SI8512-C-IS [SILICON]

Analog Circuit, 1 Func, PDSO20, ROHS COMPLIANT, MS-013AC, SOIC-20;
SI8512-C-IS
型号: SI8512-C-IS
厂家: SILICON    SILICON
描述:

Analog Circuit, 1 Func, PDSO20, ROHS COMPLIANT, MS-013AC, SOIC-20

光电二极管
文件: 总36页 (文件大小:375K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si85xx  
Si85XX UNIDIRECTIONAL AC CURRENT SENSORS  
Features  
Single-chip ac current sensor  
50 kHz to 1 MHz input frequency  
range  
FAULT output to safeguard operation  
Low loss: <1.3 mprimary series  
resistance and <2 nH inductance  
Leading-edge noise suppression  
eliminates need for leading-edge  
blanking  
"Ping-Pong" output version allows  
one Si85xx to replace two current  
transformers in full-bridge designs  
5, 10, and 20 A full-scale versions  
±5% initial accuracy  
Large 2 V min output at full scale  
PP  
High-side or low-side current sensing  
Compact 4x4x1 mm QFN package  
(1 kV  
isolation)  
RMS  
20-pin wide-body SOIC  
(5 kV isolation)  
RMS  
–40 to 125 °C operating range  
UL/VDE/CSA approval  
Applications  
Power supplies  
Motor controls  
Lighting equipment  
Industrial equipment  
Ordering Information:  
Description  
See page 26.  
The Si85xx products are unidirectional ac current sensors available in full-scale  
ranges of 5, 10, and 20 A. Si85xx products are ideal upgrades for older current-  
sensing technologies offering size, performance, and cost advantages over current  
transformers, Hall effect devices, DCR circuits, and other approaches. The Si85xx  
are extremely low-loss, adding less than 1.3 mof series resistance and less than  
2 nH series inductance in the sensing path at 25 °C. Current-sensing terminals are  
Pin Assignments:  
See page 24  
20-Pin SOIC  
isolated from the other package pins, providing up to 5 kV  
safety approval ratings.  
isolation level per  
RMS  
VDD  
IIN  
MODE  
R1  
IIN  
Safety Approval (20-Pin SOIC Only)  
IIN  
R2  
IIN  
UL 1577 recognized  
5000 V for 1 minute  
CSA component notice 5A approval  
IEC 60950, 61010, 60601  
approved  
VDE certification conformity  
IEC 60747-5-2 (VDE0884 Part 2)  
R3  
IIN  
Si851x  
RMS  
R4  
OUT1  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
OUT2  
TRST/FAULT  
GND  
Functional Block Diagram  
12-Pin QFN  
Si851x  
R1  
R2  
R3  
R4  
IIN  
VDD  
Si851x  
R1  
R2  
VIN  
IIN  
MODE  
VDD1 TRST  
R2  
RESET LOGIC  
MODE LOGIC  
IIN  
R3  
Si850x  
GND1  
OUT  
GND2  
R4  
OUT1  
OUT2  
INTEGRATOR  
SIGNAL CONDITIONING  
R1  
IOUT  
OUT1  
OUT2  
IOUT  
Q1  
L
PH1  
VOUT  
C
Q2  
PH2  
AUTO CALIBRATION  
LOGIC  
TEMP  
SENSOR  
ADC  
Typical Application  
IOUT  
GND  
TRST/FAULT  
VDD  
Patents pending  
Preliminary Rev. 0.4 6/12  
Copyright © 2012 by Silicon Laboratories  
Si85xx  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si85xx  
2
Preliminary Rev. 0.4  
Si85xx  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
2.1. Under Voltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.2. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.3. Integrator Reset and Current Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.4. Total Measurement Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.5. Effect of Temperature on Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.6. Leading Edge Noise Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.7. FAULT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.8. Safe Operating Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3. Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.1. Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.2. Layout Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.3. Device Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.4. Single-Phase Buck Converter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.5. Full-Bridge Converter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
3.6. Push-Pull Converter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Pin Descriptions—12-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5. Pin Descriptions—20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
7. Package Outline—12-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8. Recommended PCB Land Pattern (12-Pin QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
9. Package Outline: Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
10. Recommended PCB Land Pattern (20-Pin SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
11. Top Marking (QFN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
12. Top Marking (SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Preliminary Rev. 0.4  
3
Si85xx  
1. Electrical Specifications  
Table 1. Electrical Specifications  
TA = –40 to +125 ºC (typical specified at 25 ºC), VDD = 3 V (±10%) to 5 V (±10%), f = 400 kHz, unless specified  
Parameter  
Conditions  
Min  
2.7  
Typ  
4
Max  
5.5  
7
Unit  
V
Supply Voltage (V  
)
DD  
Supply Current  
Fully enabled,  
mA  
input frequency = 1 MHz  
Undervoltage Lockout (V  
)
2.1  
2.3  
2.5  
V
UVLO  
Undervoltage Lockout Hysteresis  
(V  
100  
mV  
)
HYST  
Logic Input HIGH Level  
Logic Input LOW Level  
MODE, R1, R2, R3, R4 inputs  
(TTL compatible)  
2.0  
0.8  
V
V
Reset Time (t )  
Time for 5% initial accuracy  
150  
15  
ns  
k  
ns  
ns  
µs  
m  
nH  
ns  
R
1
Reset Time Resistor Range  
2500  
30  
R1, R2, R3, R4 Input Rise Time (t  
)
RR  
R1, R2, R3, R4 Input Fall Time (t  
)
30  
FR  
Measurement Watchdog Timeout (t  
Series Input Resistance  
Series Inductance  
)
30  
50  
1.3  
2
80  
WD  
Measured from IIN to IOUT  
Measured from IIN to IOUT  
1
Input/Output Delay  
OUT, OUT1, OUT2 delay relative to  
input  
150  
200  
1
Start-Up Self-Cal Delay (t  
)
Time from VDD = V  
+ V to  
HYST  
150  
200  
µs  
CAL  
UVLO  
cal complete  
4x4 mm QFN  
SOIC-20  
Input Common Mode Voltage Range  
(dc)  
1000  
5000  
50  
V
RMS  
RMS  
1
V
1
Operating Input Frequency Range (f)  
DC Power Supply Rejection Ratio  
Sensitivity @ VDD = 3 V  
1000  
kHz  
db  
40  
Si8501/11/17  
Si8502/12/18  
Si8503/13/19  
Si8501/11/17  
Si8502/12/18  
Si8503/13/19  
404  
202  
101  
392  
196  
98  
mV/A  
mV/A  
mV/A  
mV/A  
mV/A  
mV/A  
Sensitivity @ VDD = 5 V  
Notes:  
1. Guaranteed by design and/or characterization.  
2. Maximum output load is not recommended to exceed 200 pF and 5 k.  
3. Production tested at 400 kHz (50% duty cycle) at VDD = 3.3 V.  
4. See "2.4. Total Measurement Error" on page 11 for more information.  
4
Preliminary Rev. 0.4  
 
 
 
 
Si85xx  
Table 1. Electrical Specifications (Continued)  
TA = –40 to +125 ºC (typical specified at 25 ºC), VDD = 3 V (±10%) to 5 V (±10%), f = 400 kHz, unless specified  
Parameter  
Conditions  
Current flow from I to I  
Min  
Typ  
Max  
Unit  
OUT, OUT1, OUT2 Offset Voltage  
= 0  
OUT  
50  
mV  
IN  
(V  
)
OUTMIN  
1,2  
V
Slew Rate  
OUT, OUT1, OUT2 load = 5K || 50 pF  
20  
50  
V/µs  
OUT  
OUT, OUT1, OUT2 Output Resistance  
130  
+30  
+10  
3,4  
Total Measurement Error (%)  
(–40 to 125 ºC Temp Range)  
20% of full scale (all devices)  
–30  
–10  
%
3,4  
100% of full scale  
%
Notes:  
1. Guaranteed by design and/or characterization.  
2. Maximum output load is not recommended to exceed 200 pF and 5 k.  
3. Production tested at 400 kHz (50% duty cycle) at VDD = 3.3 V.  
4. See "2.4. Total Measurement Error" on page 11 for more information.  
Table 2. Regulatory Information1 (SOIC-20 Only)  
CSA  
The Si85xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
2
VDE  
The Si85xx is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
UL  
The Si85xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Notes:  
1. All 5.0 kVRMS rated devices are production tested to >6.0 kVRMS for 1 sec. For more information, see "6. Ordering  
Guide" on page 26.  
2. Pending.  
Preliminary Rev. 0.4  
5
 
 
 
Si85xx  
Table 3. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
SOIC-20  
7.6 min  
7.6 min  
0.2  
Unit  
Minimum Air Gap (Clearance)  
L(1O1)  
L(1O2)  
mm  
mm  
mm  
Minimum External Tracking (Creepage)  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
(Comparative Tracking Index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
f = 1 MHz  
>175  
V
1
12  
Resistance (Input-Output)  
R
10  
IO  
1
Capacitance (Input-Output)  
C
1.4  
4.0  
pF  
pF  
IO  
2
Input Capacitance  
C
I
Notes:  
1. To determine resistance and capacitance, the Si85xx is converted into a 2-terminal device. Pins 1–10 are shorted  
together to form the first terminal and pins 11–20 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
2. Measured from input pin to ground.  
Table 4. IEC 60664-1 (VDE 0884 Part 2) Ratings  
Parameter  
Test Conditions  
Specification  
SOIC-20  
IIIa  
Basic Isolation Group  
Material Group  
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
RMS  
RMS  
RMS  
RMS  
I-IV  
I-IV  
Installation Classification  
I-IV  
Rated Mains Voltages < 1000 V  
I-III  
RMS  
6
Preliminary Rev. 0.4  
Si85xx  
Table 5. IEC 60747-5-2 Insulation Characteristics*  
Parameter  
Symbol  
Test Condition  
Characteristic  
Unit  
SOIC-20  
1414  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
V
V peak  
V peak  
IORM  
V
Method b1  
2652  
PR  
(V  
x 1.875 = V , 100%  
IORM  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
Transient Overvoltage  
V
t = 60 s  
8000  
2
V peak  
W
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
9
Insulation Resistance at T , V = 500 V  
R
S
>10  
S
IO  
Note: The Si85xx is suitable for basic and reinforced electrical isolation only within the safety limit data. Maintenance of the  
safety data is ensured by protective circuits. The Si85xx provides a climate classification of 40/125/21. Note that the  
Si85xx is compliant with the IEC60747-5-2 but neither certified nor inspected to IEC60747-5-2. The Si85xx is  
compliant, certified, and factory-inspected to IEC60950.  
Table 6. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
SOIC-20 Unit  
Case Temperature  
Safety Input Current  
T
I
150  
30  
°C  
A
S
= 85, V = 5.5 V,  
S
JA  
DD  
IIN to IOUT = 20 A,  
T = 150 °C, T = 25 °C  
J
A
2
Device Power Dissipation  
P
0.9  
W
D
Notes:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 1.  
2. The Si85xx is tested with VDD = 5.5 V, TJ = 150 ºC, CL = 15 pF, and with an input current from IIN to IOUT equal to  
20 Amps at 500 kHz (duty cycle = 50%).  
Preliminary Rev. 0.4  
7
 
 
Si85xx  
Table 7. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
SOIC-20 4x4 mm  
QFN  
Unit  
IC Junction-to-Air Thermal Resistance  
85  
55  
°C/W  
JA  
40  
30  
20  
10  
VDD = 5.5 V  
IIN to IOUT = 20 Amps  
0
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 1. SOIC-20 Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
Table 8. Absolute Maximum Ratings1  
Parameter  
Storage temperature  
Symbol  
Min  
–65  
–40  
Typ  
Max  
+150  
Units  
°C  
°C  
°C  
V
T
STG  
Ambient temperature under bias  
Junction Temperature  
Supply voltage  
T
+125  
A
T
150  
J
V
5.75  
DD  
Voltage on any pin with respect to ground  
(not including IIN, IOUT)  
V
–0.5  
VDD + 0.5  
V
IN  
Output Current Drive  
L
10  
mA  
ºC  
O
Lead solder temperature (10 s)  
Maximum Input Current Rate of Change  
Maximum Peak AC Input Current Limit  
260  
1000  
200  
A/µs  
A
2
Thermal Limit (DC Current)  
30  
A
Maximum Isolation Voltage (QFN)  
1400  
6000  
+1.5  
+2500  
+ 250  
V
V
RMS  
Maximum Isolation Voltage (SOIC-20)  
RMS  
ESD (CDM)  
ESD (HBM)  
ESD (MM)  
Notes:  
JEDEC (JESD22-C101C)  
JEDEC (JESD22-A114E)  
JEDEC (JESD22-A115A)  
–1.5  
–2500  
–250  
kV  
V
V
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
2. Refer to “AN329: Extending the Full-Scale Range of the Si85xx” for more information.  
8
Preliminary Rev. 0.4  
 
 
 
Si85xx  
2. Functional Overview  
The Si85xx ac current sensor family of products mimics  
the functionality of traditional current transformer (CT)  
circuits with burden resistor, diode, and output filter, but  
offers enhanced performance and added capabilities.  
These devices use inductive current sensing and on-  
board signal conditioning electronics to generate a 2 V  
full-scale output signal proportional to the ac current  
flowing from the IIN to the IOUT terminals. As shown in  
Figures 2 and 3, current flowing through the metal  
package slug induces a signal in the pickup coil on the  
Si85xx die. This signal is applied to the input of an  
integrator that reconstructs the ac current flowing from  
IIN to IOUT. Onboard circuitry provides cycle-by-cycle  
integrator reset and temperature and offset voltage  
compensation to achieve initial measurement accuracy  
to within ±5%.  
R1  
R2  
R3  
R4  
IIN  
Si851x  
MODE  
RESET LOGIC  
MODE LOGIC  
OUT1  
OUT2  
INTEGRATOR  
SIGNAL CONDITIONING  
PICKUP  
COIL  
AUTO CALIBRATION  
LOGIC  
TEMP  
SENSOR  
ADC  
IOUT  
GND  
TRST/FAULT  
VDD  
Figure 3. Si851x (Ping Pong Output) Block  
Diagram  
The Si85xx is superior to other current sensing  
approaches and benefits the system in a number of  
ways:  
R1  
R2  
IIN  
Si850x  
Small size: With its 4x4 mm footprint and 1 mm  
height (QFN package option), the Si85xx is among  
the smallest current sensors available.  
VDD2  
OUT  
RESET LOGIC  
INTEGRATOR  
SIGNAL CONDITIONING  
Large output signal: The nominal 2.0 V full-scale  
output swing offers superior noise immunity versus  
other current sensing technologies.  
PICKUP  
COIL  
Low loss: The Si85xx adds only 1.3 m(at 25 °C)  
to the sensing path, making it one of the lowest-loss  
current sensors available. Low 2 nH primary series  
inductance is 2,000 times lower compared to a CT  
and results in significantly less ringing.  
AUTO CALIBRATION  
LOGIC  
TEMP  
SENSOR  
ADC  
NC  
High precision: All versions are available with an  
initial maximum error of ±5% of reading; one of the  
most accurate current sensors available.  
IOUT  
GND1  
GND2  
GND3  
TRST  
VDD1  
Figure 2. Si850x (Single Output) Block Diagram  
Ping-Pong output mode (Si851x): Alternately  
routes the current measurements from each side of  
a full-bridge circuit to separate output pins for  
comparison, which is very useful for transformer flux  
balancing applications. Eliminates a second CT in a  
full-bridge application.  
Leading edge noise suppression: Filters out  
reflected noise due to long reverse recovery time of  
output rectifier. Eliminates the need for external  
leading edge blanking circuit.  
High common-mode voltage: The Si85xx offers a  
minimum of 1,000 V  
(for QFN package) or  
RMS  
5 kV  
(for SOIC package) of common-mode  
RMS  
voltage range (or isolation), making it useful over a  
very wide voltage range.  
Preliminary Rev. 0.4  
9
 
 
 
Si85xx  
FAULT output (Si8517/8/9): Goes low when  
2.3. Integrator Reset and  
Current Measurement  
external reset timing is in error.  
Ease-of-use: Other than conventional power and  
grounding techniques, no special board layout  
considerations are required. Built-in timing interface  
circuits allow already-available system switching  
signals to be used for reset with no external circuits  
required.  
The Si85xx measures current flowing from the IIN to  
IOUT terminals. Current is allowed to flow in the  
opposite direction, but will not be measured (OUT1 and  
OUT 2 remain at their minimum values during reverse  
current flow. Reverse current flow will not damage the  
Si85xx).  
2.1. Under Voltage Lockout (UVLO)  
To achieve the specified accuracy, the integrator  
capacitor must be discharged (reset) for time period t  
R
UVLO is provided to prevent erroneous operation during  
device start-up and shutdown or when VDD is  
significantly below the specified operating range. The  
prior to the start of every measurement cycle. This  
cycle-by-cycle reset is implemented by connecting  
existing system gate control signals to the R1–R4 inputs  
in a way that resets the integrator when no current is  
flowing from IIN to IOUT. To achieve rated accuracy, the  
reset cycle must be completed prior to the start of the  
measurement cycle. For maximum flexibility, integrator  
reset operation can be configured in one of two ways:  
Si85xx is in UVLO state when VDD < V  
(Figure 4).  
UVLO  
During UVLO, the output(s) are held at minimum value  
regardless of the amount of current flowing from IIN to  
IOUT, and signals on integrator reset inputs R1–R4 are  
ignored. The Si85xx exits UVLO when VDD > (V  
+
UVLO  
V
).  
HYST  
Option 1: The start and duration of reset is  
determined by the states of the timing  
signals applied to R1–R4.  
2.2. Device Startup  
Upon exit from UVLO, the Si85xx performs a voltage  
offset and temperature self-calibration cycle. During this Option 2: The timing signals applied to R1–R4 trigger  
time, output(s) are held at minimum value and reset  
inputs (R1-R4) are ignored. The reset inputs are  
enabled at the end of the self-calibration cycle, and an  
integrator reset cycle is initiated on the first occurrence  
of active signals on R1–R4. A current measurement is  
initiated immediately after the completion of the  
integrator reset cycle, and the resulting current  
waveforms appear on the output pins. This "reset-  
measure-reset" pattern repeats throughout steady-state  
operation.  
the start of reset, and the duration of the  
reset is determined by an onboard  
programmable reset timer.  
VUVLO + VHYST  
VDD  
First Positive Edge  
Following End of Self-Cal  
SUPPLY  
INTEGRATOR  
DON’T CARE  
tRP  
tRP  
RESET  
Si85xx  
STATUS  
UNDER VOLTAGE  
LOCKOUT STATE  
START-UP  
SELF-CAL CYCLE  
RESET  
tR  
MEASURE CURRENT  
RESET  
tR  
tCAL  
Si85xx  
OUTPUT  
VOUTMIN  
OUT1, OUT2  
VALID  
Figure 4. Si85xx Startup and Control Timing  
10  
Preliminary Rev. 0.4  
 
 
Si85xx  
Integrator reset Option 1 is selected by connecting T  
2.4. Total Measurement Error  
RST  
to VDD. In this mode, the Si85xx is held in reset as long  
as the signals on R1–R4 satisfy the logic equations of  
Table 11. It is typically used in applications where the  
gate drivers are external to the system controller IC (the  
gate driver delay ensures reset is completed prior to the  
start of measurement).  
The Si85xx’s absolute accuracy is affected by the  
following factors:  
Ambient operating temperature  
VDD supply voltage  
Time  
Reset Option 2 is selected by connecting a timing Table 10 includes a composite of all environmental and  
resistor (R in Figure 5) from the TRST input to operating conditions that can ultimately affect the  
TRST  
ground. It is typically used in applications where the absolute measurement accuracy of the Si85xx. The  
gate drivers are on-board the controller. In this mode, total worst-case accuracy at full scale can be estimated  
the on-chip reset timer is triggered when the signals on by the sum of the initial accuracy (up to ±5%) plus aging  
R1–R4 satisfy the logic equations in Table 11. Once (up to ±1.5%) and supply variations (up to ±3.5%). For  
triggered, the timer maintains integrator in reset for time example, the total measurement error expected for a  
duration t as programmed by the value of resistor device operating at a given V supply of 5 V (±10%) is  
R
DD  
R
. The user must select the value of resistor R  
10% if the device is operated over a temperature range  
TRST  
TRST  
to terminate the reset cycle prior to the start of of –40 to 125 °C for up to 10 years. If the temperature  
measurement under worst-case timing conditions. Note range is limited to 0 to 85 °C, the measurement error  
that values of t below the specified value in "1. can be improved by up to 2%. See Figure 6 for details.  
R
Electrical Specifications" on page 4 results in increased  
Table 10. Total Measurement Error Contributors  
integrator output offset error and increased output noise  
on V . Moreover, t ’s time is summarized by the  
OUT  
R
Error Contributor  
% Error Added  
following equation (see Table 9):  
t = 10 ns/k  
Initial error  
R
±5%  
@ given V ±10%, 25 °C  
where values of R  
that produce a reset time less  
DD  
TRST  
than 150 ns (R  
< 15 k) should not be used.  
TRST  
Temperature variation  
–40 to 125 °C  
±3.5%  
±1.5%  
Si85xx  
Aging (10 years)  
2.5. Effect of Temperature on Accuracy  
Offset voltage present at the Si85xx output terminals  
(output offset voltage) is calibrated out each time VDD is  
applied to the Si85xx; so, its error contribution is  
minimized when the temperature at which calibration  
occurred is at or near the steady-state operating  
temperature of the Si85xx. For example, applying VDD  
at 25 °C (offset cal is performed) and operating at 85 °C  
will result in a larger offset error than operating at 50 °C.  
The effect of this error is summarized in Figure 6. The  
chart is referenced to 25 °C. If the Si85xx is powered up  
at 25 °C and then operated at 125 °C with no auto-  
calibration performed (i.e., the power is not cycled at  
125 °C, which causes an auto-calibration), a 3%  
measurement error can be expected.  
TRST  
RTRST  
Figure 5. Programming Reset Time (tR)  
Table 9. Typical Reset Time vs. RTRST  
Resistance  
R
Reset Time (t )  
TRST  
R
15 k  
100 k  
1 M  
150 ns  
1 µs  
9 µs  
2.2 M  
20 µs  
Preliminary Rev. 0.4  
11  
 
 
 
 
Si85xx  
1.0%  
0.5%  
0.0%  
-0.5%  
-1.0%  
-1.5%  
-2.0%  
-2.5%  
-3.0%  
Current Sense  
Transformer  
Si8502  
-3.5%  
0
25  
50  
75  
100  
125  
Temperature (Celcius)  
Figure 6. Differential Temperature  
Calibration Error  
Figure 7 shows the Si85xx thermal characteristics of the  
on-chip sense resistance over the temperature range of  
–40 to +125 °C. Series inductance is constant at 2 nH  
(max) across this same temperature range.  
Figure 8. Leading-Edge Noise Suppression  
Waveforms (200 kHz, 9.3 A Load)  
2
1.8  
1.6  
1.4  
1.2  
1
2.7. FAULT Output  
The FAULT output (Si8517/8/9) guards against Si85xx  
output signal errors caused by missing reset cycles.  
FAULT is asserted when a measurement cycle exceeds  
the internal watchdog timer times limit of t . FAULT  
WD  
0.8  
0.6  
0.4  
0.2  
0
can be used to alert a local microcontroller or digital  
power controller of a current sense failure or to initiate a  
system shutdown. To detect faults, tie a 200 kresistor  
from TRST/FAULT to VDD.  
-20  
0
20  
40  
60  
80  
100  
120  
2.8. Safe Operating Limits  
Temperature (°C)  
The Si85xx is a very robust current sensor. Its maximum  
input current rate of change is limited to 1000 A/µs. The  
maximum peak ac input current limit is 200 A. The  
thermal limit or continuous dc current flow limit is 30 A.  
Exceeding these limits may cause long-term reliability  
issues. Refer to “AN329: Extending the Full-Scale  
Range of the Si85xx” for more information.  
Figure 7. Series Resistance Thermal  
Characteristics  
2.6. Leading Edge Noise Suppression  
High-amplitude spikes on the leading edge of the  
primary switching waveforms can cause the PWM latch  
to be erroneously reset at the start of the switching cycle  
when operating in current mode control. To prevent this  
problem, leading edge blanking is commonly used to  
disable the current comparator during the early portion  
of the primary-side switching cycle. The Si85xx  
eliminates leading-edge noise spikes by including them  
in the signal integration. As shown in the output  
waveform of Figure 8 (Si8502 waveform measured  
directly on OUT pin with no external filter), noise present  
in the input waveform is eliminated without the use of  
blanking.  
12  
Preliminary Rev. 0.4  
 
 
Si85xx  
3. Application Information  
Ground  
Plane Edge  
Ground  
Plane Edge  
3.1. Board Layout  
Top View  
The Si85xx is connected in the series path of the current  
to be measured. The Si85xx must be located as far as  
possible from transformer and other magnetic field  
sources. Like other analog components, the Si85xx  
should be powered from a low-noise dc source and,  
preferably, to a low-noise analog ground plane.  
Recommended bypass capacitors are 1 µF in parallel  
with a 0.1 µF, positioned as close to the Si85xx as  
possible. When using the Si850x (single output  
versions), all three ground pins MUST be connected to  
the same ground point, and both VDD1 and VDD2 pins  
MUST be tied to the VDD system power supply.  
VDD Pin  
Mode Pin  
(Non-Ping-Pong)  
Current  
Carrying Slug  
VDD Fly Wire  
3.5 mm  
Current  
Sensor Die  
Bonding Wire  
3.2. Layout Requirements  
The Si85xx requires special layout techniques to ensure  
proper operation (see Figures 9 and 10). Due to the  
close proximity of the current-carrying slug and current  
sensor silicon, magnetic coupling between the current-  
carrying slug and the silicon can form a ground loop  
causing the output voltage to be 0 V even though  
current is flowing through the slug. To eliminate any  
such coupling issues, a red fly-wire VDD trace (see  
Figures 9 and 10) should be implemented in the layout.  
For the SOIC package, the red fly-wire trace should be  
approximately 3.5 mm from the center edge of the  
package intersecting approximately in the center of the  
package (see Figure 9). For the QFN package, the red  
fly-wire should be approximately in the center of the  
package (see Figure 10). Standard wire thicknesses for  
10 mA current-carrying capabilities should be used.  
Moreover, note that the fly-wire trace should be  
completely under the ground plane since this will also  
reduce coupling.  
Gnd Pin  
Bypass Capacitor  
SOIC Package  
5 V VDD Trace  
Figure 9. SOIC Layout Requirements  
Ground Plane Edge  
Ground  
Plane Edge  
VDD Pin  
Mode Pin  
(Non-Ping-Pong)  
Top View  
Current  
Carrying Slug  
Current  
Sensor Die  
2 mm  
Bonding  
Wires  
Regarding isolation voltage requirements, the trace  
does not need to follow the lead frame and bonding  
traces exactly, as long as the net magnetic flux is close  
to zero. The goal here is to keep the magnetic coupling  
small and, at the same time, keep the isolation distance  
large. Moreover, to ensure that the layout meets the  
VDD  
Fly Wire  
Gnd Pin  
Bypass Capacitor  
5V VDD Trace  
design’s  
required  
creepage  
and  
clearance  
QFN Package  
requirements, the VDD trace should be placed on one  
of the inner layers or even the back side of the board.  
For example, one can lay out the return VDD trace on  
the other side of the PCB so the PCB itself can help to  
provide high isolation voltage.  
Figure 10. QFN Layout Requirements  
Preliminary Rev. 0.4  
13  
 
 
 
 
Si85xx  
3.3. Device Configuration  
Configuring the Si85xx involves the following steps:  
1. Selecting an output mode  
R1  
R2  
2. Configuring integrator reset timing  
3. Setting integrator reset time t  
R
3.3.1. Device Selection  
MEASURE RESET  
MEASURE RESET  
Si85xx State  
tR  
tR  
The Si85xx family offers three output modes: Single  
output (Si850x), and 2 and 4-Wire Ping Pong (Si851x).  
The Si851x products can be configured to operate in all  
three of these output modes.  
OUT1  
OUT2  
The Si850x products operate ONLY in Single output  
mode. Most half-wave and single-phase applications  
require only Single output mode and will typically use  
the Si850x.  
TIME  
Figure 12. Full-Bridge Timing Example B  
In Single output mode, output current always appears  
on the OUT pin (Si850x) or the OUT1 pin (Si851x). A  
single integrator reset signal is typically sufficient when  
operating in this mode.  
4-Wire Ping-Pong mode is recommended for full-bridge  
applications over 2-wire because it uses all four inputs,  
making the reset function tolerant to single-point signal  
failures. In 4-Wire Ping-Pong mode, current appears on  
OUT2 when R1 is high and R2 is low, and appears on  
OUT1 when R3 is high and R4 is low as shown in the  
full-bridge timing example of Figure 13. Table 11 shows  
the states of the Mode and R4 inputs that select each  
output, and the resulting reset logic functions and truth  
tables.  
Ping-Pong mode routes the current waveform to two  
different output pins on alternate measurement cycles.  
It is useful in full-wave and push-pull topologies where  
external circuitry can be used to monitor and/or control  
transformer flux balance. (Section "3. Application  
Information" on page 13 shows design examples using  
both output modes in various power topologies.)  
2-wire Ping-Pong mode is useful mainly in non-  
overlapping two-phase buck converters but may also be  
used in full-bridge applications. In this output mode,  
reset inputs R1 and R2 are used, and input R3 is  
grounded. Measured current appears on OUT1 when  
R1 is high and on OUT2 when R2 is high as shown in  
the full-bridge timing example of Figures 11 and 12.  
R1  
R2  
R1  
R2  
R3  
R4  
MEASURE RESET  
MEASURE RESET  
Si85xx State  
tR  
tR  
MEASURE RESET  
MEASURE RESET  
OUT1  
tR  
tR  
OUT1  
OUT2  
OUT2  
TIME  
Figure 11. Two-Phase Buck Timing Example A  
Figure 13. Full-Bridge Timing Example C  
14  
Preliminary Rev. 0.4  
 
 
 
Si85xx  
3.3.2. Selecting Reset Timing Signals  
Reset timing signals should be chosen to meet the  
following conditions:  
Satisfy reset time t  
R
Not overlap integrator reset into the desired  
measurement period  
Not violate reset watchdog timeout period t  
WD  
3.3.3. Configuring Integrator Reset  
Per Section “2. Functional Overview”, the integrator  
must be reset (zeroed) prior to the start of each  
measurement cycle to achieve specified measurement  
accuracy. This reset must be synchronized with the  
system switch timing signals to ensure that current is  
measured during the appropriate time; so, the Si85xx  
integrator reset circuitry uses system timing as its  
reference. Timing signals connect to reset inputs R1  
through R4 where built-in logic functions allow the user  
to choose the conditions that cause an integrator reset  
event. Important Note: reset inputs R1–R4 are rated to  
a maximum input voltage of VDD. External resistor  
dividers must be used when connecting driver output  
signals to R1–R4 that swing beyond VDD.  
As shown in Table 11, the Si850x integrator reset logic  
is a simple XOR gate where reset is maintained (or  
triggered, depending on use of the TRST input) when  
states of reset inputs R1 and R2 are not equal.  
Figure 14 shows the logic for the Si851x products,  
where any one of three reset logic functions can cause  
integrator reset. The output mode (Si851x) is  
determined by the states of the Mode and R4 inputs, as  
shown in Table 11.  
Preliminary Rev. 0.4  
15  
Si85xx  
Table 11. Si85xx Output and Reset Mode Summary  
Output Mode  
MODE  
R4  
R3  
R2  
R1  
Reset  
Reset Logic Expression  
1
State  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
1
0
1
0
0
1
0
0
0
1
0
0
0
1
0
0
0
1
1
1
1
1
0
2
Single-Ended  
1
0
RESET = XOR[R1, (R2|R3)]  
1
0
0
1
0
1
2-Wire Ping Pong  
1
1
RESET = XNOR[R1,(R2|R3)]  
0
4-Wire Ping Pong  
0
RESET = (R1&R2)|(R3&R4)  
1
Notes:  
1. Device is in reset when Reset State = 1.  
2. For Si850x devices, RESET = XOR [R1, R2].  
16  
Preliminary Rev. 0.4  
 
 
 
Si85xx  
As explained in Section “2.3. Integrator Reset and Current Measurement”, the signals applied to R1–R4 can  
control integrator reset in real time (Option 1), or they can trigger a reset event of programmable duration (Option  
2). Referring to Figure 14, reset timing is exclusively a function of the signals applied to R1–R4 when TRST is tied  
to VDD.  
If not connected to VDD, the reset timer is enabled, and TRST must be connected through a resistor to ground to  
set the reset duration (t ). Note that the reset timer is retriggerable and generates a timed integrator discharge  
R
pulse whenever the reset logic output transitions from low to high.  
MODE = 1  
R4 = 0  
TRST = R1 to GND  
TRST = VDD  
Output 1  
Output 2  
Reset triggered by inputs  
R1–R4. Reset time (tR) set  
Reset timing determined  
only by inputs R1–R4.  
R1  
R2  
R3  
R4  
by value of resistor RTRST  
.
MODE = 1  
R4 = 1  
RESET  
TIMER  
TRST  
PGM  
OUT  
CLK  
1
0
+
VREF  
MODE = 0  
Output 3  
Logic level gate  
control signals  
(to Rn inputs)  
SYSTEM  
CONTROLLER  
INTEGRATOR  
External  
Driver  
Internal  
Driver  
Logic level gate  
control signals  
(to Rn inputs)  
Required if driver  
output voltage > VDD  
Figure 14. Si851x Integrator Reset Logic  
Preliminary Rev. 0.4  
17  
 
Si85xx  
3.3.4. Setting Reset Time t  
R
The programmable reset timer is triggered when the states of the signals applied to R1–R4 cause the associated  
logic expression in Table 11 to go high (transition to the TRUE state).  
Because this timer is re-triggerable, R1–R4 must remain TRUE for the duration of the desired t as shown in  
R
Figure 15. Should R1–R4 transition FALSE during t , integrator reset will be immediately halted, resulting in lower  
R
measurement accuracy due to higher integrator offset error.  
CURRENT  
R1–R4 TRUE  
for programmed  
tR (minimum)  
TRUE  
R1–R4 STATE  
FALSE  
Programmed  
0 ns (min)  
value of tR  
Si85xx STATUS  
Si85xx OUTPUT  
RESET  
MEASURE  
Figure 15. Correct tR Programming Using Resistor from TRST Input to Ground  
18  
Preliminary Rev. 0.4  
 
Si85xx  
3.3.5. Measurement Watchdog Timer and FAULT Output  
A built-in watchdog timer disables measurement and holds OUT or OUT1 and OUT2 at their minimum values when  
the time between integrator resets exceeds the FAULT Detect Time. The output signal from this watchdog is  
available on the FAULT output pin (Si8517/8/9 only).  
Figure 16 illustrates two means of entering a fault condition. Either fault condition 1 or 2 occurs when the reset  
period exceeds the FAULT Detect Time, which ranges from 30 to 80 µs due process variations. The fault condition  
ends when the next logic reset cycle begins.  
Output  
t Cycle Reset  
Reset Logic  
30-80 µs  
FAULT Detect Time  
FAULT Output  
FAULT Condition 1  
Output  
Reset Logic  
30-80 µs  
FAULT Detect Time  
FAULT Output  
FAULT Condition 2  
Figure 16. Measurement Watchdog Timer Operation  
Preliminary Rev. 0.4  
19  
 
Si85xx  
3.3.6. Output Over-Range  
The Si85xx can be over-ranged by more than 100% with no adverse effects. For instance, if the Si8512 (a 10 A  
nominal full-scale device) has a 15 A peak current applied, then the output voltage (OUT) will be 3 V (assuming  
VDD = 5 V). If a 10 A peak current is applied, then the output returns to the nominal 2 V output. The head room of  
OUT is VDD–1.4 V. Figure 17 illustrates the head room limitation of the Si85xx versus supply.  
5
3.6 V  
4
VDD = 5 V  
3
OUT (V)  
VDD = 2.7 V  
2
1
0
50%  
100%  
150%  
200%  
250%  
I (Amps) Percent Nominal Full-Scale Input  
Figure 17. Headroom Limitation  
20  
Preliminary Rev. 0.4  
 
Si85xx  
3.4. Single-Phase Buck Converter Example  
In this example, the Si850x is configured to operate in a single-phase synchronous buck converter (Figure 18).  
This converter has a PWM frequency of 1 MHz and a maximum duty cycle of 80%.  
This is an example of a half-wave application that can be addressed with Single-Ended output mode. The PWM  
–6  
–6  
period is calculated to be 1/10 = 1.0 µs, and the worst-case value, t , is 0.2 x 1.0 x 10 = 200 ns at 80%  
R
maximum duty cycle (R  
= 20 k).  
TRST  
In this example, the current measurement is made when the buck switch is on; so, PH2 is chosen as the reset  
signal by connecting PH2 to R1 and grounding R2. The PH2 signal can be obtained at the input of the driver  
external to the PWM controller or the output of the controller's internal driver (through a resistor divider if the driver  
output swings beyond the device VDD range).  
VDD  
VIN  
C1  
C2  
0.1 µF  
1 µF  
VDD1 VDD2  
R2  
GND1  
GND2  
GND3  
IIN  
Si850x  
IOUT  
TRST  
R1  
RTRST  
2 Vpp  
OUT  
Q1  
L1  
PH1  
PWM  
PH2  
VOUT  
Current  
I = 0  
I > 0  
C3  
Q2  
Si850x State  
RESET  
100 ns  
MEASURE  
PH2  
Figure 18. Si850x Single-Phase Buck Converter  
Preliminary Rev. 0.4  
21  
 
Si85xx  
3.5. Full-Bridge Converter Example  
The full-bridge circuit of Figure 19 uses an Si851x configured in 4-Wire Ping-Pong output mode. The switching  
frequency of this phase-shifted full-bridge is 150 kHz, and the maximum control phase overlap is 70%.  
VIN  
VDD  
VDD  
IIN  
OUT1  
OUT2  
PH1  
PH2  
OUT1  
OUT2  
MODE  
GND  
C1  
C2  
Si851x  
0.1 µF  
1 µF  
VDD  
TRST  
R1 R2 R3 R4  
IOUT  
PH3  
PH4  
Q1  
1–4  
1–2  
2–3  
3–4  
Switches Turned ON  
Si85xx State  
PH1  
PH2  
Q2  
Q4  
MEASURE  
RESET  
MEASURE  
RESET  
TI  
OUT1  
OUT2  
Q3  
PH3  
PH4  
Figure 19. Full-Bridge Converter  
3
Given the 150 kHz switching frequency (duty cycle fixed at 50%), the equivalent period is 1/150 x 10 = 6.6 µs. At  
–6  
70% maximum overlap, this equates to a worst-case t value of 0.3 x 6.6 x 10 = 1.98 µs. The default value for t  
R
R
can, therefore, be used and is selected by connecting TRST to VDD. As shown in the timing diagram of Figure 19,  
integrator reset occurs when current circulates between Q1 and Q2 and between Q3 and Q4 (i.e. when current is  
not being sourced from VIN). The external driver delay ensures reset is complete prior to the start of measurement.  
22  
Preliminary Rev. 0.4  
 
Si85xx  
3.6. Push-Pull Converter Example  
The Push-Pull converter of Figure 20 uses 2-Wire Ping Pong output mode. As shown in the timing diagram, the  
integrator reset occurs when the inputs of both the PH1 and PH2 drivers are low. As shown, TRST is connected to  
VDD, selecting the default value of t (250 ns). Assuming an 80% maximum duty cycle, this value of t would  
R
R
deliver specified accuracy over a PWM frequency range of 50 to 400 kHz. Frequencies above 400 kHz would  
require the selection of a lower t value by connecting a resistor from TRST to ground.  
R
VDD  
VIN  
C1  
C2  
0.1 µF  
1 µF  
VDD MODE  
IIN  
OUT1  
OUT2  
R4  
TRST  
Si851x  
R3  
R2  
GND  
R1  
IOUT  
Q1  
PH2  
PH1  
PH2  
T1  
MEASURE RESET MEASURE RESET MEASURE  
Si85xx Status  
OUT1  
Q2  
PH1  
OUT2  
Figure 20. Push-Pull Example Using Default tR Value  
Preliminary Rev. 0.4  
23  
 
Si85xx  
4. Pin Descriptions—12-Pin QFN  
R1  
R1  
IIN  
IIN  
R2  
R3  
R4  
R2  
GND2  
Si851x  
Si850x  
GND3  
OUT1  
OUT2  
OUT  
IOUT  
IOUT  
NC  
Figure 21. Example Pin Configurations  
Table 12. Si85xx Family Pin Descriptions  
Pin#  
Si850x  
Description  
Si851x  
Description  
Pin Name  
Pin Name  
1
2
3
4
5
R1  
R2  
Integrator reset input 1  
Integrator reset input 2  
Ground  
R1  
R2  
Integrator reset input 1  
Integrator reset input 2  
Integrator reset input 3  
Integrator reset input 4  
GND2  
GND3  
OUT  
R3  
R4  
Output  
OUT1  
Output in single-ended output mode, or  
one of two outputs in Ping-Pong mode.  
6
7
NC  
No connect  
OUT2  
TRST  
GND  
IOUT  
IIN  
Second of two Ping-Pong mode outputs  
Reset time control  
TRST  
GND1  
IOUT  
IIN  
Reset time control  
Ground  
8
Ground  
9
Current output terminal  
Current input terminal  
Power supply input  
Current output terminal  
Current input terminal  
Power supply input  
10  
11  
12  
VDD1  
VDD2  
VDD  
MODE  
Mode control input  
24  
Preliminary Rev. 0.4  
Si85xx  
5. Pin Descriptions—20-Pin SOIC  
20-Pin SOIC  
Si851x  
20-Pin SOIC  
VDD  
IIN  
VDD1  
IIN  
MODE  
R1  
IIN  
VDD2  
R1  
IIN  
IIN  
IIN  
R2  
R2  
IIN  
IIN  
R3  
IIN  
GND2  
GND3  
OUT  
IIN  
Si850x  
R4  
OUT1  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
IOUT  
OUT2  
NC  
TRST/FAULT  
TRST  
GND  
GND1  
Figure 22. Example Pin Configurations  
Table 13. Si85xx Family Pin Descriptions  
Pin#  
Si850x  
Description  
Si851x  
Description  
Pin Name  
Pin Name  
1
2
3
4
5
6
7
VDD1  
VDD2  
R1  
VDD  
MODE  
R1  
Power supply input  
Power supply input  
Mode control input  
Integrator reset input 1  
Integrator reset input 2  
Ground  
Integrator reset input 1  
Integrator reset input 2  
Integrator reset input 3  
Integrator reset input 4  
R2  
R2  
GND2  
GND3  
OUT  
R3  
R4  
Output  
OUT1  
Output in single-ended output mode, or  
one of two outputs in Ping-Pong mode.  
8
9
NC  
TRST  
GND1  
IOUT  
IIN  
No connect  
OUT2  
TRST  
GND  
IOUT  
IIN  
Second of two Ping-Pong mode outputs  
Reset time control  
Reset time control  
Ground  
10  
Ground  
11–15  
16–20  
Current output terminal  
Current input terminal  
Current output terminal  
Current input terminal  
Preliminary Rev. 0.4  
25  
Si85xx  
6. Ordering Guide  
Package2  
New  
Full  
Scale  
Current  
(A)  
Initial  
Accuracy %1  
Temp  
Range  
Pin 7  
Function  
Isolation Output  
Old Obsolete  
Old Obsolete  
OPNs3  
(Previously  
Specified with  
±5% Accuracy  
and  
OPNs3  
(Previously  
Specified with  
±20%  
Rating  
Mode  
OPNs  
Accuracy)  
–40C to +85 °C)  
Si8501-C-IM  
Si8502-C-IM  
Si8503-C-IM  
Si8501-C-IS  
Si8502-C-IS  
Si8503-C-IS  
Si8511-C-IM  
Si8512-C-IM  
Si8513-C-IM  
Si8511-C-IS  
Si8512-C-IS  
Si8513-C-IS  
Si8517-C-IM  
Si8518-C-IM  
Si8519-C-IM  
Si8517-C-IS  
Si8518-C-IS  
Si8519-C-IS  
Notes:  
5
Si8501-C-GM  
Si8502-C-GM  
Si8503-C-GM  
Si8504-C-IM  
Si8505-C-IM  
Si8506-C-IM  
10  
20  
5
1 kVRMS  
5 kVRMS  
1 kVRMS  
5 kVRMS  
1 kVRMS  
5 kVRMS  
QFN-12  
SOIC-20  
QFN-12  
SOIC-20  
QFN-12  
SOIC-20  
Single  
10  
20  
5
New package offering  
Integrator  
Reset Pro-  
gramming  
Time Input  
Si8511-C-GM  
Si8512-C-GM  
Si8513-C-GM  
Si8514-C-IM  
Si8515-C-IM  
Si8516-C-IM  
10  
20  
5
–40 to  
125 °C  
5%  
10  
20  
5
New package offering  
Ping-  
Pong  
Si8517-C-GM  
Si8518-C-GM  
Si8519-C-GM  
10  
20  
5
FAULT  
Output  
10  
20  
New Package Offering  
1. See "2.4. Total Measurement Error" on page 11 for more information.  
2. All packages are RoHS-compliant. Moisture Sensitivity level is MSL3 with peak reflow temperature of 260 °C according to the JEDEC  
industry classification, and peak solder temperature.  
3. Since the initial accuracy for all devices is now specified as ±5%, Si8504/5/6 and Si8514/15/16 OPNs have been replaced with  
Si8501/2/3 and Si8511/12/13 OPNs, respectively.  
26  
Preliminary Rev. 0.4  
 
 
 
 
Si85xx  
7. Package Outline—12-Pin QFN  
Figure 23 illustrates the package details for the Si85xx. Table 14 lists the values for the dimensions shown in the  
illustration.  
Figure 23. 12-Pin QFN Package Diagram  
Table 14. QFN-12 Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.20  
0.95  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
1.05  
A
A1  
b1  
b2  
D
0.03  
0.25  
1.00  
4.00 BSC.  
0.50 BSC.  
4.00 BSC.  
0.75 BSC.  
2.45 BSC.  
1.30 BSC.  
0.40  
e
E
f
g
h
L1  
L2  
aaa  
bbb  
ccc  
ddd  
eee  
0.35  
0.85  
0.45  
0.95  
0.90  
0.05  
0.05  
0.08  
0.10  
0.10  
Notes:  
1. All dimensions shown are in millimeters (mm).  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
Preliminary Rev. 0.4  
27  
 
 
Si85xx  
8. Recommended PCB Land Pattern (12-Pin QFN)  
Figure 24 illustrates the PCB land pattern details for the 12-pin QFN package. Table 15 lists the values for the  
dimensions shown in the illustration.  
Figure 24. 12-Pin QFN PCB Land Pattern  
Table 15. 12-Pin QFN PCB Land Pattern Dimensions  
Dimension  
mm  
1.95  
1.30  
3.90  
2.45  
0.50  
0.80  
1.00  
0.30  
1.10  
C1  
C2  
D1  
D2  
E
X1  
X2  
Y1  
Y2  
Notes:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a  
card fabrication tolerance of 0.05 mm is assumed.  
28  
Preliminary Rev. 0.4  
 
 
 
Si85xx  
9. Package Outline: Wide Body SOIC  
Figure 25 illustrates the package details for the wide-body SOIC package. Table 16 lists the values for the  
dimensions shown in the illustration.  
Figure 25. 20-Pin Wide Body SOIC  
Preliminary Rev. 0.4  
29  
 
Si85xx  
Table 16. 20-Pin Wide Body SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
12.80 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AC.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for small body,  
lead-free components.  
30  
Preliminary Rev. 0.4  
Si85xx  
10. Recommended PCB Land Pattern (20-Pin SOIC)  
Figure 26 illustrates the PCB land pattern details for the 20-pin SOIC package. Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 26. 20-Pin SOIC PCB Land Pattern  
Table 17. 20-Pin SOIC PCB Land Pattern Dimensions  
Dimension  
mm  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Notes:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a  
card fabrication tolerance of 0.05 mm is assumed.  
Preliminary Rev. 0.4  
31  
 
 
 
Si85xx  
11. Top Marking (QFN)  
Si85XX  
RTTTTT  
YYWW  
Figure 27. QFN Top Marking  
Table 18. Top Marking Explanation  
Line 1 Marking:  
Device Part Number  
Si85XX:  
Where XX = 01, 02, 03, 11, 12, 13, 17, 18, 19  
Line 2 Marking:  
Line 3 Marking:  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle Bottom-Left Justified  
Pin 1 Identifier  
YY = Year  
WW = Work Week  
Corresponds to the year and work week of the assembly  
build date.  
32  
Preliminary Rev. 0.4  
Si85xx  
12. Top Marking (SOIC)  
Si85XX-IS  
YYWWRTTTTT  
TW  
e3  
Figure 28. SOIC Top Marking  
Table 19. Top Marking Explanation  
Line 1 Marking:  
Line 2 Marking:  
Device Part Number  
Si85XX-IS  
Where XX = 01, 02, 03, 11, 12, 13, 17, 18, 19  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Line 3 Marking:  
Circle = 1.5 mm Diameter  
(Center Justified)  
“e3” Pb-Free Symbol  
Country of Origin  
TW = Taiwan  
ISO Code Abbreviation  
Preliminary Rev. 0.4  
33  
Si85xx  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Updated Table 1, “Electrical Specifications,” on  
page 4.  
Added 20-pin wide-body SOIC package option.  
Updated "6. Ordering Guide" on page 26.  
All devices are now specified to ±5% initial accuracy.  
All devices are now specified for operation over –40 to  
+125 °C temperature range. All ordering part numbers  
have been updated to reflect this (i.e. previous “-GM”  
and “-GS” part number suffixes have been replaced with  
“-IM” and “-IS” suffixes).  
Added sections “8. Recommended PCB Land  
Pattern (12-Pin QFN)” and “10. Recommended PCB  
Land Pattern (20-Pin SOIC)”.  
Revision 0.2 to Revision 0.21  
Added reference to IEC61010, IEC60601 on page 1.  
Updated "6. Ordering Guide" on page 26.  
Added Top Marking sections.  
Revision 0.21 to Revision 0.3  
Updated Table 2 on page 5.  
Production test voltage is > 6.0 kVRMS  
.
Added “2.5. Effect of Switching Frequency on  
Accuracy” on page 11.  
Added Figure 6, “Full-Scale Output Accuracy vs.  
Frequency,” on page 11.  
Updated "3.2. Layout Requirements" on page 13.  
Added layout recommendations for QFN.  
Added Figure 10, “QFN Layout Requirements,” on  
page 13.  
Revision 0.3 to Revision 0.4  
Updated Table 8 on page 8.  
Added junction temperature spec.  
Removed Figure 6, “Full-Scale Output Accuracy vs.  
Frequency,” on page 11.  
Updated Figures 9 and 10 on page 13.  
Updated Table 11 on page 16.  
Updated notes.  
Updated Top Marks.  
Added revision description.  
34  
Preliminary Rev. 0.4  
Si85xx  
NOTES:  
Preliminary Rev. 0.4  
35  
Si85xx  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
36  
Preliminary Rev. 0.4  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY