SI88240ED-IS [SILICON]

QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER;
SI88240ED-IS
型号: SI88240ED-IS
厂家: SILICON    SILICON
描述:

QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER

DC-DC转换器
文件: 总48页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si88x4x  
QUAD DIGITAL ISOLATORS WITH DC-DC CONVERTER  
Features  
High-speed isolators with  
integrated dc-dc converter  
Fully-integrated secondary sensing  
Highly-reliable: 100 year lifetime  
High electromagnetic immunity and  
ultra-low emissions  
feedback-controlled converter with RoHS compliant packages  
dithering for low EMI  
SOIC-20 wide body  
SOIC-24 wide body  
Isolation of up to 5000 Vrms  
High transient immunity of  
100 kV/µs (typical)  
dc-dc converter peak efficiency of  
83% with external power switch  
Up to 5 W isolated power with  
external power switch  
Ordering Information:  
Options include dc-dc shutdown,  
frequency control, and soft start  
Standard Voltage Conversion  
3/5 V to isolated 3/5 V  
24 V to isolated 3/5 V supported  
Precise timing on digital isolators  
0–100 Mbps  
AEC-Q100 qualified  
Wide temp range  
–40 to +125 °C  
See page 38.  
Pin Assignments  
See page 33  
18 ns typical prop delay  
1
2
3
4
5
6
20  
19  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
VDDB  
Applications  
18 DNC  
17 NC  
Industrial automation systems  
Hybrid electric and electric  
vehicles  
Inverters  
Data acquisition  
Motor control  
PLCs, distributed control systems  
VSNS  
16  
15 COMP  
B1  
Isolated power supplies  
HF  
XMTR  
HF  
RCVR  
A1  
14  
13 B2  
7
8
HF  
XMTR  
HF  
RCVR  
A2  
Safety Approval (Pending)  
HF  
XMTR  
HF  
RCVR  
A3  
B3  
B4  
9
12  
11  
UL 1577 recognized  
VDE certification conformity  
VDE 0884-10  
CQC certification approval  
GB4943.1  
HF  
XMTR  
HF  
RCVR  
A4  
10  
Up to 5000 Vrms for 1 minute  
CSA component notice 5A  
approval  
Si88240  
Patents pending  
Description  
The Si88xx integrates Silicon Labs’ proven digital isolator technology with an  
on-chip isolated dc-dc converter that provides regulated output voltages of  
3.3 or 5.0 V (or >5 V with external components) at peak output power levels  
of up to 5 W. These devices provide up to four digital channels. The dc-dc  
converter has user-adjustable frequency for minimizing emissions, a soft-start  
function for safety, a shut-down option and loop compensation. The device  
requires only minimal passive components and a miniature transformer.  
The ultra-low-power digital isolation channels offer substantial data rate,  
propagation delay, size and reliability advantages over legacy isolation  
technologies. Data rates up to 100 Mbps max are supported, and all devices  
achieve propagation delays of only 23 ns max. Ordering options include a  
choice of dc-dc converter features, isolation channel configurations and a fail-  
safe mode. All products are certified by UL, CSA, VDE, and CQC.  
Preliminary Rev. 0.6 7/15  
Copyright © 2015 by Silicon Laboratories  
Si88x4x  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si88x4x  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.2. Digital Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
2.3. DC-DC Converter Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
2.4. Transformer Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
3. Digital Isolator Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
6. Package Outline: 20-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
7. Land Pattern: 20-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
8. Package Outline: 24-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
9. Land Pattern: 24-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
10. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
10.1. Si88x4x Top Marking (20-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . .45  
10.2. Top Marking Explanation (20-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .45  
10.3. Si88x4x Top Marking (24-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . .46  
10.4. Top Marking Explanation (24-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .46  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
2
Preliminary Rev. 0.6  
Si88x4x  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Ambient Operating Temperature*  
Power Input Voltage  
Symbol  
Min  
–40  
3.0  
3.0  
3.0  
Typ  
25  
Max  
125  
5.5  
Unit  
°C  
V
T
A
VDDP  
VDDA  
VDDB  
Supply Voltage  
5.5  
V
5.5  
V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,  
and supply voltage.  
Table 2. Electrical Characteristics1  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC/DC Converter  
Switching Frequency  
Si8824x, Si8844x  
FSW  
FSW  
250  
200  
kHz  
kHz  
Switching Frequency  
Si8834x, Si8864x  
RFSW = 23.3 k  
180  
450  
810  
220  
550  
990  
FSW = 1025.5/(RFSW x CSS)  
CSS = 220 nF (see Figure 9)  
(1% tolerance on BOM)  
RFSW = 9.3 k  
500  
900  
kHz  
kHz  
FSW = 1025.5/(RFSW x CSS)  
CSS = 220 nF (see Figure 9)  
(1% tolerance on BOM)  
RFSW = 5.18 k,  
CSS = 220 nF (see Figure 9)  
VSNS voltage  
VSNS  
ILOAD = 0 A  
1.002  
–500  
1.05  
1.097  
500  
V
VSNS current offset  
I
nA  
offset  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
Preliminary Rev. 0.6  
3
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Output Voltage  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
See Figure 2  
ILOAD = 0 mA  
–5  
+5  
%
2
Accuracy  
Line Regulation  
VOUT(line)/V  
See Figure 2  
ILOAD = 50 mA  
1
mV/V  
DDP  
VDDP varies from 4.5 to 5.5 V  
Load Regulation  
VOUT(load)/V  
See Figure 2  
0.1  
%
OUT  
ILOAD = 50 to 400 mA  
Output Voltage Ripple  
Si8824x, Si8834x  
Si8844x, Si8864x  
ILOAD = 100 mA  
See Figure 2  
See Figure 3  
100  
mV p-p  
Turn-on overshoot  
VOUT(start)  
See Figure 2  
CIN = COUT = 0.1 μF in  
parallel with 10 μF,  
ILOAD = 0 A  
2
%
Continuous Output Current  
Si8824x, Si8834x  
5.0 V to 5.0 V  
3.3 V to 3.3 V  
3.3 V to 5.0 V  
ILOAD(max)  
mA  
See Figure 2  
400  
400  
250  
550  
5.0 V to 3.3 V  
Si8844x, Si8864x  
24.0 to 5.0 V  
24.0 to 3.0 V  
See Figure 3  
1000  
1500  
Cycle-by-cycle average  
current limit  
ILIM  
See Figure 2  
Output short circuited  
3
A
Si8824x, Si8834x  
3
No Load Supply Current  
IDDP  
Si8824x, Si8834x  
IDDPQ_DCDC  
See Figure 2  
VDDP = VDDA = 5 V  
30  
5.7  
mA  
mA  
4
No Load Supply Current  
IDDA  
IDDAQ_DCDC  
See Figure 2  
VDDP = VDDA = 5 V  
Si8824x, Si8834x  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
4
Preliminary Rev. 0.6  
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
3
4
No Load Supply Current  
IDDP  
Si8844x, Si8864x  
IDDPQ_DCDC  
See Figure 3  
VIN = 24 V  
0.8  
mA  
No Load Supply Current  
IDDA  
Si8844x, Si8864x  
IDDAQ_DCDC  
See Figure 3  
VIN = 24 V  
5.8  
mA  
%
Peak Efficiency  
Si8824x, Si8834x  
Si8844x, Si8864x  
See Figure 2, 3  
78  
83  
Voltage Regulator Refer-  
ence Voltage  
Si8844x, Si8864x  
I
= 600 µA  
4.8  
V
VREGA,  
VREGB  
REG  
See Figure 30 for typical I–V  
curve  
VREG tempco  
–0.43  
mV/°C  
µA  
K
TVREG  
VREG input current  
350  
950  
I
REG  
Soft Start Time, Full Load  
Si8824x, Si8844x  
Si8834x, Si8864x  
t
See Figures 25 through 28 for  
typical soft start times over  
load conditions.  
ms  
SST  
25  
50  
Restart Delay from fault  
event  
tOTP  
21  
s
Digital Isolator  
VDD Undervoltage  
Threshold  
VDDUV+  
VDDUV–  
VDDA, VDDB rising  
VDDA, VDDB falling  
2.7  
2.6  
V
V
VDD Undervoltage  
Threshold  
VDD Undervoltage  
Hysteresis  
VDD  
100  
1.67  
mV  
V
HYS  
Positive-Going Input  
Threshold  
VT+  
All inputs rising  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
Preliminary Rev. 0.6  
5
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Negative-Going Input  
Threshold  
VT–  
All inputs falling  
1.23  
V
Input Hysteresis  
V
0.44  
V
V
V
V
HYS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
V
2.0  
0.8  
IH  
V
IL  
V
loh = –4 mA  
lol = 4 mA  
V
,
OH  
DDA  
V
DDB  
0.4  
Low Level Output Voltage  
Input Leakage Current  
Output Impedance  
V
50  
0.4  
±10  
V
µA  
OL  
I
L
Z
O
Supply Current, C  
= 15 pF  
LOAD  
DC, VDDx = 3.3 V ± 10%  
Si88x40  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
12.9  
5.4  
5.1  
5.3  
mA  
mA  
mA  
DDA  
DDB  
DDA  
DDB  
Si88x41  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
10.9  
6.8  
5.6  
5.1  
DDA  
DDB  
DDA  
DDB  
Si88x42  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
9.7  
7.8  
5.9  
4.3  
DDA  
DDB  
DDA  
DDB  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
6
Preliminary Rev. 0.6  
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si88x43  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
8.5  
9.3  
6.5  
3.9  
mA  
DDA  
DDB  
DDA  
DDB  
Si88x44  
mA  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
6.6  
10.6  
6.5  
DDA  
DDB  
DDA  
DDB  
3.6  
1 Mbps, VDDx = 3.3 V ± 10% (All Inputs = 500 kHz Square Wave, C  
= 15 pF)  
LOAD  
Si88x40  
mA  
mA  
mA  
mA  
mA  
V
V
8.9  
5.4  
DDA  
DDB  
Si88x41  
V
V
8.3  
6.0  
DDA  
DDB  
Si88x42  
V
V
7.9  
6.1  
DDA  
DDB  
Si88x43  
V
V
7.6  
6.7  
DDA  
DDB  
Si88x44  
V
V
6.7  
7.1  
DDA  
DDB  
100 Mbps, VDDx = 3.3 V ± 10% (All Inputs = 50 MHz Square Wave, C  
= 15 pF)  
LOAD  
Si88x40  
mA  
V
V
8.7  
19.2  
DDA  
DDB  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
Preliminary Rev. 0.6  
7
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si88x41  
mA  
V
V
12.7  
16.6  
DDA  
DDB  
Si88x42  
mA  
mA  
mA  
V
V
15.6  
13.6  
DDA  
DDB  
Si88x43  
V
V
18.7  
11.0  
DDA  
DDB  
Si88x44  
V
V
21.6  
6.9  
DDA  
DDB  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
8
Preliminary Rev. 0.6  
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
DC, VDDx = 5 V ± 10%  
Si88x40  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
13.1  
5.6  
5.2  
5.4  
mA  
DDA  
DDB  
DDA  
DDB  
Si88x41  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
11.1  
6.9  
5.7  
5.2  
mA  
mA  
mA  
mA  
DDA  
DDB  
DDA  
DDB  
Si88x42  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
10.1  
7.9  
6.2  
4.4  
DDA  
DDB  
DDA  
DDB  
Si88x43  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
8.6  
9.2  
6.6  
3.9  
DDA  
DDB  
DDA  
DDB  
Si88x44  
V
V
V
V
All inputs = 0  
All inputs = 0  
All inputs = 1  
All inputs = 1  
6.8  
11.0  
6.7  
DDA  
DDB  
DDA  
DDB  
3.8  
1 Mbps, VDDx = 5 V ± 10% (All Inputs = 500 kHz Square Wave, C  
= 15 pF)  
LOAD  
Si88x40  
mA  
V
V
9.1  
5.8  
DDA  
DDB  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
Preliminary Rev. 0.6  
9
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si88x41  
mA  
V
V
8.4  
6.3  
DDA  
DDB  
Si88x42  
mA  
mA  
mA  
V
V
8.2  
6.2  
DDA  
DDB  
Si88x43  
V
V
7.8  
6.7  
DDA  
DDB  
Si88x44  
V
V
6.9  
7.4  
DDA  
DDB  
100 Mbps, VDDx = 5 V ± 10% (All Inputs = 50 MHz Square Wave, C  
= 15 pF)  
LOAD  
Si88x40  
mA  
mA  
mA  
mA  
mA  
V
V
8.2  
26.2  
DDA  
DDB  
Si88x41  
V
V
14.7  
22.0  
DDA  
DDB  
Si88x42  
V
V
18.9  
16.5  
DDA  
DDB  
Si88x43  
V
V
24.0  
11.7  
DDA  
DDB  
Si88x44  
V
V
28.1  
6.6  
DDA  
DDB  
Timing Characteristics  
Data Rate  
0
100  
Mbps  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
10  
Preliminary Rev. 0.6  
Si88x4x  
Table 2. Electrical Characteristics1 (Continued)  
VIN = 24 V; VDDA = 4.3 V (see Figure 3) for all Si8844x/64x; VDDA = VDDP = 3.0 to 5.5 V (see Figure 2) for all Si8824x/34x;  
TA = –40 to 125 °C unless otherwise noted  
Parameter  
Minimum Pulse Width  
Propagation Delay  
Symbol  
Test Condition  
Min  
10  
Typ  
Max  
Unit  
ns  
t
t
t
t
See Figure 1  
VDDx = 3.3 V  
17.8  
ns  
PHL  
PLH  
PHL  
PLH  
Propagation Delay  
Propagation Delay  
Propagation Delay  
Pulse Width Distortion  
See Figure 1  
VDDx = 3.3 V  
14.5  
17.5  
12.6  
3.4  
ns  
ns  
ns  
ns  
ns  
See Figure 1  
VDDx = 5.0 V  
See Figure 1  
VDDx = 5.0 V  
PWD  
PWD  
See Figure 1  
VDDx = 3.3 V  
|t  
– t  
|
PLH  
PHL  
Pulse Width Distortion  
|t – t  
See Figure 1  
VDDx = 5.0 V  
4.8  
|
PHL  
PLH  
6
Propagation Delay Skew  
Channel-Channel Skew  
Output Rise Time  
t
2.0  
1.0  
2.5  
ns  
ns  
ns  
PSK(P-P)  
t
PSK  
t
C
C
= 15 pF  
= 15 pF  
r
LOAD  
LOAD  
Output Fall Time  
t
2.5  
ns  
f
Common Mode  
CMTI  
V = VDDx or 0 V  
40  
100  
kV/µs  
I
Transient Immunity  
V
= 1500 V  
CM  
See Figure 4  
7
Startup Time  
t
55  
µs  
SU  
Notes:  
