SI8410-A-IS [SILICON]

SINGLE & DUAL-CHANNEL DIGITAL ISOLATORS; 单,双通道数字隔离器
SI8410-A-IS
型号: SI8410-A-IS
厂家: SILICON    SILICON
描述:

SINGLE & DUAL-CHANNEL DIGITAL ISOLATORS
单,双通道数字隔离器

文件: 总26页 (文件大小:574K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8410/20/21  
SINGLE & DUAL-CHANNEL DIGITAL ISOLATORS  
Features  
Pin Assignments  
High-speed operation  
DC – 150 Mbps  
2500 V  
isolation  
RMS  
Transient Immunity  
>25 kV/µs  
Narrow Body SOIC  
Low propagation delay  
<10 ns  
Si841x  
DC correct  
Wide Operating Supply Voltage:  
2.375–5.5 V  
No start-up initialization required  
<10 µs Startup Time  
High temperature operation  
VDD1  
VDD2  
8
7
6
5
1
2
3
4
A1  
VDD1  
GND2  
B1  
Low power  
I1 + I2 < 12 mA/channel at  
125 °C at 100 Mbps  
100 °C at 150 Mbps  
100 Mbps  
GND1  
GND2  
Precise timing  
Narrow body SOIC-8 package  
Top View  
2 ns pulse width distortion  
1 ns channel-channel matching  
2 ns pulse width skew  
Si842x  
VDD1  
A1  
VDD2  
B1  
8
7
6
5
1
2
3
4
Applications  
Isolated switch mode supplies Motor control  
A2  
B2  
Isolated ADC, DAC  
Power factor correction systems  
GND1  
GND2  
Top View  
Safety Regulatory Approvals  
UL recognition:2500 Vrms for 1 IEC certification conformity  
Minute per UL1577  
IEC 60747-5-2  
(VDE0884 Part 2)  
CSA component acceptance  
notice  
Description  
The Silicon Laboratories family of digital isolators are CMOS devices that  
employ an RF coupler to transmit digital information across an isolation  
barrier. Very high speed operation at low power levels is achieved. These  
parts are available in an 8-pin narrow-body SOIC package. Three speed  
grade options (1, 10, and 150 Mbps) are available and achieve typical  
propagation delays of less than 10 ns.  
Block Diagram  
Si8410  
Si8420  
Si8421  
B1  
B2  
B1  
B2  
A1  
A2  
A1  
A2  
A1  
B1  
Preliminary Rev. 0.1 5/07  
Copyright © 2007 by Silicon Laboratories  
Si8410/20/21  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si8410/20/21  
2
Preliminary Rev. 0.1  
Si8410/20/21  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.3. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . .22  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
7. Package Outline: 8-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Preliminary Rev. 0.1  
3
Si8410/20/21  
1. Electrical Specifications  
Table 1. Electrical Characteristics  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at Supply)  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
7
3
10  
5
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
9
14  
5
3
7
10  
7
4
11  
4
15  
6
9
12  
12  
14  
14  
9
10  
10  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410-B,-C, V  
Si8410-B,-C, V  
Si8420-B,-C, V  
Si8420-B,-C, V  
Si8421-B,-C, V  
Si8421-B,-C, V  
8
5
12  
7
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
9
13  
12  
16  
16  
9
12  
12  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410-C, V  
Si8410-C, V  
Si8420-C, V  
Si8420-C, V  
Si8421-C, V  
Si8421-C, V  
8
12  
22  
13  
39  
27  
27  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
15  
9
30  
21  
21  
4
Preliminary Rev. 0.1  
Si8410/20/21  
Table 1. Electrical Characteristics (Continued)  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Timing Characteristics  
Si841x/2x-A  
Min  
Typ  
Max  
Unit  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
40  
1
1000  
75  
Mbps  
ns  
25  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
30  
ns  
|t  
- t  
|
PLH PHL  
1
1
1
Propagation Delay Skew  
Channel-Channel Skew  
Si841x/2x-B  
t
50  
40  
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
20  
10  
100  
35  
Mbps  
ns  
10  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
7.5  
ns  
|t  
- t  
|
PLH PHL  
Propagation Delay Skew  
Channel-Channel Skew  
Si841x/2x-C  
t
25  
5
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
4
150  
6.6  
9.5  
3.5  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
6.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
Propagation Delay Skew  
Channel-Channel Skew  
t
5.5  
3
ns  
ns  
PSK(P-P)  
t
PSK  
Preliminary Rev. 0.1  
5
Si8410/20/21  
Table 1. Electrical Characteristics (Continued)  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
For All Models  
Min  
Typ  
Max  
Unit  
Output Rise Time  
t
C = 15 pF  
25  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CTMI  
V = V or 0 V  
30  
kV/µs  
I
DD  
2
Start-up Time  
t
3
µs  
SU  
Notes:  
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
2. Start-up time is the time period from the application of power to valid data at the output.  
50%  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
50%  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
6
Preliminary Rev. 0.1  
Si8410/20/21  
Table 2. Electrical Characteristics  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at supply)  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
6
2
9
4
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
8
13  
4
2
7
9
4
6
10  
4
14  
6
8
11  
11  
13  
13  
8
9
9
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410-B,-C, V  
Si8410-B,-C, V  
Si8420-B,-C, V  
Si8420-B,-C, V  
Si8421-B,-C, V  
Si8421-B,-C, V  
7
4
11  
6
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
8
12  
12  
14  
14  
8
10  
10  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410-C, V  
Si8410-C, V  
Si8420-C, V  
Si8420-C, V  
Si8421-C, V  
Si8421-C, V  
7
11  
16  
12  
26  
21  
21  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
10  
8
20  
17  
17  
Preliminary Rev. 0.1  
7
Si8410/20/21  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si841x/2x-A  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
40  
1
1000  
75  
Mbps  
ns  
25  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
30  
ns  
|t  
– t  
|
PLH  
PHL  
1
1
1
Propagation Delay Skew  
Channel-Channel Skew  
Si841x/2x-B  
t
50  
40  
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
20  
10  
100  
35  
Mbps  
ns  
10  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
7.5  
ns  
|t  
– t  
|
PLH  
PHL  
Propagation Delay Skew  
Channel-Channel Skew  
Si841x/2x-C  
t
25  
5
ns  
ns  
PSK(P-P)  
t
PSK  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
4
150  
6.6  
10  
Mbps  
ns  
t
, t  
See Figure 1  
See Figure 1  
7.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
3.5  
ns  
|t  
– t  
|
PLH  
PHL  
Propagation Delay Skew  
Channel-Channel Skew  
t
5.5  
3
ns  
ns  
PSK(P-P)  
t
PSK  
8
Preliminary Rev. 0.1  
Si8410/20/21  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
For All Models  
Min  
Typ  
Max  
Unit  
Output Rise Time  
t
C = 15 pF  
25  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CTMI  
V = V or 0 V  
30  
kV/µs  
I
DD  
2
Start-up Time  
t
3
µs  
SU  
Notes:  
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
2. Start-up time is the time period from the application of power to valid data at the output.  
Preliminary Rev. 0.1  
9
Si8410/20/21  
Table 3. Electrical Characteristics  
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at supply)  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8410-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8420-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
Si8421-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
5
2
7
2
6
4
9
3
7
7
8
8
7
3
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
9
3
7
5
11  
5
9
9
10  
10  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410-B,-C, V  
Si8410-B,-C, V  
Si8420-B,-C, V  
Si8420-B,-C, V  
Si8421-B,-C, V  
Si8421-B,-C, V  
6
3
7
6
8
8
8
5
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
9
8
11  
11  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410-C, V  
Si8410-C, V  
Si8420-C, V  
Si8420-C, V  
Si8421-C, V  
Si8421-C, V  
6
7
8
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
10  
9
7
12  
12  
12  
15  
15  
15  
10  
Preliminary Rev. 0.1  
Si8410/20/21  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)  
Parameter  
Symbol  
Test Condition  
Timing Characteristics  
Si841x/2x-A  
Min  
Typ  
Max  
Unit  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
40  
1
Mbps  
ns  
25  
1000  
75  
ns  
t
, t  
See Figure 1  
See Figure 1  
PHL PLH  
Pulse Width Distortion  
30  
ns  
PWD  
|t  
- t  
|
PLH PHL  
1
1
1
Propagation Delay Skew  
Channel-Channel Skew  
50  
40  
ns  
ns  
t
PSK(P-P)  
t
PSK  
Si841x/2x-B  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
20  
10  
100  
35  
Mbps  
ns  
10  
ns  
t
, t  
See Figure 1  
See Figure 1  
PHL PLH  
Pulse Width Distortion  
7.5  
ns  
PWD  
|t  
- t  
|
PLH PHL  
Propagation Delay Skew  
Channel-Channel Skew  
25  
5
ns  
ns  
t
PSK(P-P)  
t
PSK  
Si841x/2x-C  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
5
10  
100  
10  
Mbps  
ns  
17  
ns  
t
, t  
See Figure 1  
See Figure 1  
PHL PLH  
Pulse Width Distortion  
7
ns  
PWD  
|t  
- t  
|
PLH PHL  
Propagation Delay Skew  
Channel-Channel Skew  
12  
4
ns  
ns  
t
PSK(P-P)  
t
PSK  
Preliminary Rev. 0.1  
11  
Si8410/20/21  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 °C)  
Parameter  
Symbol  
Test Condition  
For All Models  
Min  
Typ  
Max  
Unit  
Output Rise Time  
t
C = 15 pF  
25  
2
2
ns  
ns  
r
L
Output Fall Time  
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CTMI  
V = V or 0 V  
30  
kV/µs  
I
DD  
2
Start-up Time  
t
3
µs  
SU  
Notes:  
1. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
2. Start-up time is the time period from the application of power to valid data at the output.  
12  
Preliminary Rev. 0.1  
Si8410/20/21  
Table 4. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Supply Voltage  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
6
Unit  
C°  
C°  
V
T
STG  
T
A
V
, V  
DD2  
DD1  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
O
Output Current Drive Channel  
Lead Solder Temperature (10s)  
Maximum Isolation Voltage  
L
10  
mA  
C°  
260  
4000  
V
DC  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to conditions as specified in the operational sections of this data sheet.  
Table 5. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
25  
Max  
125  
100  
5.5  
Unit  
C°  
C°  
V
Ambient Operating Tempera-  
ture*  
T
100 Mbps, 15 pF, 5 V  
150 Mbps, 15 pF, 5 V  
A
0
Supply Voltage  
V
2.375  
2.375  
DD1  
V
5.5  
V
DD2  
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating  
channels, and supply voltage.  
Preliminary Rev. 0.1  
13  
Si8410/20/21  
Table 6. Regulatory Information  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice. For more details, see File 232873.  
VDE  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si84xx is certified under UL1577 component recognition program to provide basic insulation to 2500 V  
RMS  
(1 minute). It is production tested > 3000 V  
for 1 second. For more details, see File E257455.  
RMS  
Table 7. Insulation and Safety-related Specifications  
Parameter  
Symbol  
L(IO1)  
L(IO2)  
Test Condition  
Value  
5.0 min  
4.60  
Unit  
mm  
mm  
mm  
Minimum Air Gap (Clearance)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
0.008  
min  
Tracking Resistance (Comparative Tracking  
Index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
f = 1 MHz  
>175  
V
1
12  
Resistance (Input-Output)  
R
10  
IO  
1
Capacitance (Input-Output)  
C
1.4  
4.0  
pF  
pF  
IO  
2
Input Capacitance  
C
I
Notes:  
1. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–4 are shorted  
together to form the first terminal and pins 5–8 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
2. Measured from input pin to ground.  
14  
Preliminary Rev. 0.1  
Si8410/20/21  
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Conditions  
Specification  
Basic isolation group  
Material Group  
IIIa  
I-IV  
I-III  
I-II  
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
RMS  
RMS  
RMS  
Installation Classification  
Table 9. IEC 60747-5-2 Insulation Characteristics*  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
Maximum Working Insulation Voltage  
VIORM  
560  
V peak  
Method a  
After Environmental Tests  
Subgroup 1  
896  
(VIORM x 1.6 = VPR, tm = 60 sec,  
Partial Discharge < 5 pC)  
Method b1  
VPR  
V peak  
Input to Output Test Voltage  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
1050  
After Input and/or Safety Test  
Subgroup 2/3  
(VIORM x 1.2 = VPR, tm = 60 sec,  
Partial Discharge < 5 pC)  
672  
Highest Allowable Overvoltage (Transient  
Overvoltage, tTR = 10 sec)  
4000  
V peak  
VTR  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at TS, VIO = 500 V  
2
RS  
>109  
*Note: The Si84xx is suitable for basic electrical isolation a climate classification of 40/125/21.  
Table 10. IEC Safety Limiting Values  
Parameter  
Case Temperature  
Safety input, output, or supply current  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
T
I
150  
105  
°C  
S
θ
= 210 °C/W,  
JA  
mA  
S
V = 5.5 V,  
I
T = 150 °C,  
J
T = 25 °C  
A
*Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 2.  
Preliminary Rev. 0.1  
15  
Si8410/20/21  
Table 11. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
IC Junction-to-Case Thermal Resistance  
θ
Thermocouple  
located at center of  
package  
100  
°C/W  
JC  
IC Junction-to-Air Thermal Resistance  
Device Power Dissipation*  
θ
210  
°C/W  
mW  
JA  
P
250  
D
*Note: The Si8420-C-IS is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle  
square wave.  
100  
78  
75  
2.75 V  
5.5 V  
50  
3.6 V  
25  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 2. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
16  
Preliminary Rev. 0.1  
Si8410/20/21  
2. Typical Performance Characteristics  
10  
9
20  
15  
10  
5
5V  
5V  
3.3V  
8
3.3V  
7
2.5V  
2.5V  
6
5
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 6. Si8420 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 3. Si8410 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
12  
5V  
10  
19  
3.3V  
5V  
8
17  
6
15  
3.3V  
2.5V  
13  
4
11  
2.5V  
2
0
9
7
5
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Figure 4. Si8410 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 7. Si8421 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.5 V  
Operation (15 pF Load)  
15  
13  
11  
5V  
9
7
5
3.3V  
2.5V  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Figure 5. Si8420 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
Preliminary Rev. 0.1  
17  
Si8410/20/21  
10  
9
8
Falling Edge  
7
6
5
Rising Edge  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 8. Propagation Delay  
vs. Temperature 5 V Operation  
10  
9
Rising Edge  
8
Falling Edge  
7
6
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 9. Propagation Delay  
vs. Temperature 3.3 V Operation  
15  
13  
11  
9
Rising Edge  
Falling Edge  
7
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 10. Propagation Delay  
vs. Temperature 2.5 V Operation  
18  
Preliminary Rev. 0.1  
Si8410/20/21  
3. Application Information  
3.1. Theory of Operation  
The operation of an Si841x or Si842x channel is analogous to that of an opto coupler, except that an RF carrier is  
modulated instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at startup. A simplified block diagram for a single Si8410 channel is shown in  
Figure 11. A channel consists of an RF transmitter and receiver separated by a transformer.  
Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying and  
applies the resulting waveform to the primary of the transformer. The receiver contains a demodulator that decodes  
the input state according to its RF energy content and applies the result to output B via the output driver.  
TRANSMITTER  
RF  
OSCILLATOR  
RECEIVER  
MODULATOR  
DEMODULATOR  
A
B
Figure 11. Simplified Channel Diagram  
3.2. Eye Diagram  
Figure 12 illustrates an eye-diagram taken on an Si8410. The test used an Anritsu (MP1763C) Pulse Pattern  
Generator for the data source. The output of the generator's clock and data from an Si8410 were captured on an  
oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The  
results also show that very low pulse width distortion and very little jitter were exhibited.  
Figure 12. Eye Diagram  
Preliminary Rev. 0.1  
19  
Si8410/20/21  
4. Layout Recommendations  
Dielectric isolation is a set of specifications produced by safety regulatory agencies from around the world, which  
describes the physical construction of electrical equipment that derives power from high-voltage power systems,  
such as 100–240 V  
systems or industrial power. The dielectric test (or HIPOT test) given in the safety  
AC  
specifications places a very high voltage between the input power pins of a product and the user circuits and the  
user-touchable surfaces of the product. For the IEC relating to products deriving their power from the 220–240 V  
power grids, the test voltage is 2500 V (or 3750 V , the peak equivalent voltage).  
AC  
DC  
There are two terms described in the safety specifications:  
Creepage—the distance along the insulating surface an arc may travel.  
Clearance—the shortest distance through air that an arc may travel.  
Figure 13 illustrates the accepted method of providing the proper creepage distance along the surface. For a  
220–240 V application, this distance is 8 mm, and the wide-body SOIC package must be used. There must be no  
copper traces within this 8 mm exclusion area, and the surface should have a conformal coating, such as solder  
resist. The digital isolator chip must straddle this exclusion area.  
Figure 13. Creepage Distance  
4.1. Supply Bypass  
The Si841x and Si842x families require a 0.1 µF bypass capacitor between V  
The capacitor should be placed as close as possible to the package.  
and GND1 and V  
and GND2.  
DD2  
DD1  
20  
Preliminary Rev. 0.1  
Si8410/20/21  
4.2. Input and Output Characteristics  
The Si841x and Si842x inputs and outputs are standard CMOS drivers/receivers. Table 12 details powered and  
unpowered operation of the Si84xx.  
Table 12. Si84xx Operation Table  
1,4  
1,2,3  
1,2,3  
1,4  
Comments  
V Input  
VDDI State  
VDDO State  
V Output  
I
O
H
L
P
P
P
P
P
H
L
L
Normal operation.  
X
UP  
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in less  
O
I
than 1 µs.  
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in less  
X
P
UP  
L
O
I
than 1 µs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. Powered (P) state is defined as 2.375 V < VDD < 5.5 V.  
3. Unpowered (UP) state is defined as VDD = 0 V.  
4. X = not applicable; H = Logic High; L = Logic Low.  
4.3. RF Radiated Emissions  
The Si841x and Si842x families use an RF carrier frequency of approximately 2.1 GHz. This will result in a small  
amount of radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but, rather,  
is due to a small amount of RF energy driving the isolated ground planes, which can act as a dipole antenna.  
The unshielded Si8410 evaluation board passes FCC requirements. Table 13 shows measured emissions  
compared to FCC requirements.  
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less  
efficient antenna.  
Table 13. Radiated Emissions  
Frequency Measured FCC Spec Compared to  
(GHz)  
2.094  
2.168  
4.210  
4.337  
6.315  
6.505  
8.672  
(dBµV/m) (dBµV/m)  
Spec (dB)  
70.0  
68.3  
61.9  
60.7  
58.3  
60.7  
45.6  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
–4.0  
–5.7  
–12.1  
–13.3  
–15.7  
–13.3  
–28.4  
Preliminary Rev. 0.1  
21  
Si8410/20/21  
4.4. RF Immunity and Common Mode Transient Immunity  
The Si841x and Si842x families have very high common mode transient immunity while transmitting data. This is  
typically measured by applying a square pulse with very fast rise/fall times between the isolated grounds.  
Measurements show no failures up to 30 kV/µs. During a high surge event, the output may glitch low for up to  
20–30 ns, but the output corrects immediately after the surge event.  
The Si841x and Si842x families pass the industrial requirements of CISPR24 for RF immunity of 3 V/m using an  
unshielded evaluation board. As shown in Figure 14, the isolated ground planes form a parasitic dipole antenna,  
while Figure 15 shows the RMS common mode voltage versus frequency above which the Si841x becomes  
susceptible to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage  
below the envelope specified in Figure 15. The PCB should be laid-out to not act as an efficient antenna for the RF  
frequency of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal  
enclosure, or otherwise shielded.  
GND1  
GND2  
Isolator  
Dipole  
Antenna  
Figure 14. Dipole Antenna  
5
4
3
2
1
0
500  
1000  
Frequency (MHz)  
1500  
2000  
Figure 15. RMS Common Mode Voltage vs. Frequency  
22  
Preliminary Rev. 0.1  
Si8410/20/21  
5. Pin Descriptions  
Si841x  
Si842x  
VDD1  
A1  
VDD2  
GND2  
B1  
VDD1  
A1  
8
7
6
5
1
2
3
4
VDD2  
8
1
2
3
4
B1  
7
6
5
VDD1  
A2  
B2  
GND1  
GND2  
GND1  
GND2  
Top View  
Top View  
Narrow Body SOIC  
Name  
SOIC-8 Pin#  
Si8410  
SOIC-8 Pin#  
Type  
Description  
Si8420/21  
V
1,3  
4
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
DD1  
GND1  
A1  
Side 1 ground.  
2
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
A2  
NA  
6
B1  
B2  
NA  
8
V
DD2  
GND2  
5,7  
Ground  
Side 2 ground.  
Preliminary Rev. 0.1  
23  
Si8410/20/21  
6. Ordering Guide  
Ordering Part  
Number  
Number of Inputs Number of Inputs  
Side Side  
Maximum  
Data Rate  
Temperature  
Package Type  
V
V
DD2  
DD1  
Si8410-A-IS  
Si8410-B-IS  
Si8410-C-IS  
Si8420-A-IS  
Si8420-B-IS  
Si8420-C-IS  
Si8421-A-IS  
Si8421-B-IS  
Si8421-C-IS  
1
0
1
10  
150  
1
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
1
1
2
2
2
1
1
1
0
0
0
0
0
1
1
1
10  
150  
1
10  
150  
Note: All packages are Pb-free and RoHS Compliant. Moisture sensitivity level is MSL2 with peak reflow temperature of  
260 °C according to the JEDEC industry standard classifications and peak solder temperature.  
24  
Preliminary Rev. 0.1  
Si8410/20/21  
7. Package Outline: 8-Pin SOIC  
Figure 16 illustrates the package details for the Si84xx. Table 14 lists the values for the dimensions shown in the  
illustration.  
α
Figure 16. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 14. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0°  
6.20  
0.50  
1.27  
8°  
L
Preliminary Rev. 0.1  
25  
Si8410/20/21  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: PowerProducts@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Preliminary Rev. 0.1  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY