SI8660 [SILICON]

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR;
SI8660
型号: SI8660
厂家: SILICON    SILICON
描述:

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR

文件: 总40页 (文件大小:493K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8660/61/62/63  
LOW POWER SIX-CHANNEL DIGITAL ISOLATOR  
Features  
High-speed operation  
DC to 150 Mbps  
No start-up initialization required  
Wide Operating Supply Voltage  
2.5–5.5 V  
Selectable fail-safe mode  
Default high or low output  
(ordering option)  
Precise timing (typical)  
10 ns propagation delay  
1.5 ns pulse width distortion  
0.5 ns channel-channel skew  
2 ns propagation delay skew  
5 ns minimum pulse width  
Transient Immunity 50 kV/µs  
AEC-Q100 qualification  
Wide temperature range  
–40 to 125 °C  
Up to 5000 VRMS isolation  
60-year life at rated working voltage  
High electromagnetic immunity  
Ultra low power (typical)  
5 V Operation  
1.6 mA per channel at 1 Mbps  
5.5 mA per channel at 100 Mbps  
2.5 V Operation  
1.5 mA per channel at 1 Mbps  
3.5 mA per channel at 100 Mbps  
Schmitt trigger inputs  
RoHS-compliant packages  
SOIC-16 wide body  
SOIC-16 narrow body  
Applications  
Ordering Information:  
Industrial automation systems  
Medical electronics  
Hybrid electric vehicles  
Isolated ADC, DAC  
Motor control  
Power inverters  
See page 30.  
Isolated switch mode supplies  
Communication systems  
Safety Regulatory Approvals  
UL 1577 recognized  
Up to 5000 VRMS for 1 minute  
VDE certification conformity  
IEC 60747-5-2  
(VDE0884 Part 2)  
EN60950-1  
CSA component notice 5A approval  
IEC 60950-1, 61010-1, 60601-1  
(reinforced insulation)  
(reinforced insulation)  
CQC certification approval  
GB4943.1  
Description  
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices  
offering substantial data rate, propagation delay, power, size, reliability, and  
external BOM advantages over legacy isolation technologies. The operating  
parameters of these products remain stable across wide temperature ranges  
and throughout device service life for ease of design and highly uniform  
performance. All device versions have Schmitt trigger inputs for high noise  
immunity and only require VDD bypass capacitors.  
Data rates up to 150 Mbps are supported, and all devices achieve propagation  
delays of less than 10 ns. Ordering options include a choice of isolation ratings  
(2.5, 3.75 and 5 kV) and a selectable fail-safe operating mode to control the  
default output state during power loss. All products >1 kVRMS are safety  
certified by UL, CSA, VDE, and CQC, and products in wide-body packages  
support reinforced insulation withstanding up to 5 kVRMS  
.
Rev. 1.5 9/13  
Copyright © 2013 by Silicon Laboratories  
Si8660/61/62/63  
Si8660/61/62/63  
2
Rev. 1.5  
Si8660/61/62/63  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
6. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
9. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
10. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
10.1. Si866x Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
10.2. Top Marking Explanation (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .37  
10.3. Si866x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . .38  
10.4. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . .38  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Rev. 1.5  
3
Si8660/61/62/63  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature*  
Supply Voltage  
Symbol  
Min  
–40  
2.5  
Typ  
25  
Max  
125  
5.5  
Unit  
°C  
V
T
A
V
DD1  
DD2  
V
2.5  
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Electrical Characteristics  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Threshold  
VDDUV+  
V
, V  
rising  
1.95  
2.24  
2.375  
V
DD1  
DD2  
VDD Undervoltage  
Threshold  
VDDUV–  
V
, V  
falling  
1.88  
50  
2.16  
70  
2.325  
95  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Hysteresis  
VDD  
HYS  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
1.4  
1.0  
1.67  
1.23  
1.9  
Negative-Going  
Input Threshold  
All inputs falling  
1.4  
V
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
V
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
V
IH  
V
0.8  
IL  
High Level Output Volt-  
age  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
4.8  
OH  
DD1 DD2  
Low Level Output Volt-  
age  
V
0.2  
0.4  
V
OL  
Input Leakage Current  
I
±10  
µA  
L
1
Output Impedance  
Z
50  
O
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
4
Rev. 1.5  
Si8660/61/62/63  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Current (All inputs 0 V or at Supply)  
Si8660Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8661Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
mA  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8662Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.2  
3.0  
7.5  
5.6  
3.3  
4.5  
10.5  
8.4  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8663Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
V
V
5.0  
4.2  
7.0  
5.9  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
4.9  
4.6  
6.9  
6.4  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.1  
4.7  
7.1  
6.6  
DD1  
DD2  
Si8663Bx, Ex  
V
V
4.9  
4.9  
6.8  
6.8  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
5
Si8660/61/62/63  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
5.0  
5.9  
7.0  
8.3  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
5.2  
6.1  
7.3  
8.5  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.6  
5.9  
7.9  
8.2  
DD1  
DD2  
Si8663Bx, Ex  
V
V
5.7  
5.7  
8.0  
8.0  
DD1  
DD2  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
V
V
5.0  
26.2  
7.0  
34.1  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
8.8  
23  
11.8  
29.8  
DD1  
DD2  
Si8662Bx, Ex  
V
V
12.8  
19.4  
16.6  
25.2  
DD1  
DD2  
Si8663Bx, Ex  
V
V
16.4  
16.4  
21.3  
21.3  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
6
Rev. 1.5  
Si8660/61/62/63  
Table 2. Electrical Characteristics (Continued)  
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Timing Characteristics  
Si866xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
0
150  
5.0  
13  
Mbps  
ns  
5.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PHL PLH  
Pulse Width Distortion  
PWD  
4.5  
ns  
|t  
- t  
|
PLH PHL  
Propagation Delay  
Skew  
t
2.0  
0.4  
4.5  
2.5  
ns  
ns  
PSK(P-P)  
2
Channel-Channel Skew  
All Models  
t
PSK  
Output Rise Time  
t
C = 15 pF  
(See Figure 1)  
ns  
ns  
r
L
2.5  
2.5  
4.0  
4.0  
Output Fall Time  
t
C = 15 pF  
f
L
(See Figure 1)  
Peak Eye Diagram Jitter  
t
See Figure 7  
350  
50  
ps  
JIT(PK)  
Common Mode  
CMTI  
V = V or 0 V  
35  
kV/µs  
I
DD  
Transient Immunity  
V
= 1500 V  
CM  
(See Figure 2)  
3
Startup Time  
t
15  
40  
µs  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing  
Rev. 1.5  
7
Si8660/61/62/63  
3 to 5 V  
Supply  
Si86xx  
VDD1  
VDD2  
Input  
INPUT  
Signal  
OUTPUT  
Switch  
3 to 5 V  
Isolated  
Supply  
Oscilloscope  
GND1  
GND2  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 2. Common Mode Transient Immunity Test Circuit  
8
Rev. 1.5  
Si8660/61/62/63  
Table 3. Electrical Characteristics  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
VDDUV+  
VDDUV–  
Test Condition  
Min  
1.95  
1.88  
50  
Typ  
2.24  
2.16  
70  
Max  
2.375  
2.325  
95  
Unit  
V
VDD Undervoltage Threshold  
VDD Undervoltage Threshold  
V
, V  
rising  
falling  
DD1  
DD2  
DD2  
V
, V  
V
DD1  
VDD Undervoltage  
Hysteresis  
VDD  
mV  
HYS  
Positive-Going Input Threshold  
Negative-Going Input Threshold  
Input Hysteresis  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.4  
1.0  
0.38  
2.0  
1.67  
1.23  
0.44  
1.9  
1.4  
0.50  
V
V
V
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
3.1  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
50  
O
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
9
Si8660/61/62/63  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Current (All inputs 0 V or at supply)  
Si8660Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8661Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
mA  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8662Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.2  
3.0  
7.5  
5.6  
3.3  
4.5  
10.5  
8.4  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8663Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
10  
Rev. 1.5  
Si8660/61/62/63  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
5.0  
4.2  
7.0  
5.9  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
4.9  
4.6  
6.9  
6.4  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.1  
4.7  
7.1  
6.6  
DD1  
DD2  
Si8663Bx, Ex  
V
V
4.9  
4.9  
6.8  
6.8  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
V
V
5.0  
5.0  
7.0  
7.0  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
5.0  
5.3  
7.0  
7.4  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.3  
5.2  
7.4  
7.3  
DD1  
DD2  
Si8663Bx, Ex  
V
V
5.2  
5.2  
7.3  
7.3  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
11  
Si8660/61/62/63  
Table 3. Electrical Characteristics (Continued)  
(VDD1 = 3.3 V ±10%, VDD2 = 3.3 V ±10%, TA = –40 to 125 °C)  
Parameter  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
5.0  
18.3  
7.0  
23.8  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
7.4  
16.4  
9.9  
21.3  
DD1  
DD2  
Si8662Bx, Ex  
V
V
10  
14.1  
13  
18.3  
DD1  
DD2  
Si8663Bx, Ex  
V
V
12.3  
12.3  
15.9  
15.9  
DD1  
DD2  
Timing Characteristics  
Si866xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
150  
5.0  
13  
Mbps  
ns  
5.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PHL PLH  
PWD  
4.5  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.4  
4.5  
2.5  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 1  
ns  
ns  
r
L
2.5  
2.5  
4.0  
4.0  
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 1  
Peak Eye Diagram Jitter  
t
See Figure 7  
350  
50  
ps  
JIT(PK)  
Common Mode Transient  
Immunity  
CMTI  
V = V or 0 V  
35  
kV/µs  
I
DD  
V
= 1500 V(see  
CM  
Figure 2)  
3
Startup Time  
t
15  
40  
µs  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
12  
Rev. 1.5  
Si8660/61/62/63  
Table 4. Electrical Characteristics  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDD Undervoltage  
Threshold  
VDDUV+  
V
, V  
rising  
1.95  
2.24  
2.375  
V
DD1  
DD2  
VDD Undervoltage  
Threshold  
VDDUV–  
V
, V  
falling  
1.88  
50  
2.16  
70  
2.325  
95  
V
mV  
V
DD1  
DD2  
VDD Undervoltage  
Hysteresis  
VDD  
HYS  
Positive-Going Input  
Threshold  
VT+  
VT–  
All inputs rising  
All inputs falling  
1.4  
1.0  
1.67  
1.23  
1.9  
Negative-Going Input  
Threshold  
1.4  
V
Input Hysteresis  
V
0.38  
2.0  
0.44  
0.50  
V
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Input Leakage Current  
V
IH  
V
0.8  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,V  
– 0.4  
2.3  
0.2  
V
OH  
DD1 DD2  
V
0.4  
±10  
V
OL  
I
µA  
L
1
Output Impedance  
Z
50  
O
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
13  
Si8660/61/62/63  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC Supply Current (All inputs 0 V or at supply)  
Si8660Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.2  
3.5  
8.8  
3.7  
1.9  
5.3  
12.3  
5.6  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8661Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
1.7  
3.4  
7.9  
4.8  
2.7  
5.1  
11.1  
7.2  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
mA  
mA  
mA  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8662Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.2  
3.0  
7.5  
5.6  
3.3  
4.5  
10.5  
8.4  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Si8663Bx, Ex  
V
V
V
V
V = 0(Bx), 1(Ex)  
2.6  
2.6  
6.5  
6.5  
3.9  
3.9  
9.1  
9.1  
DD1  
DD2  
DD1  
DD2  
I
V = 0(Bx), 1(Ex)  
I
V = 1(Bx), 0(Ex)  
I
V = 1(Bx), 0(Ex)  
I
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
14  
Rev. 1.5  
Si8660/61/62/63  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
5.0  
4.2  
7.0  
5.9  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
4.9  
4.6  
6.9  
6.4  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.1  
4.7  
7.1  
6.6  
DD1  
DD2  
Si8663Bx, Ex  
V
V
4.9  
4.9  
6.8  
6.8  
DD1  
DD2  
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
V
V
5.0  
4.6  
7.0  
6.4  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
5.0  
4.9  
6.9  
6.9  
DD1  
DD2  
Si8662Bx, Ex  
V
V
5.2  
4.9  
7.2  
6.9  
DD1  
DD2  
Si8663Bx, Ex  
V
V
5.0  
5.0  
7.0  
7.0  
DD1  
DD2  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
Rev. 1.5  
15  
Si8660/61/62/63  
Table 4. Electrical Characteristics (Continued)  
(VDD1 = 2.5 V ±5%, VDD2 = 2.5 V ±5%, TA = –40 to 125 °C)  
Parameter  
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)  
Si8660Bx, Ex  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
5.0  
14.7  
7.0  
19.1  
mA  
mA  
mA  
mA  
DD1  
DD2  
Si8661Bx, Ex  
V
V
6.7  
13.4  
9.1  
17.4  
DD1  
DD2  
Si8662Bx, Ex  
V
V
8.7  
11.7  
11.3  
15.2  
DD1  
DD2  
Si8663Bx, Ex  
V
V
10.3  
10.3  
13.4  
13.4  
DD1  
DD2  
Timing Characteristics  
Si866xBx, Ex  
Maximum Data Rate  
Minimum Pulse Width  
Propagation Delay  
Pulse Width Distortion  
0
150  
5.0  
14  
Mbps  
ns  
5.0  
t
, t  
See Figure 1  
See Figure 1  
8.0  
0.2  
ns  
PHL PLH  
PWD  
5.0  
ns  
|t  
- t  
|
PLH PHL  
2
Propagation Delay Skew  
Channel-Channel Skew  
All Models  
t
2.0  
0.4  
5.0  
2.5  
ns  
ns  
PSK(P-P)  
t
PSK  
Output Rise Time  
t
C = 15 pF  
See Figure 1  
ns  
ns  
r
L
2.5  
2.5  
4.0  
4.0  
Output Fall Time  
t
C = 15 pF  
f
L
See Figure 1  
Peak Eye Diagram Jitter  
t
See Figure 7  
350  
50  
ps  
JIT(PK)  
Common Mode  
CMTI  
V = V or 0 V\  
35  
kV/µs  
I
DD  
Transient Immunity  
V
= 1500 V (see  
CM  
Figure 2)  
3
Startup Time  
t
15  
40  
µs  
SU  
Notes:  
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of  
the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
3. Start-up time is the time period from the application of power to valid data at the output.  
16  
Rev. 1.5  
Si8660/61/62/63  
Table 5. Regulatory Information*  
CSA  
The Si866x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
61010-1: Up to 600 V  
reinforced insulation working voltage; up to 600 V  
basic insulation working voltage.  
RMS  
RMS  
RMS  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
60601-1: Up to 125 V  
reinforced insulation working voltage; up to 380 V  
basic insulation working voltage.  
RMS  
RMS  
VDE  
The Si866x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.  
60747-5-2: Up to 1200 V for basic insulation working voltage.  
peak  
60950-1: Up to 600 V  
age.  
reinforced insulation working voltage; up to 1000 V  
basic insulation working volt-  
RMS  
RMS  
UL  
The Si866x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V  
isolation voltage for basic protection.  
RMS  
CQC  
The Si866x is certified under GB4943.1-2011. For more details, see File V2012CQC001041.  
Rated up to 600 V reinforced insulation working voltage; up to 1000 V basic insulation working voltage.  
RMS  
RMS  
*Note: Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.  
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
For more information, see "5. Ordering Guide" on page 30.  
Rev. 1.5  
17  
Si8660/61/62/63  
Table 6. Insulation and Safety-Related Specifications  
Value  
Test  
Condition  
Parameter  
Symbol  
Unit  
WB  
SOIC-16  
NB  
SOIC-16  
1
Nominal Air Gap (Clearance)  
Nominal External Tracking  
(Creepage)  
L(IO1)  
L(IO2)  
8.0  
8.0  
4.9  
mm  
mm  
4.01  
1
Minimum Internal Gap  
(Internal Clearance)  
mm  
0.014  
0.014  
Tracking Resistance  
(Proof Tracking Index)  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
600  
V
RMS  
Erosion Depth  
0.019  
0.019  
mm  
pF  
pF  
2
12  
12  
Resistance (Input-Output)  
R
10  
10  
IO  
2
Capacitance (Input-Output)  
C
2.0  
4.0  
2.0  
4.0  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and  
creepage limits as 4.7 mm minimum for the NB SOIC-16 package and 8.5 mm minimum for the WB SOIC-16 package.  
UL does not impose a clearance and creepage minimum for component-level certifications. CSA certifies the clearance  
and creepage limits as 3.9 mm minimum for the NB SOIC-16 package and 7.6 mm minimum for the WB SOIC-16  
package.  
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input pin to ground.  
18  
Rev. 1.5  
Si8660/61/62/63  
Table 7. IEC 60664-1 (VDE 0844 Part 2) Ratings  
Specification  
Parameter  
Test Conditions  
NB SOIC-16  
WB SOIC-16  
Basic Isolation Group  
Material Group  
I
I
Rated Mains Voltages < 150 V  
Rated Mains Voltages < 300 V  
Rated Mains Voltages < 400 V  
Rated Mains Voltages < 600 V  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-IV  
I-III  
I-III  
RMS  
RMS  
RMS  
RMS  
Installation Classification  
Table 8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*  
Characteristic  
Parameter  
Symbol  
Test Condition  
Unit  
WB  
SOIC-16  
NB SOIC-16  
Maximum Working Insulation  
Voltage  
V
V
1200  
2250  
630  
Vpeak  
IORM  
Method b1  
(V  
x 1.875 = V , 100%  
IORM  
PR  
V
1182  
Input to Output Test Voltage  
PR  
Production Test, t = 1 sec,  
m
Partial Discharge < 5 pC)  
t = 60 sec  
6000  
2
6000  
2
Vpeak  
Transient Overvoltage  
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at T ,  
9
9
S
R
>10  
>10  
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of  
40/125/21.  
Table 9. IEC Safety Limiting Values1  
Max  
Parameter  
Symbol  
Test Condition  
Unit  
WB SOIC-16  
NB SOIC-16  
Case Temperature  
T
I
150  
150  
°C  
S
Safety Input, Output, or  
Supply Current  
= 105 °C/W  
mA  
S
JA  
(NB SOIC-16),  
V = 5.5 V, T = 150 °C,  
220  
415  
215  
415  
I
J
T = 25 °C  
A
Device Power  
P
mW  
D
2
Dissipation  
Notes:  
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3 and 4.  
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square  
wave.  
Rev. 1.5  
19  
Si8660/61/62/63  
Table 10. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-16  
NB SOIC-16  
Unit  
IC Junction-to-Air Thermal Resistance  
100  
105  
°C/W  
JA  
500  
450  
VDD1, VDD2 = 2.70 V  
400  
370  
VDD1, VDD2 = 3.6 V  
300  
220  
200  
VDD1, VDD2 = 5.5 V  
100  
0
0
50  
100  
Temperature (ºC)  
150  
200  
Figure 3. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
500  
430  
V
DD1, VDD2 = 2.70 V  
400  
300  
200  
100  
0
360  
VDD1, VDD2 = 3.6 V  
215  
VDD1, VDD2 = 5.5 V  
0
50  
100  
150  
200  
Temperature (ºC)  
Figure 4. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Case Temperature per DIN EN 60747-5-2  
20  
Rev. 1.5  
Si8660/61/62/63  
Table 11. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
Typ  
Max  
150  
125  
150  
7.0  
Unit  
°C  
°C  
°C  
V
2
Storage Temperature  
T
STG  
Ambient Temperature Under Bias  
Junction Temperature  
Supply Voltage  
T
A
T
J
V
, V  
–0.5  
–0.5  
–0.5  
DD1  
DD2  
Input Voltage  
V
V
V
+ 0.5  
V
I
DD  
DD  
Output Voltage  
V
+ 0.5  
V
O
Output Current Drive Channel  
Lead Solder Temperature (10 s)  
I
10  
mA  
°C  
O
260  
Maximum Isolation (Input to Output) (1 sec)  
NB SOIC-16  
4500  
V
RMS  
RMS  
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-16  
6500  
V
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet.  
2. VDE certifies storage temperature from –40 to 150 °C.  
Rev. 1.5  
21  
Si8660/61/62/63  
2. Functional Description  
2.1. Theory of Operation  
The operation of an Si866x channel is analogous to that of an opto coupler, except an RF carrier is modulated  
instead of light. This simple architecture provides a robust isolated data path and requires no special  
considerations or initialization at start-up. A simplified block diagram for a single Si866x channel is shown in  
Figure 5.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 5. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.  
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 6 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 6. Modulation Scheme  
22  
Rev. 1.5  
Si8660/61/62/63  
2.2. Eye Diagram  
Figure 7 illustrates an eye-diagram taken on an Si8660. For the data source, the test used an Anritsu (MP1763C)  
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8660 were  
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of  
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.  
Figure 7. Eye Diagram  
Rev. 1.5  
23  
Si8660/61/62/63  
3. Device Operation  
Device behavior during start-up, normal operation, and shutdown is shown in Figure 8, where UVLO+ and UVLO-  
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when  
power supply (VDD) is not present.  
Table 12. Si866x Logic Operation  
V
VDDI  
VDDO  
I
1,2  
Comments  
V Output  
O
1,3,4  
1,3,4  
1,2  
State  
State  
Input  
H
L
P
P
P
P
H
L
Normal operation.  
6
L
Upon transition of VDDI from unpowered to powered, V  
5
O
X
UP  
P
P
6
returns to the same state as V in less than 1 µs.  
H
I
Upon transition of VDDO from unpowered to powered, V  
5
O
X
UP  
Undetermined  
returns to the same state as V within 1 µs.  
I
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.  
3. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.  
4. “Unpowered” state (UP) is defined as VDD = 0 V.  
5. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.  
6. See "5. Ordering Guide" on page 30 for details. This is the selectable fail-safe operating mode (ordering option). Some  
devices have default output state = H, and some have default output state = L, depending on the ordering part number  
(OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data  
channels have pull-downs on inputs/outputs.  
24  
Rev. 1.5  
Si8660/61/62/63  
3.1. Device Startup  
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following  
this, the outputs follow the states of inputs.  
3.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own  
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A  
unconditionally enters UVLO when V  
falls below V  
and exits UVLO when V rises above  
DD1  
DD1(UVLO–)  
DD1  
V
. Side B operates the same as Side A with respect to its V  
supply.  
DD2  
DD1(UVLO+)  
UVLO+  
UVLO-  
VDD1  
UVLO+  
UVLO-  
VDD2  
INPUT  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
OUTPUT  
Figure 8. Device Behavior during Normal Operation  
Rev. 1.5  
25  
Si8660/61/62/63  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 5 on page 17 and Table 6 on page 18 detail the  
working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component  
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for  
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)  
requirements before starting any design that uses a digital isolator.  
3.3.1. Supply Bypass  
The Si866x family requires a 0.1 µF bypass capacitor between V  
and GND1 and V  
and GND2. The  
DD2  
DD1  
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user  
may also include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy.  
3.3.2. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
3.4. Fail-Safe Operating Mode  
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 12 on  
page 24 and "5. Ordering Guide" on page 30 for more information.  
26  
Rev. 1.5  
Si8660/61/62/63  
3.5. Typical Performance Characteristics  
The typical performance characteristics depicted in the following diagrams are for information purposes only. Refer  
to Tables 2, 3, and 4 for actual specification limits.  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
40.0  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 12. Si8660 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 9. Si8660 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
40.0  
35.0  
30.0  
25.0  
30.0  
25.0  
20.0  
20.0  
15.0  
10.0  
5.0  
5V  
15.0  
10.0  
5.0  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 13. Si8661 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 10. Si8661 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
30.0  
25.0  
20.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
15.0  
10.0  
5.0  
5V  
3.3V  
2.5V  
3.3V  
2.5V  
0.0  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Data Rate (Mbps)  
Figure 14. Si8662 Typical VDD2 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Figure 11. Si8662 Typical VDD1 Supply Current  
vs. Data Rate 5, 3.3, and 2.5 V Operation  
(15 pF Load)  
Rev. 1.5  
27  
Si8660/61/62/63  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
5V  
3.3V  
2.5V  
0.0  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Data Rate (Mbps)  
Figure 15. Si8663 Typical VDD1 or VDD2 Supply  
Current vs. Data Rate 5, 3.3, and 2.5 V  
Operation (15 pF Load)  
10.0  
9.0  
8.0  
7.0  
6.0  
5.0  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100110120  
Temperature (Degrees C)  
Figure 16. Propagation Delay vs. Temperature  
28  
Rev. 1.5  
Si8660/61/62/63  
4. Pin Descriptions  
VDD1  
VDD1  
A1  
VDD1  
VDD1  
VDD2  
B1  
VDD2  
B1  
VDD2  
B1  
VDD2  
B1  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
A1  
A2  
A1  
A2  
A1  
A2  
I
s
o
l
a
t
I
s
o
l
a
t
I
s
o
l
a
t
I
s
o
l
a
t
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
B2  
A2  
B2  
B2  
B2  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
A3  
B3  
A3  
B3  
A3  
A4  
B3  
A3  
A4  
B3  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
XMITR  
A4  
B4  
A4  
B4  
B4  
B4  
i
o
n
i
o
n
i
o
n
i
o
n
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
XMITR  
A5  
B5  
A5  
B5  
A5  
B5  
A5  
B5  
RF  
XMITR  
RF  
RCVR  
RF  
RCVR  
RF  
XMITR  
RF  
RCVR  
RF  
RF  
RCVR  
RF  
A6  
B6  
B6  
A6  
B6  
A6  
B6  
A6  
XMITR  
XMITR  
GND1  
GND2  
GND1  
GND2  
GND1  
GND2  
GND1  
GND2  
Si8660  
Si8661  
Si8662  
Si8663  
Name  
SOIC-16 Pin#  
Type  
Supply  
Description  
V
1
2
Side 1 power supply.  
Side 1 digital input.  
Side 1 digital input.  
Side 1 digital input.  
DD1  
A1  
A2  
Digital Input  
Digital Input  
Digital Input  
Digital I/O  
Digital I/O  
Digital I/O  
Ground  
3
A3  
4
A4  
5
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 digital input or output.  
Side 1 ground.  
A5  
6
A6  
7
GND1  
GND2  
B6  
8
9
Ground  
Side 2 ground.  
10  
11  
12  
13  
14  
15  
16  
Digital I/O  
Digital I/O  
Digital I/O  
Side 2 digital input or output.  
Side 2 digital input or output.  
Side 2 digital input or output.  
B5  
B4  
B3  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
Digital Output Side 2 digital output.  
B2  
B1  
V
Supply  
Side 2 power supply.  
DD2  
Rev. 1.5  
29  
Si8660/61/62/63  
5. Ordering Guide  
Table 13. Ordering Guide for Valid OPNs1,2,3  
Ordering Part  
Number (OPN)  
Number of Number of MaxData Default Isolation  
Inputs Inputs Rate Output rating  
VDD1 Side VDD2 Side (Mbps)  
Temp (°C)  
Package  
State  
Low  
Low  
Low  
High  
Low  
High  
Low  
Low  
High  
Low  
High  
Low  
Low  
High  
Low  
High  
Low  
Low  
High  
Low  
High  
(kV)  
1.0  
Si8660BA-B-IS1  
Si8660BB-B-IS1  
Si8660BC-B-IS1  
Si8660EC-B-IS1  
Si8660BD-B-IS  
Si8660ED-B-IS  
Si8661BB-B-IS1  
Si8661BC-B-IS1  
Si8661EC-B-IS1  
Si8661BD-B-IS  
Si8661ED-B-IS  
Si8662BB-B-IS1  
Si8662BC-B-IS1  
Si8662EC-B-IS1  
Si8662BD-B-IS  
Si8662ED-B-IS  
Si8663BB-B-IS1  
Si8663BC-B-IS1  
Si8663EC-B-IS1  
Si8663BD-B-IS  
Si8663ED-B-IS  
Notes:  
6
6
6
6
6
6
5
5
5
5
5
4
4
4
4
4
3
3
3
3
3
0
0
0
0
0
0
1
1
1
1
1
2
2
2
2
2
3
3
3
3
3
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
150  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
–40 to 125 °C  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
WB SOIC-16  
WB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
WB SOIC-16  
WB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
WB SOIC-16  
WB SOIC-16  
NB SOIC-16  
NB SOIC-16  
NB SOIC-16  
WB SOIC-16  
WB SOIC-16  
2.5  
3.75  
3.75  
5.0  
5.0  
2.5  
3.75  
3.75  
5.0  
5.0  
2.5  
3.75  
3.75  
5.0  
5.0  
2.5  
3.75  
3.75  
5.0  
5.0  
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard  
classifications and peak solder temperatures.  
Moisture sensitivity level is MSL3 for wide-body SOIC-16 packages.  
Moisture sensitivity level is MSL2A for narrow-body SOIC-16 packages.  
2. All devices >1 kVRMS are AEC-Q100 qualified.  
3. “Si” and “SI” are used interchangeably.  
30  
Rev. 1.5  
Si8660/61/62/63  
6. Package Outline: 16-Pin Wide Body SOIC  
Figure 17 illustrates the package details for the Si866x Digital Isolator. Table 14 lists the values for the dimensions  
shown in the illustration.  
Figure 17. 16-Pin Wide Body SOIC  
Rev. 1.5  
31  
Si8660/61/62/63  
Table 14. Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for  
small body, lead-free components.  
32  
Rev. 1.5  
Si8660/61/62/63  
7. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 18 illustrates the recommended land pattern details for the Si866x in a 16-pin wide-body SOIC. Table 15  
lists the values for the dimensions shown in the illustration.  
Figure 18. 16-Pin SOIC Land Pattern  
Table 15. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
Rev. 1.5  
33  
Si8660/61/62/63  
8. Package Outline: 16-Pin Narrow Body SOIC  
Figure 19 illustrates the package details for the Si866x in a 16-pin narrow-body SOIC (SO-16). Table 16 lists the  
values for the dimensions shown in the illustration.  
Figure 19. 16-pin Small Outline Integrated Circuit (SOIC) Package  
34  
Rev. 1.5  
Si8660/61/62/63  
Table 16. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
A
A1  
A2  
b
0.10  
1.25  
0.31  
0.17  
0.51  
0.25  
c
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
1.27  
L2  
h
0.25 BSC  
0.25  
0°  
0.50  
8°  
θ
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012,  
Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
Rev. 1.5  
35  
Si8660/61/62/63  
9. Land Pattern: 16-Pin Narrow Body SOIC  
Figure 20 illustrates the recommended land pattern details for the Si866x in a 16-pin narrow-body SOIC. Table 17  
lists the values for the dimensions shown in the illustration.  
Figure 20. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 17. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern  
SOIC127P600X165-16N for Density Level B (Median Land  
Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC)  
and a card fabrication tolerance of 0.05 mm is assumed.  
36  
Rev. 1.5  
Si8660/61/62/63  
10. Top Markings  
10.1. Si866x Top Marking (16-Pin Wide Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
TW  
e4  
10.2. Top Marking Explanation (16-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (6, 5, 4, 3, 2, 1)  
Y = # of reverse channels (3, 2, 1, 0)  
S = Speed Grade  
(See Ordering Guide for more  
information).  
A = 1 Mbps; B = 150 Mbps (default output = low);  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle = 1.7 mm Diameter  
(Center-Justified)  
“e4” Pb-Free Symbol  
Country of Origin ISO Code  
Abbreviation  
TW = Taiwan  
Rev. 1.5  
37  
Si8660/61/62/63  
10.3. Si866x Top Marking (16-Pin Narrow Body SOIC)  
Si86XYSV  
YYWWRTTTTT  
e3  
10.4. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si86 = Isolator product series  
XY = Channel Configuration  
X = # of data channels (6, 5, 4, 3, 2, 1)  
Y = # of reverse channels (3, 2, 1, 0)  
S = Speed Grade  
(See Ordering Guide for more  
information).  
A = 1 Mbps; B = 150 Mbps (default  
output = low);  
E = 150 Mbps (default output = high)  
V = Insulation rating  
A = 1 kV; B = 2.5 kV; C = 3.75 kV  
Line 2 Marking:  
Circle = 1.2 mm Diameter  
“e3” Pb-Free Symbol  
YY = Year  
WW = Work Week  
Assigned by the Assembly House. Corresponds to the  
year and work week of the mold date.  
RTTTTT = Mfg Code  
Manufacturing code from assembly house  
“R” indicates revision  
Circle = 1.2 mm diameter  
“e3” Pb-Free Symbol.  
38  
Rev. 1.5  
Si8660/61/62/63  
Revision 1.4 to Revision 1.5  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 1.0  
Added Figure 2, “Common Mode Transient Immunity  
Test Circuit,” on page 8.  
Added chip graphics on page 1.  
Updated " Features" on page 1.  
Moved Tables 1 and 11 to page 21.  
Updated Tables 2, 3, and 4.  
Added references to CQC throughout.  
Added references to 2.5 kV  
devices throughout.  
RMS  
Updated "5. Ordering Guide" on page 30.  
Updated "10.1. Si866x Top Marking (16-Pin Wide  
Updated Table 6, “Insulation and Safety-Related  
Body SOIC)" on page 37.  
Specifications,” on page 18.  
Updated Table 8, “IEC 60747-5-2 Insulation  
Characteristics for Si86xxxx*,” on page 19.  
Moved Table 12 to page 24.  
Moved “Typical Performance Characteristics” to  
page 27.  
Updated "3.5. Typical Performance Characteristics"  
on page 27.  
Updated Table 4, “Pin Descriptions,” on page 29.  
Updated "5. Ordering Guide" on page 30.  
Removed references to QSOP-16 package.  
Revision 1.0 to Revision 1.1  
Reordered spec tables to conform to new  
convention.  
Removed “pending” throughout document.  
Revision 1.1 to Revision 1.2  
Updated High Level Output Voltage VOH to 3.1 V in  
Table 3, “Electrical Characteristics,” on page 9.  
Updated High Level Output Voltage VOH to 2.3 V in  
Table 4, “Electrical Characteristics,” on page 13.  
Revision 1.2 to Revision 1.3  
Updated "5. Ordering Guide" on page 30 to include  
MSL2A.  
Revision 1.3 to Revision 1.4  
Updated Table 11 on page 21.  
Added junction temperature spec.  
Updated "3.3.1. Supply Bypass" on page 26.  
Removed “3.3.2. Pin Connections” on page 22.  
Updated "5. Ordering Guide" on page 30.  
Removed Rev A devices.  
Updated "6. Package Outline: 16-Pin Wide Body  
SOIC" on page 31.  
Updated Top Marks.  
Added revision description.  
Rev. 1.5  
39  
Si8660/61/62/63  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
40  
Rev. 1.5  

相关型号:

SI8660AB-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660BA-A-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
SILICON

Si8660BA-B-IS1

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR
SILICON

Si8660BB-B-IS1

LOW POWER SIX-CHANNEL DIGITAL ISOLATOR
SILICON

SI8660BB-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660BB-B-IU

Analog Circuit, 1 Func, CMOS, PDSO16, QSOP-16
SILICON

SI8660BD-B-IS

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660EB-B-IU

Analog Circuit, 1 Func, CMOS, PDSO16, QSOP-16
SILICON

SI8660EC-A-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, MS-012AC, SOIC-16
SILICON

SI8660EC-B-IS1

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660EC-B-IS1R

Analog Circuit, 1 Func, CMOS, PDSO16, SOIC-16
SILICON

SI8660ED-A-IS

Analog Circuit, 1 Func, CMOS, PDSO16, ROHS COMPLIANT, SOIC-16
SILICON