1. Over recommended operating conditions as noted in Table 1.  
2. VOUT = VSNS x (1 + R1/R2) + R1 x Ioffset  
3. VDDP current needed for dc-dc circuits.  
4. VDDA current needed for dc-dc circuits.  
5. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the  
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads  
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled  
impedance PCB traces.  
6. tPSK(P-P) is the magnitude of the difference in propagation delay times measured between different units operating at  
the same supply voltages, load, and ambient temperature.  
7. Start-up time is the time period from when the UVLO threshold is exceeded to valid data at the output.  
Preliminary Rev. 0.6  
11  
Si88x4x  
1.4 V  
Typical  
Input  
tPLH  
tPHL  
90%  
10%  
90%  
10%  
1.4 V  
Typical  
Output  
tr  
tf  
Figure 1. Propagation Delay Timing for Digital Channels  
IIN  
C1  
D1  
T1  
DB2440100L  
10 µF  
R4  
100  
+
+
VOUT  
_
C3  
C2  
VIN  
10 µF  
10 µF  
C5  
_
100 pF  
UTB02185S  
U1  
VSW  
IDDB  
IDDP  
VDDB  
VDDP  
VDDA  
R1  
49.9 k  
IDDA  
VSNS  
COMP  
R3  
49.9 k  
R2  
13.3 k  
SH  
C4  
GNDA  
GNDP  
1.5 nF  
GNDB  
Figure 2. Measurement Circuit for Converter Efficiency and Regulation for Si882xx, Si883xx  
12  
Preliminary Rev. 0.6  
Si88x4x  
ILOAD  
IIN  
IDDP  
IDDA  
D1  
T1  
SBRT5A50SA  
R8  
27.4  
R9  
82  
+
+
C3  
C2  
VIN  
VOUT  
22 µF  
10 µF  
C7  
C6  
_
_
100 pF  
68 pF  
UTB02205S  
U2  
IDDB  
Q1  
FDT3612  
ESW  
VDDB  
RSNS  
R1  
49.9 k  
R5  
0.1  
R7  
19.6 k  
VSNS  
GNDP  
VREG  
COMP  
Q2  
R3  
100 k  
R2  
13.3 k  
MMBT2222LT1  
C5  
0.1 µF  
C4  
VDDA  
1.5 nF  
C8  
GNDB  
10 µF  
SS  
SH_FC  
C1  
R6  
18 k  
0.22 µF  
GNDA  
Figure 3. Measurement Circuit for Converter Efficiency and Regulation for Si884xx, Si886xx  
DC-DC Output  
Powers B-side  
Referenced to  
Earth Ground  
Si8824x  
VSW  
VDDB  
VDDP/VDDA  
Oscilloscope  
Forward  
Channel  
Input  
Forward  
Channel  
Ouput  
Reverse  
Channel  
Measured by  
Forward  
Channel in  
Loopback  
Isolated  
Supply  
+
_
Reverse  
Channel  
Output  
Reverse  
Channel  
Input  
GNDB  
GNDA  
High Voltage  
Differential  
Probe  
High Voltage Transient Generator  
Figure 4. Common-Mode Transient Immunity Test Circuit  
Preliminary Rev. 0.6  
13  
Si88x4x  
Table 3. Regulatory Information1,2  
CSA  
The Si88xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
VDE  
The Si88xx is certified according to VDE 0884-10. For more details, see File 5006301-4880-0001.  
VDE 0884-10: Up to 891 V  
for basic insulation working voltage.  
peak  
UL  
The Si88xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 V  
isolation voltage for basic protection.  
RMS  
CQC  
The Si88xx is certified under GB4943.1-2011.  
Rated up to 600 V  
reinforced insulation working voltage; up to 1000 V  
basic insulation working voltage.  
RMS  
RMS  
Notes:  
1. Regulatory Certifications apply to 5 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.  
2. All certifications are pending.  
14  
Preliminary Rev. 0.6  
Si88x4x  
Table 4. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
WB SOIC-20  
WB SOIC-24  
1
Nominal Air Gap (Clearance)  
L(1O1)  
L(1O2)  
8.0  
mm  
1
Nominal External Tracking (Creepage)  
8.0  
mm  
mm  
Minimum Internal Gap  
(Internal Clearance)  
0.014  
Tracking Resistance (Proof Tracking Index)  
Erosion Depth  
PTI  
ED  
IEC60112  
f = 1 MHz  
600  
V
mm  
0.019  
2
12  
Resistance (Input-Output)  
R
10  
IO  
2
Capacitance (Input-Output)  
C
1.4  
4.0  
pF  
pF  
IO  
3
Input Capacitance  
C
I
Notes:  
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifies the clearance and  
creepage limits as 8.5 mm minimum for the WB SOIC-20 and WB SOIC-24 packages. UL does not impose a clearance  
and creepage minimum for component-level certifications. CSA certifies the clearance and creepage limits as 7.6 mm  
minimum for the WB SOIC-20 and WB SOIC-24 packages.  
2. To determine resistance and capacitance, the Si88xx is converted into a 2-terminal device. Pins 1–8 are shorted  
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are  
then measured between these two terminals.  
3. Measured from input to ground.  
Table 5. IEC 60664-1 (VDE 0884-10) Ratings  
Parameter  
Test Condition  
Specification  
WB SOIC-20  
WB SOIC-24  
Basic Isolation Group  
Material Group  
I
Installation Classification  
Rate Mains Voltages <150 V  
Rate Mains Voltages <300 V  
Rate Mains Voltages <400 V  
Rate Mains Voltages <600 V  
I–IV  
I–IV  
I–III  
I–III  
RMS  
RMS  
RMS  
RMS  
Preliminary Rev. 0.6  
15  
Si88x4x  
Table 6. VDE 0884-10 Insulation Characteristics*  
Parameter  
Symbol  
Test Condition  
Characteristic  
WB SOIC-20  
WB SOIC-24  
Unit  
Maximum Working  
Insulation Voltage  
V
891  
V peak  
IORM  
Input to Output Test Voltage  
V
1671  
V peak  
Method b1  
PR  
(V  
x 1.875 = V , 100%  
PR  
IORM  
Production Test,  
= 1 sec,  
t
m
Partial Discharge < 5 pC)  
Transient Overvoltage  
V
t = 60 sec  
6000  
2
V peak  
IOTM  
Pollution Degree  
(DIN VDE 0110, Table 1)  
9
Insulation Resistance at T ,  
R
>10  
S
S
V
= 500 V  
IO  
*Note: Maintenance of the safety data is ensured by protective circuits. The Si88xx provides a climate classification of  
40/125/21.  
Table 7. IEC Safety Limiting Values*  
Parameter  
Case Temperature  
Safety Input Current  
Symbol  
Test Condition  
WB SOIC-20  
150  
Unit  
°C  
T
I
S
= 55 °C/W (WB SOIC-20),  
JA  
413  
mA  
S
V
= 5.5 V,  
DDA  
Device Power Dissipation  
P
2.27  
W
T = 150 °C, T = 25 °C  
D
J
A
*Note: Maximum value allowed in the event of a failure. Refer to the thermal derating curve in Figure 3.  
16  
Preliminary Rev. 0.6  
Si88x4x  
Table 8. Thermal Characteristics  
Parameter  
Symbol  
WB SOIC-20  
Unit  
IC Junction-to-Air Thermal Resistance  
55  
°C/W  
JA  
Figure 5. WB SOIC-20 Thermal Derating Curve*  
*Note: Values are not final and are subject to change. Dependence of Safety Limiting Values with Case Temperature per VDE  
0884-10.  
Preliminary Rev. 0.6  
17  
Si88x4x  
Table 9. Absolute Maximum Ratings1,2  
Parameter  
Storage Temperature  
Symbol  
Min  
–65  
Max  
+150  
+150  
6.0  
Unit  
°C  
°C  
V
T
STG  
Junction Temperature  
T
J
Input-side Supply Voltage  
VDDA  
VDDP  
–0.6  
Output supply  
VDDB  
VIN  
–0.6  
–0.5  
6.0  
V
V
Voltage on any Pin with respect to Ground  
Output Drive Current per Channel  
Input Current for VREGA, VREGB  
Lead Solder Temperature (10 s)  
ESD per AEC-Q100  
VDD + 0.5  
I
10  
1
mA  
mA  
°C  
kV  
kV  
O
I
REG  
260  
4
HBM  
CDM  
2
Maximum Isolation (Input to Output) (1 sec)  
WB SOIC-20, WB SOIC-24  
6500  
V
RMS  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
2. VDE certifies storage temperature from –40 to 150 °C.  
18  
Preliminary Rev. 0.6  
Si88x4x  
2. Functional Description  
2.1. Theory of Operation  
The Si88xx family of products is capable of transmitting and receiving digital data signals from an isolated power  
domain to a local system power domain with up to 5 kV of isolation. Each part has four unidirectional digital  
isolation channels. In addition, Si88xx products include an integrated controller and switches for a dc-dc converter  
which regulates output voltage by sensing it on the isolated side.  
2.2. Digital Isolation  
The operation of an Si88xx digital channel is analogous to that of a digital buffer, except an RF carrier transmits  
data across the isolation barrier. This simple architecture provides a robust isolated data path and requires no  
special considerations or initialization at start-up. A simplified block diagram for a single Si88xx channel is shown in  
Figure 6.  
Transmitter  
Receiver  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
MODULATOR  
DEMODULATOR  
A
B
Figure 6. Simplified Si88xx Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a silicon dioxide capacitive isolation  
barrier. In the transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The  
receiver contains a demodulator that decodes the input state according to its RF energy content and applies the  
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it  
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See  
Figure 7 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 7. Modulation Scheme  
Preliminary Rev. 0.6  
19  
Si88x4x  
2.3. DC-DC Converter Application Information  
The Si88xx isolated dc-dc converter is based on a modified fly-back topology and uses an external transformer and  
Schottky rectifying diode for low cost and high operating efficiency. The PWM controller operates in closed-loop,  
peak current mode control and generates isolated output voltages with 2 W average output power at 5.0 V. Options  
are available for 24 Vdc input or output operation and externally configured switching frequency.  
The dc-dc controller modulates a pair of internal primary-side power switches (see Figure 8) to generate an  
isolated voltage at external diode D1 cathode. Closed-loop feedback is provided by a compensated error amplifier,  
which compares the voltage at the VSNS pin to an internal voltage reference. The resulting error voltage is fed  
back through the isolation barrier via an internal feedback path to the controller, thus completing the control loop.  
For higher input supply voltages than 5 V, an external FET Q2 is modulated by a driver pin ESW as shown in (see  
Figure 9). A shunt resistor based voltage sense pin RSN provides current sensing capability to the controller.  
Additional features include an externally-triggered shutdown of the converter functionality using the SH pin and a  
programmable soft start configured by a capacitor connected to the SS pin. The Si88xx can be used in low- or high-  
voltage configurations. These features and configurations are explained in more detail below.  
2.3.1. Shutdown  
This feature allows the operation of the dc-dc converter to be shut down when asserted high. This function is  
provided by pin 6 (labeled “SH” on the Si882xx) and pin 7 (labeled “SH_FC” on the Si883xx and Si886xx). This  
feature is not available on the Si884xx. Pin 6 or pin 7 provide the exact same functionality and shut down the dc-dc  
converter when asserted high. For normal operation, pins 6 and 7 should be connected to ground.  
2.3.2. Soft-Start  
The dc-dc controller has an internal timer that controls the power conversion start-up to limit inrush current. There  
is also the Soft Start option where users can program the soft start up by an external capacitor connected to the SS  
pin. This feature is available on the Si883xx and the Si886xx.  
2.3.3. Programmable Frequency  
The frequency of the PWM modulator is set to a default of 250 kHz for Si882xx/4xx. Users can program their  
desired frequency within a given band of 200 kHz to 800 kHz by controlling the time constant of an external RC  
connected to the SH_FC and SS pins for Si883xx/6xx.  
2.3.4. External Transformer Driver  
The dc-dc controller has internal switches (VSW) for driving the transformer with up-to a 5.5 V voltage supply. For  
higher voltages on the primary side, a driver output (ESW) is provided that can drive an external NMOS power  
transistor for driving the transformer. When this configuration is used, a shunt resistor based voltage sense pin  
(RSN) provides current sensing to the controller.  
2.3.5. VREGA, VREGB  
For supporting voltages greater than 5.5 V, an internal voltage regulator (VREGA, VREGB) needs to be used in  
conjunction with an external NPN transistor, a resistor and a capacitor to provide regulated voltage to the IC.  
2.3.6. Output Voltage Control  
The isolated output voltage (VOUT) is sensed by a resistor divider that provides feedback to the controller through  
the VSNS pin. The voltage error is encoded and transmitted back to the primary side controller across the isolation  
barrier, which in turn changes the duty cycle of the transformer driver. The equation for VOUT is as follows:  
R1  
R2  
VOUT = VSNS 1 + ------- + R1 IOFFSET  
20  
Preliminary Rev. 0.6  
Si88x4x  
2.3.7. Compensation  
The dc-dc converter uses peak current mode control. The loop is compensated by connecting an external resistor  
in series with a capacitor from the COMP pin to GNDB. The compensation resistance, RCOMP is fixed at 49.9 k  
for Si882xx/3xx and 100 kfor Si884xx/6xx to match internal resistance. Capacitance value is given by the  
following equation, where f is crossover frequency:  
C
6
CCOMP = ----------------------------------------------------------  
2    fC RCOMP  
For more details on the calculations involved, please see “AN892: Design Guide for Isolated DC/DC Using the  
Si882xx/883xx”.  
2.3.8. Thermal Protection  
A thermal shutdown circuit is included to protect the system from over-temperature events. The thermal shutdown  
is activated at a junction temperature that prevents permanent damage from occurring.  
2.3.9. Cycle Skipping  
Cycle skipping is included to reduce switching power losses at light loads. This feature is transparent to the user  
and is activated automatically at light loads. The product options with integrated power switches (Si882xx/3xx) may  
never experience cycle skipping during operation even at light loads while the external power switch options  
(Si884xx/6xx) are likely to have cycle skipping start at light loads.  
Preliminary Rev. 0.6  
21  
Si88x4x  
2.3.10. Low-Voltage Configuration  
The low-voltage configuration is used for converting 3.0 V to 5.5 V. All product options of the Si882xx and Si883xx  
are intended for this configuration.  
An advantage of Si88xx devices over other converters that use this same topology is that the output voltage is  
sensed on the secondary side without requiring additional optocouplers and support circuitry to bias those  
optocouplers. This allows the dc-dc to operate with superior line and load regulation while reducing external  
components and increasing lifetime reliability.  
In a typical digital signal isolation application, the dc-dc powers the Si882xx and Si883xx VDDB as shown in  
Figure 8. In addition to powering the isolated side of the dc-dc can deliver up to 2 W of power to other loads. The  
dc-dc requires an input capacitor, C2, blocking capacitor, C1, transformer, T1, rectifying diode, D1, and an output  
capacitor, C3. Resistors R1 and R2 divide the output voltage to match the internal reference of the error amplifier.  
Type 1 loop compensation made by RCOMP and CCOMP are required at the COMP pin. Though it is not  
necessary for normal operation, we recommend that a snubber be used to minimize radiated emissions. More  
details can be found in “AN892: Design Guide for Isolated DC-DC Using the Si882xx/883xx”.  
Vin  
Vout  
C1  
T1  
D1  
C3  
C2  
R1  
Si8832x  
R2  
VDDB  
VDDA  
UVLO  
UVLO  
Power  
FET  
Used in applications  
where converter  
output is > 5.5 V  
VREG  
VSNS  
VSW  
HVREG  
Reference  
DC-DC  
Controller  
Power  
FET  
RFSW  
CSS  
SH_FC  
SS  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
CCOMP  
COMP  
Soft Start  
Encoder  
RCOMP  
HF RX  
HF TX  
HF RX  
Fwd. Digital  
Channels  
HF TX  
HF TX  
A1  
A2  
B1  
B2  
Rev. Digital  
Channels  
HF RX  
Figure 8. Si88xx Block Diagram: 3 V–5 V Input to 3 V–5 V Output  
22  
Preliminary Rev. 0.6  
Si88x4x  
2.3.11. High-Voltage Configuration  
The high-voltage configuration is used for converting up to 24 V to 3.3 V or 5.0 V. All product options of the  
Si884xx and Si886xx are intended for this configuration.  
Si884xx and Si886xx can be used for dc-dc applications that have primary side voltage greater than 5.5 V. The dc-  
dc converter uses the isolated flyback topology. With this topology, the switch and sense resistor are external,  
allowing higher switching voltages. Digital isolator supply VDDA of the Si884xx and Si886xx require a supply less  
than or equal to 5.5 V. If a suitable supply is not available on the primary side, the VREGA voltage reference with  
external NPN transistor can supply VDDA. This eliminates the need to design an additional linear regulator circuit.  
Like the Si882xx and Si883xx, the output voltage is sensed on the secondary side without requiring additional  
optocouplers and support circuitry to bias those optocouplers. This allows the dc-dc to operate with superior line  
and load regulation.  
Figure 9 shows the block diagram of an Si886xx with external components. Si886xx is different from the  
Si882xx/883xx as it has externally-controlled switching frequency and soft start. The dc-dc requires input capacitor  
C2, transformer T1, switch Q1, sense resistor R4, rectifying diode D1 and an output capacitor C3. To supply VDDA,  
Q2 transistor is biased and filtered by R3 and C1. External frequency and soft start behavior is set by CSS and  
RFSW. Resistors R1 and R2 divide the output voltage to match the internal reference of the error amplifier. Type 1  
loop compensation made by RCOMP and CCOMP are required at the COMP pin. Though it is not necessary for  
normal operation, we recommend to use a snubber, to minimize high-frequency emissions. For further details, see  
“AN901: Design Guide for Isolated DC-DC Using the Si884xx/886xx”.  
VOUT  
Vin  
T1  
D1  
C3  
C2  
Si8862x  
R3  
Used in applications  
where converter  
output is > 5.5 V  
VREGA  
VDDA  
VREGB  
VDDB  
VREG  
Reference  
VREG  
Reference  
Q2  
UVLO  
UVLO  
C1  
ESW  
RSN  
Q1  
FET  
Driver  
DC-DC Controller  
Current  
Sensing  
R4  
GNDP  
R1  
VSNS  
R
2
RFSW  
CSS  
FC_SH  
SS  
Error Amp  
and  
Compensation  
Freq. Control  
and Shutdown  
CCOMP  
COMP  
Soft Start  
Encoder  
RCOMP  
HF RX  
HF TX  
Fwd. Digital  
Channel  
HF TX  
HF RX  
A1  
A2  
HF RX  
HF TX  
B1  
B2  
Rev. Digital  
Channel  
Figure 9. Si88xx Block Diagram: 24 V Input to 5 V Output  
Preliminary Rev. 0.6  
23  
Si88x4x  
2.4. Transformer Design  
Table 10 provides a list of transformers and their parametric characteristics that have been validated to work with  
Si882xx/3xx products (input voltage of 3 to 5 V) and Si884xx/Si886xx products (input voltage of 24 V). It is  
recommended that users order the transformers from the vendors per the part numbers given below. Refer to  
AN892 and AN901 for voltage translation applications not listed below.  
To manufacture transformers from your preferred suppliers that may not be listed below, please specify to supplier  
the parametric characteristics as specified in the table below for a given input voltage and isolation rating.  
Table 10. Transformer Specifications  
Transformer  
Supplier  
Ordering Part #  
Input  
Turns  
Leakage  
Primary  
Primary  
Isolation  
Rating  
Voltage Ratio Inductance Inductance Resistance  
UMEC  
TG-UTB02185s 3.0 – 5.5 V 4.0:1 105 nH max 2 µH ± 5% 0.05 max 2.5 kVrms  
www.umec-usa.com  
TG-UTB02205s  
TA7608-AL  
24 V  
3.0:1 800 nH max 25 µH ± 5% 0.135 max 2.5 kVrms  
60 nH max 2 µH ± 10% 0.036 max 2.5 kVrms  
Coilcraft  
3.0 – 5.5 V 4.0:1  
www.coilcraft.com  
24  
Preliminary Rev. 0.6  
Si88x4x  
3. Digital Isolator Device Operation  
Table 11. Si88xx Logic Operation  
, ,  
, ,  
VDDI1,2 3 4  
VDDO1,2 3 4  
VI Input  
VO Output  
Comments  
H
L
P
P
P
P
P
H
L
Normal operation.  
X
UP  
L4  
H4  
Upon transition of VDDI from unpow-  
ered to powered, V returns to the  
O
same state as V .  
I
X
P
UP  
Undetermined Upon transition of VDDO from  
unpowered to powered, V returns  
O
to the same state as V .  
I
Notes:  
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals.  
2. P = powered; UP = unpowered.  
3. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current. This  
situation should be avoided. We recommend that I/O's not be driven high when primary side supply is turned off or  
when in dc-dc shutdown mode.  
4. See "5. Ordering Guide" on page 38 for details. This is the selectable fail-safe operating mode (ordering option). When  
VDDB is powered via the primary side and the integrated dc-dc, the default outputs are undetermined as secondary  
side power is not available when primary side power shuts off.  
3.1. Device Startup  
Outputs are held low during power up until VDDx is above the UVLO threshold for time period t . Following this,  
SU  
the outputs follow the states of inputs.  
3.2. Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or  
when VDDx is below its specified operating circuits range. Both Side A and Side B each have their own  
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A  
unconditionally enters UVLO when VDDA falls below V  
and exits UVLO when VDDA rises above V  
.
DDUV–  
DDUV+  
Side B operates the same as Side A with respect to its VDD supply.  
3.3. Layout Recommendations  
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V ) must be physically  
AC  
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V ) by a certain distance  
AC  
(creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those  
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating  
(commonly referred to as working voltage protection). Table 4 and Table 6 detail the working voltage and  
creepage/clearance capabilities of the Si88xx. These tables also detail the component standards (UL1577,  
VDE0884-10, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system  
specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements  
before starting any design that uses a digital isolator.  
Preliminary Rev. 0.6  
25  
Si88x4x  
3.3.1. Supply Bypass  
The Si88xx family requires a 0.1 µF bypass capacitor between all VDDx and their associated GNDx. The capacitor  
should be placed as close as possible to the package. To enhance the robustness of a design, the user may also  
include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy.  
3.3.2. Output Pin Termination  
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination  
of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving  
high-impedance terminated PCB traces, output pins should be source-terminated to minimize reflections.  
3.4. Fail-Safe Operating Mode  
Si88xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input  
supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 11 and  
Table 13 for more information.  
26  
Preliminary Rev. 0.6  
Si88x4x  
3.5. Typical Performance Characteristics  
The typical performance characteristics are for information only. Refer to Table 2 for specification limits. The data  
below is for all channels switching.  
Figure 10. Si88240 Typical VDDA Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 11. Si88240 Typical VDDB Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 12. Si88241 Typical VDDA Supply Current Figure 13. Si88241 Typical VDDB Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 14. Si88242 Typical VDDA Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 15. Si88242 Typical VDDB Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Preliminary Rev. 0.6  
27  
Si88x4x  
Figure 17. Si88243 Typical VDDB Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 16. Si88243 Typical VDDA Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 19. Si88244 Typical VDDB Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
Figure 18. Si88244 Typical VDDA Supply Current  
vs. Data Rate (5 and 3.3 V Operation)  
28  
Preliminary Rev. 0.6  
Si88x4x  
Figure 20. Propagation Delay vs. Temperature  
Preliminary Rev. 0.6  
29  
Si88x4x  
Figure 21. Efficiency vs. Load Current over  
Temperature (3.3 to 3.3 V)  
Figure 22. Efficiency vs. Load Current over  
Temperature (3.3 to 5.0 V)  
Figure 23. Efficiency vs. Load Current over  
Temperature (5.0 to 3.3 V)  
Figure 24. Efficiency vs. Load Current over  
Temperature (5.0 to 5.0 V)  
30  
Preliminary Rev. 0.6  
Si88x4x  
V: 1V/div  
H: 2ms/div  
V: 1V/div  
H: 2ms/div  
Figure 25. 5 V–5 V VOUT Startup vs.Time  
(No Load)  
Figure 26. 5 V–5 V VOUT Startup vs.Time  
(10 mA Load Current)  
V: 1V/div  
H: 2ms/div  
V: 1V/div  
H: 5ms/div  
Figure 27. 5 V–5 V VOUT Startup vs.Time  
(50 mA Load Current)  
Figure 28. 5 V–5 V VOUT Startup vs.Time  
(400 mA Load Current)  
Preliminary Rev. 0.6  
31  
Si88x4x  
Figure 29. 5 V–5 V VOUT Load Transient Response, 10% to 90% Load  
Figure 30. Typical I-V Curve for VREGA/B  
32  
Preliminary Rev. 0.6  
Si88x4x  
4. Pin Descriptions  
20  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
1
2
3
4
5
6
GNDB  
20  
1
GNDP  
GNDB  
19  
18  
VDDB  
DNC  
19 VDDB  
VSW  
VDDP  
VDDA  
GNDA  
SH  
2
3
4
5
6
18  
DNC  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
B1  
14  
7
8
A1  
B1  
14  
7
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
12 B3  
A2  
13 B2  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A3  
9
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
B4  
HF  
XMTR  
HF  
RCVR  
A4  
11  
10  
A4  
10  
Si88241  
Si88240  
20  
1
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
20  
1
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
VDDB  
19  
18  
2
3
4
5
6
VDDB  
DNC  
19  
2
3
4
5
6
18 DNC  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
15 COMP  
15 COMP  
B1  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
B1  
14  
7
8
A1  
14  
13 B2  
7
8
HF  
RCVR  
HF  
XMTR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
A2  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A4  
10  
A4  
10  
Si88243  
Si88242  
20  
19  
18  
1
2
3
4
5
6
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
SH  
GNDB  
VDDB  
DNC  
17 NC  
VSNS  
16  
15 COMP  
HF  
RCVR  
HF  
XMTR  
A1  
B1  
14  
7
8
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
A4  
10  
Si88244  
Figure 31. Si8824x Pin Configurations  
Preliminary Rev. 0.6  
33  
Si88x4x  
24  
23  
22  
24  
23  
22  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
VDDB  
DNC  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
VDDB  
DNC  
21 NC  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
SH_FC  
SS  
SH_FC  
SS  
18  
18  
NC  
NC  
8
8
17  
16  
17  
16  
NC  
B1  
NC  
B1  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
A1  
A2  
A3  
A4  
9
9
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
15 B2  
14 B3  
10  
15 B2  
14 B3  
10  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
11  
12  
11  
12  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
B4  
13  
B4  
13  
Si88340  
Si88341  
24  
24  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
GNDP  
VSW  
VDDP  
VDDA  
GNDA  
NC  
GNDB  
23  
23  
VDDB  
DNC  
VDDB  
DNC  
22  
22  
21 NC  
21 NC  
VSNS  
VSNS  
20  
20  
19 COMP  
19 COMP  
SH_FC  
SS  
SH_FC  
SS  
18  
18  
NC  
NC  
8
9
8
9
17  
17  
NC  
NC  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
B1  
A1  
B1  
16  
15 B2  
16  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
A2 10  
A2 10  
15 B2  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A3  
11  
A3  
11  
B3  
B4  
B3  
B4  
14  
13  
14  
13  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A4  
A4  
12  
12  
Si88342  
Si88343  
24  
1
2
3
4
5
6
7
GNDP  
GNDB  
23 VDDB  
VSW  
VDDP  
VDDA  
GNDA  
NC  
22  
DNC  
21 NC  
VSNS  
20  
19 COMP  
SH_FC  
SS  
18  
17  
NC  
NC  
B1  
8
HF  
RCVR  
HF  
XMTR  
A1  
A2  
A3  
A4  
16  
9
HF  
RCVR  
HF  
XMTR  
15 B2  
14 B3  
10  
11  
12  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
B4  
13  
Si88344  
Figure 32. Si8834x Pinout Diagrams  
34  
Preliminary Rev. 0.6  
Si88x4x  
20  
19  
18  
20  
1
2
3
4
5
6
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
GNDP  
RSN  
GNDB  
19  
18  
VDDB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
ESW  
VDDA  
GNDA  
VREGA  
A1  
VREGB  
17 NC  
17 NC  
VSNS  
VSNS  
16  
16  
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B1  
B1  
14  
14  
7
8
7
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A2  
13 B2  
A2  
13 B2  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A3  
A3  
B3  
B4  
B3  
B4  
9
12  
11  
9
12  
11  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
A4  
A4  
10  
10  
Si88440  
Si88441  
20  
19  
18  
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
20  
19  
18  
1
2
3
4
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
ESW  
VDDA  
GNDA  
VREGA  
A1  
ESW  
VDDA  
GNDA  
VREGA  
A1  
17 NC  
17 NC  
VSNS  
16  
VSNS  
16  
5
6
15 COMP  
15 COMP  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
B1  
14  
7
8
B1  
14  
7
8
9
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
A3  
B3  
B4  
12  
11  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
10  
A4  
A4 10  
Si88442  
Si88443  
20  
1
2
3
4
5
6
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
19  
18  
ESW  
VDDA  
GNDA  
VREGA  
A1  
17 NC  
VSNS  
16  
15 COMP  
HF  
RCVR  
HF  
XMTR  
B1  
14  
7
8
HF  
RCVR  
HF  
XMTR  
A2  
13 B2  
HF  
RCVR  
HF  
XMTR  
A3  
B3  
B4  
12  
11  
9
HF  
RCVR  
HF  
XMTR  
A4  
10  
Si88444  
Figure 33. Si8844x Pinout Diagrams  
Preliminary Rev. 0.6  
35  
Si88x4x  
24  
24  
1
2
3
4
1
2
3
4
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
23  
23  
22  
22  
ESW  
ESW  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
VSNS  
20  
20  
5
6
7
5
6
7
19 COMP  
19 COMP  
18  
18  
NC  
NC  
8
8
17  
17  
NC  
NC  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A4  
B1  
16  
A1  
A2  
A3  
A4  
B1  
9
16  
15 B2  
9
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
15 B2  
14 B3  
10  
10  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
11  
12  
14  
13  
B3  
B4  
11  
12  
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
B4  
13  
Si88640  
Si88641  
24  
24  
23  
22  
1
2
3
4
1
2
3
4
GNDP  
RSN  
GNDB  
GNDP  
RSN  
GNDB  
VDDB  
VREGB  
23  
VDDB  
22  
ESW  
VREGB  
ESW  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
VSNS  
20  
20  
5
6
7
5
6
7
19 COMP  
19 COMP  
18  
17  
18  
17  
NC  
NC  
B1  
NC  
NC  
B1  
8
8
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
A1  
A2  
A3  
A1  
A2  
A3  
16  
9
16  
9
HF  
XMTR  
HF  
RCVR  
HF  
RCVR  
HF  
XMTR  
15 B2  
15 B2  
14 B3  
10  
11  
10  
11  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
B3  
B4  
14  
13  
HF  
RCVR  
HF  
XMTR  
HF  
RCVR  
HF  
XMTR  
B4  
A4 12  
13  
A4 12  
Si88642  
Si88643  
24  
1
2
3
4
GNDP  
GNDB  
23  
22  
RSN  
ESW  
VDDB  
VREGB  
VDDA  
GNDA  
VREGA  
SH_FC  
SS  
21 NC  
VSNS  
20  
5
6
7
19 COMP  
18  
NC  
8
17  
NC  
HF  
RCVR  
HF  
XMTR  
A1  
A2  
A3  
A4  
B1  
16  
9
HF  
RCVR  
HF  
XMTR  
15 B2  
14 B3  
10  
HF  
RCVR  
HF  
XMTR  
11  
12  
HF  
RCVR  
HF  
XMTR  
B4  
13  
Si88644  
Figure 34. Si8864x Pinout Diagrams  
36  
Preliminary Rev. 0.6  
Si88x4x  
Table 12. Si88x4x Pin Descriptions  
Pin Name  
DC-DC Input Side  
Description  
VDDP  
VREGA  
GNDP  
ESW  
Power stage primary power supply.  
Voltage reference output for external voltage regulator pin.  
Power stage ground.  
Power stage external switch driver output.  
Power stage internal switch output.  
Soft startup control.  
VSW  
SS  
SH, SH_FC  
RSN  
Shutdown and Switch frequency control.  
Power stage current sense input.  
DC-DC Output Side  
VSNS  
Power stage feedback input.  
Power stage compensation.  
COMP  
VREGB  
Voltage reference output for external voltage regulator pin.  
Do not connect; leave open.  
DNC  
NC  
No connect; this pin is not connected to the silicon.  
Digital Isolator VDDA Side  
VDDA  
Primary side signal power supply.  
I/O signal channel 1–4.  
A1–A4  
GNDA  
Primary side signal ground.  
Digital Isolator VDDB Side  
VDDB  
B1–B4  
GNDB  
Secondary side signal power supply.  
I/O signal channel 1–4.  
Secondary side signal ground.  
Preliminary Rev. 0.6  
37  
Si88x4x  
5. Ordering Guide  
Table 13. Si88x4x Ordering Guide1,2,3,4  
Soft Start Frequency External Forward  
Part #  
DC-DC  
Shutdown  
Product Options Available Now  
Reverse  
Digital  
Package  
Control  
Control  
Switch  
Digital  
Si88240ED-IS  
Si88241ED-IS  
Si88242ED-IS  
Si88243ED-IS  
Si88244ED-IS  
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
4
3
2
1
0
0
1
2
3
4
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
Contact Silicon Labs for Availability  
Si88240BD-IS  
Si88241BD-IS  
Si88242BD-IS  
Si88243BD-IS  
Si88244BD-IS  
Si88340ED-IS  
Si88341ED-IS  
Si88342ED-IS  
Si88343ED-IS  
Si88344ED-IS  
Si88440ED-IS  
Si88441ED-IS  
Si88442ED-IS  
Si88443ED-IS  
Si88444ED-IS  
Si88640ED-IS  
Si88641ED-IS  
Si88642ED-IS  
Si88643ED-IS  
Si88644ED-IS  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
Y
Y
Y
Y
Y
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
4
3
2
1
0
4
3
2
1
0
4
3
2
1
0
4
3
2
1
0
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-20  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
WB SOIC-24  
Notes:  
1. All packages are RoHS-compliant with peak solder reflow temperatures of 260 °C according to the JEDEC industry  
standard classifications.  
2. “Si” and “SI” are used interchangeably.  
3. AEC-Q100 qualified.  
4. All Si88xxxEx product options are default output high on input power loss. All Si88xxxBx product options are default low.  
See "3. Digital Isolator Device Operation" on page 25 for more details about default output behavior.  
38  
Preliminary Rev. 0.6  
Si88x4x  
6. Package Outline: 20-Pin Wide Body SOIC  
Figure 35 illustrates the package details for the 20-pin wide-body SOIC package. Table 14 lists the values for the  
dimensions shown in the illustration.  
Figure 35. 20-Pin Wide Body SOIC  
Preliminary Rev. 0.6  
39  
Si88x4x  
Table 14. 20-Pin Wide Body SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
12.80 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AC.  
4. Recommended reflow profile per JEDEC J-STD-020C specification for small body,  
lead-free components.  
40  
Preliminary Rev. 0.6  
Si88x4x  
7. Land Pattern: 20-Pin SOIC  
Figure 36 illustrates the PCB land pattern details for the 20-pin SOIC package. Table 15 lists the values for the  
dimensions shown in the illustration.  
Figure 36. 20-Pin SOIC PCB Land Pattern  
Table 15. 24-Pin SOIC PCB Land Pattern Dimensions  
Dimension  
mm  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Notes:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC), and a  
card fabrication tolerance of 0.05 mm is assumed.  
Preliminary Rev. 0.6  
41  
Si88x4x  
8. Package Outline: 24-Pin Wide Body SOIC  
Figure 37 illustrates the package details for the 24-pin wide-body SOIC package. Table 16 lists the values for the  
dimensions shown in the illustration.  
Figure 37. 24-Pin Wide Body SOIC  
42  
Preliminary Rev. 0.6  
Si88x4x  
Table 16. 24-Pin Wide Body SOIC Package Diagram Dimensions  
Dimension  
Min  
Max  
2.65  
0.30  
A
A1  
A2  
b
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
15.40 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AD.  
4. Recommended reflow profile per JEDEC J-STD-020 specification for small body,  
lead-free components.  
Preliminary Rev. 0.6  
43  
Si88x4x  
9. Land Pattern: 24-Pin SOIC  
Figure 38 illustrates the PCB land pattern details for the 24-pin SOIC package. Table 17 lists the values for the  
dimensions shown in the illustration.  
Figure 38. 24-Pin SOIC PCB Land Pattern  
Table 17. 24-Pin SOIC PCB Land Pattern Dimensions  
Dimension  
mm  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Notes:  
1. This Land Pattern Design is based on IPC-7351 design guidelines for  
Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC), and a  
card fabrication tolerance of 0.05 mm is assumed.  
44  
Preliminary Rev. 0.6  
Si88x4x  
10. Top Markings  
10.1. Si88x4x Top Marking (20-Pin Wide Body SOIC)  
10.2. Top Marking Explanation (20-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si88x4 = 5 kV rated 4 channel digital isolator with dc-dc  
converter  
X = 2, 4  
2 = dc-dc shutdown  
4 = External FET  
Y = Number of reverse channels  
Z = E, B  
See Ordering Guide for more  
information.  
E = default high  
B = default low  
R = D  
D = 5 kVrms isolation rating  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order  
form.  
Circle = 1.5 mm Diameter  
(Center Justified)  
“e4” Pb-Free Symbol  
Country of Origin  
TW = Taiwan  
ISO Code Abbreviation  
Preliminary Rev. 0.6  
45  
Si88x4x  
10.3. Si88x4x Top Marking (24-Pin Wide Body SOIC)  
10.4. Top Marking Explanation (24-Pin Wide Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si88x4 = 5kV rated 4 channel digital isolator with dc-dc  
converter  
X = 3, 6  
3 = Full-featured dc-dc with internal FET  
6 = Full-featured dc-dc with external FET  
Y = Number of reverse channels  
Z = E, B  
See Ordering Guide for more  
information.  
E = default high  
B = default low  
R = D  
D = 5 kVrms isolation rating  
Line 2 Marking:  
Line 3 Marking:  
YY = Year  
WW = Workweek  
Assigned by the Assembly House. Corresponds to the  
year and workweek of the mold date.  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order  
form.  
Circle = 1.5 mm Diameter  
(Center Justified)  
“e4” Pb-Free Symbol  
Country of Origin  
TW = Taiwan  
ISO Code Abbreviation  
46  
Preliminary Rev. 0.6  
Si88x4x  
DOCUMENT CHANGE LIST  
Revision 0.5 to Revision 0.6  
Reformatted figures.  
Corrected typos.  
Added text for clarity.  
Preliminary Rev. 0.6  
47  
Si88x4x  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
Patent Notice  
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-  
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-  
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-  
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
48  
Preliminary Rev. 0.6  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY