SI8410AA-C-IS [SILICON]

Interface Circuit,;
SI8410AA-C-IS
型号: SI8410AA-C-IS
厂家: SILICON    SILICON
描述:

Interface Circuit,

文件: 总28页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8410/20/21  
ULTRA LOW POWER SINGLE & DUAL-CHANNEL DIGITAL ISOLATORS  
Features  
Pin Assignments  
High-speed operation  
DC – 150 Mbps  
Precise timing  
2 ns pulse width distortion  
1 ns channel-channel matching  
2 ns pulse width skew  
Narrow Body SOIC  
Low propagation delay  
<10 ns typical  
Si841x  
Up to 2500 V  
isolation  
Wide Operating Supply Voltage:  
2.75–5.5 V  
RMS  
VDD1  
VDD2  
8
7
6
5
1
2
3
4
Transient Immunity  
25 kV/µs  
A1  
VDD1  
GND2  
B1  
Ultra low power  
5 V Operation:  
DC correct  
GND1  
GND2  
I< 1.25 mA per channel at 1 Mbps  
I< 2 mA per channel at 10 Mbps  
I< 6 mA per channel at 100 Mbps  
2.75 V Operation:  
I< 1.25 mA per channel at 1 Mbps  
I< 2 mA per channel at 10 Mbps  
I< 4 mA per channel at 100 Mbps  
No start-up initialization required  
<30 µs startup time  
Top View  
High temperature operation  
125 °C at 150 Mbps  
Si842x  
Narrow body SOIC-8 package  
VDD1  
A1  
VDD2  
B1  
8
7
6
5
1
2
3
4
A2  
B2  
Applications  
GND1  
GND2  
Isolated switch mode supplies  
Isolated ADC, DAC  
Motor control  
Top View  
Power factor correction systems  
Safety Regulatory Approvals*  
UL recognition: 2500 Vrms for 1 IEC certification conformity  
Minute per UL1577  
IEC 60747-5-2  
(VDE0884 Part 2)  
CSA component acceptance  
notice  
Description  
The Silicon Laboratories family of ultra low power digital isolators are  
CMOS devices that employ an RF coupler to transmit digital information  
across an isolation barrier. Very high speed operation at low power levels  
is achieved. These parts are available in an 8-pin narrow-body SOIC  
package. Two speed grade options (1 and 150 Mbps) are available and  
achieve typical propagation delays of less than 10 ns.  
Block Diagram  
Si8410  
Si8420  
Si8421  
B1  
B2  
B1  
B2  
A1  
A2  
A1  
A2  
A1  
B1  
*Note: Pending.  
Preliminary Rev. 0.22 1/09  
Copyright © 2009 by Silicon Laboratories  
Si8410/20/21  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si8410/20/21  
2
Preliminary Rev. 0.22  
Si8410/20/21  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Performance Characteristics* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.3. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . .21  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
7. Package Outline: 8-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
8. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Preliminary Rev. 0.22  
3
Si8410/20/21  
1. Electrical Specifications  
Table 1. Electrical Characteristics1  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at Supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
1
2
1
2
2
4
2
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
2
3
2
2
4
6
4
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
3
3
4
4
6
6
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
V
V
2
1
3
2
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
2
2
4
4
DD1  
DD2  
Si8421Ax, Bx  
V
V
3
3
5
5
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
V
V
2
6
4
12  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3
12  
5
18  
DD1  
DD2  
Si8421Bx  
V
V
8
8
12  
12  
DD1  
DD2  
4
Preliminary Rev. 0.22  
Si8410/20/21  
Table 1. Electrical Characteristics1 (Continued)  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
250  
35  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
0
5
8
150  
6
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
15  
3
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
t
10  
3
ns  
ns  
PSK(P-P)  
t
PSK  
For All Models  
Output Rise Time  
Output Fall Time  
t
C = 15 pF  
20  
2
2
ns  
ns  
r
L
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
3
Start-up Time  
t
30  
µs  
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Preliminary Rev. 0.22  
5
Si8410/20/21  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
6
Preliminary Rev. 0.22  
Si8410/20/21  
Table 2. Electrical Characteristics1  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
1
2
1
2
2
4
2
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
2
3
2
2
4
6
4
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
3
3
4
4
6
6
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
V
V
2
1
3
2
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
2
2
4
4
DD1  
DD2  
Si8421Ax, Bx  
V
V
2
2
4
4
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
V
V
2
4
4
6
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
3
8
5
12  
DD1  
DD2  
Si8421Bx  
V
V
6
6
9
9
DD1  
DD2  
Preliminary Rev. 0.22  
7
Si8410/20/21  
Table 2. Electrical Characteristics1 (Continued)  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
250  
35  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
– t  
|
PLH  
PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
0
5
8
150  
6
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
15  
3
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
|t  
– t  
|
PLH  
PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
t
10  
3
ns  
ns  
PSK(P-P)  
t
PSK  
For All Models  
Output Rise Time  
Output Fall Time  
t
C = 15 pF  
20  
2
2
ns  
ns  
r
L
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
3
Start-up Time  
t
30  
µs  
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
8
Preliminary Rev. 0.22  
Si8410/20/21  
Table 3. Electrical Characteristics1  
(VDD1 = 2.75 V, VDD2 = 2.75 V, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
1
2
1
2
2
4
2
mA  
mA  
mA  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
Si8420Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1
2
3
2
2
4
6
4
V
V
V
V
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
2
2
3
3
4
4
6
6
V
V
V
V
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
2
1
3
2
mA  
mA  
mA  
V
V
DD1  
DD2  
Si8420Ax, Bx  
2
2
4
4
V
V
DD1  
DD2  
Si8421Ax, Bx  
2
2
4
4
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
2
4
4
6
mA  
mA  
mA  
V
V
DD1  
DD2  
Si8420Bx  
3
7
5
12  
V
V
DD1  
DD2  
Si8421Bx  
5
5
9
9
V
V
DD1  
DD2  
Preliminary Rev. 0.22  
9
Si8410/20/21  
Table 3. Electrical Characteristics1 (Continued)  
(VDD1 = 2.75 V, VDD2 = 2.75 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
250  
35  
ns  
t
, t  
See Figure 1  
See Figure 1  
PHL PLH  
Pulse Width Distortion  
25  
ns  
PWD  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
40  
35  
ns  
ns  
t
PSK(P-P)  
t
PSK  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
0
5
8
150  
6
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
15  
ns  
t
, t  
See Figure 1  
See Figure 1  
PHL PLH  
Pulse Width Distortion  
3
ns  
PWD  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
10  
3
ns  
ns  
t
PSK(P-P)  
t
PSK  
For All Models  
Output Rise Time  
Output Fall Time  
t
C = 15 pF  
20  
2
2
ns  
ns  
r
L
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
kV/µs  
I
DD  
3
Start-up Time  
t
30  
µs  
SU  
Notes:  
1. Electrical specification values are preliminary. Various specifications will be adjusted to reflect actual performance as  
final product characterization data becomes available.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at the  
same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Preliminary Rev. 0.22  
Si8410/20/21  
Table 4. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
6
Unit  
C°  
C°  
V
T
STG  
Operating Temperature  
Supply Voltage  
T
A
V
, V  
DD2  
DD1  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s)  
L
10  
mA  
C°  
260  
3600  
V
RMS  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to conditions as specified in the operational sections of this data sheet.  
Table 5. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Ambient Operating Tempera-  
ture*  
T
150 Mbps, 15 pF, 5 V  
–40  
25  
125  
C°  
A
Supply Voltage  
V
2.75  
2.75  
5.5  
5.5  
V
V
DD1  
V
DD2  
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating  
channels, and supply voltage.  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice. For more details, see File 232873.  
VDE  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
*Note: Pending. All 2.5 kVRMS rated devices are production tested to >3.6 kVRMS for 1 sec. For more information, see  
"6. Ordering Guide" on page 23.  
Preliminary Rev. 0.22  
11  
Si8410/20/21  
Table 7. Insulation and Safety-related Specifications  
Parameter  
Symbol  
L(IO1)  
L(IO2)  
Test Condition  
Value  
5.0 min  
4.60  
Unit  
mm  
mm  
mm  
Minimum Air Gap (Clearance)  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
0.008  
min  
Tracking Resistance (Comparative Tracking  
Index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
f = 1 MHz  
>175  
V
1
12  
Resistance (Input-Output)  
R
10  
IO  
1
Capacitance (Input-Output)  
C
1
pF  
pF  
IO  
2
Input Capacitance  
C
4.0  
I
Notes:  
1. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–4 are shorted  
together to form the first terminal and pins 5–8 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
2. Measured from input pin to ground.  
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Test Conditions  
Material Group  
Specification  
Basic isolation group  
IIIa  
I-IV  
I-III  
I-II  
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
RMS  
RMS  
RMS  
Installation Classification  
12  
Preliminary Rev. 0.22  
Si8410/20/21  
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
Maximum Working Insulation Voltage  
VIORM  
560  
V peak  
Method a  
After Environmental Tests  
Subgroup 1  
896  
(VIORM x 1.6 = VPR, tm = 60 sec,  
Partial Discharge < 5 pC)  
Method b1  
VPR  
V peak  
Input to Output Test Voltage  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
1050  
After Input and/or Safety Test  
Subgroup 2/3  
(VIORM x 1.2 = VPR, tm = 60 sec,  
672  
Partial Discharge < 5 pC)  
Highest Allowable Overvoltage (Transient  
Overvoltage, tTR = 10 sec)  
4000  
V peak  
VTR  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at TS, VIO = 500 V  
2
RS  
>109  
*Note: The Si84xx is suitable for basic electrical isolation with a climate classification of 40/125/21.  
Table 10. IEC Safety Limiting Values1  
Parameter  
Case Temperature  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
T
I
150  
160  
°C  
S
Safety input, output, or supply current  
= 140 °C/W,  
JA  
V = 5.5 V,  
mA  
S
I
T = 150 °C,  
J
T = 25 °C  
A
2
Device Power Dissipation  
P
150  
mW  
D
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 2.  
2. The Si8420 is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Preliminary Rev. 0.22  
13  
Si8410/20/21  
Table 11. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
IC Junction-to-Case Thermal Resistance  
Thermocouple  
located at center of  
package  
70  
°C/W  
JC  
IC Junction-to-Air Thermal Resistance  
140  
°C/W  
JA  
400  
320  
VDD1, VDD2 = 2.75 V  
300  
270  
VDD1, VDD2 = 3.3 V  
200  
160  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 2. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
14  
Preliminary Rev. 0.22  
Si8410/20/21  
2. Typical Performance Characteristics*  
20  
15  
10  
5
2
5V  
5V  
1.8  
1.6  
3.3V  
3.3V  
1.4  
1.2  
1
2.75V  
2.75V  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 6. Si8420 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
(15 pF Load)  
Figure 3. Si8410 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
10  
12  
5V  
10  
5V  
8
6
4
2
0
8
3.3V  
3.3V  
6
2.75V  
4
2.75V  
2
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 7. Si8421 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
(15 pF Load)  
Figure 4. Si8410 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
(15 pF Load)  
12  
3.5  
5V  
10  
5V  
3
2.5  
2
8
6
4
2
0
3.3V  
2.75V  
3.3V  
2.75V  
1.5  
1
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 5. Si8420 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
Figure 8. Si8421 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.75 V Operation  
(15 pF Load)  
Preliminary Rev. 0.22  
15  
Si8410/20/21  
11  
10.5  
10  
9.5  
9
Falling Edge  
8.5  
8
Rising Edge  
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 9. Propagation Delay  
vs. Temperature 5 V Operation  
11  
10.5  
10  
Falling Edge  
9.5  
9
8.5  
8
Rising Edge  
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 10. Propagation Delay  
vs. Temperature 3.3 V Operation  
11  
10.5  
10  
Falling Edge  
9.5  
9
Rising Edge  
8.5  
8
7.5  
7
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 11. Propagation Delay  
vs. Temperature 2.75 V Operation  
16  
Preliminary Rev. 0.22  
Si8410/20/21  
3. Application Information  
3.1. Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in  
Figure 12.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 12. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 13 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 13. Modulation Scheme  
Preliminary Rev. 0.22  
17  
Si8410/20/21  
3.2. Eye Diagram  
Figure 14 illustrates an eye-diagram taken on an Si8410. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8410 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.  
Figure 14. Eye Diagram  
18  
Preliminary Rev. 0.22  
Si8410/20/21  
4. Layout Recommendations  
Dielectric isolation is a set of specifications produced by safety regulatory agencies from around the world, which  
describes the physical construction of electrical equipment that derives power from high-voltage power systems,  
such as 100–240 V  
systems or industrial power. The dielectric test (or HIPOT test) given in the safety  
AC  
specifications places a very high voltage between the input power pins of a product and the user circuits and the  
user-touchable surfaces of the product. For the IEC relating to products deriving their power from the 220–240 V  
power grids, the test voltage is 2500 V (or 3750 V , the peak equivalent voltage).  
AC  
DC  
There are two terms described in the safety specifications:  
Creepage—the distance along the insulating surface an arc may travel.  
Clearance—the shortest distance through air that an arc may travel.  
Figure 15 illustrates the accepted method of providing the proper creepage distance along the surface. For a  
220–240 V application, this distance is 8 mm, and the wide-body SOIC package must be used. There must be  
AC  
no copper traces within this 8 mm exclusion area, and the surface should have a conformal coating, such as solder  
resist. The digital isolator chip must straddle this exclusion area.  
IEC Specified  
Creepage  
Distance  
Figure 15. Creepage Distance  
4.1. Supply Bypass  
The Si841x and Si842x families require a 1 µF bypass capacitor between V  
The capacitor should be placed as close as possible to the package.  
and GND1 and V  
and GND2.  
DD1  
DD2  
Preliminary Rev. 0.22  
19  
Si8410/20/21  
4.2. Input and Output Characteristics  
The Si841x and Si842x inputs and outputs are standard CMOS drivers/receivers. Table 12 details powered and  
unpowered operation of the Si84xx.  
Table 12. Si84xx Operation Table  
1,4  
1,2,3  
1,2,3  
1,4  
Comments  
V Input  
VDDI State  
VDDO State  
V Output  
I
O
H
L
P
P
P
P
P
H
L
L
Normal operation.  
X
UP  
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in less  
O
I
than 1 µs.  
X
P
UP  
L
Upon the transition of VDDI from unpowered to  
powered, V returns to the same state as V in less  
O
I
than 1 µs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. Powered (P) state is defined as 2.75 V < VDD < 5.5 V.  
3. Unpowered (UP) state is defined as VDD = 0 V.  
4. X = not applicable; H = Logic High; L = Logic Low.  
4.3. RF Radiated Emissions  
The Si841x and Si842x families use an RF carrier frequency of approximately 700 MHz. This results in a small  
amount of radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but, rather,  
is due to a small amount of RF energy driving the isolated ground planes, which can act as a dipole antenna.  
The unshielded Si8410 evaluation board passes FCC requirements. Table 13 shows measured emissions  
compared to FCC requirements.  
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less  
efficient antenna.  
Table 13. Radiated Emissions*  
Frequency Measured  
FCC Spec Compared to  
(GHz)  
2.094  
2.168  
4.210  
4.337  
6.315  
6.505  
8.672  
(dBµV/m)  
(dBµV/m)  
Spec (dB)  
70.0  
74.0  
–4.0  
68.3  
74.0  
–5.7  
61.9  
74.0  
–12.1  
–13.3  
–15.7  
–13.3  
–28.4  
60.7  
74.0  
58.3  
74.0  
60.7  
74.0  
45.6  
74.0  
*Note: Data table to be updated pending final characterization.  
20  
Preliminary Rev. 0.22  
Si8410/20/21  
4.4. RF Immunity and Common Mode Transient Immunity  
The Si841x and Si842x families have very high common mode transient immunity while transmitting data. This is  
typically measured by applying a square pulse with very fast rise/fall times between the isolated grounds.  
Measurements show no failures up to 25 kV/µs. During a high surge event, the output may glitch low for up to  
20–30 ns, but the output corrects immediately after the surge event.  
The Si841x and Si842x families pass the industrial requirements of CISPR24 for RF immunity of 3 V/m using an  
unshielded evaluation board. As shown in Figure 16, the isolated ground planes form a parasitic dipole antenna,  
while Figure 17 shows the RMS common mode voltage versus frequency above which the Si841x becomes  
susceptible to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage  
below the envelope specified in Figure 17. The PCB should be laid-out to not act as an efficient antenna for the RF  
frequency of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal  
enclosure, or otherwise shielded.  
GND1  
GND2  
Isolator  
Dipole  
Antenna  
Figure 16. Dipole Antenna  
5
4
3
2
1
0
500  
1000  
Frequency (MHz)  
1500  
2000  
Figure 17. RMS Common Mode Voltage vs. Frequency  
(Data to be Updated Pending Final Characterization)  
Preliminary Rev. 0.22  
21  
Si8410/20/21  
5. Pin Descriptions  
Si841x  
Si842x  
VDD1  
A1  
VDD2  
GND2  
B1  
VDD1  
A1  
8
7
6
5
1
2
3
4
VDD2  
B1  
8
7
6
5
1
2
3
4
VDD1  
A2  
B2  
GND1  
GND2  
GND1  
GND2  
Top View  
Top View  
Narrow Body SOIC  
Name  
SOIC-8 Pin#  
Si8410  
SOIC-8 Pin#  
Type  
Description  
Si8420/21  
V
1,3  
4
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
DD1  
GND1  
A1  
Side 1 ground.  
2
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
A2  
NA  
6
B1  
B2  
NA  
8
V
DD2  
GND2  
5,7  
Ground  
Side 2 ground.  
22  
Preliminary Rev. 0.22  
Si8410/20/21  
6. Ordering Guide  
Si84XYSV-R-TPn  
Isolator Product  
Data channel count  
Reverse channel count  
Max Data Rate (A = 1 Mbps, B = 150 Mbps)  
Insulation Rating (A = 1 kV, B = 2.5 kV)  
Product Revision  
Temp Range (I = –40 to +125 ºC)  
Package Type (S = SOIC)  
Package Extension (1 = Narrow Body)  
Figure 18. Ordering Part Number (OPN) Convention  
Table 14. Ordering Guide  
Ordering Part Number of Number of Maximum Isolation Temp Range Package  
Legacy Part  
Equivalent  
Number (OPN)  
Inputs  
Inputs  
Data Rate  
Rating  
Type  
VDD1 Side VDD2 Side (Mbps)  
Si8410AA-C-IS  
Si8410BA-C-IS  
Si8420AA-C-IS  
Si8420BA-C-IS  
Si8421AA-C-IS  
Si8421BA-C-IS  
Si8410AB-C-IS  
Si8410BB-C-IS  
1
1
2
2
1
1
1
1
0
0
0
0
1
1
0
0
1
150  
1
1 kVrms –40 to 125 °C NB SOIC-8  
150  
1
150  
1
Si8410-A-IS  
150  
Si8410-B-IS,  
Si8410-C-IS  
Si8420AB-C-IS  
Si8420BB-C-IS  
2
2
0
0
1
Si8420-A-IS  
2.5 kVrms –40 to 125 °C NB SOIC-8  
150  
Si8420-B-IS,  
Si8420-C-IS  
Si8421AB-C-IS  
Si8421BB-C-IS  
1
1
1
1
1
Si8421-A-IS  
150  
Si8421-B-IS,  
Si8421-C-IS  
*Note: All packages are Pb-free and RoHS compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260  
°C according to the JEDEC industry standard classifications, and peak solder temperature.  
Preliminary Rev. 0.22  
23  
Si8410/20/21  
7. Package Outline: 8-Pin SOIC  
Figure 19 illustrates the package details for the Si84xx. Table 15 lists the values for the dimensions shown in the  
illustration.  
Figure 19. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 15. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
24  
Preliminary Rev. 0.22  
Si8410/20/21  
8. Top Marking  
Si84XYSV  
YYWWRF  
e3  
AIXX  
Figure 20. Isolator Top Marking  
Table 16. Top Marking Explanations  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
Y = # of reverse channels (1, 0)  
S = Speed Grade  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
(See Ordering Guide for more  
information).  
A = 1 kV; B = 2.5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by Assembly Contractor. Corresponds to the  
year and workweek of the mold date.  
R = Product (OPN) Revision  
F = Wafer Fab  
Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol  
First Two Characters of the Manufacturing Code  
A = Assembly Site  
I = Internal Code  
Last Four Characters of the Manufacturing Code  
XX = Serial Lot Number  
Preliminary Rev. 0.22  
25  
Si8410/20/21  
DOCUMENT CHANGE LIST  
Revision 0.11 to Revision 0.21  
Rev 0.21 is the first revision of this document that  
applies to the new series of ultra low power isolators  
featuring pinout and functional compatibility with  
previous isolator products.  
Updated “1. Electrical Specifications”.  
Updated “6. Ordering Guide”.  
Added “8. Top Marking”.  
Revision 0.21 to Revision 0.22  
Updated all specs to reflect latest silicon.  
26  
Preliminary Rev. 0.22  
Si8410/20/21  
NOTES:  
Preliminary Rev. 0.22  
27  
Si8410/20/21  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: PowerProducts@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
28  
Preliminary Rev. 0.22  

相关型号:

SI8410AB-C-IS

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8410AB-D-IS

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8
SILICON

SI8410AD-A-IS2

Interface Circuit
SILICON

SI8410BB-C-ISR

Interface Circuit
SILICON

SI8410BD-A-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8410BD-D-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8410DB-T2-E1

Small Signal Field-Effect Transistor,
VISHAY

SI8411DB

P-Channel 20-V (D-S) MOSFET
VISHAY

SI8411DB-T1

P-Channel 20-V (D-S) MOSFET
VISHAY

SI8411DB-T1-E1

Transistor
VISHAY

SI8411DB-T1-E3

Small Signal Field-Effect Transistor, 4.3A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, CSP-4
VISHAY

SI8413DB

P-Channel 20-V (D-S) MOSFET
VISHAY