SI8250 [SILICON]

DIGITAL POWER CONTROLLER; 数字电源控制器
SI8250
型号: SI8250
厂家: SILICON    SILICON
描述:

DIGITAL POWER CONTROLLER
数字电源控制器

功率控制 控制器
文件: 总30页 (文件大小:1097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8250/1/2  
DIGITAL POWER CONTROLLER  
Features  
Pin Assignments:  
See page 23  
Single-Chip, Flash-based digital In-system Flash programmable  
power controller  
Supports isolated and non-isolated  
applications  
Enables new system capabilities  
such as:  
Flash can also be used as NV  
memory for data storage  
Low cost, comprehensive  
development tool kit includes:  
Graphical, easy-to-use system  
design tools  
Integrated development  
environment  
In-system, on-line debugger  
Turnkey isolated 35 W digital  
half-bridge target board  
Typical Applications  
Isolated and non-isolated DC/DC  
converters  
AC/DC converters  
Fully Pb-free and ROHS compliant  
packages  
32-pin LQFP  
32-pin LQFP  
- Adaptive dead-time control for  
higher efficiency  
RST/C2CK  
IPK  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0.0  
P0.1  
P0.2  
P0.3  
P0.4  
P0.5  
P0.6  
P0.7  
VSENSE  
- Nonlinear control for faster  
transient response  
Si8250/1/2  
Top View  
GNDA  
VDDA  
VREF  
/
XCLK  
- Self diagnostics for higher  
reliability  
P1.0/VIN/AIN0  
P1.1/AIN1  
- Full PMBus command set  
implementation for system  
connectivity  
Highly integrated control solution:  
High-speed digital hardware  
control loop  
28-pin QFN  
In-system programmable  
supervisory processor  
Programmable system protection  
functions  
Hardware cycle-by-cycle current  
limiting and OCP  
External clock and frame  
synchronization inputs  
28-pin 5 x 5 mm QFN  
Temp Range: –40 to +125 ºC  
GND  
RST  
/
C2CK  
IPK  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
P0.1  
P0.2  
VSENSE  
GND  
P0.3/XCLK  
P0.4  
Si8250/1/2  
Top View  
VDD  
P0.5  
VREF  
P0.6  
GND  
P1.0/VIN/AIN0  
P0.7  
Performs system management  
functions such as external power  
supply sequencing and fan  
control/monitoring  
Description  
Patents pending  
Si8250/1/2 provides all control and protection functions necessary to implement  
highly intelligent, fast response power delivery and management control systems  
for isolated and non-isolated power supplies. On-board processing capability  
enables intelligent control optimization for improved system performance and new  
capabilities such as serial connectivity via the PMBus or on-board UART. The  
Si8250/1/2 family is in-system Flash programmable enabling control and  
protection parameters such as system regulation and protection settings, start-up  
and shutdown modes, loop response, and modulation timing to be readily  
modified. The built-in high-speed control path provides loop updates every 100nS  
and provides pulse-by-pulse current limiting and over-current protection even  
while the internal CPU is disabled.  
The Si825x family is supported by the Si8250DK development kit, which contains  
everything required to develop and program power supply applications with the  
Si825x family of digital controllers.  
Preliminary Rev. 0.8 3/06  
Copyright © 2006 by Silicon Laboratories  
Si8250/1/2  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si8250/1/2  
2
Preliminary Rev. 0.8  
Si8250/1/2  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Benefits of Digital Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3. Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.2. Control Processor Functional Block Descriptions (Figure 1) . . . . . . . . . . . . . . . . . . .16  
3.3. System Management Processor Functional Block Descriptions . . . . . . . . . . . . . . . .17  
4. Design Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
7. Pin Descriptions—Si8250/1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
9. Package Outline—32LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
10. Package Outline—28QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Preliminary Rev. 0.8  
3
Si8250/1/2  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings*  
Parameter  
Conditions  
Min.  
–55  
–65  
–0.3  
–0.3  
–0.3  
Typ.  
Max.  
+135  
+150  
5.5  
Units  
°C  
°C  
V
Ambient Temperature under Bias  
Storage Temperature  
Voltage on any Port0 Pin with respect to GND  
Voltage on all other pins with respect to GND  
Voltage on VDD with respect to GND  
Maximum total current through VDD or GND  
4.0  
V
4.0  
V
400  
80  
mA  
mA  
Maximum output current sunk by RST or any  
Port pin  
*Note: Stresses above those listed under "2.1 Absolute Maximum Ratings" may cause permanent damage to the device. This  
is a stress rating only, and functional operation of the devices at those or any other conditions above those indicated in  
the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods  
may affect device reliability.  
Table 2. DC Electrical Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Supply Voltage  
Conditions  
Min  
2.25  
Typ  
Max  
2.75  
Units  
V
Supply Current, all Peripherals  
Enabled  
Analog + digital supply current.  
26  
mA  
Lockout mode supply current  
Analog + digital supply current.  
(See Table 1 on page 4)  
300  
TBD  
µA  
µA  
V
Digital Supply Current (shutdown)  
Oscillator not running, VDD mon-  
itor disabled  
Digital Supply RAM Data Retention  
Voltage  
1.5  
4
Preliminary Rev. 0.8  
Si8250/1/2  
Table 3. Reference DAC Electrical Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
9
Units  
Bits  
mV  
Resolution  
LSB Size  
2.44  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling Time  
–2  
+2  
LSB  
LSB  
µs  
–1.0  
+1.0  
1/2 LSB change from 0 to  
full scale  
2
Turn-on Time  
20  
1
µs  
Noise  
2 MHz BW  
mV  
PP  
Power Supply Rejection  
Supply Current  
70  
db  
220  
0.1  
µA  
µA  
Shutdown Supply Current  
Preliminary Rev. 0.8  
5
Si8250/1/2  
Table 4. ADC0 (12-Bit ADC) Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
DC Accuracy  
Conditions  
Min  
Typ  
Max  
Units  
Resolution  
12  
±2  
±1  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
Guaranteed Monotonic  
Differential mode  
LSB  
±3  
3
LSB  
Full Scale Error  
LSB  
Offset Temperature Coefficient  
TBD  
ppm/°C  
Dynamic Performance (10 kHz sine-wave Single-ended input, 0 to 1 dB below Full Scale, 200 ksps)  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Conversion Rate  
64  
83  
dB  
dB  
dB  
th  
Up to the 5 harmonic  
–73  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
Note 1  
Note 2  
1
13  
clocks  
µs  
200  
ksps  
Analog Inputs  
Input Voltage Range  
Input Capacitance  
Temperature Sensor  
Linearity  
0
V
V
REF  
15  
pF  
Notes 3, 4  
Notes 3, 4  
±TBD  
1353  
488  
°C  
µV/°C  
mV  
Gain  
Offset  
Notes 3, 4 (Temp = 0 °C)  
Power Specifications  
Power Supply Current (V sup-  
plied to ADC0)  
Operating Mode, 200 ksps  
780  
5
µA  
µs  
DD  
Power-On Time  
After V  
settle, before tracking  
begins  
REF  
Power Supply Rejection  
TBD  
mV/V  
Notes:  
1. An additional 2 F  
cycles are required to start and complete a conversion.  
CLK  
2. Additional tracking time may be required depending on the output impedance connected to the ADC input.  
3. Represents one standard deviation from the mean.  
4. Includes ADC offset, gain, and linearity variations.  
6
Preliminary Rev. 0.8  
Si8250/1/2  
Table 5. ADC1 Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Sampling Frequency  
Conditions  
ADCSP = 0  
ADCSP = 1  
Min  
Typ  
10  
5
Max  
Units  
Msps  
Resolution  
5
6
Bits  
mV  
LSB  
V
LSB Size  
4
20  
+31  
1.3  
+2  
+1  
Differential Input Voltage Range  
Common-mode input voltage range  
Integral Nonlinearity  
Differential Nonlinearity  
Gain Error  
Note 1  
–32  
0.8  
–2  
–1  
LSB  
LSB  
%
Offset Error  
3
mV  
µA  
Input Bias Current  
Standby Mode Supply Current  
Operating Mode Supply Current  
Notes:  
5
disabled  
0.1  
µA  
3
mA  
1. LSB size (mV) is programmable using the RES[3:0] bits in the ADC1CN register.  
Table 6. DSP Filter Engine Electrical Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
9
Units  
Bits  
Bits  
µA  
1
Resolution  
2
Dithering  
6
Standby Mode Supply Current  
disabled  
0.1  
Notes:  
1. Internal word length = 22 bits.  
2. Up to a total 15 bits of resolution when dithering is enabled.  
Preliminary Rev. 0.8  
7
Si8250/1/2  
Table 7. Peak Current Limit Detector Electrical Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
10 mV Overdrive  
VT[3:0] = 0000  
VT[3:0] = 0001  
VT[3:0] = 0010  
VT[3:0] = 0011  
VT[3:0] = 0100  
VT[3:0] = 0101  
VT[3:0] = 0110  
VT[3:0] = 0111  
VT[3:0] = 1000  
VT[3:0] = 1001  
VT[3:0] = 1010  
VT[3:0] = 1011  
VT[3:0] = 1100  
VT[3:0] = 1101  
VT[3:0] = 1110  
VT[3:0] = 1111  
HYST[1:0] = 00  
HYST[1:0] = 01  
HYST[1:0] = 10  
HYST[1:0] = 11  
Min  
Typ  
45  
Max  
Units  
ns  
IPK Input to DPWM Output Latency  
Threshold Detector Voltage  
35  
50  
65  
mV  
85  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
650  
700  
750  
800  
0
115  
165  
215  
265  
315  
365  
415  
465  
515  
565  
615  
665  
715  
765  
815  
135  
185  
235  
285  
335  
485  
435  
485  
535  
585  
635  
685  
735  
785  
Hysteresis  
mV  
ns  
5
10  
20  
Blanking Time  
LEB[1:0] = 00, f  
= 200 MHz  
0
PLL  
PLL  
PLL  
PLL  
LEB[1:0] = 01, f  
LEB[1:0] = 10, f  
LEB[1:0] = 11, f  
= 200 MHz  
= 200 MHz  
= 200 MHz  
20  
40  
80  
Input Capacitance  
4.5  
0.1  
0.1  
100  
pF  
µA  
µA  
µA  
Input Bias Current  
Shutdown Supply Current  
Active Supply Current  
Enable bit = 0  
IIN = (Vt + 100 mVpp),  
1.5 MHz sq. wave  
8
Preliminary Rev. 0.8  
Si8250/1/2  
Table 8. DPWM Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
5
Typ  
Max  
200  
50  
25  
9
Units  
Clock Frequency  
DPWMSP[4:3] = 00  
DPWMSP[4:3] = 01  
DPWMSP[4:3] = 1x  
No dithering  
MHz  
Resolution  
Bits  
ns  
Dithering enabled  
DPWMSP[4:3] = 00  
DPWMSP[4:3] = 01  
DPWMSP[4:3] = 1x  
15  
Time Resolution  
20  
40  
3
SYNC Pulse set-up time  
SYNC signal minimum LOW time  
before positive transition  
DPWM  
clock cycles  
PH Rise, Fall Time  
50pF on pin  
75  
40  
5
ns  
Output Resistance High  
Output Resistance Low  
Shutdown Supply Current  
I
= –5 mA  
= 8 mA  
0.1  
OUT  
I
OUT  
µA  
Table 9. Bandgap Voltage Reference Specs  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Output Voltage  
Conditions  
Min  
–1  
Typ  
1.20  
Max  
Units  
V
%
Temperature Stability  
Turn-on Response  
+1  
(0.01%, 4.7 µF)  
no load  
6.5  
2
ms  
µs  
Noise  
4.7 µF  
2
µV (RMS)  
µA  
Bandgap Current  
Reference Buffer Current  
Power supply rejection  
60  
30  
50  
µA  
dB  
Preliminary Rev. 0.8  
9
Si8250/1/2  
Table 10. Comparator0 Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
0
Typ  
8
Max  
Units  
V
Vin  
V
DD  
Low-Speed Supply Current  
Full-speed Supply Current  
Hysteresis  
µA  
225  
0
µA  
CP0HYP[1:0] = 00  
CP0HYP[1:0] = 01  
mV  
7
CP0HYP[1:0] = 10  
14  
28  
0
CP0HYP[1:0] = 11  
CP0HYN[1:0] = 00  
CP0HYN[1:0] = 01  
–7  
–14  
–28  
180  
25  
5
CP0HYN[1:0] = 10  
CP0HYN[1:0] = 11  
Response Time  
Low Power Mode, 25 mV Overdrive  
High-Speed Mode, 25 mV Overdrive  
ns  
Input Capacitance  
CMRR  
pF  
db  
50  
5
Input offset  
mV  
10  
Preliminary Rev. 0.8  
Si8250/1/2  
Table 11. Reset Electrical Characteristics  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
RST Output Low Voltage  
RST Input High Voltage  
RST Input Low Voltage  
RST Input Pull-up Current  
VDD POR Threshold  
Conditions  
Min  
Typ  
Max  
0.7  
Units  
V
I
= 8.5mA, VDD = 2.5V  
OL  
0.7 x V  
V
DD  
0.3 x V  
TBD  
2.2  
V
DD  
RST = 0.0  
25  
µA  
V
2.0  
2.1  
250  
Missing clock detector timeout Time from last system clock ris-  
ing edge to start of reset  
650  
µs  
Reset time delay  
Delay between release of any  
reset source and code execu-  
tion at location 0x0000  
5.0  
6.5  
µs  
µs  
Minimum RST Low time to gen-  
erate a System Reset  
VDD monitor turn-on time  
VDD monitor supply current  
100  
µs  
40  
µA  
Table 12. Flash Electrical Characteristics  
TA = –40 to +125 °C, VDD = 2.25 V – 2.75 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Flash Size  
Conditions  
Si8250  
Min  
32768  
16383  
Typ  
Max  
Units  
(1)  
(1)  
bytes  
Si8251, Si8252  
Endurance  
10 K  
TBD  
32  
100 K  
Erase/Write  
Read Cycle Time  
Erase Cycle Time  
Write Cycle Time  
Notes:  
ns  
ms  
µs  
50 MHz System Clock  
50 MHz System Clock  
48  
76  
114  
1. The last 512 bytes of memory are reserved.  
Preliminary Rev. 0.8  
11  
Si8250/1/2  
Table 13. Port I/O DC Electrical Characteristics  
TA = –40 to +125 °C, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameters  
Conditions  
push-pull  
Min  
Typ  
Max  
+ 0.7  
Units  
Port0 Input Voltage Tolerance  
V
V
V
DD  
open-drain  
5.5  
+ 0.7  
Port1 Input Voltage Tolerance  
Output High Voltage  
DD  
I
= –3 mA,  
V
V
– 0.4  
V
V
OH  
DD  
Port I/O push-pull  
I
= –10 µA,  
– 0.1  
OH  
DD  
Port I/O push-pull  
I
= –10 mA,  
V
– 0.8  
DD  
OH  
Port I/O push-pull  
Output Low Voltage  
I
= 8.5 mA  
= 10 µA  
= 25 mA  
0.6  
0.1  
OL  
I
OL  
I
1.25  
OL  
Input High Voltage  
Input Low Voltage  
Input Leakage Current  
(0.7) V  
V
V
DD  
(0.3) V  
±10  
DD  
Weak Pullup Off  
Weak Pullup On, V = 0 V  
µA  
20  
50  
IN  
Table 14. PLL Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Stabilization Time  
Conditions  
Min  
Typ  
30  
Max  
Units  
µs  
Input Frequency Range  
PLL Frequency  
15  
25  
MHz  
MHz  
ps  
200  
250  
15  
Cycle-to-cycle jitter  
Supply current  
mA  
µA  
Shutdown current  
0.1  
12  
Preliminary Rev. 0.8  
Si8250/1/2  
Table 15. 25MHz Oscillator Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
24.5  
100  
0.3  
Max  
Units  
MHz  
µs  
Frequency  
Start-up time  
Power supply sensitivity  
Temperature coefficient  
Supply current  
%/V  
PPM/°C  
µA  
50  
450  
0.1  
Shutdown current  
µA  
Table 16. Low Frequency Oscillator (LFO) Specifications  
TA = –40 to +125 °C, VDD = 2.5 V, SYSCLK = 25 MHz, PLLCLK = 200 MHz unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
80  
Max  
Units  
kHz  
Frequency  
Start-up time  
100  
1.7  
1000  
4
µs  
Power supply sensitivity  
Temperature coefficient  
Supply current  
%/V  
PPM/°C  
µA  
Shutdown current  
0.1  
µA  
Preliminary Rev. 0.8  
13  
Si8250/1/2  
Higher operating precision: Switch timing, control  
response and protection setting thresholds in analog  
systems are typically determined by the values of  
external passive components. These components  
typically have a wide tolerance and vary with  
temperature and time. Designers must allow for  
these tolerances when considering worst case  
operating conditions. Digital control offers tighter  
parameter tolerances with greatly reduced  
2. Benefits of Digital Power Control  
Digitally controlled power systems have the following  
key advantages over analog implementations:  
In-system programmability: Virtually all aspects of  
digital controller behavior can be changed in  
software locally or remotely, and without hardware  
modification. This benefits the system in several  
ways:  
temperature/time variations resulting in improved  
worst-case operating specifications.  
Hardware designs can be segregated into base  
platforms (for example, by form factor or output power),  
and optimized to the end application in software. This  
lowers development costs by reducing the total number  
of hardware designs required to address a given  
application segment.  
The controller's ability to readily accept change makes  
possible low-cost, custom power supply versions with  
relatively short lead-time.  
Power management and power delivery functions in  
a single package: Power management functions,  
such as external supply sequencing, PMBus  
communication support and fan control can be  
performed by the digital controller, eliminating  
dedicated external components.  
System connectivity: PMBus and other emerging  
communication protocols enable system processors  
to communicate with the power supply to obtain data  
and command action. For example, the system  
processor may request the power supply operating  
history, perform self-diagnostics or change system  
settings without taking the supply off-line.  
The cost and risk of field configuration and/or updating  
is greatly reduced, lowering the overhead associated  
with customer support.  
More advanced control algorithms: Power supply  
design with fixed-function analog components leads  
to many performance trade-offs. For example,  
analog compensator design routinely trades stability  
for higher loop bandwidth, and places the required  
poles and zeros using passive components. The "if-  
then-else" decision-making capability of digital  
control can change loop bandwidth as needed for  
optimum control response. For example the  
controller can operate the compensator at a  
relatively low bandwidth during steady-state  
operation, but significantly extend bandwidth during  
a transient. This adaptive response concept can be  
applied to improve other operating parameters such  
as efficiency.  
Communications with the system controller enables  
notification of a pending power supply failure,  
enhancing system reliability. This attribute also  
reduces the cost and complexity of field  
configurations and upgrades.  
Higher integration/smaller size/lower cost: Many  
discrete circuits can be transformed to lines of  
software code, eliminating components and saving  
cost. The digital controller can be used to execute  
self-diagnostic routines during production test  
thereby reducing test time and saving cost. The  
small physical size of the Si8250 in particular  
(5 x 5 mm) saves board space.  
Power Efficiency Optimization: In a switched mode  
power supply, it is desirable to maintain high power  
efficiency over a wide range of loads. Software  
algorithms can optimize efficiency at every point of  
line and load. For example, the software can adjust  
dead time with changes load, disable synchronous  
rectification at low loads, or take other measures to  
maximize efficiency.  
14  
Preliminary Rev. 0.8  
Si8250/1/2  
3. Product Description  
System Management Processor  
4x 16-BIT  
TIMERS  
VDD  
16/32 kB  
Flash  
2% 25 Mhz OSC,  
and LFO  
SMBus  
SYSCLKIN  
I/O (8)  
3 CH PCA  
RESET  
CONTROL  
I/O PORT  
LATCHES  
1280 Byte  
RAM  
HARDWARE  
DEBUG  
DEBUG  
PORT  
UART  
INTERRUPT  
CONTROL  
I/O (8)  
VSENSE  
ADC  
12-BIT  
REGISTERS  
& LIMIT  
200 Ksps  
ADC  
8
DETECTORS  
TEMP  
SENSOR  
AUTO  
SCAN  
LOGIC  
VSENSE  
VSENSE  
DSP  
FILTER ENGINE  
10 MHz  
ADC  
u(n)  
VREF  
REFDAC  
MULTIPHASE  
DPWM  
GATE CONTROL  
(6)  
VREF  
IPK  
ICYC  
Pulse-by-Pulse  
Current Limiter  
and OCP  
OCP  
Control Processor  
Si8250/1/2  
Figure 1. Functional Block Diagram  
System Management Processor  
Digital Peripherals:  
- UART  
VDD  
- SMBus Port  
- 4 x 16-Bit Timers  
- 3 Ch PCA (PWM)  
50MIPS 8051 CPU  
and Memory  
SYSCLKIN  
16 General-Purpose  
Analog/Digital I/O Lines  
- I/O Port Latches  
DEBUG  
PORT  
VSENSE  
ADC 0  
12-Bit, 200Ksps  
10-Channel  
Analog Input (e.g. average current)  
Digital Ouput (e.g. fan speed control)  
TEMP  
SENSOR  
POWER STAGES  
VSENSE  
VSENSE  
SUPPLY INPUT  
VOLTAGE  
DSP  
FILTER ENGINE  
ADC1  
10Msps  
u(n)  
SWITCHES  
AND  
MAGNETICS  
OUTPUT  
FILTER  
VREF  
REFDAC  
VOUT  
MULTIPHASE  
DPWM  
VREF  
IPK  
GATE  
DRIVERS  
Up to 6 Gate  
Pulse-by-Pulse  
Current Limiter  
and OCP  
ICYC  
OCP  
Control Outputs  
Control Processor  
Si8250  
Peak Current Signal (e.g. CT)  
Figure 2. Si8250 Top-Level Block Diagram  
Preliminary Rev. 0.8  
15  
Si8250/1/2  
The System Management Processor serves several  
purposes, among these are:  
3.1. System Operation  
Figure 2 shows the Si8250/1/2 controlling a non-  
isolated DC/DC converter operating in digital voltage  
mode control. The output voltage signal connects to the  
1. Continuously optimizes Control Processor operation  
(e.g. efficiently optimization)  
VSENSE input through a resistive divider, limiting the 2. Executes user-specific algorithms (e.g. support for  
common mode voltage range applied to ADC1 to a  
maximum of VREF. The equivalent resistance of the  
divider and the capacitor form an anti-aliasing filter with  
a cutoff frequency equal to ADC1 sampling frequency of  
divided by 2 (the amplitudes of frequencies above fS/2  
must be minimized to prevent aliasing).  
proprietary system interfaces)  
3. Provides regulation for low-bandwidth system  
variables (e.g. VIN feed-forward)  
4. Performs system fault detection and recovery  
5. Provides system housekeeping functions such as  
PMBus communication support  
Differential ADC1 and the DSP Filter Engine together  
perform the same function as an analog error amplifier  
and associated RC compensation network. ADC1  
6. Manages external device functions (e.g. external  
supply sequencing, fan control/monitoring)  
digitizes the difference between the scaled output The Si8250/1/2 system development requires using the  
voltage and a programmable reference voltage provided Si8250DK, a comprehensive development kit providing  
by the REFDAC. The ADC1 output signal is frequency all required hardware and software for control system  
compensated (in digital domain) by the DSP Filter design. It comes complete with pre-written and verified  
Engine. The resulting output from the DSP Filter Engine application software, and a set of tools that enable the  
is a digital code that represents the compensated duty user to adapt this software to the end application. It also  
cycle ratio, u(n). The digital PWM generator (DPWM) includes a turnkey isolated half-bridge DC/DC converter  
directly varies output timing to the external gate drivers based on the Si8250/1/2 for evaluation and  
based on the value of u(n) until the difference between experimentation.  
VSENSE and ADC1 reference level is driven to zero.  
3.2. Control Processor Functional Block  
Sensing circuitry within the power stages (current  
Descriptions (Figure 1)  
transformer, sense amp, etc.) provides a signal  
ADC 1: Differential input, 10 Msps control loop analog-  
to-digital converter. ADC1 digitizes the difference  
between the Vsense input and the programmable  
voltage reference level from the REFDAC. ADC1 can be  
operated at either 5 Msps or 10 Msps and has a  
programmable LSB size to prevent limit cycle oscillation  
(Limit cycle oscillation can also be avoided using  
dithering to increase DPWM resolution). ADC1 has  
programmable conversion rates of 10 Msps and 5 Msps  
to accommodate a wide loop gain range. ADC1 also  
contains a hardware transient detector that interrupts  
the CPU at the onset of an output load or unload  
transient. The CPU responds by executing specific  
algorithms to accelerate output recovery. These  
algorithms may include increasing loop bandwidth or  
other measures.  
representative of inductor or transformer current. This  
signal connects to the pulse-by-pulse current limiting  
hardware in the Si8250/1/2 via the IPK input pin. This  
current limiting circuitry is similar to that found in a  
voltage mode analog PWM. It contains a fast analog  
comparator and a programmable leading-edge blanking  
circuit to prevent unwanted tripping of the current  
sensing circuitry on the leading edge of the current  
pulse. Current limiting occurs when the sensed current  
exceeds the programmed threshold. When this occurs,  
the on-going active portions of the PWM outputs are  
terminated. A programmable OCP counter keeps track  
of the number of consecutive current limit cycles, and  
automatically shuts the supply down when the  
accumulated number of limit cycles exceeds the  
programmed maximum.  
REFDAC: 9-bit digital-to-analog converter provides the  
output voltage reference setting. The REFDAC uses the  
on-board band gap as its voltage reference, or can be  
referenced to an external voltage reference source.  
REFDAC is used for output voltage calibration,  
margining and positioning. The CPU continuously  
manages the REFDAC during soft-start and soft-stop.  
The System Management Processor is based on a 50  
million instruction per second (MIPS) 8051 CPU and  
dedicated A/D converter (ADC0). ADC0 digitizes key  
analog parameters that are used by the MCU to provide  
protection, as well as manage and control other aspects  
of the power system. On-board digital peripherals  
include: timers, an SMBus interface port (for PMBus or  
other protocols); and  
receiver/transmitter (UART) for serial communications,  
useful for communicating across an isolation boundary.  
a
universal asynchronous  
DSP Filter Engine: This two-stage loop compensation  
filter is the functional equivalent of an active RC  
compensation in an analog control scheme. The first  
filter stage is a PID filter providing one pole and two  
16  
Preliminary Rev. 0.8  
Si8250/1/2  
zeros. The second stage is selectable: a two-pole low- operation. The DPWM includes an external SYNC input  
pass filter (LPF) for the fastest possible response, or and ENABLE input, both of which can be connected to  
SINC (multiple zero) decimation filter for relatively the I/O pins. The Enable is a logic input used to turn the  
quieter operation. The PID plus the LPF result in a three power supply on and off. It can be configured to be  
pole, two zero composite filter, while the PID plus the active high or active low. The SYNC input allows the  
SINC results in a single pole, multiple zero composite start of each switching cycle to be synchronized to an  
filter. The SINC filter provides zeros at intervals equal to external clock source, including another Si8250/1/2.  
f /(2*DEC) where DEC is the decimation ratio (i.e. ratio  
S
3.3. System Management Processor Func-  
tional Block Descriptions  
of input to output sampling rate). DEC is a software-  
programmable parameter, and can be programmed  
such that zero placement occurs that the PWM  
frequency and its harmonics. This creates more than  
100 db attenuation at these frequencies providing lower  
system noise levels.  
ADC0: Self-sequencing, 10-input, 200 Ksps analog-to-  
digital converter. This general-purpose ADC acquires  
other analog system parameters for supplemental  
control by the CPU (e.g. dead time control using  
average input current as the control variable). ADC0  
also converts the output of the on-board temperature  
The end-to-end response of the filter is defined using  
only six software parameters, and can be re-  
programmed during converter operation to implement  
nonlinear control response for improved transient  
resolution.  
sensor.  
Eight of the ten analog inputs may be  
connected to the I/O pins for external interface. The  
remaining two analog inputs (Vsense and Temp Sensor)  
are internally connected. When placed in Auto  
Sequencing mode, ADC0 automatically converts, stores  
and limit-checks each analog input, and interrupts the  
CPU when a converted result is outside of its  
programmed range. This feature greatly facilitates  
protection functions because all measurement and  
comparison operations are automated.  
As described in the ADC1 section above, limit cycle  
oscillation can be avoided by increasing ADC1 LSB size  
to allow the DPWM LSB to fit within a single ADC1  
output code (i.e. zero-error bin). However in some  
applications, it may not be desirable to lower ADC1  
sensitivity. For such applications, limit cycle oscillation  
can be avoided by dithering the DPWM output. The  
Temperature Sensor: This sensor measures the die  
temperature of the Si8250/1/2. It can achieve 3 C  
accuracy with a single-point calibration and 1 C with a  
two-point calibration. The temperature output signal is  
digitized by ADC0.  
DSP Filter Engine contains  
a
pseudo-random,  
broadband noise generator - mixing this noise into the  
filter output randomly moves the gate control output(s)  
over a range of 1 LSB, such that the time-averaged  
resolution of the DPWM is increased.  
8051 CPU: 50MIPS CPU core with 1K of SRAM and up  
to 32 kB of Flash memory. This processor has its own  
on-board oscillator and PLL, reset sources and real-  
time in-system hardware debug interface eliminating the  
need for external processor supervisors, timebases,  
and "emulators". The CPU has an external interrupt  
(INT0/) that can be connected to an external device via  
the I/O pins. When interrupted, the CPU suspends  
execution of the current task, and immediately vectors  
to an interrupt service routine specifically designed to  
handle the interrupting device.  
The filter response is programmed using S-domain  
design tools included in the Si8250DK development kit,  
greatly minimizing software writing tasks.  
Pulse-by-pulse Current Limiter/OCP: High-speed  
comparator with 4-bit DAC threshold generator and 2-bit  
programmable leading-edge blanking delay generator.  
The comparator output causes the DPWM to terminate  
the on-going portions of the active outputs when the  
peak current signal applied to the IPK input exceeds the  
threshold setting. Hardware performs an OCP supply  
shutdown when the number of consecutive current limit  
events equals a programmed maximum.  
Digital peripherals: Peripherals include: four 16-bit  
timers, a three-channel programmable counter array  
(PCA), each channel useful as a PWM, an SMBus port  
useful as a PMBus interface, a UART (useful as a serial  
data port for isolated applications, and two 8-bit I/O port  
latches for logic control outputs.  
DPWM: Output generator may be programmed for  
pulse width (PWM) or phase-shift modulation using  
design tools contained in the Si8250DK design kit. The  
DPWM may be modulated by the front-end of the  
Control Processor (ADC1 and DSP Filter Engine); or by  
the CPU. The DPWM has individually programmable  
stop states for supply off (disable) and OCP. Software  
bypass mode allows the CPU to force selected outputs  
high or low while the remaining outputs continue normal  
Preliminary Rev. 0.8  
17  
Si8250/1/2  
4. Design Tools  
The Si8250DK development kit (Figure 3) contains  
everything required to develop applications with the  
Si825x family of digital power controllers. This kit  
supports all phases of power supply development from  
controller design through real-time system debugging. It  
also includes a turnkey, 35 W isolated DC/DC target  
board for evaluation and experimentation.  
Figure 3. Si8250DK Development Kit  
Figure 5. Timing Design Tool (Top) and Buck  
Regulator Compensation Tool (Bottom)  
The tool set enables the user to configure pre-written  
application software included in the kit to his application  
using a set of PC-based graphical user interface (GUIs).  
These GUIs (Figure 5) allow the user to quickly and  
easily specify and verify system timing, loop  
compensation and protection settings, and compile and  
download the resulting code into the Si8250/1/2  
(Figure 4).  
Figure 4. Software Download to Si8250  
Mounted in Power Supply  
18  
Preliminary Rev. 0.8  
Si8250/1/2  
5. Example Applications  
Isolated DC/DC Converter: A 35 W, 400 kHz Si8250-based half bridge converter is shown in Figure 6. This circuit  
is the same as that of the target (evaluation) board shipped in the Si8250DK development kit.  
P3  
DRIVER  
180nH  
VOUT  
1uH  
VIN+  
.0.001  
IRLR8113  
0.010  
P4  
6 x 100uF  
Ceramic  
DRIVER  
2.2uF  
200  
6:1  
0.01uF  
200  
4.7  
4.7  
33K  
4.7  
FDS3572  
IRLR8113  
DRIVER  
180nH  
IOUT Vsense  
1K  
DRIVER  
120uF  
~
~
+
-
IPK  
3.9K  
7.5  
0.01uF  
10K  
3V3P  
P3  
P4  
PH4  
PH3  
2.2uF  
33K  
VDD  
AIN  
DC BAL  
VIN  
FDS3572  
PH2  
PH1  
P2  
P1  
AIN  
IIN  
Isolator  
AIN  
TX  
RX  
GND  
1.2nF  
3V3P  
3V3P  
1K  
C8051F300  
Microcontroller  
VDD  
GND  
VDDA  
VDDB  
GNDA GNDB  
Si8250  
Digital Controller  
VIN-  
Figure 6. Isolated Half-Bridge DC/DC Converter  
The Si8250/1/2 is located on the secondary-side of the power supply for optimum transient response. DPWM  
outputs PH3 and PH4 control gates of the synchronous rectifiers via a dual driver I.C. DPWM outputs PH1 and  
PH2 control the gates of the primary-side switching transistors with isolation provided by a Silicon Laboratories  
isolator. A current transformer circuit provides peak current sensing. Primary side analog parameters (input voltage  
and current and the filter node voltage) are digitized by a Silicon Laboratories C8051F300 microcontroller and  
passed to the Si8250/1/2 using the on-board UART through additional channels of the isolator I.C. to the  
Si8250/1/2. The Si8250/1/2 is uses the application software included with the Si8250DK development kit after  
being configured for the half-bridge application using the tools supplied in the kit.  
When power is applied, the CPU executes an internal reset followed by initialization of all parameters. The  
Si8250/1/2 remains in a low-power state, monitoring digitized VIN data from the primary-side MCU until VIN is  
within specified limits. At this time, the controller is fully enabled and executes soft-start by monitoring Vout while  
sequentially incrementing the loop voltage reference (REFDAC) until the supply output voltage is within specified  
range, at which time steady-state operation begins.  
During steady-state operation, the MCU operates in interrupt mode where hardware events divert program  
execution to specific routines in priority order.  
Preliminary Rev. 0.8  
19  
Si8250/1/2  
Single Phase POL (point of load) converter: A 65 W, 400 KHz Si8252 based single phase POL converter block  
diagram is shown in Figure 7. DPWM outputs PH1 and PH2 control the gates of the buck and synchronous  
switching transistors. A lossless current sensing method that relies on the resistor and inductance of the inductor is  
used to measure the current for over current protection. The input voltage is measured using resistor divider  
network and analog input port AIN0 of 12bit, 200 kHz ADC0.  
DIFFERENTIAL  
Ipk  
AMPLIFIER  
VIN  
CIN  
Vout  
L
C
+2.5 V  
VDD  
DRIVER  
DRIVER  
Ipk  
Vsense  
PH1  
PH2  
Ipk  
VIN  
AIN0  
Si8252  
GND  
Figure 7. Single-phase POL Block Diagram  
When power is applied, the CPU executes an internal reset followed by initialization of all parameters. The Si8252  
remains in a low-power state, monitoring digitized VIN data until VIN is within specified limits. At this time, the  
controller is fully enabled and executes soft-start by monitoring output voltage while sequentially incrementing the  
loop voltage reference (REFDAC) until the supply output voltage is within specified range, at which time steady-  
state operation begins.  
As in the previous half-bridge example, transient response is improved by adjusting loop gain at the onset of a  
transient (i.e. nonlinear control). The efficiency of the POL converter can be optimized over the complete load  
range by dynamically adjusting the dead-times. Typical efficiency simulation results for the POL are shown in  
Figure 8. In this case, the single-phase POL operates at a PWM frequency of 400 kHz with an output voltage of  
3.3 V and an input voltage range of 10 to 15 V. The curve shows the efficiency with an input voltage of 12.0 V.  
95  
90  
Eff(Io)  
85  
80  
0
5
10  
15  
20  
25  
Io  
Figure 8. POL Efficiency  
20  
Preliminary Rev. 0.8  
Si8250/1/2  
6. Layout Considerations  
The mixed-signal nature of the Si8250/1/2 mandates clean bias supplies and ground returns. It is best to provide  
separate ground planes for analog, digital and power switch returns. These planes should tie together at only one  
point to eliminate the possibility of circulating ground currents.  
For best performance, the VDD supply should be decoupled from the main supply. The LQFP-32 package provides  
the best noise performance because it has separate analog and digital VDD and ground inputs (AVDD, AGND). As  
shown in Figure 9, the AVDD is decoupled by a filter consisting of a 1 resistor in series with a 500 mA, 40 Ω  
ferrite bead and a parallel combination of a 10 uF with a 0.1 uF high-frequency bypass capacitor. All connections  
should be kept as short as possible. The VDDA and GNDA should be connected into their respective ground  
planes. The QFN-28 package shares analog and digital power with ground on the same pins. Power supply  
decoupling is shown in Figure 10. Again, all connections should be kept as short as possible.  
Ferrite bead  
500 mA, 40  
1 Ω  
2.5 V  
10 uF  
0.1 uF  
10 uF  
0.1 uF  
AVDD  
DVDD  
Si8250/1/2  
AGND  
DGND  
Keep trace  
lengths as short  
as possible  
AGND  
Figure 9. Power Supply Connections for LQFP-32 Package  
Ferrite bead  
500 mA, 40  
1 Ω  
2.5 V  
10 uF  
0.1 uF  
VDD  
Si8250/1/2  
GND  
Keep trace  
lengths as short  
as possible  
Figure 10. Power Supply Connections for QFN-28 Package  
Preliminary Rev. 0.8  
21  
Si8250/1/2  
In both cases, the bias supplies must be filtered using low ESR/ESL capacitors placed close to the IC pins.  
Thick copper traces should be connected to the bias pins (VDD, VDDA) and the ground pins (GND, GNDA) to  
reduce resistance and inductance. The copper routings from the drivers to the FETs should be kept short and wide,  
especially in very high frequency applications, to reduce inductance of the traces so that the drive signals can be  
kept clean.  
Connections between VSENSE and the output voltage must be kept absolutely as short as possible to minimize  
inductance and parasitic ringing effects. It is best to locate the Si8250/1/2 as close to the output voltage terminal as  
possible and use a Kelvin connection to ensure to difference in ground potential between the Si8250/1/2 and the  
output voltage ground return.  
Most applications will require access to the debug pins. These pins are susceptible to damage from electrostatic  
discharge (ESD). It is therefore recommended the debug circuit interface use the input protection circuitry shown in  
Figure 11.  
Si8250/1/2  
10  
10  
Debug Pins  
DEBUG  
(C2D, C2CK)  
CONNECTOR  
Figure 11. Debug Interface Pin Protection Circuit  
22  
Preliminary Rev. 0.8  
Si8250/1/2  
7. Pin Descriptions—Si8250/1/2  
32-pin LQFP  
28-pin QFN  
GND  
RST/C2CK  
IPK  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0.0  
RST / C2CK  
IPK  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
P0.1  
P0.1  
P0.2  
VSENSE  
P0.2  
VSENSE  
GND  
P0.3/XCLK  
P0.4  
Si8250/1/2  
Top View  
GNDA  
VDDA  
VREF  
P0.3 / XCLK  
P0.4  
Si8250/1/2  
Top View  
P0.5  
VDD  
P0.5  
P0.6  
P1.0/VIN/AIN0  
P1.1/AIN1  
VREF  
P0.6  
P0.7  
GND  
P1.0/VIN/AIN0  
P0.7  
Figure 12. Example Pin Configurations  
Table 17. Pin Descriptions  
Name  
RST/C2CK  
QFN-28 LQFP-32  
Type  
Description  
Pin #  
Pin#  
1
2
1
D I/O  
AIN  
Reset input or bidirect debug clock  
Inductor current input  
Output voltage feedback input  
Ground  
2
IPK  
3
3
AIN  
VSENSE  
GND  
4
4
AIN  
5
AIN  
GNDA  
Ground  
5
AIN  
VDD  
Power supply input  
6
AIN  
VDDA  
Power supply input  
6
AIN  
VREF  
External voltage reference input  
7
7
D I/O or AIN  
P1.0/VIN or AIN0  
Port 1 I/O or scaled power supply input voltage or  
ADC input 0  
8
8
D I/O or AIN  
D I/O or AIN  
D I/O or AIN  
D I/O or AIN  
AIN  
P1.1/AIN1  
P1.2/AIN2  
P1.3/AIN3  
P1.4/AIN4  
GND  
Port 1 I/O or ADC input 1  
Port 1 I/O or ADC input 2  
Port 1 I/O or ADC input 3  
Port 1 I/O or ADC input 4  
Ground  
9
9
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
15  
16  
AIN  
VDD  
Power supply input  
D I/O or AIN  
D I/O or AIN  
P1.5/AIN5  
P1.6/AIN6  
P1.7/ AIN7/C2D  
Port 1 I/O or ADC input 5  
Port 1 I/O or ADC input 6  
Port 1 I/O or ADC input 7 or C2 Data  
D I/O, DIN or  
AIN  
Preliminary Rev. 0.8  
23  
Si8250/1/2  
Table 17. Pin Descriptions (Continued)  
Name  
QFN-28 LQFP-32  
Type  
Description  
Pin #  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
Pin#  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
D I/O  
DOUT  
DOUT  
DOUT  
AIN  
P0.7  
P0.6  
P0.5  
P0.4  
Port 0 I/O  
Port 0 I/O  
Port 0 I/O  
Port 0 I/O  
Port 0 I/O  
Port 0 I/O  
Port 0 I/O  
P0.3/XCLK  
P0.2  
P0.1  
P0.0  
Port 0 I/O or bidirectional debug data  
Phase 6 switch control output  
Phase 5 switch control output  
Phase 4 switch control output  
Power supply input  
PH6  
PH5  
PH4  
VDD  
GND  
PH3  
AIN  
Ground  
26  
27  
28  
DOUT  
DOUT  
DOUT  
Phase 3 switch control output  
Phase 2 switch control output  
Phase 1 switch control output  
PH2  
PH1  
Pin Functions:  
RST/C2CK: CPU reset or debug tool clock. Driving this pin low resets the CPU. This pin is also clocked by the USB  
debug adaptor during debug.  
IPK: Input to the peak current detector for pulse-by-pulse current limiting and over-current protection shutdown  
control.  
VSENSE: ADC1 inverting input. This is the voltage feedback input for the Si8250. The maximum allowable signal is  
VREF.  
GND: Digital ground for the 32LQFP package, and the main ground for the 28MLP package.  
GNDA: Analog ground for 32LQFP only.  
VDD: Digital supply voltage for the 32LQFP package, and main supply voltage for the 28MLP package.  
VDDA: Analog supply for 32LQFP only.  
P1.0/VIN or AIN0: Programmable multifunction I/O pin. This pin can be software configured to be either a Port 1  
digital input or output, or an ADC0 input at AMUX address 0. If used in a non-isolated application, positive input  
supply voltage must be tied to this input through a resistor divider and anti-aliasing capacitor to minimize the  
frequencies above fS/2 (100Khz) to prevent aliasing. Isolated applications may use this input as general-purpose  
digital I/O or analog input.  
P1.1 or AIN1–P1.7 or AIN7: Programmable multifunction I/O pins. These pins can be software configured to be a  
Port 1 digital input or output, or an ADC0 input. P1.7 also serves as the debug data input (C2D) and is used during  
debug by the USB debug adaptor. P1.7 may be used as general-purpose digital I/O when not in debug mode. Any  
of the digital peripherals may be programmed to connect to these pins.  
P0.0–P0.7: Programmable multifunction I/O pins. These pins can be software configured to be either a Port 1  
digital input or output, or an ADC0 input. Any of the digital peripherals (including the ENABLE input) may be  
programmed to connect to these pins. P0.3 may be programmed to serve as an external (25MHz nominal) clock  
input.  
PH1–PH6: DPWM gate control (complementary drive) outputs. These signals connect to the MOSFET gates  
through an external gate driver. The output levels swing between ground and Vdd.  
24  
Preliminary Rev. 0.8  
Si8250/1/2  
8. Ordering Guide  
Ordering Number  
Flash Memory Number of  
UART  
Package  
PWM  
Outputs  
Si8250-IQ  
Si8250-IM  
Si8251-IQ  
Si8251-IM  
Si8252-IQ  
Si8252-IM  
32 kB  
32 kB  
16 kB  
16 kB  
16 kB  
16 kB  
6
6
6
6
3
3
Yes  
Yes  
Yes  
Yes  
No  
LQFP-32  
QFN-28  
LQFP-32  
QFN-28  
LQFP-32  
QFN-28  
No  
Preliminary Rev. 0.8  
25  
Si8250/1/2  
9. Package Outline—32LQFP  
Figure 13 illustrates the package details for the 32-pin LQFP version of the Si8250/1/2. Table 18 lists the values for  
the dimensions shown in the illustration.  
D
D1  
A2  
A
A1  
E1  
E
L
b
e
32  
PIN 1  
IDENTIFIER  
1
Figure 13. 32-pin LQFP Package Diagram  
Table 18. LQFP-32 Package Dimensions  
MM  
Min  
Typ  
Max  
1.60  
0.15  
1.45  
0.45  
A
A1  
A2  
b
0.05  
1.35  
0.30  
1.40  
0.37  
9.00  
7.00  
0.80  
9.00  
7.00  
D
D1  
e
E
E1  
26  
Preliminary Rev. 0.8  
Si8250/1/2  
10. Package Outline—28QFN  
Figure 14 illustrates the package details for the 28-lead QFN version of the Si8250/1/2. Table 19 lists the values for  
the dimensions shown in the illustration.  
Bottom View  
Side View  
L
7
15  
16  
17  
18  
19  
20  
21  
e
6
5
4
3
2
1
D2  
DETAIL 1  
D2  
2
AA  
CC  
R
DETAIL 1  
6 x e  
D
Figure 14. 28-lead Quad Flat No-lead (QFN) Package Diagram  
Table 19. QFN-28 Package Dimensions  
MM  
Typ  
0.90  
0.02  
0.65  
0.25  
0.23  
5.00  
3.15  
5.00  
3.15  
0.5  
MM  
Typ  
0.55  
28  
Min  
0.80  
0
Max  
1.00  
0.05  
1.00  
Min  
0.45  
Max  
0.65  
A
A1  
A2  
A3  
b
L
N
0
ND  
NE  
R
7
7
0.18  
0.30  
0.09  
D
AA  
BB  
CC  
DD  
0.435  
0.435  
0.18  
0.18  
D2  
E
2.90  
3.35  
E2  
e
2.90  
3.35  
Preliminary Rev. 0.8  
27  
Si8250/1/2  
DOCUMENT CHANGE LIST  
Revision 0.7 to Revision 0.8  
Updated DPWM phase output drive-high and drive-  
low resistance in Table 8, “DPWM Specifications,” on  
page 9.  
28  
Preliminary Rev. 0.8  
Si8250/1/2  
NOTES:  
Preliminary Rev. 0.8  
29  
Si8250/1/2  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
30  
Preliminary Rev. 0.8  

相关型号:

SI8250-IM

DIGITAL POWER CONTROLLER
SILICON

SI8250-IQ

DIGITAL POWER CONTROLLER
SILICON

SI8251

DIGITAL POWER CONTROLLER
SILICON

SI8251-IM

DIGITAL POWER CONTROLLER
SILICON

SI8251-IQ

DIGITAL POWER CONTROLLER
SILICON

SI8252

DIGITAL POWER CONTROLLER
SILICON

SI8252-IM

DIGITAL POWER CONTROLLER
SILICON

SI8252-IMR

Microprocessor Circuit, CMOS, 5 X 5 MM, ROHS COMPLIANT, QFN-28
SILICON

SI8252-IQ

DIGITAL POWER CONTROLLER
SILICON

SI8252-IQR

暂无描述
SILICON

SI8261

5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS
ETC

SI8261AAC-C-IS

Buffer/Inverter Based MOSFET Driver,
SILICON