SI8410AB-D-IS [SILICON]

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8;
SI8410AB-D-IS
型号: SI8410AB-D-IS
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, CMOS, PDSO8, SOIC-8

光电二极管 接口集成电路
文件: 总30页 (文件大小:1657K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8410/20/21  
LOW-POWER SINGLE AND DUAL-CHANNEL  
DIGITAL ISOLATORS  
Features  
High-speed operation  
DC to 150 Mbps  
Up to 2500 V  
isolation  
RMS  
60-year life at rated working  
voltage  
No start-up initialization required  
Wide Operating Supply Voltage:  
2.70–5.5 V  
Precise timing (typical)  
<10 ns worst case  
Ultra low power (typical)  
5 V Operation:  
< 2.1 mA per channel at 1 Mbps  
< 6 mA per channel at 100 Mbps  
2.70 V Operation:  
< 1.8 mA per channel at 1 Mbps  
< 4 mA per channel at 100 Mbps  
High electromagnetic immunity  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
6 ns minimum pulse width  
Transient Immunity 25 kV/µs  
Wide temperature range  
–40 to 125 °C at 150 Mbps  
RoHS-compliant packages  
SOIC-8 narrow body  
Ordering Information:  
See page 25.  
Applications  
Industrial automation systems  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Isolated switch mode supplies  
Power inverters  
Communications systems  
Safety Regulatory Approvals  
UL 1577 recognized  
VDE certification conformity  
Up to 2500 VRMS for 1 minute  
IEC 60747-5-2  
(VDE0884 Part 2)  
CSA component notice 5A  
approval  
IEC 60950-1, 61010-1  
(reinforced insulation)  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices  
offering substantial data rate, propagation delay, power, size, reliability,  
and external BOM advantages when compared to legacy isolation  
technologies. The operating parameters of these products remain stable  
across wide temperature ranges throughout their service life. For ease of  
design, only VDD bypass capacitors are required.  
Data rates up to 150 Mbps are supported, and all devices achieve worst-  
case propagation delays of less than 10 ns. All products are safety  
certified by UL, CSA, and VDE and support withstand voltages of up to  
2.5 kVrms. These devices are available in an 8-pin narrow-body SOIC  
package.  
Rev. 1.5 9/13  
Copyright © 2013 by Silicon Laboratories  
Si8410/20/21  
 
Si8410/20/21  
2
Rev. 1.5  
Si8410/20/21  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3. Errata and Design Migration Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.1. Power Supply Bypass Capacitors (Revision C and Revision D) . . . . . . . . . . . . . . . .23  
3.2. Latch Up Immunity (Revision C Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
7. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8. Top Marking: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8.1. 8-Pin Narrow Body SOIC Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Rev. 1.5  
3
Si8410/20/21  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature*  
Supply Voltage  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
125  
5.5  
Unit  
°C  
V
T
150 Mbps, 15 pF, 5 V  
A
V
2.70  
2.70  
DD1  
DD2  
V
5.5  
V
*Note: The maximum ambient temperature is dependent upon data frequency, output loading, the number of operating  
channels, and supply voltage.  
Table 2. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
5.75  
6.0  
Unit  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Operating Temperature  
Supply Voltage (Revision C)  
Supply Voltage (Revision D)  
Input Voltage  
T
A
3
3
V
V
, V  
, V  
DD1  
DD1  
DD2  
DD2  
V
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage (1 s)  
Notes:  
I
10  
mA  
°C  
O
260  
3600  
V
RMS  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
3. See "5. Ordering Guide" on page 25 for more information.  
4
Rev. 1.5  
 
 
 
 
 
 
Si8410/20/21  
Table 3. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
85  
O
DC Supply Current (All inputs 0 V or at Supply)  
Si8410Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
0.8  
0.8  
1.8  
0.8  
1.2  
1.2  
2.7  
1.2  
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8420Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.3  
3.0  
1.4  
1.5  
2.0  
4.5  
2.1  
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
V
V
V
V
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.3  
2.3  
2.3  
2.0  
2.0  
3.5  
3.5  
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
V
V
1.3  
0.9  
2.0  
1.4  
mA  
mA  
mA  
DD1  
DD2  
Si8420Ax, Bx  
V
V
2.0  
1.6  
3.0  
2.4  
DD1  
DD2  
Si8421Ax, Bx  
V
V
1.9  
1.9  
2.9  
2.9  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
5
 
 
 
 
Si8410/20/21  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
V
V
1.3  
1.2  
2.0  
1.8  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
2.0  
2.1  
3.0  
3.2  
DD1  
DD2  
Si8421Bx  
V
V
2.2  
2.2  
3.3  
3.3  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
V
V
1.4  
4.6  
2.1  
5.8  
mA  
mA  
mA  
DD1  
DD2  
Si8420Bx  
V
V
2.2  
9.2  
3.3  
11.5  
DD1  
DD2  
Si8421Bx  
V
V
5.8  
5.8  
7.3  
7.3  
DD1  
DD2  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1.0  
250  
35  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.5  
Si8410/20/21  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 ºC)  
Parameter  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
0
150  
6.0  
9.5  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
3.0  
6.0  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
1.5  
2.5  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
Output Fall Time  
t
C = 15 pF  
3.8  
2.8  
5.0  
3.7  
ns  
ns  
r
L
t
C = 15 pF  
L
f
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
15  
kV/µs  
µs  
I
DD  
3
Start-up Time  
t
40  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
Rev. 1.5  
7
 
Si8410/20/21  
Table 4. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
85  
O
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
0.8  
0.8  
1.8  
0.8  
1.2  
1.2  
2.7  
1.2  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8420Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.3  
3.0  
1.4  
1.5  
2.0  
4.5  
2.1  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.3  
2.3  
2.3  
2.0  
2.0  
3.5  
3.5  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
1.3  
0.9  
2.0  
1.4  
mA  
mA  
mA  
V
V
DD1  
DD2  
Si8420Ax, Bx  
2.0  
1.6  
3.0  
2.4  
V
V
DD1  
DD2  
Si8421Ax, Bx  
1.9  
1.9  
2.9  
2.9  
V
V
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
8
Rev. 1.5  
 
 
 
 
Si8410/20/21  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
1.3  
1.2  
2.0  
1.8  
mA  
mA  
mA  
V
V
DD1  
DD2  
Si8420Bx  
2.0  
2.1  
3.0  
3.2  
V
V
DD1  
DD2  
Si8421Bx  
2.2  
2.2  
3.3  
3.3  
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
1.3  
3.3  
2.0  
4.9  
mA  
mA  
mA  
V
V
DD1  
DD2  
Si8420Bx  
2.0  
6.5  
3.0  
8.1  
V
V
DD1  
DD2  
Si8421Bx  
4.4  
4.4  
5.5  
5.5  
V
V
DD1  
DD2  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1.0  
250  
35  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
See Figure 1  
25  
ns  
|t  
– t  
|
PLH  
PHL  
2
t
40  
35  
ns  
ns  
Propagation Delay Skew  
PSK(P-P)  
t
Channel-Channel Skew  
PSK  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
9
Si8410/20/21  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
0
150  
6.0  
9.5  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
3.0  
6.0  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
1.5  
2.5  
ns  
|t  
– t  
|
PLH  
PHL  
2
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
PSK(P-P)  
t
PSK  
t
C = 15 pF  
4.3  
3.0  
6.1  
4.3  
ns  
ns  
Output Rise Time  
Output Fall Time  
r
L
t
C = 15 pF  
f
L
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
15  
kV/µs  
µs  
I
DD  
3
t
40  
Start-up Time  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.5  
Si8410/20/21  
Table 5. Electrical Characteristics1  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
2
Output Impedance  
Z
85  
O
DC Supply Current (All inputs 0 V or at supply)  
Si8410Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
0.8  
0.8  
1.8  
0.8  
1.2  
1.2  
2.7  
1.2  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
mA  
mA  
mA  
Si8420Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.0  
1.3  
3.0  
1.4  
1.5  
2.0  
4.5  
2.1  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
Si8421Ax, Bx  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
1.3  
1.3  
2.3  
2.3  
2.0  
2.0  
3.5  
3.5  
V
V
V
V
DD1  
DD2  
DD1  
DD2  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8410Ax, Bx  
1.3  
0.9  
2.0  
1.4  
V
V
DD1  
DD2  
mA  
mA  
mA  
Si8420Ax, Bx  
2.0  
1.6  
3.0  
2.4  
V
V
DD1  
DD2  
Si8421Ax, Bx  
1.9  
1.9  
2.9  
2.9  
V
V
DD1  
DD2  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
11  
 
 
 
 
 
Si8410/20/21  
Table 5. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
1.3  
1.2  
2.0  
1.8  
V
V
DD1  
DD2  
mA  
mA  
mA  
Si8420Bx  
2.0  
2.1  
3.0  
3.2  
V
V
DD1  
DD2  
Si8421Bx  
2.2  
2.2  
3.3  
3.3  
V
V
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8410Bx  
1.3  
2.7  
2.0  
4.0  
V
V
DD1  
DD2  
mA  
mA  
mA  
Si8420Bx  
2.0  
5.2  
3.0  
6.5  
V
V
DD1  
DD2  
Si8421Bx  
3.7  
3.7  
4.6  
4.6  
V
V
DD1  
DD2  
Timing Characteristics  
Si8410Ax, Si8420Ax, Si8421Ax  
Maximum Data Rate  
0
1.0  
250  
35  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
25  
ns  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
Notes:  
t
40  
35  
ns  
ns  
PSK(P-P)  
t
PSK  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.5  
Si8410/20/21  
Table 5. Electrical Characteristics1 (Continued)  
(VDD1 = 2.70 V, VDD2 = 2.70 V, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si8410Bx, Si8420Bx, Si8421Bx  
Maximum Data Rate  
0
150  
6.0  
9.5  
Mbps  
ns  
Minimum Pulse Width  
Propagation Delay  
t
, t  
See Figure 1  
See Figure 1  
3.0  
6.0  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
1.5  
2.5  
ns  
|t  
- t  
|
PLH PHL  
3
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.5  
3.0  
1.8  
ns  
ns  
PSK(P-P)  
t
PSK  
t
C = 15 pF  
4.8  
3.2  
6.5  
4.6  
ns  
ns  
Output Rise Time  
Output Fall Time  
r
L
t
C = 15 pF  
f
L
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
25  
15  
kV/µs  
µs  
I
DD  
4
t
40  
Start-up Time  
SU  
Notes:  
1. Specifications in this table are also valid at VDD1 = 2.6 V and VDD2 = 2.6 V when the operating temperature range is  
constrained to TA = 0 to 85 °C.  
2. The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
4. Start-up time is the time period from the application of power to valid data at the output.  
Table 6. Regulatory Information*  
CSA  
The Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 300 V  
60950-1: Up to 130 V  
VDE  
reinforced insulation working voltage; up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
basic insulation working voltage.  
RMS  
RMS  
RMS  
RMS  
The Si84xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 560 V  
for basic insulation working voltage.  
peak  
UL  
The Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 2500 V isolation voltage for basic insulation.  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
For more information, see "5. Ordering Guide" on page 25.  
Rev. 1.5  
13  
 
Si8410/20/21  
Table 7. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
L(IO1)  
L(IO2)  
Test Condition  
Value  
4.9  
Unit  
mm  
mm  
mm  
1
Nominal Air Gap (Clearance)  
1
Nominal External Tracking (Creepage)  
4.01  
0.008  
Minimum Internal Gap (Internal Clearance)  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
V
RMS  
0.040  
mm  
Erosion Depth  
2
12  
Resistance (Input-Output)  
R
10  
IO  
2
Capacitance (Input-Output)  
C
1.0  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values as detailed in "6. Package Outline:  
8-Pin Narrow Body SOIC" on page 26. VDE certifies the clearance and creepage limits as 4.7 mm minimum for the NB  
SOIC-8 package. UL does not impose a clearance and creepage minimum for component level certifications. CSA  
certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-8 package.  
2. To determine resistance and capacitance, the Si84xx is converted into a 2-terminal device. Pins 1–4 are shorted  
together to form the first terminal and pins 5–8 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input pin to ground.  
Table 8. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Parameter  
Basic Isolation Group  
Test Condition  
Specification  
Material Group  
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
14  
Rev. 1.5  
 
 
 
 
 
Si8410/20/21  
Table 9. IEC 60747-5-2 Insulation Characteristics for Si84xxxB*  
Parameter  
Symbol  
Test Condition  
Characteristic Unit  
V
560  
V peak  
V peak  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
1050  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
V
t = 60 sec  
4000  
2
V peak  
Transient Overvoltage  
IOTM  
Pollution Degree (DIN VDE 0110, Table 1)  
Insulation Resistance at T , V = 500 V  
9
R
>10  
S
S
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si84xx provides a climate classification of  
40/125/21.  
Table 10. IEC Safety Limiting Values1  
Parameter  
Case Temperature  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
T
150  
160  
150  
°C  
mA  
mW  
S
= 140 °C/W,  
JA  
V = 5.5 V,  
I
Safety input, output, or supply current  
I
S
T = 150 °C,  
J
T = 25 °C  
A
2
Device Power Dissipation  
P
D
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figure 2.  
2. The Si841x/2x is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 °C, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Rev. 1.5  
15  
 
 
 
Si8410/20/21  
Table 11. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
°C/W  
IC Junction-to-Air Thermal Resistance  
140  
JA  
400  
320  
VDD1, VDD2 = 2.70 V  
300  
270  
VDD1, VDD2 = 3.3 V  
200  
160  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 2. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
16  
Rev. 1.5  
Si8410/20/21  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in  
Figure 3.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 3. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 4 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 4. Modulation Scheme  
Rev. 1.5  
17  
 
 
Si8410/20/21  
2.2. Eye Diagram  
Figure 5 illustrates an eye-diagram taken on an Si8410. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8410 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 250 ps peak jitter were exhibited.  
Figure 5. Eye Diagram  
18  
Rev. 1.5  
 
Si8410/20/21  
2.3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Table 12.  
Table 12. Si84xx Logic Operation Table  
1,4  
1,4  
1,2,3  
1,2,3  
Comments  
V Input  
V Output  
VDDI State  
VDDO State  
I
O
H
L
P
P
P
P
H
L
Normal operation.  
Upon transition of VDDI from unpowered to pow-  
5
X
UP  
P
P
L
ered, V returns to the same state as V in less  
O
I
than 1 µs.  
Upon transition of VDDO from unpowered to pow-  
5
X
UP  
Undetermined  
ered, V returns to the same state as V within  
O
I
1 µs.  
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. Powered (P) state is defined as 2.70 V < VDD < 5.5 V.  
3. Unpowered (UP) state is defined as VDD = 0 V.  
4. X = not applicable; H = Logic High; L = Logic Low.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
Rev. 1.5  
19  
 
 
 
 
Si8410/20/21  
2.4. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 6 on page 13 and Table 7 on page 14 detail the  
working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, etc.)  
requirements before starting any design that uses a digital isolator.  
The following sections detail the recommended bypass and decoupling components necessary to ensure robust  
overall performance and reliability for systems using the Si84xx digital isolators.  
2.4.1. Supply Bypass  
Digital integrated circuit components typically require 0.1 µF (100 nF) bypass capacitors when used in electrically  
quiet environments. However, digital isolators are commonly used in hazardous environments with excessively  
noisy power supplies. To counteract these harsh conditions, it is recommended that an additional 1 µF bypass  
capacitor be added between VDD and GND on both sides of the package. The capacitors should be placed as  
close as possible to the package to minimize stray inductance. If the system is excessively noisy, it is  
recommended that the designer add 50 to 100 resistors in series with the VDD supply voltage source and 50 to  
300 resistors in series with the digital inputs/outputs (see Figure 6). For more details, see "3. Errata and Design  
Migration Guidelines" on page 23.  
All components upstream or downstream of the isolator should be properly decoupled as well. If these components  
are not properly decoupled, their supply noise can couple to the isolator inputs and outputs, potentially causing  
damage if spikes exceed the maximum ratings of the isolator (6 V). In this case, the 50 to 300 resistors protect  
the isolator's inputs/outputs (note that permanent device damage may occur if the absolute maximum ratings are  
exceeded). Functional operation should be restricted to the conditions specified in Table 1, “Recommended  
Operating Conditions,” on page 4.  
2.4.2. Pin Connections  
No connect pins are not internally connected. They can be left floating, tied to VDD, or tied to GND.  
2.4.3. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 85 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces. The series termination resistor values should be scaled appropriately while keeping in  
mind the recommendations described in “2.4.1. Supply Bypass” above.  
V Source 2  
R2 (50 – 100 )  
V Source 1  
R1 (50 – 100 )  
C1  
VDD1  
A1  
VDD2  
B1  
C4  
50 – 300   
50 – 300   
0.1 F  
0.1 F  
C2  
C3  
Input/Output  
Input/Output  
1 F  
1 F  
Ax  
Bx  
50 – 300   
50 – 300   
GND1  
GND2  
Figure 6. Recommended Bypass Components for the Si84xx Digital Isolator Family  
20  
Rev. 1.5  
 
 
Si8410/20/21  
2.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 3, 4, and 5 for actual specification limits.  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
5V  
5V  
3.3V  
3.3V  
2.70V  
2.70V  
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 10. Si8410 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
Figure 7. Si8410 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
30  
25  
30  
25  
20  
20  
5V  
5V  
15  
15  
3.3V  
3.3V  
10  
10  
2.70V  
2.70V  
5
5
0
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 8. Si8420 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
Figure 11. Si8420 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.70 V Operation  
(15 pF Load)  
30  
25  
10  
Falling Edge  
9
8
7
6
5
5V  
20  
15  
10  
5
3.3V  
Rising Edge  
2.70V  
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Data Rate (Mbps)  
Temperature (Degrees C)  
Figure 9. Si8421 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.70 V  
Operation (15 pF Load)  
Figure 12. Propagation Delay  
vs. Temperature  
Rev. 1.5  
21  
Si8410/20/21  
Figure 13. Si84xx Time-Dependent Dielectric Breakdown  
22  
Rev. 1.5  
 
Si8410/20/21  
3. Errata and Design Migration Guidelines  
The following errata apply to Revision C devices only. See "5. Ordering Guide" on page 25 for more details. No  
errata exist for Revision D devices.  
3.1. Power Supply Bypass Capacitors (Revision C and Revision D)  
When using the Si84xx isolators with power supplies > 4.5 V, sufficient VDD bypass capacitors must be present on  
both the VDD1 and VDD2 pins to ensure the VDD rise time is less than 0.5 V/µs (which is > 9 µs for a > 4.5 V  
supply). Although rise time is power supply dependent, > 1 µF capacitors are required on both power supply pins  
(VDD1, VDD2) of the isolator device.  
3.1.1. Resolution  
For recommendations on resolving this issue, see "2.4.1. Supply Bypass" on page 20. Additionally, refer to "5.  
Ordering Guide" on page 25 for current ordering information.  
3.2. Latch Up Immunity (Revision C Only)  
Si84xx latch up immunity generally exceeds ± 200 mA per pin. Exceptions: Certain pins provide < 100 mA of latch-  
up immunity. To increase latch-up immunity on these pins, 100 of equivalent resistance must be included in  
series with all of the pins listed in Table 13. The 100 equivalent resistance can be comprised of the source  
driver's output resistance and a series termination resistor. The Si8410 is not affected by the latch up immunity  
issue described above.  
3.2.1. Resolution  
This issue has been corrected with Revision D of the device. Refer to “5. Ordering Guide” for current ordering  
information.  
Table 13. Affected Ordering Part Numbers (Revision C Only)  
Device  
Affected Ordering Part Numbers*  
Pin#  
Name  
Pin Type  
Revision  
3
7
A2  
B1  
Input or Output  
Output  
SI8420SV-C-IS, SI8421SV-C-IS  
C
*Note: SV = Speed Grade/Isolation Rating (AA, AB, BA, BB).  
Rev. 1.5  
23  
 
 
 
Si8410/20/21  
4. Pin Descriptions  
VDD1  
VDD2  
B1  
VDD1  
VDD1  
VDD2  
VDD2  
B1  
I
s
o
l
a
t
I
s
o
l
a
t
i
I
s
o
l
a
t
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
RF  
RCVR  
A1  
A2  
A1  
GND2/NC  
B1  
A1  
A2  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
B2  
VDD1/NC  
B2  
i
i
o
n
o
n
o
n
GND1  
GND2  
GND2  
GND2  
GND1  
GND1  
Si8410 NB SOIC-8  
Si8420 NB SOIC-8  
Si8421 NB SOIC-8  
Name  
SOIC-8 Pin#  
Si8410  
SOIC-8 Pin#  
Type  
Description  
Si8420/21  
V
/NC*  
1,3  
4
1
4
2
3
7
6
8
5
Supply  
Ground  
Side 1 power supply.  
DD1  
GND1  
Side 1 ground.  
A1  
A2  
B1  
B2  
2
Digital I/O  
Digital I/O  
Digital I/O  
Digital I/O  
Supply  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 power supply.  
NA  
6
NA  
8
V
DD2  
GND2/NC*  
5,7  
Ground  
Side 2 ground.  
*Note: No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.  
24  
Rev. 1.5  
Si8410/20/21  
5. Ordering Guide  
These devices are not recommended for new designs. Please see the Si861x datasheet for replacement options.  
Table 14. Ordering Guide for Valid OPNs1  
Ordering Part  
Number  
Alternative  
Number of  
Number of  
Maximum  
Isolation  
Rating  
Package  
Type  
Part Number Inputs VDD1 Inputs VDD2 Data Rate  
(OPN)  
(APN)  
Side  
Side  
(Mbps)  
2
Revision D Devices  
Si8410AB-D-IS  
Si8410BB-D-IS  
Si8420AB-D-IS  
Si8420BB-D-IS  
Si8421AB-D-IS  
Si8421BB-D-IS  
1
1
2
2
1
1
0
0
0
0
1
1
1
150  
1
Si8610AB-B-IS  
Si8610BB-B-IS  
Si8620AB-B-IS  
Si8620BB-B-IS  
Si8621AB-B-IS  
Si8621BB-B-IS  
2.5 kVrms  
NB SOIC-8  
150  
1
150  
2
Revision C Devices  
Si8410AB-C-IS  
Si8410BB-C-IS  
Si8420AB-C-IS  
Si8420BB-C-IS  
Si8421AB-C-IS  
Si8421BB-C-IS  
Notes:  
1
1
2
2
1
1
0
0
0
0
1
1
1
150  
1
Si8610AB-B-IS  
Si8610BB-B-IS  
Si8620AB-B-IS  
Si8620BB-B-IS  
Si8621AB-B-IS  
Si8621BB-B-IS  
2.5 kVrms  
NB SOIC-8  
150  
1
150  
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL2A with peak reflow temperature of 260 °C  
according to the JEDEC industry standard classifications and peak solder temperature.  
2. Revision C and Revision D devices are supported for existing designs.  
Rev. 1.5  
25  
 
 
 
 
Si8410/20/21  
6. Package Outline: 8-Pin Narrow Body SOIC  
Figure 14 illustrates the package details for the Si841x. Table 15 lists the values for the dimensions shown in the  
illustration.  
Figure 14. 8-pin Small Outline Integrated Circuit (SOIC) Package  
Table 15. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
B
1.35  
1.75  
0.10  
0.25  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
0.25  
0.40  
0  
6.20  
0.50  
1.27  
8  
L
26  
Rev. 1.5  
 
 
Si8410/20/21  
7. Land Pattern: 8-Pin Narrow Body SOIC  
Figure 15 illustrates the recommended land pattern details for the Si841x in an 8-pin narrow-body SOIC. Table 16  
lists the values for the dimensions shown in the illustration.  
Figure 15. PCB Land Pattern: 8-Pin Narrow Body SOIC  
Table 16. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.5  
27  
 
 
Si8410/20/21  
8. Top Marking: 8-Pin Narrow Body SOIC  
8.1. 8-Pin Narrow Body SOIC Top Marking  
Si84XYSV  
YYWWRF  
e3  
AIXX  
8.2. Top Marking Explanation  
Table 17. Top Marking Explanations  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si84 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (2, 1)  
Y = # of reverse channels (1, 0)  
S = Speed Grade  
(See Ordering Guide for more  
information).  
A = 1 Mbps; B = 150 Mbps  
V = Insulation rating  
A = 1 kV; B = 2.5 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by Assembly Contractor. Corresponds to the  
year and workweek of the mold date.  
R = Product (OPN) Revision  
F = Wafer Fab  
Circle = 1.1 mm Diameter  
Left-Justified  
“e3” Pb-Free Symbol  
First Two Characters of the Manufacturing Code  
A = Assembly Site  
I = Internal Code  
Last Four Characters of the Manufacturing Code  
XX = Serial Lot Number  
28  
Rev. 1.5  
 
Si8410/20/21  
Revision 1.2 to Revision 1.3  
DOCUMENT CHANGE LIST  
Revision 0.11 to Revision 0.21  
Updated " Features" on page 1.  
Moved Tables 1 and 2 to page 4.  
Updated Tables 6, 7, 8, and 9.  
Updated Table 12 footnotes.  
Rev 0.21 is the first revision of this document that  
applies to the new series of ultra low power isolators  
featuring pinout and functional compatibility with  
previous isolator products.  
Added Figure 13, “Si84xx Time-Dependent  
Dielectric Breakdown,” on page 22.  
Updated “1. Electrical Specifications”.  
Updated “5. Ordering Guide”.  
Revision 1.3 to Revision 1.4  
Added “8. Top Marking: 8-Pin Narrow Body SOIC”.  
Updated "2.4.1. Supply Bypass" on page 20.  
Added Figure 6, “Recommended Bypass  
Components for the Si84xx Digital Isolator Family,”  
on page 20.  
Revision 0.21 to Revision 0.22  
Updated all specs to reflect latest silicon.  
Updated "3.1. Power Supply Bypass Capacitors  
(Revision C and Revision D)" on page 23.  
Revision 0.22 to Revision 0.23  
Updated all specs to reflect latest silicon.  
Revision 1.4 to Revision 1.5  
Added "3. Errata and Design Migration Guidelines"  
on page 23.  
Updated "5. Ordering Guide" on page 25 to include  
new title note and “ Alternative Part Number (APN)”  
column.  
Revision 0.23 to Revision 1.0  
Updated document to reflect availability of Revision  
D silicon.  
Updated Tables 3,4, and 5.  
Updated all supply currents and channel-channel skew.  
Updated Table 2.  
Updated absolute maximum supply voltage.  
Updated Table 7.  
Updated clearance and creepage dimensions.  
Updated "3. Errata and Design Migration Guidelines"  
on page 23.  
Updated "5. Ordering Guide" on page 25.  
Revision 1.0 to Revision 1.1  
Updated Tables 3, 4, and 5.  
Updated notes in tables to reflect output impedance of  
85 .  
Updated rise and fall time specifications.  
Updated CMTI value.  
Revision 1.1 to Revision 1.2  
Updated document throughout to include MSL  
improvements to MSL2A.  
Updated "5. Ordering Guide" on page 25.  
Updated Note 1 in ordering guide table to reflect  
improvement and compliance to MSL2A moisture  
sensitivity level.  
Rev. 1.5  
29  
Smart.  
Connected.  
Energy-Friendly  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI8410AD-A-IS2

Interface Circuit
SILICON

SI8410BB-C-ISR

Interface Circuit
SILICON

SI8410BD-A-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8410BD-D-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8410DB-T2-E1

Small Signal Field-Effect Transistor,
VISHAY

SI8411DB

P-Channel 20-V (D-S) MOSFET
VISHAY

SI8411DB-T1

P-Channel 20-V (D-S) MOSFET
VISHAY

SI8411DB-T1-E1

Transistor
VISHAY

SI8411DB-T1-E3

Small Signal Field-Effect Transistor, 4.3A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, CSP-4
VISHAY

SI8413DB

P-Channel 20-V (D-S) MOSFET
VISHAY

SI8413DB-T1-E1

MOSFET P-CH 20V 4.8A 2X2 4-MFP
VISHAY

SI8413DB-T1-E3

TRANSISTOR 4800 mA, 20 V, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, 2 X 2 MM, MICRO FOOT, CSP-4, FET General Purpose Small Signal
VISHAY