SI8441-A-IS [SILICON]

QUAD-CHANNEL DIGITAL ISOLATOR; 四通道数字隔离器
SI8441-A-IS
型号: SI8441-A-IS
厂家: SILICON    SILICON
描述:

QUAD-CHANNEL DIGITAL ISOLATOR
四通道数字隔离器

文件: 总24页 (文件大小:593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8440/1/2  
QUAD-CHANNEL DIGITAL ISOLATOR  
Features  
Pin Assignments  
High-speed operation:  
2500 V  
isolation  
RMS  
DC – 150 Mbps  
Transient Immunity: >25 kV/µs  
Wide Body SOIC  
Low propagation delay:  
Tri-state outputs with ENABLE  
<10 ns  
VDD1  
VDD2  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
control  
Wide Operating Supply Voltage:  
GND2  
B1  
GND1  
A1  
DC correct  
2.375–5.5 V  
No start-up initialization required  
<10 µs Startup Time  
A2  
B2  
Low power: I1 + I2 <  
12 mA/channel at 100 Mbps  
B3  
A3  
A4  
High temperature operation:  
125 °C at 100 Mbps  
B4  
Precise timing:  
EN1  
EN2  
GND2  
2 ns pulse width distortion  
1 ns channel-channel matching  
2 ns pulse width skew  
100 °C at 150 Mbps  
GND1  
Wide body SOIC-16 package  
Top View  
Applications  
Isolated switch mode supplies Motor control  
Isolated ADC, DAC  
Power factor correction systems  
Safety Regulatory Approvals  
UL recognition:2500 V  
for 1 VDE certification conformity  
RMS  
DIN EN 60747-5-2 (VDE0884  
Minute per UL1577  
Part 2):2003-01  
CSA component acceptance  
DIN EN60950(VDE0805):  
2001-12;EN60950:2000  
VIORM = 560 VPEAK  
notice #5A  
* All Pending  
Description  
Silicon Lab's family of digital isolators are CMOS devices that employ  
an RF coupler to transmit digital information across an isolation  
barrier. Very high speed operation at low power levels is achieved.  
These parts are available in a 16-pin wide body SOIC package. Three  
speed grade options (1, 10, 100 Mbps) are available and achieve  
typical propagation delay of less than 10 ns.  
Block Diagram  
Si8440  
Si8441  
Si8442  
A1  
A2  
A3  
A4  
NC  
A1  
A2  
A1  
A2  
B1  
B2  
B1  
B2  
B1  
B2  
B3  
B4  
A3  
B3  
B4  
A3  
B3  
A4  
A4  
B4  
EN2  
EN1  
EN2  
EN1  
EN2  
Rev. 0.3 4/06  
Copyright © 2006 by Silicon Laboratories  
Si8440/1/2  
Si8440/1/2  
2
Rev. 0.3  
Si8440/1/2  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.1. Supply Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.2. Input and Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.3. Enable Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.4. RF Immunity and Common Mode Transient Immunity . . . . . . . . . . . . . . . . . . . . . . .17  
4.5. RF Radiated Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
7. Package Outline: Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Rev. 0.3  
3
Si8440/1/2  
1. Electrical Specifications  
Table 1. Electrical Characteristics  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 C°)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
IH  
4
ENH  
ENx  
I
V
= V  
IL  
20  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at Supply)  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
7.5  
7
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
15  
6.5  
8.7  
11  
14  
12.5  
10  
10  
13  
13  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8440-B,-C, V  
Si8440-B,-C, V  
Si8441-B,-C, V  
Si8441-B,-C, V  
Si8442-B,-C, V  
Si8442-B,-C, V  
11  
9
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
12  
13.5  
12.5  
12.5  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440-C, V  
Si8440-C, V  
Si8441-C, V  
Si8441-C, V  
Si8442-C, V  
Si8442-C, V  
12  
27  
16  
27  
21  
21  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
4
Rev. 0.3  
Si8440/1/2  
Table 1. Electrical Characteristics (Continued)  
(VDD1 = 5 V, VDD2 = 5 V, TA = –40 to 125 C°)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Maximum Data Rate  
Minimum Pulse Width  
0
5
100  
Mbps  
ns  
1
Propagation Delay  
t
, t  
7.5  
1
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
1
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
t
25  
6
0.5  
2
ns  
ns  
PSK  
t
PSKCD/OD  
3
Channel-Channel Skew  
Output Rise Time  
Output Fall Time  
C1 = 15 pF  
C1 = 15 pF  
ns  
2
ns  
Common Mode Transient  
Immunity at Logic Low Output  
CM  
30  
kV/µs  
L
4
Common Mode Transient  
Immunity at Logic High Output  
CM  
25  
30  
kV/µs  
H
4
Enable to Data Valid  
t
t
5
5
3
ns  
ns  
µs  
en1  
Enable to Data Tri-State  
en2  
5
Start-up Time  
t
SU  
Notes:  
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling  
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the  
50% level of the rising edge of the VOx signal.  
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any  
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is  
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of  
the isolation barrier.  
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is  
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range  
over which the common mode is slewed.  
5. Start-up time is the time period from the application of power to valid data at the output.  
INPUT  
(VIX  
50%  
ENABLE  
)
tPLH  
tPHL  
OUTPUTS  
OUTPUT  
(VOX  
50%  
)
ten1  
ten2  
Figure 1. ENABLE Timing Diagram  
Figure 2. Propagation Delay Timing  
Rev. 0.3  
5
Si8440/1/2  
Table 2. Electrical Characteristics  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 C°)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
IH  
4
ENH  
ENx  
I
V
= V  
IL  
20  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
7.3  
6.5  
14.3  
6
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
8.3  
10.8  
13.3  
11.8  
9
9
12  
12  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8440-B,-C, V  
Si8440-B,-C, V  
Si8441-B,-C, V  
Si8441-B,-C, V  
Si8442-B,-C, V  
Si8442-B,-C, V  
11  
8
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
11.4  
14.5  
11.5  
11.5  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440-C, V  
Si8440-C, V  
Si8441-C, V  
Si8441-C, V  
Si8442-C, V  
Si8442-C, V  
11.4  
18  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
12.5  
21  
17.5  
17.5  
6
Rev. 0.3  
Si8440/1/2  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V, VDD2 = 3.3 V, TA = –40 to 125 C°)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Maximum Data Rate  
Minimum Pulse Width  
0
5
100  
Mbps  
ns  
1
Propagation Delay  
t
,t  
7.5  
1
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
1
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
t
25  
8
1
ns  
ns  
PSK  
t
PSKCD/OD  
3
Channel-Channel Skew  
Output Rise Time  
Output Fall Time  
C1 = 15 pF  
C1 = 15 pF  
2
ns  
2
ns  
Common Mode Transient  
Immunity at Logic Low Output  
CM  
30  
kV/µs  
L
4
Common Mode Transient  
Immunity at Logic High Output  
CM  
25  
30  
kV/µs  
H
4
Enable to Data Valid  
t
t
5
5
3
ns  
ns  
µs  
en1  
en2  
Enable to Data Tri-State  
5
Start-up Time  
t
SU  
Notes:  
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling  
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the  
50% level of the rising edge of the VOx signal.  
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any  
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is  
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of  
the isolation barrier.  
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is  
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range  
over which the common mode is slewed.  
5. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 0.3  
7
Si8440/1/2  
Table 3. Electrical Characteristics  
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 C°)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Typ  
Max  
Unit  
V
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
Enable Input High Current  
Enable Input Low Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
µA  
µA  
L
I
V
= V  
IH  
4
ENH  
ENx  
I
V
= V  
IL  
20  
ENL  
ENx  
DC Supply Current (All inputs 0 V or at supply)  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8440-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8441-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
Si8442-A,-B,-C, V  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
All inputs 0 DC  
All inputs 0 DC  
All inputs 1 DC  
All inputs 1 DC  
6.8  
6.3  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
12.5  
5.8  
7.8  
9.8  
12.5  
11  
8.8  
8.5  
11.5  
11.5  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8440-B,-C, V  
Si8440-B,-C, V  
Si8441-B,-C, V  
Si8441-B,-C, V  
Si8442-B,-C, V  
Si8442-B,-C, V  
10.2  
7
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
10.5  
11.5  
11  
11  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8440-C, V  
Si8440-C, V  
Si8441-C, V  
Si8441-C, V  
Si8442-C, V  
Si8442-C, V  
10.8  
14.5  
12.5  
17  
mA  
mA  
mA  
mA  
mA  
mA  
DD1  
DD2  
DD1  
DD2  
DD1  
DD2  
15  
15  
8
Rev. 0.3  
Si8440/1/2  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V, VDD2 = 2.5 V, TA = –40 to 100 C°)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Maximum Data Rate  
Minimum Pulse Width  
0
5
100  
Mbps  
ns  
1
Propagation Delay  
t
,t  
12  
1.5  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
ns  
1
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
t
25  
10  
1
ns  
ns  
PSK  
t
PSKCD/OD  
3
Channel-Channel Skew  
Output Rise Time  
Output Fall Time  
C1 = 15 pF  
C1 = 15 pF  
2
ns  
2
ns  
Common Mode Transient  
Immunity at Logic Low Output  
CM  
30  
kV/µs  
L
4
Common Mode Transient  
Immunity at Logic High Output  
CM  
25  
30  
kV/µs  
H
4
Enable to Data Valid  
t
t
5
5
3
ns  
ns  
µs  
en1  
Enable to Data Tri-State  
en2  
5
Start-up Time  
t
SU  
Notes:  
1. tPHL propagation delay is measured from the 50% level of the falling edge of the VIx signal to the 50% level of the falling  
edge of the VOx signal. tPLH propagation delay is measured from the 50% level of the rising edge of the VIx signal to the  
50% level of the rising edge of the VOx signal.  
2. tPSK is the magnitude of the worst-case difference in tPHL or tPLH that is measured between units at the same operating  
temperature, supply voltages, and output load within the recommended operating conditions.  
3. Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any  
two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is  
the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of  
the isolation barrier.  
4. CMH is the maximum common-mode voltage slew rate that can be sustained while maintaining VO > 0.8 VDD2. CML is  
the maximum common-mode voltage slew rate that can be sustained while maintaining VO < 0.8 V. The common-mode  
voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range  
over which the common mode is slewed.  
5. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 0.3  
9
Si8440/1/2  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
25  
Max  
125  
100  
5.5  
Unit  
ºC  
ºC  
V
Ambient Operating Temperature*  
T
100 Mbps, 15 pF, 5 V  
150 Mbps, 15 pF, 5 V  
A
0
Supply Voltage  
V
2.375  
2.375  
DD1  
DD2  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
125  
6
Unit  
ºC  
ºC  
V
Storage Temperature  
Ambient Temperature Under Bias  
Supply Voltage  
T
STG  
T
A
V
, V  
DD2  
DD1  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
O
Output Current Drive Channel  
Lead Solder Temperature (10s)  
Maximum Isolation Voltage  
L
10  
mA  
ºC  
260  
4000  
V
DC  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 6. Package Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max Unit  
1
12  
Resistance (Input-Output)  
R
10  
pF  
IO  
1
Capacitance (Input-Output)  
C
f = 1 MHz  
1.4  
4.0  
33  
IO  
2
Input Capacitance  
C
pF  
I
IC Junction-to-Case Thermal Resistance,  
Side 1  
θ
Thermocouple  
located at center of  
package underside  
ºC/W  
JCI  
IC Junction-to-Case Thermal Resistance,  
Side 2  
θ
28  
ºC/W  
JCO  
Notes:  
1. Device considered a 2-terminal device; Pins 1– 8 shorted together and pins 9–16 shorted together.  
2. Input capacitance is from any input data pin to ground.  
10  
Rev. 0.3  
Si8440/1/2  
Table 7. Regulatory Information  
The Si84xx have been approved by the organizations listed below.  
1
2
CSA  
UL  
VDE  
Recognized under 1577 component Approved under CSA Component  
Certified according to DIN EN  
1
recognition program  
Acceptance Notice #5A  
60747-5-2 (VDE 0884 Part 2): 2003-  
2
01  
Basic insulation, 2500 V RMS  
isolation voltage  
Reinforced insulation per CSA  
60950-1-03 and IEC 60950-1, 400 V  
RMS maximum working voltage  
Basic insulation, 560 V peak  
Complies with DIN EN 60747-5-2  
(VDE 0884 Part 2): 2003-01, DIN EN  
60950 (VDE 0805): 2001-12; EN  
60950:2000 Reinforced insulation,  
560 V peak  
File E257455  
File 2500035643  
File 5006301-4880-0001  
Notes:  
1. In accordance with UL1577, each Si84xx is proof tested by applying an insulation test voltage > 3000 V RMS for 1  
second (current leakage detection limit = 5 µA).  
2. In accordance with DIN EN 60747-5-2, each Si84xx is proof tested by applying an insulation test voltage > 1050 V  
peak for 1 second (partial discharge detection limit = 5 pC). A “*” mark branded on the component designates DIN EN  
60747-5-2 approval.  
Table 8. Insulation and Safety-related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Rated Dielectric Insulation Voltage  
Minimum External Air Gap (Clearance)  
1 minute duration  
2500  
V
RMS  
L(IO1) Measured from input terminals to out- 7.7 min  
put terminals, shortest distance  
through air  
mm  
Minimum External Tracking (Creepage)  
Minimum Internal Gap (Internal Clearance)  
L(IO2) Measured from input terminals to out-  
put terminals, shortest distance path  
along body  
8.1  
mm  
Insulation distance through insulation  
0.017  
min  
mm  
V
Tracking Resistance (Comparative Tracking  
Index)  
CTI  
DIN IEC 112/VDE 0303 Part 1  
>175  
Basic Isolation Group  
Material Group  
IIIa  
(DIN VDE 0110, 1/89, Table 1)  
Rev. 0.3  
11  
Si8440/1/2  
Table 9. DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics1,2  
Description  
Symbol  
Characteristic  
Unit  
Installation Classification per DIN VDE 0110  
For Rated Mains Voltages < 150 V  
For Rated Mains Voltages < 300 V  
For Rated Mains Voltages < 400 V  
I-IV  
I-III  
I-II  
RMS  
RMS  
RMS  
Climatic Classification  
40/125/21  
2
Pollution Degree (DIN VDE 0110, Table 1)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b1  
V
560  
V
IORM  
PEAK  
PEAK  
V
1050  
V
PR  
(V  
x 1.875 = V , 100% Production Test, t = 1 sec, Partial Dis-  
IORM  
PR m  
charge < 5 pC)  
Input to Output Test Voltage, Method a  
After Environmental Tests Subgroup 1  
V
(V  
x 1.6 = V , t = 60 sec, Partial Discharge < 5 pC)  
896  
V
PR  
TR  
IORM  
PR  
m
PEAK  
After Input and/or Safety Test Subgroup 2/3  
(V x 1.2 = V , t = 60 sec, Partial Discharge < 5 pC)  
672  
V
V
IORM  
PR  
m
PEAK  
PEAK  
Highest Allowable Overvoltage (Transient Overvoltage, t = 10 sec)  
V
4000  
TR  
Safety-Limiting Values (Maximum value allowed in the event of a failure;  
also see the thermal derating curve, Figure 3)  
Case Temperature  
Side 1 Current  
Side 2 Current  
T
I
I
150  
265  
335  
ºC  
mA  
mA  
S
S1  
S2  
9
Insulation Resistance at T , V = 500 V  
R
S
>10  
S
IO  
Notes:  
1. This isolator is suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is  
ensured by protective circuits.  
2. The * marking on packages denotes DIN EN 60747-5-2 approval for 560 V peak working voltage.  
350  
300  
250  
SIDE #2  
200  
150  
SIDE #1  
100  
50  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 3. Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
12  
Rev. 0.3  
Si8440/1/2  
2. Typical Performance Characteristics  
15  
20  
18  
16  
14  
12  
10  
13  
5V  
5V  
11  
3.3V  
2.5V  
3.3V  
9
7
2.5V  
5
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 4. Si8440 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
Figure 6. Si8441 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
30  
30  
5V  
5V  
25  
25  
3.3V  
3.3V  
20  
20  
15  
15  
2.5V  
2.5V  
10  
10  
5
5
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 5. Si8440 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 7. Si8441 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
30  
25  
5V  
20  
3.3V  
15  
2.5V  
10  
5
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Data Rate (Mbps)  
Figure 8. Si8442 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.5 V  
Operation (15 pF Load)  
Rev. 0.3  
13  
Si8440/1/2  
10  
9
8
Falling Edge  
7
6
5
Rising Edge  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 9. Propagation Delay  
vs. Temperature 5 V Operation  
10  
9
Rising Edge  
8
Falling Edge  
7
6
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 10. Propagation Delay  
vs. Temperature 3.3 V Operation  
15  
13  
11  
9
Rising Edge  
Falling Edge  
7
5
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature (Degrees C)  
Figure 11. Propagation Delay  
vs. Temperature 2.5 V Operation  
14  
Rev. 0.3  
Si8440/1/2  
3. Application Information  
3.1. Theory of Operation  
The operation of an Si8440 channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si8440 channel is shown in  
Figure 12. A channel consists of an RF transmitter and receiver separated by a transformer.  
Referring to the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying and  
applies the resulting waveform to the primary of the transformer. The receiver contains a demodulator that decodes  
the input state according to its RF energy content and applies the result to output B via the output driver.  
3.2. Eye Diagram  
Figure 13 illustrates an eye-diagram taken on an Si8440-IS. The test used an Anritsu (MP1763C) Pulse Pattern  
Generator for the data source. The output of the generator's clock and data from an Si8440-IS were captured on an  
oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The  
results also show that very low pulse width distortion and very little jitter were exhibited.  
TRANSMITTER  
RF  
OSCILLATOR  
RECEIVER  
MODULATOR  
DEMODULATOR  
A
B
Figure 12. Simplified Channel Diagram  
Figure 13. Eye Diagram  
Rev. 0.3  
15  
Si8440/1/2  
4.1. Supply Bypass  
4. Layout Recommendations  
The Si8440 requires a 0.1 µF bypass capacitor between  
Dielectric isolation is a set of specifications produced by  
the safety regulatory agencies from around the world  
that describes the physical construction of electrical  
equipment that derives power from a high-voltage  
V
and GND1 and V  
and GND2. The capacitor  
DD1  
DD2  
should be placed as close as possible to the package.  
4.2. Input and Output Characteristics  
power system such as 100–240 V  
systems or  
AC  
The Si8440 inputs and outputs are standard CMOS  
drivers/receivers.  
industrial power systems. The dielectric test (or HIPOT  
test) given in the safety specifications places a very high  
voltage between the input power pins of a product and  
the user circuits and the user touchable surfaces of the  
product. For the IEC relating to products deriving their  
power from the 220–240 V power grids, the test voltage  
4.3. Enable Inputs  
The receiver output drivers are enabled when the  
Enable input is high and the drivers remain in a high-  
impedance state when Enable is low. The Enable input  
can be used for multiplexing or as a clock sync input.  
Supply currents remain at their nominal values when  
Enable is low. The Enable inputs must be tied to a logic  
level.  
is 2500 V  
(or 3750 V —the peak equivalent  
AC  
DC  
voltage).  
There are two terms described in the safety  
specifications:  
Creepage—the distance along the insulating surface  
an arc may travel.  
Clearance—the distance through the shortest path  
through air that an arc may travel.  
Figure 14 illustrates the accepted method of providing  
the proper creepage distance along the surface. For a  
220–240 V application, this distance is 8 mm and the  
wide body SOIC package must be used. There must be  
no copper traces within this 8 mm exclusion area, and  
the surface should have a conformal coating such as  
solder resist. The digital isolator chip must straddle this  
exclusion area.  
Figure 14. Creepage Distance  
16  
Rev. 0.3  
Si8440/1/2  
4.4. RF Immunity and Common Mode Transient Immunity  
The Si8440 family has very high common mode transient immunity while transmitting data. This is typically  
measured by applying a square pulse with very fast rise/fall times between the isolated grounds. Measurements  
show no failures up to 30 kV/µs. During a high surge event the output may glitch low for up to 20–30 ns, but the  
output corrects immediately after the surge event.  
The Si844x family passes the industrial requirements of CISPR24 for RF immunity of 3 V/m using an unshielded  
evaluation board. As shown in Figure 15, the isolated ground planes form a parasitic dipole antenna, while  
Figure 16 shows the RMS common mode voltage versus frequency above which the Si844x becomes susceptible  
to data corruption. To avoid compromising data, care must be taken to keep RF common-mode voltage below the  
envelope specified in Figure 16. The PCB should be laid-out to not act as an efficient antenna for the RF frequency  
of interest. RF susceptibility is also significantly reduced when the end system is housed in a metal enclosure, or  
otherwise shielded.  
GND1  
GND2  
Isolator  
Dipole  
Antenna  
Figure 15. Dipole Antenna  
5
4
3
2
1
0
500  
1000  
Frequency (MHz)  
1500  
2000  
Figure 16. RMS Common Mode Voltage vs. Frequency  
Rev. 0.3  
17  
Si8440/1/2  
4.5. RF Radiated Emissions  
The Si8440 family uses a RF carrier frequency of approximately 2.1 GHz. This will result in a small amount of  
radiated emissions at this frequency and its harmonics. The radiation is not from the IC chip but due to a small  
amount of RF energy driving the isolated ground planes which can act as a dipole antenna.  
The unshielded Si8440 evaluation board passes FCC requirements. Table 10 shows measured emissions  
compared to FCC requirements.  
Radiated emissions can be reduced if the circuit board is enclosed in a shielded enclosure or if the PCB is a less  
efficient antenna.  
Table 10. Radiated Emissions  
Compared  
Frequency Measured  
FCC Spec  
(dBµV/m)  
to Spec  
(dB)  
(GHz)  
(dBµV/m)  
2.094  
2.168  
4.210  
4.337  
6.315  
6.505  
8.672  
70.0  
68.3  
61.9  
60.7  
58.3  
60.7  
45.6  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
74.0  
–4.0  
–5.7  
–12.1  
–13.3  
–15.7  
–13.3  
–28.4  
18  
Rev. 0.3  
Si8440/1/2  
5. Pin Descriptions  
VDD1  
VDD2  
GND2  
B1  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
8
GND1  
A1  
A2  
B2  
B3  
A3  
A4  
B4  
EN1  
EN2  
GND2  
GND1  
Top View  
Wide Body SOIC  
Name  
SOIC-16 Pin#  
Type  
Description  
V
1
2
Supply  
Ground  
Side 1 power supply.  
Side 1 ground.  
DD1  
GND1  
A1  
3
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital Input  
Ground  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input or output.  
Side 1 digital input or output.  
A2  
4
A3  
5
A4  
6
EN1  
GND1  
GND2  
EN2  
B4  
7
Side 1 active high enable. NC on Si8440.  
Side 1 ground.  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital Input  
Digital I/O  
Digital I/O  
Side 2 active high enable.  
Side 2 digital input or output.  
Side 2 digital input or output.  
B3  
B2  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B1  
GND2  
Ground  
Supply  
Side 2 ground.  
V
Side 2 power supply.  
DD2  
Rev. 0.3  
19  
Si8440/1/2  
6. Ordering Guide  
Ordering Part  
Number  
Number of  
Number of Inputs MaximumData  
Temperature  
Package  
Type  
Inputs V  
V
Side  
Rate  
DD1  
DD2  
Side  
Si8440-A-IS  
Si8440-B-IS  
Si8440-C-IS  
Si8441-A-IS  
Si8441-B-IS  
Si8441-C-IS  
Si8442-A-IS  
Si8442-B-IS  
Si8442-C-IS  
4
4
4
3
3
3
2
2
2
0
1
10  
100  
1
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
SOIC-16  
0
0
1
1
1
2
2
2
10  
100  
1
10  
100  
Note: All packages are Pb-free and RoHS compliant. Moisture sensitivity level is MSL2 with peak reflow temperature of  
260 °C according to the JEDEC industry standard classifications, and peak solder temperature.  
20  
Rev. 0.3  
Si8440/1/2  
7. Package Outline: Wide Body SOIC  
Figure 17 illustrates the package details for the Quad-Channel Digital Isolator. Table 14 lists the values for the  
dimensions shown in the illustration.  
Figure 17. 16-Pin Wide Body SOIC  
Table 14. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
2.65  
0.3  
A
A1  
D
E
E1  
b
0.1  
10.3 BSC  
10.3 BSC  
7.5 BSC  
0.31  
0.51  
0.33  
c
0.20  
e
1.27 BSC  
h
0.25  
0.4  
0°  
0.75  
1.27  
7°  
L
θ
Rev. 0.3  
21  
Si8440/1/2  
DOCUMENT CHANGE LIST  
Revision 0.2 to Revision 0.3  
Added enable high and low typical current  
specifications to Tables 1, 2, and 3.  
Added startup time specifications (with note 5) to  
Tables 1, 2, and 3.  
Rewrote paragraph 1 in section "4.4. RF Immunity  
and Common Mode Transient Immunity" on page 17  
to reflect 30 kV/µs transient immunity capability.  
22  
Rev. 0.3  
Si8440/1/2  
NOTES:  
Rev. 0.3  
23  
Si8440/1/2  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: MCUinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
24  
Rev. 0.3  

相关型号:

SI8441-A-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8441-B-IS

QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8441-B-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8441-C-IS

QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8441-C-ISR

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON

SI8441AA-C-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8441AA-C-IS1R

Analog Circuit, CMOS, PDSO16
SILICON

SI8441AA-D-IS1

LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR
SILICON

SI8441AA-D-IS1R

Analog Circuit, CMOS, PDSO16
SILICON

SI8441AB-C-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8441AB-C-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8441AB-C-ISR

Analog Circuit, CMOS, PDSO16
SILICON