
10  
Supply Voltage (V)  
Load (nF)  
Figure 29. Output Source Current vs. Supply  
Voltage  
Figure 26. Propagation Delay vs. Load  
30  
7
6.75  
6.5  
H-L  
25  
20  
15  
10  
6.25  
6
L-H  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
VDD=12V, Load = 200pF  
VDD=12V, Vout=5V  
4
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-10  
20  
50  
80  
110  
Temperature (°C)  
Temperature (°C)  
Figure 30. Output Sink Current vs. Temperature  
Figure 27. Propagation Delay vs. Temperature  
3.5  
3.25  
3
9
8
7
6
5
2.75  
2.5  
2.25  
VDD=12V, Vout=5V  
VDD=12V, Vout=VDD-5V  
4
2
10  
12  
14  
16  
18  
20  
22  
24  
-40  
-10  
20  
50  
80  
110  
Supply Voltage (V)  
Temperature (°C)  
Figure 28. Output Sink Current vs. Supply  
Voltage  
Figure 31. Output Source Current vs.  
Temperature  
16  
Rev. 1.0  
Si824x  
3.3. Family Overview and Logic Operation During Startup  
The Si824x family of isolated drivers consists of high-side, low-side, and dual driver configurations.  
3.3.1. Products  
Table 9 shows the configuration and functional overview for each product in this family.  
Table 9. Si824x Family Overview  
Part Number  
Configuration  
UVLO Voltage  
Programmable  
Dead Time  
Inputs  
Peak Output  
Current (A)  
Si8241  
Si8244  
High-Side/Low-Side  
High-Side/Low-Side  
8 V/10 V  
8 V/10 V  
PWM  
PWM  
0.5  
4.0  
3.3.2. Device Behavior  
Table 10 contains truth tables for the Si8241/4 families.  
Table 10. Si824x Family Truth Table*  
Si8241/4 (PWM Input High-Side/Low-Side) Truth Table  
Output  
PWM Input  
VDDI State Disable  
Notes  
VOA  
VOB  
Output transition occurs after internal dead time  
expires.  
H
L
Powered  
Powered  
L
L
H
L
Output transition occurs after internal dead time  
expires.  
L
H
Output returns to input state within 7 µs of VDDI  
power restoration.  
X
X
Unpowered  
Powered  
X
H
L
L
L
L
Device is disabled.  
*Note: This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see  
"3.7.2.Undervoltage Lockout" on page 20 for more information.  
Rev. 1.0  
17  
 
 
Si824x  
3.4. Power Supply Connections  
Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these  
supplies must be placed as close to the VDD and GND pins of the Si824x as possible. The optimum values for  
these capacitors depend on load current and the distance between the chip and the regulator that powers it. Low  
effective series resistance (ESR) capacitors, such as Tantalum, are recommended.  
3.5. Power Dissipation Considerations  
Proper system design must assure that the Si824x operates within safe thermal limits across the entire load range.  
The Si824x total power dissipation is the sum of the power dissipated by bias supply current, internal switching  
losses, and power delivered to the load. Equation 1 shows total Si824x power dissipation. In a non-overlapping  
system, such as a high-side/low-side driver, n = 1.  
PD = V  
I
DDI DDI + 2V I  
DDO QOUT + CintVDDO2F+ 2nCLVDDO2F  
where:  
PD is the total Si824x device power dissipation (W)  
IDDI is the input-side maximum bias current (3 mA)  
IQOUT is the driver die maximum bias current (2.5 mA)  
Cint is the internal parasitic capacitance (75 pF for the 0.5 A driver and 370 pF for the 4.0 A driver)  
VDDI is the input-side VDD supply voltage (4.5 to 5.5 V)  
VDDO is the driver-side supply voltage (10 to 24 V)  
F is the switching frequency (Hz)  
n is the overlap constant (max value = 2)  
Equation 1.  
The maximum power dissipation allowable for the Si824x is a function of the package thermal resistance, ambient  
temperature, and maximum allowable junction temperature, as shown in Equation 2:  
T
jmax TA  
---------------------------  
PDmax  
where:  
ja  
PDmax = Maximum Si824x power dissipation (W)  
Tjmax = Si824x maximum junction temperature (150 °C)  
TA = Ambient temperature (°C)  
ja = Si824x junction-to-air thermal resistance (105 °C/W)  
F = Si824x switching frequency (Hz)  
Equation 2.  
Substituting values for P  
T
, T , and into Equation 2 results in a maximum allowable total power  
Dmax jmax A ja  
dissipation of 1.19 W. Maximum allowable load is found by substituting this limit and the appropriate datasheet  
values from Table 1 on page 5 into Equation 1 and simplifying. The result is Equation 3 (0.5 A driver) and  
Equation 4 (4.0 A driver), both of which assume VDDI = 5 V and VDDA = VDDB = 18 V.  
1.4 103  
11  
CL(MAX) = -------------------------- 7.5 10  
F
Equation 3.  
1.4 103  
10  
CL(MAX) = -------------------------- 3.7 10  
F
Equation 4.  
18  
Rev. 1.0  
 
 
 
 
Si824x  
Equation 1 and Equation 2 are graphed in Figure 32 where the points along the load line represent the package  
dissipation-limited value of CL for the corresponding switching frequency.  
1 6 ,0 0 0  
0 .5 A D rive r (p F )  
1 4 ,0 0 0  
4 A D rive r (p F )  
1 2 ,0 0 0  
1 0 ,0 0 0  
8 ,0 0 0  
T = 25 °C  
a
6 ,0 0 0  
4 ,0 0 0  
2 ,0 0 0  
0
F re q u e n c y (K h z)  
Figure 32. Max Load vs. Switching Frequency  
20  
15  
10  
5
CL = 1000pF  
CL = 500pF  
CL = 200pF  
VDD=15V, 25°C  
0
0
200  
400  
600  
800  
1000  
Switching Frequency (kHz)  
Figure 33. Switching Frequency vs. Load Current  
Rev. 1.0  
19  
 
Si824x  
3.6. Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si824x VDD lines. Care must be taken to  
minimize parasitic inductance in these paths by locating the Si824x as close to the device it is driving as possible.  
In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and  
ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for  
power devices and small signal components provides the best overall noise performance.  
3.7. Undervoltage Lockout Operation  
Device behavior during start-up, normal operation and shutdown is shown in Figure 34, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Note that outputs VOA and VOB default low  
when input side power supply (VDDI) is not present.  
3.7.1. Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period  
tSTART. Following this, the outputs follow the states of inputs VIA and VIB.  
3.7.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. The input (control) side, Driver A and Driver B, each have  
their own undervoltage lockout monitors.  
The Si824x input side enters UVLO when VDDI < VDDI  
, and exits UVLO when VDDI > VDDI  
. The driver  
UV+  
UV–  
outputs, VOA and VOB, remain low when the input side of the Si824x is in UVLO and their respective VDD supply  
(VDDA, VDDB) is within tolerance. Each driver output can enter or exit UVLO independently. For example, VOA  
unconditionally enters UVLO when VDDA falls below VDDA  
and exits UVLO when VDDA rises above  
UV–  
VDDA  
.
UV+  
UVLO+  
VDDHYS  
UVLO-  
VDDI  
UVLO+  
UVLO-  
VDDHYS  
VDDA  
PWM  
DISABLE  
tSD  
tRESTART  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
VOA  
Figure 34. Device Behavior during Normal Operation and Shutdown  
20  
Rev. 1.0  
 
Si824x  
3.7.3. Undervoltage Lockout (UVLO)  
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Referring to Figures 35  
and 36, upon power up, the Si824x is maintained in UVLO until VDD rises above VDD . During power down, the  
UV+  
Si824x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDD  
– VDD  
).  
UV+  
HYS  
VDDUV+ (Typ)  
VDDUV+ (Typ)  
8.5  
9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5  
6.0  
6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0  
Supply Voltage (VDD - VSS) (V)  
Supply Voltage (VDD - VSS) (V)  
Figure 36. Si824x UVLO Response (10 V)  
Figure 35. Si824x UVLO Response (8 V)  
3.7.4. Control Inputs  
PWM inputs are high-true, TTL level-compatible logic inputs. VOA is high and VOB is low when the PWM input is  
high, and VOA is low and VOB is high when the PWM input is low.  
3.7.5. Disable Input  
When brought high, the DISABLE input unconditionally drives VOA and VOB low regardless of the states of input.  
Device operation terminates within tSD after DISABLE = V and resumes within tRESTART after DISABLE = V .  
IH  
IL  
The DISABLE input has no effect if VDDI is below its UVLO level (i.e. VOA, VOB remain low). The DISABLE input  
is typically connected to external protection circuitry to unconditionally halt driver operation in the event of a fault.  
Rev. 1.0  
21  
 
 
Si824x  
3.8. Programmable Dead Time and Overlap Protection  
All high-side/low-side drivers (Si8241/4) include programmable overlap protection to prevent outputs VOA and  
VOB from being high at the same time. These devices also include programmable dead time, which adds a user-  
programmable delay between transitions of VOA and VOB. When enabled, dead time is present on all transitions,  
even after overlap recovery. The amount of dead time delay (DT) is programmed by a single resistor (RDT)  
connected from the DT input to ground per Equation 5. Minimum dead time (approximately 400 ps) can be  
achieved by connecting the DT pin to VDDI. Note that dead time accuracy is limited by the resistor’s (R  
)
DT  
tolerance and temperature coefficient. See Figures 37 and 38 for additional information about dead time operation.  
DT 10 RDT  
where:  
DT= dead time (ns)  
and  
RDT= dead time programming resistor (k  
Equation 5.  
1000  
100  
900  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RDT = 10k  
RDT = 6k  
800  
700  
600  
500  
400  
300  
200  
100  
0
RDT = 5k  
RDT = 4k  
RDT = 3k  
RDT = 2k  
RDT = 1k  
RDT = 0  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100 120  
Dead-time Resistance (k)  
Temperature (°C)  
Figure 37. Dead Time vs.Resistance (RDT)  
Figure 38. Dead Time vs.Temperature  
22  
Rev. 1.0  
 
 
 
 
Si824x  
4. Applications  
The following examples illustrate typical circuit configurations using the Si824x.  
4.1. Class D Digital Audio Driver  
Figures 39 and 40 show the Si8241/4 controlled by a single PWM signal. Supply can be unipolar (0 to 1500 V) or  
bipolar (± 750 V).  
D1  
VDD2  
C2  
VDDI  
1 µF  
VDDI  
C1  
1uF  
1500 V max  
VDDA  
GNDI  
PWM  
CB  
Q1  
PWMOUT  
CONTROLLER  
I/O  
VOA  
GNDA  
DT  
RDT  
Si8241/4  
VDDB  
VDDB  
C3  
10uF  
DISABLE  
GNDB  
VOB  
Q2  
Figure 39. Si824x in Half-Bridge Audio Application  
D1  
VDD2  
C2  
VDDI  
1 µF  
VDDI  
C1  
1uF  
+750 V max  
VDDA  
GNDI  
PWM  
CB  
Q1  
PWMOUT  
CONTROLLER  
I/O  
VOA  
GNDA  
DT  
RDT  
Si8241/4  
VDDB  
VDDB  
C3  
10uF  
DISABLE  
GNDB  
VOB  
Q2  
-750 V max  
Figure 40. Si824x in Half-Bridge Audio Application  
D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver for Q1, which has  
a maximum drain voltage of 1500 V. VOB is connected as a conventional low-side driver. Note that the input side of  
the Si824x requires VDD in the range of 4.5 to 5.5 V, while the VDDA and VDDB output side supplies must be  
between 6.5 and 24 V with respect to their respective grounds. The boot-strap start up time will depend on the CB  
cap chosen. VDD2 is usually the same as VDDB. Also note that the bypass capacitors on the Si824x should be  
located as close to the chip as possible. Moreover, it is recommended that 0.1 and 10 µF bypass capacitors be  
used to reduce high frequency noise and maximize performance. The D1 diode should be a fast-recovery diode; it  
should be able to withstand the maximum high voltage (e.g. 1500 V) and be low-loss. See “AN486: High-Side  
Bootstrap Design Using Si823x ISODrivers in Power Delivery Systems” for more details in selecting the bootstrap  
cap (CB) and diode (D1).  
Rev. 1.0  
23  
 
 
Si824x  
5. Pin Descriptions  
SOIC-16 (Narrow)  
1
16  
15  
14  
13  
PWM  
NC  
VDDA  
VOA  
GNDA  
NC  
2
3
4
5
6
7
8
VDDI  
GNDI  
DISABLE  
DT  
Si8241/44  
12  
11  
10  
9
NC  
VDDB  
VOB  
GNDB  
NC  
VDDI  
Table 11. Si8241/44 PWM Input HS/LS Isolated Driver (SOIC-16)  
Description  
Pin  
1
Name  
PWM PWM input.  
NC No connection.  
2
3
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDI Input-side ground terminal.  
4
5
DISABLE Device Disable. When high, this input unconditionally drives outputs VOA, VOB LOW. It is  
strongly recommended that this input be connected to external logic level to avoid erroneous  
operation due to capacitive noise coupling.  
6
DT  
Dead time programming input. The value of the resistor connected from DT to ground sets the  
dead time between output transitions of VOA and VOB. Defaults to 1 ns dead time when con-  
nected to VDDI or left open (see "3.8.Programmable Dead Time and Overlap Protection" on  
page 22).  
7
NC  
No connection.  
8
VDDI Input-side power supply terminal; connect to a source of 4.5 to 5.5 V.  
GNDB Ground terminal for Driver B.  
9
10  
11  
12  
13  
14  
15  
16  
VOB Driver B output (low-side driver).  
VDDB Driver B power supply voltage terminal; connect to a source of 6.5 to 24 V.  
NC  
NC  
No connection.  
No connection.  
GNDA Ground terminal for Driver A.  
VOA Driver A output (high-side driver).  
VDDA Driver A power supply voltage terminal; connect to a source of 6.5 to 24 V.  
24  
Rev. 1.0  
Si824x  
6. Ordering Guide  
The currently available OPNs are listed in Table 12.  
Table 12. Ordering Part Numbers*  
Isolation  
Ordering Part  
Number (OPN)  
Drive  
Strength  
UVLO  
Rating  
Voltage (Input to  
Output)  
Input Type  
Package  
Output  
Si8241BB-D-IS1  
Si8241CB-D-IS1  
Si8244BB-D-IS1  
Si8244CB-D-IS1  
PWM  
PWM  
PWM  
PWM  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
8 V  
0.5 A  
4 A  
10 V  
2.5 kVrms  
8 V  
High-Side/Low-Side  
10 V  
*Note: All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures. Tape and reel options are specified by adding an “R” suffix to the  
ordering part number. “Si” and “SI” are used interchangeably.  
Rev. 1.0  
25  
 
Si824x  
7. Package Outline: 16-Pin Narrow Body SOIC  
Figure 41 illustrates the package details for the Si824x in a 16-pin narrow-body SOIC (SO-16). Table 13 lists the  
values for the dimensions shown in the illustration.  
Figure 41. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 13. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
L
0.40  
1.27  
A1  
0.10  
1.25  
0.31  
0.17  
L2  
0.25 BSC  
A2  
h
0.25  
0°  
0.50  
8°  
b
0.51  
0.25  
θ
c
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
D
E
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E1  
e
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
26  
Rev. 1.0  
 
 
Si824x  
8. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 42 illustrates the recommended land pattern details for the Si824x in a 16-pin narrow-body SOIC. Table 14  
lists the values for the dimensions shown in the illustration.  
Figure 42. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 14. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.0  
27  
 
 
Si824x  
9. Top Marking: 16-Pin Narrow Body SOIC  
9.1. Si824x Top Marking (16-Pin Narrow Body SOIC)  
Si824YUV  
YYWWTTTTTT  
e4  
9.2. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Si824 = ISOdriver product series  
Y = Peak output current  
1 = 0.5 A  
Base Part Number  
Ordering Options  
4 = 4.0 A  
Line 1 Marking:  
Line 2 Marking:  
U = UVLO level  
B = 8 V; C = 10 V  
V = Isolation rating  
B = 2.5 kV  
See Ordering Guide for more  
information.  
YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
Manufacturing Code from Assembly Purchase Order  
form.  
TTTTTT = Mfg Code  
28  
Rev. 1.0  
Si824x  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Deleted Table 3.  
Added Tables 2 through 7.  
Added Figure 5.  
Updated common-mode transient immunity  
specification throughout.  
Revision 0.2 to Revision 0.3  
Updated Figures 2 and 3 on page 7.  
Added Figure 4 on page 8.  
Updated Table 12 on page 25.  
Revision 0.3 to Revision 1.0  
Updated Table 12, Ordering Part Numbers.  
Added Revision D Ordering Part Numbers.  
Removed all Ordering Part Numbers of previous  
revisions.  
Removed moisture sensitivity level table notes.  
Rev. 1.0  
29  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY