SI8405AB-A-IS1 [SILICON]

Interface Circuit, PDSO16, SOIC-16;
SI8405AB-A-IS1
型号: SI8405AB-A-IS1
厂家: SILICON    SILICON
描述:

Interface Circuit, PDSO16, SOIC-16

光电二极管 接口集成电路
文件: 总34页 (文件大小:581K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si840x  
BIDIRECTIONAL I2C ISOLATORS WITH UNIDIRECTIONAL  
DIGITAL CHANNELS  
Features  
Independent, bidirectional SDA and 60-year life at rated working voltage  
SCL isolation channels  
Open drain outputs with 35 mA  
sink current  
High electromagnetic immunity  
Wide operating supply voltage  
3.0 to 5.5 V  
Supports I2C clocks up to 1.7 MHz  
Unidirectional isolation channels  
support additional system signals  
(Si8405)  
Wide temperature range  
–40 to +125 °C max  
Transient immunity 25 kV/µs  
RoHS-compliant packages  
SOIC-8 narrow body  
Up to 2500 VRMS isolation  
UL, CSA, VDE recognition  
SOIC-16 narrow body  
Applications  
2
Motor Control Systems  
Hot-swap applications  
Intelligent Power systems  
Isolated I C, SMBus  
Isolated digital power supply  
communications  
Power over Ethernet  
Description  
The Si840x series of isolators are single-package galvanic isolation  
2
solutions for I C and SMBus serial port applications. These products are  
Ordering Information:  
based on Silicon Labs proprietary RF isolation technology and offer shorter  
propagation delays, lower power consumption, smaller installed size, and  
more stable operation with temperature and age versus opto couplers or  
other digital isolators.  
See page 25.  
All devices in this family include hot-swap, bidirectional SDA and SCL  
isolation channels with open-drain, 35 mA sink capability and operate to a  
maximum frequency of 1.7 MHz. The 8-pin version (Si8400/01) supports  
bidirectional SDA and SCL isolation; the Si8402 supports bidirectional SDA  
and unidirectional SCL isolation, and the 16-pin version (Si8405) features  
two unidirectional isolation channels to support additional system signals,  
such as an interrupt or reset. All versions contain protection circuits to  
guard against data errors if an unpowered device is inserted into a powered  
system.  
Small size, low installed cost, low power consumption, and short  
propagation delays make the Si840x family the optimum solution for  
2
isolating I C and SMBus serial ports.  
Safety Regulatory Approval  
UL 1577 recognized  
Up to 2500 VRMS for 1 minute  
VDE certification conformity  
IEC 60747-5-2  
(VDE0884 Part 2)  
CSA component notice 5A approval  
IEC 60950-1, 61010-1  
(reinforced insulation)  
Rev. 1.6 10/13  
Copyright © 2013 by Silicon Laboratories  
Si840x  
Si840x  
2
Rev. 1.6  
Si840x  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.1. Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.2. Under Voltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.4. Input and Output Characteristics for Non-I2C Digital Channels . . . . . . . . . . . . . . . .15  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Typical Application Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1. I2C Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.2. I2C Isolator Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.3. I2C Isolator Design Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.4. I2C Isolator Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5.1. Power Supply Bypass Capacitors (Revision A and Revision B) . . . . . . . . . . . . . . . .22  
6. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
8. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
9. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
10. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
11. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
12. Top Marking: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
12.1. 8-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
12.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
13. Top Marking: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
13.1. 16-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
13.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Rev. 1.6  
3
Si840x  
1. Electrical Specifications  
Table 1. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
5.75  
6.0  
Unit  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Ambient Temperature Under Bias  
T
A
3
Supply Voltage (Revision A)  
V
DD  
DD  
3
Supply Voltage (Revision B)  
V
V
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
2
Output Current Drive (non-I C channels)  
I
I
I
±10  
mA  
mA  
mA  
°C  
O
2
Side A output current drive (I C channels)  
±15  
±75  
O
O
2
Side B output current drive (I C channels)  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s)  
Notes:  
260  
3600  
V
RMS  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. See "7.Ordering Guide" on page 25 for more information.  
Table 2. Si840x Power Characteristics*  
3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C (See Figures 2 and 16 for test diagrams.)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si8400/01/02 Supply Current  
AVDD current  
BVDD current  
Idda  
Iddb  
All channels = 0 dc  
All channels = 1 dc  
4.2  
3.9  
6.3  
5.9  
mA  
mA  
AVDD current  
BVDD current  
Idda  
Iddb  
2.3  
1.9  
3.5  
2.9  
mA  
mA  
AVDD current  
BVDD current  
Idda  
Iddb  
All channels = 1.7 MHz  
3.2  
2.9  
4.8  
4.4  
mA  
mA  
Si8405 Supply Current  
2
AVDD current  
BVDD current  
Idda  
Iddb  
All non-I C channels = 0  
3.2  
2.9  
4.8  
4.4  
mA  
mA  
2
All I C channels = 1  
2
AVDD current  
BVDD current  
Idda  
Iddb  
All non-I C channels = 1  
6.2  
6.0  
9.3  
9.0  
mA  
mA  
2
All I C channels = 0  
2
AVDD current  
BVDD current  
Idda  
Iddb  
All non-I C channels = 5 MHz  
4.7  
4.5  
7.1  
6.8  
mA  
mA  
2
All I C channels = 1.7 MHz  
*Note: All voltages are relative to respective ground.  
4
Rev. 1.6  
 
 
 
 
 
Si840x  
Table 3. Si8400/01/02/05 Electrical Characteristics for Bidirectional I2C Channels1  
3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Logic Levels Side A  
Logic Input Threshold  
Logic Low Output Voltages  
2
2
I CV (Side A)  
450  
780  
910  
825  
mV  
mV  
mV  
mV  
T
3
2
I CV (Side A) ISDAA = ISCLA = 3.0 mA 650  
OL  
ISDAA = ISCLA = 0.5 mA 550  
2
Input/Output Logic Low Level  
Difference  
I CV (Side A)  
50  
4
Logic Levels Side B  
2
Logic Low Input Voltage  
Logic High Input Voltage  
Logic Low Output Voltage  
I CV (Side B)  
2.0  
0.8  
400  
V
V
mV  
IL  
2
I CV (Side B)  
IH  
2
I CV (Side B)  
ISCLB = 35 mA  
OL  
SCL and SDA Logic High  
Leakage  
Isdaa, Isdab  
Iscla, Isclb  
SDAA, SCLA = VSSA  
SDAB, SCLB = VSSB  
2.0  
10  
µA  
Pin capacitance SDAA, SCLA,  
SDAB, SDBB  
CA  
CB  
10  
10  
pF  
pF  
Notes:  
1. All voltages are relative to respective ground.  
2. VIL < 0.450 V, VIH > 0.780 V.  
3. Logic low output voltages are 910 mV max from –10 to 125 °C at 3.0 mA.  
Logic low output voltages are 955 mV max from –40 to 125 °C at 3.0 mA.  
Logic low output voltages are 825 mV max from –10 to 125 °C at 0.5 mA.  
Logic low output voltages are 875 mV max from –40 to 125 °C at 0.5 mA.  
See “AN375: Design Considerations for Isolating an I2C Bus or SMBus” for additional information.  
4. I2CV (Side A) = I2CVOL (Side A) – I2CVT (Side A). To ensure no latch-up on a given bus, I2CV (Side A) is the  
minimum difference between the output logic low level of the driving device and the input logic threshold.  
5. Side A measured at 0.6 V.  
Rev. 1.6  
5
 
 
 
 
 
 
Si840x  
Table 3. Si8400/01/02/05 Electrical Characteristics for Bidirectional I2C Channels1 (Continued)  
3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C unless otherwise noted.  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Specifications (Measured at 1.40 V Unless Otherwise Specified)  
2
Maximum I C bus Frequency  
Fmax  
1.7  
MHz  
Propagation Delay  
5 V Operation  
Side A to side B rising  
5
Tphab  
Tplab  
Tphba  
Tplba  
No bus capacitance,  
R1 = 1400,  
25  
15  
20  
9.0  
29  
22  
30  
12  
ns  
ns  
ns  
ns  
5
Side A to side B falling  
Side B to side A rising  
Side B to side A falling  
3.3 V Operation  
R2 = 499,  
See Figure 2  
5
Side A to side B rising  
Side A to side B falling  
Tphab  
Tplab  
Tphba  
Tplba  
28  
13  
20  
10  
35  
18  
40  
15  
ns  
ns  
ns  
ns  
5
R1 = 806  
R2 = 499  
Side B to side A rising  
Side B to side A falling  
Pulse width distortion  
5 V  
Side A low to Side B low  
Side B low to Side A low  
3.3 V  
Side A low to Side B low  
No bus capacitance,  
R1 = 1400,  
5
PWDAB  
PWDBA  
R2 = 499,  
See Figure 2  
9.0  
11  
15  
20  
ns  
ns  
5
PWDAB  
PWDBA  
R1 = 806,  
R2 = 499  
15  
11  
22  
30  
ns  
ns  
Side B low to Side A low  
Notes:  
1. All voltages are relative to respective ground.  
2. VIL < 0.450 V, VIH > 0.780 V.  
3. Logic low output voltages are 910 mV max from –10 to 125 °C at 3.0 mA.  
Logic low output voltages are 955 mV max from –40 to 125 °C at 3.0 mA.  
Logic low output voltages are 825 mV max from –10 to 125 °C at 0.5 mA.  
Logic low output voltages are 875 mV max from –40 to 125 °C at 0.5 mA.  
See “AN375: Design Considerations for Isolating an I2C Bus or SMBus” for additional information.  
4. I2CV (Side A) = I2CVOL (Side A) – I2CVT (Side A). To ensure no latch-up on a given bus, I2CV (Side A) is the  
minimum difference between the output logic low level of the driving device and the input logic threshold.  
5. Side A measured at 0.6 V.  
6
Rev. 1.6  
Si840x  
Table 4. Electrical Characteristics for Unidirectional Non-I2C Digital Channels (Si8402/05)  
3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
AVDD, BVDD  
–0.4  
4.8  
V
OH  
Low Level Output Voltage  
Input Leakage Current  
V
0.2  
0.4  
±10  
V
µA  
OL  
I
L
1
Output Impedance  
Z
85  
O
Timing Characteristics  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
10  
40  
20  
12  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Output Rise Time  
t
20  
10  
ns  
ns  
ns  
PSK(P-P)  
t
PSK  
t
C = 15 pF  
4.0  
6.0  
r
3
See Figure 1 and  
Figure 2  
Output Fall Time  
t
C = 15 pF  
3.0  
4.3  
ns  
f
3
See Figure 1 and  
Figure 2  
Notes:  
1. The nominal output impedance of a non-I2C isolator driver channel is approximately 85 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET.  
When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with  
controlled impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
Rev. 1.6  
7
 
 
 
Si840x  
Table 5. Electrical Characteristics for All I2C and Non-I2C Channels  
3.0 V < VDD < 5.5 V. TA = –40 to +125 °C. Typical specs at 25 °C  
Parameter  
Symbol  
VDDUV+  
VDDH–  
Test Condition  
AVDD, BVDD rising  
AVDD, BVDD falling  
Min  
2.15  
45  
Typ Max  
Unit  
V
VDD Undervoltage Threshold  
2.3  
75  
2.5  
95  
VDD Negative-going Lockout  
Hysteresis  
mV  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
Shut Down Time from UVLO  
t
3.0  
15  
µs  
µs  
SD  
*
Start-up Time  
t
40  
START  
*Note: Start-up time is the time period from the application of power to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing (Non-I2C Channels)  
1.1. Test Circuits  
Figure 2 depicts the timing test diagram.  
AVDD  
NC  
BVDD  
NC  
R2  
R2  
R1  
R1  
ASDA  
ADIN  
ADOUT  
BSDA  
BDOUT  
BDIN  
ASCL  
NC  
BSCL  
NC  
C2  
C3  
C2  
C3  
C1  
C1  
AGND  
BGND  
Si840x  
Figure 2. Simplified Timing Test Diagram  
8
Rev. 1.6  
 
 
Si840x  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 300 V  
60950-1: Up to 130 V  
VDE  
reinforced insulation working voltage; up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
basic insulation working voltage.  
RMS  
RMS  
RMS  
RMS  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 560 V  
for basic insulation working voltage.  
peak  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 2500 V isolation voltage for basic insulation.  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
For more information, see "7.Ordering Guide" on page 25.  
Table 7. Insulation and Safety-Related Specifications  
Parameter  
Symbol Test Condition  
Value  
Unit  
NB SOIC-8 NB SOIC-16  
1
Nominal Air Gap (Clearance)  
L(1O1)  
L(1O2)  
4.9  
4.01  
0.008  
4.9  
4.01  
0.008  
mm  
mm  
mm  
1
Nominal External Tracking (Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
V
RMS  
0.040  
0.019  
mm  
Erosion Depth  
2
12  
12  
Resistance (Input-Output)  
R
10  
10  
IO  
2
Capacitance (Input-Output)  
C
1.0  
4.0  
2.0  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in “8. Package Outline:  
8-Pin Narrow Body SOIC” and “10. Package Outline: 16-Pin Narrow Body SOIC”. VDE certifies the clearance and  
creepage limits as 4.7 mm minimum for the NB SOIC-8 package and 4.7 mm minimum for the NB SOIC-16 package.  
UL does not impose a clearance and creepage minimum for component level certifications. CSA certifies the  
clearance and creepage limits as 3.9 mm minimum for the NB SOIC-8 package and 3.9 mm minimum for the NB  
SOIC-16 package.  
2. To determine resistance and capacitance, the Si840x, SO-16, is converted into a 2-terminal device. Pins 1–8 (1-4, SO-  
8) are shorted together to form the first terminal and pins 9–16 (5–8, SO-8) are shorted together to form the second  
terminal. The parameters are then measured between these two terminals.  
3. Measured from input pin to ground.  
Rev. 1.6  
9
 
 
 
 
 
Si840x  
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Condition  
Specification  
Basic Isolation Group  
Material Group  
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*  
Parameter  
Symbol  
Test Condition  
Characteristic Unit  
V
560  
V peak  
V peak  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
1050  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
V
t = 60 sec  
4000  
2
V peak  
Transient Overvoltage  
IOTM  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at T , V = 500 V  
9
R
>10  
S
S
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of  
40/125/21.  
Table 10. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
NB  
NB  
Unit  
SOIC-8 SOIC-16  
Case Temperature  
Safety Input Current  
T
I
150  
160  
150  
210  
°C  
S
= 105 °C/W (NB SOIC-16),  
140 °C/W (NB SOIC-8)  
AVDD, BVDD = 5.5 V,  
mA  
S
JA  
T = 150 °C, T = 25 °C  
J
A
2
Device Power Dissipation  
P
220  
275  
W
D
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 3 and Figure 4.  
2. The Si840x is tested with AVDD, BVDD = 5.5 V; TJ = 150 ºC; C1, C2 = 0.1 µF; C3 = 15 pF; R1, R2 = 3kinput 1 MHz  
50% duty cycle square wave.  
10  
Rev. 1.6  
 
 
 
 
Si840x  
Table 11. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
NB  
NB  
Unit  
SOIC-8 SOIC-16  
IC Junction-to-Air Thermal Resistance  
140 105  
°C/W  
JA  
400  
300  
270  
AVDD, BVDD = 3.6 V  
200  
160  
AVDD, BVDD = 5.5 V  
100  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 3. NB SOIC-8 Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
400  
350  
300  
AVDD , BVDD = 3.6 V  
210  
200  
AVDD , BVDD = 5.5 V  
100  
0
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 4. NB SOIC-16 Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Rev. 1.6  
11  
Si840x  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single unidirectional Si84xx channel is  
shown in Figure 5.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 5. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 6 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 6. Modulation Scheme  
12  
Rev. 1.6  
 
 
Si840x  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 7, where UVLO+ and UVLO–  
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when  
power supply (VDD) is not present.  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following  
this, the outputs follow the states of inputs.  
3.2. Under Voltage Lockout  
Under Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own under  
voltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally  
enters UVLO when AVDD falls below AVDD  
and exits UVLO when AVDD rises above AVDD  
. Side B  
UVLO–  
UVLO+  
operates the same as Side A with respect to its BVDD supply.  
UVLO+  
UVLO-  
AVDD  
UVLO+  
UVLO-  
BVDD  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 7. Device Behavior during Normal Operation  
Rev. 1.6  
13  
 
Si840x  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 6 on page 9 and Table 7 on page 9 detail the working  
voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component standards  
(UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system  
specifications requirements. Refer to the end-system specification (61010-1, 60950-1, etc.) requirements before  
starting any design that uses a digital isolator.  
The following sections detail the recommended bypass and decoupling components necessary to ensure robust  
overall performance and reliability for systems using the Si84xx digital isolators.  
3.3.1. Supply Bypass  
Digital integrated circuit components typically require 0.1 µF (100 nF) bypass capacitors when used in electrically  
quiet environments. However, digital isolators are commonly used in hazardous environments with excessively  
noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1 µF bypass  
capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as  
close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is  
recommended that the designer add 50 to 100 resistors in series with the VDD supply voltage source and 50 to  
300 resistors in series with the digital inputs/outputs (see Figure 8). For more details, see "5.Errata and Design  
Migration Guidelines" on page 22.  
All components upstream or downstream of the isolator should be properly decoupled as well. If these components  
are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing  
damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300 resistors protect  
the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are  
exceeded). Functional operation should be restricted to the conditions specified in Table 3, “Si8400/01/02/05  
1
Electrical Characteristics for Bidirectional I2C Channels ,” on page 5. and Table 4, “Electrical Characteristics for  
Unidirectional Non-I2C Digital Channels (Si8402/05),” on page 7  
3.3.2. Pin Connections  
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
3.3.3. Output Pin Termination  
2
The nominal output impedance of an non-I C isolator driver channel is approximately 85 , ±40%, which is a  
combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET.  
When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated  
with controlled impedance PCB traces. The series termination resistor values should be scaled appropriately while  
keeping in mind the recommendations described in “3.3.1. Supply Bypass” above.  
V Source 2  
R2 (50 – 100 )  
V Source 1  
R1 (50 – 100 )  
C1  
AVDD  
Ax  
BVDD  
Bx  
C4  
50 – 300   
50 – 300   
0.1 F  
0.1 F  
C2  
C3  
Input/Output  
Input/Output  
1 F  
1 F  
Ax  
Bx  
50 – 300   
50 – 300   
AGND  
BGND  
Figure 8. Recommended Bypass Components for the Si84xx Digital Isolator Family  
14  
Rev. 1.6  
 
 
Si840x  
2
3.4. Input and Output Characteristics for Non-I C Digital Channels  
The Si84xx inputs and outputs for unidirectional channels are standard CMOS drivers/receivers. The nominal  
output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the value of  
the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where  
transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance  
2
PCB traces. Table 12 details powered and unpowered operation of the Si84xx’s non-I C digital channels.  
Table 12. Si84xx Operation Table  
1,2  
1,2  
1,3,4  
1,3,4  
Comments  
V Input  
V Output  
VDDI State  
VDDO State  
I
O
H
L
P
P
P
P
H
L
Normal operation.  
Upon transition of VDDI from unpowered to pow-  
5
6
X
UP  
P
P
L
ered, V returns to the same state as V in less  
O
I
than 1 µs.  
Upon transition of VDDO from unpowered to pow-  
5
X
UP  
Undetermined  
ered, V returns to the same state as V within  
O
I
1 µs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. X = not applicable; H = Logic High; L = Logic Low.  
3. Powered (P) state is defined as 3.0 V < VDD < 5.5 V.  
4. Unpowered (UP) state is defined as VDD = 0 V.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
6. For I2C channels, the outputs for a given side go to Hi-Z when power is lost on the opposite side.  
Rev. 1.6  
15  
 
 
 
 
 
 
 
Si840x  
3.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 2, 3, 4, and 5 for actual specification limits.  
Side A  
Side B  
Side B  
Side A  
Figure 12. I2C Side A Pulling Up, Side B  
Following  
Figure 9. I2C Side A Pulling Down  
(1100 Pull-Up)  
10  
Falling Edge  
9
8
7
6
5
Side B  
Side A  
Rising Edge  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 13. Non I2C Channel Propagation Delay  
vs. Temperature  
Figure 10. I2C Side B Pulling Down  
Side B  
Side A  
Figure 11. I2C Side B Pulling Up, Side A  
Following  
16  
Rev. 1.6  
Si840x  
Figure 14. Si84xx Time-Dependent Dielectric Breakdown  
Rev. 1.6  
17  
 
Si840x  
4. Typical Application Overview  
2
4.1. I C Background  
2
In many applications, I C, SMBus, and other digital power supply communications, including those for bus power  
management, the interfaces require galvanic isolation for safety or ground loop elimination. For example, Power  
2
over Ethernet (PoE) applications typically use an I C interface for communication between the PoE power sourcing  
device (PSE), and the earth ground referenced system controller. Galvanic isolation is required both by standard  
and also as a practical matter to prevent ground loops in Ethernet connected equipment.  
The physical interface consists of two wires: serial data (SDA) and serial clock (SCL). These wires are connected  
to open collector drivers that serve as both inputs and outputs. At first glance, it appears that SDA and SCL can be  
isolated simply by placing two unidirectional isolators in parallel, and in opposite directions. However, this  
technique creates feedback that latches the bus line low when a logic low asserted by either master or slave. This  
problem can be remedied by adding anti-latch circuits, but results in a larger and more expensive solution. The  
2
Si840x products offer a single-chip, anti-latch solution to the problem of isolating I C/SMBus applications and  
2
require no external components except the I C/SMBus pull-up resistors. In addition, they provide isolation to a  
2
2
maximum of 2.5 kV  
, support I C clock stretching, and operate to a maximum I C bus speed of 1.7 Mbps.  
RMS  
2
4.2. I C Isolator Operation  
2
Without anti-latch protection, bidirectional I C isolators latch when an isolator output logic low propagates back  
through an adjacent isolator channel creating a stable latched low condition on both sides. Anti-latch protection is  
typically added to one side of the isolator to avoid this condition (the “A” side for the Si8400/01/02/05).  
The following examples illustrate typical circuit configurations using the Si8400/01/02/05.  
Si8400/01/02/05  
I2C/SMBus  
Unit 1  
+
-
VIL  
VOL  
I2C/SMBus  
Unit 2  
ISO1  
VIL  
VOL  
ISO2  
Figure 15. Isolated Bus Overview (Bidirectional Channels)  
The “A side” output low (V ) and input low (V ) levels are designed such that the isolator V is greater than the  
OL  
IL  
OL  
isolator V to prevent the latch condition.  
IL  
18  
Rev. 1.6  
Si840x  
2
4.3. I C Isolator Design Constraints  
Table 13 lists the design constraints.  
Table 13. Design Constraints  
Effect of Bus Pull-up Strength  
and Temperature  
Design Constraint  
Data Sheet Values  
Isolator V 0.8 V typical  
OL  
This is normally guaranteed by the  
isolator data sheet. However, if the  
pull up strength is too weak, the out-  
put low voltage will fall and can get  
too close to the input low logic level.  
These track over temperature.  
Isolator V 0.6 V typical  
To prevent the latch condition, the  
isolator output low level must be  
greater than the isolator input low  
level.  
IL  
Input/Output Logic Low Level  
Difference  
VSDA1, VSCL1 = 50 mV minimum  
If the pull up strength is too large,  
the devices on the bus might not pull  
the voltage below the input low  
range. These have opposite tem-  
perature coefficients. Worst case is  
hot temperature.  
Bus V = 0.4 V maximum  
The bus output low must be less  
than the isolator input low logic  
level.  
OL  
Isolator V = 0.45 V minimum  
IL  
If the pull up strength is too large,  
the isolator might not pull below the  
bus input low voltage.  
Si8400/01/05 Vol: –1.8 mV/C  
CMOS buffer: –0.6 mV/C  
This provides some temperature  
tracking, but worst case is cold tem-  
perature.  
Bus V 0.3 x V = 1.0 V minimum for  
IL  
DD  
V
= 3.3 V  
DD  
The isolator output low must be  
less than the bus input low.  
Isolator V = 0.825 V maximum,  
OL  
(0.5 mA pullup, –10 to 125 °C)  
2
4.4. I C Isolator Design Considerations  
2
The first step in applying an I C isolator is to choose which side of the bus will be connected to the isolator A side.  
Ideally, it should be the side which:  
1. Is compatible with the range of bus pull up specified by the manufacturer. For example, the Si8400/01/02/05  
isolators are normally used with a pull up of 0.5 mA to 3 mA.  
2. Has the highest input low level for devices on the bus. Some devices may specify an input low of 0.9 V and  
other devices might require an input low of 0.3 x Vdd. Assuming a 3.3 V minimum power supply, the side with  
an input low of 0.3 x Vdd is the better side because this side has an input low level of 1.0 V.  
3. Have devices on the bus that can pull down below the isolator input low level. For example, the Si840x input  
level is 0.45 V. As most CMOS devices can pull to within 0.4 V of GND this is generally not an issue.  
4. Has the lowest noise. Due to the special logic levels, noise margins can be as low as 50 mV.  
The Si840x isolators are not compatible with devices that have a logic low of 0.8 V. For this situation, a discrete  
2
circuit can be used. See “AN352: Low-Cost, High-Speed I C Isolation with Digital Isolators” for additional  
information.  
Rev. 1.6  
19  
 
Si840x  
Figures 16, 17, 18, and 19 illustrate typical circuit configurations using the Si8400, Si8401, Si8402 and Si8405.  
BVDD  
8
7
1
2
AVDD  
ASDA  
0.1 µF  
3k  
3k  
0.1 µF  
3k  
3k  
BSDA  
I2C  
Bus  
BSCL  
3
4
6
5
ASCL  
BGND  
AGND  
Si8400  
Figure 16. Typical Si8400 Application Diagram  
BVDD  
8
7
1
2
AVDD  
ASDA  
0.1 µF  
3k  
3k  
0.1 µF  
3k  
3k  
BSDA  
I2C  
Bus  
BSCL  
3
4
6
5
ASCL  
BGND  
AGND  
Si8401  
Figure 17. Typical Si8401 Application Diagram  
BVDD  
8
7
1
2
AVDD  
ASDA  
0.1 µF  
3k  
0.1 µF  
3k  
BSDA  
I2C  
Bus  
BSCL  
3
4
6
5
ASCL  
BGND  
AGND  
Si8402  
Figure 18. Typical Si8402 Application Diagram  
20  
Rev. 1.6  
 
 
Si840x  
BVDD  
16  
15  
1
2
AVDD  
0.1 µF  
0.1 µF  
3k  
3k  
3k  
3k  
BSDA  
3
14  
13  
12  
11  
10  
9
ASDA  
Micro-  
controller  
RESET  
4
5
6
7
8
I2C  
Bus  
Micro-  
controller  
INT  
BSCL  
ASCL  
BGND  
AGND  
Si8405  
Figure 19. Typical Si8405 Application Diagram  
Rev. 1.6  
21  
Si840x  
5. Errata and Design Migration Guidelines  
The following errata apply to Revision A devices only. See "7.Ordering Guide" on page 25 for more details. No  
errata exist for Revision B devices.  
5.1. Power Supply Bypass Capacitors (Revision A and Revision B)  
When using the Si840x isolators with power supplies > 4.5 V, sufficient VDD bypass capacitors must be present on  
both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a > 4.5 V  
supply). Although rise time is power supply dependent, > 1 µF capacitors are required on both power supply pins  
(VDD1, VDD2) of the isolator device.  
5.1.1. Resolution  
For recommendations on resolving this issue, see "3.3.1.Supply Bypass" on page 14. Additionally, refer to  
"7.Ordering Guide" on page 25 for current ordering information.  
22  
Rev. 1.6  
 
 
Si840x  
6. Pin Descriptions  
1
2
3
4
8
7
6
5
AVDD  
ASDA  
ASCL  
AGND  
BVDD  
BSDA  
BSCL  
BGND  
1
2
3
4
8
7
6
5
AVDD  
ASDA  
ASCL  
AGND  
BVDD  
BSDA  
BSCL  
BGND  
Bidirectional  
Isolator Channel  
Bidirectional  
Isolator Channel  
Bidirectional  
Isolator Channel  
Unidirectional  
Isolator Channel  
Si8402  
Si8400/01  
Table 14. Si8400/01/02 in SO-8 Package  
Description  
Pin  
1
Name  
AVDD Side A power supply terminal; connect to a source of 3.0 to 5.5 V.  
ASDA Side A data (open drain) input or output.  
2
3
ASCL Side A clock input or output.  
Open drain I/O for Si8400/01. Standard CMOS input for Si8402.  
4
5
6
AGND Side A ground terminal.  
BGND Side B ground terminal.  
BSCL Side B clock input or output.  
Open drain I/O for Si8400/01. Push-pull output for Si8402.  
7
8
BSDA Side B data (open drain) input or output.  
BVDD Side B power supply terminal; connect to a source of 3.0 to 5.5 V.  
Rev. 1.6  
23  
Si840x  
BVDD  
NC  
16  
15  
14  
13  
12  
11  
10  
9
AVDD  
NC  
1
2
Bidirectional  
Isolator Channel  
3
4
5
6
7
8
ASDA  
ADIN  
BSDA  
BDOUT  
BDIN  
BSCL  
NC  
Unidirectional  
Isolator Channel  
Unidirectional  
Isolator Channel  
ADOUT  
ASCL  
Bidirectional  
Isolator Channel  
NC  
AGND  
BGND  
Si8405  
Table 15. Si8405 in Narrow-Body SO-16 Package  
Description  
Pin  
Name  
1
2
3
4
AVDD  
NC  
Side A Power Supply Terminal. Connect to a source of 3.0 to 5.5 V.  
No connection.  
ASDA  
ADIN  
Side A Data (open drain) Input or Output.  
Side A Standard CMOS Digital Input (non I2C).  
Side A Digital Push-Pull Output (non I2C).  
Side A Clock (open drain) Input or Output.  
No connection.  
5
6
ADOUT  
ASCL  
NC  
7
8
AGND  
BGND  
NC  
Side A Ground Terminal.  
9
Side B Ground Terminal.  
10  
11  
12  
No connection.  
BSCL  
BDIN  
Side B Clock (open drain) Input or Output.  
Side B Standard CMOS Digital Input (non I2C).  
Side B Digital Push-Pull Output (non I2C).  
Side B Data (open drain) Input or Output.  
No connection.  
13  
BDOUT  
14  
15  
16  
BSDA  
NC  
BVDD  
Side B Power Supply Terminal. Connect to a source of 3.0 to 5.5 V.  
24  
Rev. 1.6  
Si840x  
7. Ordering Guide  
These devices are not recommended for new designs. Please see the Si860x datasheet for replacement options.  
Table 16. Ordering Guide1  
MaxI2C  
Bus  
Speed  
(MHz)  
Ordering Part  
Number  
Alternative Part  
Number  
Number of  
Bidirectional  
I2C  
Channels  
Number of  
Unidirectional  
Channels  
Max Data Rate Isolation  
Package  
of Non-I2C  
Ratings  
(OPN)  
(APN)  
Unidirectional  
Channels  
(Mbps)  
Revision B Devices2  
Si8400AA-B-IS  
Si8400AB-B-IS  
Si8401AA-B-IS  
Si8401AB-B-IS  
Si8402AB-B-IS  
Si8600AB-B-IS  
2
2
1
1
1
1.7  
1.7  
1.7  
1.7  
1.7  
0
0
1
1
1
10  
1 kVRMS  
2.5 kVRMS  
1 kVRMS  
NB SOIC-8  
NB SOIC-8  
NB SOIC-8  
NB SOIC-8  
NB SOIC-8  
Si8600AB-B-IS  
Si8602AB-B-IS  
Si8602AB-B-IS  
Si8602AB-B-IS  
2.5 kVRMS  
2.5 kVRMS  
1 forward  
1 reverse  
Si8405AA-B-IS1 Si8605AB-B-IS1  
2
2
1.7  
1.7  
10  
10  
1 kVRMS  
NB SOIC-16  
1 forward  
1 reverse  
Si8405AB-B-IS1 Si8605AB-B-IS1  
2.5 kVRMS NB SOIC-16  
Revision A Devices2  
Si8400AA-A-IS  
Si8400AB-A-IS  
Si8600AB-B-IS  
Si8600AB-B-IS  
2
2
1.7  
1.7  
0
0
1 kVRMS  
NB SOIC-8  
NB SOIC-8  
2.5 kVRMS  
1 forward  
1 reverse  
Si8405AA-A-IS1 Si8605AB-B-IS1  
2
2
1.7  
1.7  
10  
10  
1 kVRMS  
NB SOIC-16  
1 forward  
1 reverse  
Si8405AB-A-IS1 Si8605AB-B-IS1  
2.5 kVRMS NB SOIC-16  
Notes:  
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C  
according to the JEDEC industry standard classifications and peak solder temperature.  
2. Revision A and Revision B devices are supported for existing designs.  
Rev. 1.6  
25  
 
 
 
 
Si840x  
8. Package Outline: 8-Pin Narrow Body SOIC  
Figure 20 illustrates the package details for the Si840x in an 8-pin SOIC (SO-8). Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 20. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 17. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
26  
Rev. 1.6  
 
 
Si840x  
9. Land Pattern: 8-Pin Narrow Body SOIC  
Figure 21 illustrates the recommended land pattern details for the Si840x in an 8-pin narrow-body SOIC. Table 18  
lists the values for the dimensions shown in the illustration.  
Figure 21. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 18. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.6  
27  
 
 
Si840x  
10. Package Outline: 16-Pin Narrow Body SOIC  
Figure 22 illustrates the package details for the Si840x in a 16-pin narrow-body SOIC (SO-16). Table 19 lists the  
values for the dimensions shown in the illustration.  
Figure 22. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 19. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
0.25 BSC  
28  
Rev. 1.6  
 
 
Si840x  
Table 19. Package Diagram Dimensions (Continued)  
Dimension  
Min  
0.25  
0°  
Max  
0.50  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012,  
Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.6  
29  
Si840x  
11. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 23 illustrates the recommended land pattern details for the Si840x in a 16-pin narrow-body SOIC. Table 20  
lists the values for the dimensions shown in the illustration.  
Figure 23. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 20. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
30  
Rev. 1.6  
 
 
Si840x  
12. Top Marking: 8-Pin Narrow Body SOIC  
12.1. 8-Pin Narrow Body SOIC Top Marking  
Si84XYSV  
YYWWRF  
e3  
AIXX  
12.2. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator I2C Product Series:  
XY = Channel Configuration  
00 = Bidirectional SCL and SDA channels  
01/02 = Bidirectional SDA channel;  
Unidirectional SCL channel  
(See Ordering Guide for more  
information).  
S = Speed Grade  
A = 1.7 Mbps  
V = Isolation rating  
A = 1 kV; B = 2.5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Work week  
Assigned by assembly contractor. Corresponds to the  
year and work week of the mold date.  
R = Product Rev  
F = Wafer Fab  
First two characters of the manufacturing code from  
Assembly.  
Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol  
A = Assembly Site  
I = Internal Code  
Last four characters of the manufacturing code from  
assembly.  
XX = Serial Lot Number  
Rev. 1.6  
31  
Si840x  
13. Top Marking: 16-Pin Narrow Body SOIC  
13.1. 16-Pin Narrow Body SOIC Top Marking  
Si84XYSV  
YYWWTTTTTT  
e3  
13.2. Top Marking Explanation  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
05 = Bidirectional SCL, SDA; 1- forward and 1-reverse  
unidirectional channel  
S = Speed Grade  
A = 1.7 Mbps  
V = Isolation rating  
A = 1 kV; B = 2.5 kV  
Line 2 Marking:  
Circle = 1.2 mm Diameter  
“e3” Pb-Free Symbol  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
TTTTTT = Mfg code  
Manufacturing Code from Assembly Purchase Order  
form.  
Circle = 1.2 mm diameter  
“e3” Pb-Free Symbol.  
32  
Rev. 1.6  
Si840x  
Revision 1.3 to Revision 1.4  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Updated "3.3.1.Supply Bypass" on page 14.  
Added Figure 8, “Recommended Bypass  
Components for the Si84xx Digital Isolator Family,”  
on page 14.  
Updated document to reflect availability of Revision  
B silicon.  
Updated Tables 2, 3, 4, and 5.  
Updated "5.1.Power Supply Bypass Capacitors  
(Revision A and Revision B)" on page 22.  
Updated all supply currents and timing parameters.  
Revised logic low output voltage specifications in  
Table 3.  
Revision 1.4 to Revision 1.5  
Updated Table 1.  
Updated absolute maximum supply voltage.  
Updated Table 7.  
Updated "7.Ordering Guide" on page 25 to include  
new title note and “ Alternative Part Number (APN)”  
column.  
Updated clearance and creepage dimensions.  
Updated "5.Errata and Design Migration Guidelines"  
on page 22.  
Revision 1.5 to Revision 1.6  
Updated part numbers on page 1 and in pin  
descriptions images.  
Updated "7.Ordering Guide" on page 25.  
Revision 1.0 to Revision 1.1  
Updated Table 4.  
Updated Note 1 to reflect output impedance of 85 .  
Updated rise and fall time specifications.  
Updated Table 5.  
Updated CMTI value.  
Updated “7. Ordering Guide”.  
Added Si8401 device configuration throughout  
document.  
Revision 1.1 to Revision 1.2  
Updated document throughout to include MSL  
improvements to MSL2A.  
Updated "7.Ordering Guide" on page 25.  
Updated Note 1 in ordering guide table to reflect  
improvement and compliance to MSL2A moisture  
sensitivity level.  
Revision 1.2 to Revision 1.3  
Added Si8402 throughout document. Clarified  
description of Si8401’s BSCL pin to indicate pin type  
is an open output, whereas the Si8402’s BSCL pin is  
a push-pull CMOS pin.  
Updated "7.Ordering Guide" on page 25 to include  
Si8402.  
Moved Table 1 to page 4.  
Updated Tables 6, 7, 8, and 9.  
Updated Table 12 footnotes.  
Added Figure 14, “Si84xx Time-Dependent  
Dielectric Breakdown,” on page 17.  
Added Figure 18, “Typical Si8402 Application  
Diagram,” on page 20.  
Rev. 1.6  
33  
Si840x  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
http://www.siliconlabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
34  
Rev. 1.6  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY