SI8901D-A02-GSR [SILICON]

ADC, Successive Approximation,;
SI8901D-A02-GSR
型号: SI8901D-A02-GSR
厂家: SILICON    SILICON
描述:

ADC, Successive Approximation,

转换器
文件: 总33页 (文件大小:1548K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si8900/1/2  
ISOLATED MONITORING ADC  
Features  
ADC  
3 input channels  
Temperature range:  
–40 to +85 °C  
10-bit resolution  
>60-year life at rated working  
2.5 µs conversion time  
Isolated serial I/O port  
voltage  
CSA component notice 5A  
UART (Si8900)  
approval  
I2C/SMbus (Si8901)  
2 MHz SPI port (Si8902)  
Transient immunity:  
45 kV/µs (typ)  
IEC 60950, 62368, 60601  
VDE 0884-10  
UL1577 recognized  
Up to 5 kVrms for 1 minute  
Ordering Information:  
See page 27.  
Applications  
Pin Assignments  
I s o la t e d d a t a a c q u is it io n  
AC mains monitor  
Solar inverters  
Isolated temp/humidity sensing  
Switch mode power systems  
Telemetry  
VDDA  
VREF  
AIN0  
VDDB  
NC  
Description  
NC  
AIN1  
Rx  
Si8900  
Si8901  
Si8902  
The Si8900/1/2 series of isolated monitoring ADCs are useful as linear  
signal galvanic isolators, level shifters, and/or ground loop eliminators in  
many applications including power-delivery systems and solar inverters.  
These devices integrate a 10-bit SAR ADC subsystem, supervisory state  
Tx  
AIN2  
NC  
NC  
RST  
VDDB  
GNDB  
GNDA  
2
machine and isolated UART (Si8900), I C/SMbus port (Si8901), or SPI  
Port (Si8902) in a single package. Based on Silicon Labs’ proprietary  
CMOS isolation technology, ordering options include a choice of 2.5 or  
5 kV isolation ratings. All products are safety certified by UL, CSA, and  
VDE. The Si8900/1/2 devices offer a typical common-mode transient  
immunity performance of 45 kV/µs for robust performance in noisy and  
high-voltage environments. Devices in this family are available in 16-pin  
SOIC wide-body packages.  
VDDA  
VREF  
AIN0  
VDDB  
NC  
NC  
AIN1  
SCL  
SDA  
NC  
AIN2  
RST  
RSDA  
GNDA  
VDDB  
GNDB  
Safety Approval  
UL 1577 recognized  
U p t o 5 k V r m s f o r 1 m i n u t e  
CSA component notice 5A  
approval  
VDE certification conformity  
VDE 0884-10  
VDDA  
RST  
VDDB  
NC  
NC  
SDO  
SCLK  
SDI  
VREF  
AIN0  
AIN1  
AIN2  
GNDA  
IEC 60950, 62368, 60601  
EN  
VDDB  
GNDB  
Rev. 1.2 4/19  
Copyright © 2019 by Silicon Laboratories  
Si8900/1/2  
Si8900/1/2  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
2. Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
4. ADC Data Transmission Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.1. Demand Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4.2. Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.3. Multiple Channel Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.4. UART (Si8900) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2
4.5. I C/SMBus (Si8901) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4.6. SPI Port (Si8902) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.7. Master Controller Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5. Si8900/1/2 Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
6. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.1. Isolated Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6.2. Device Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6.3. Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
7. Device Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
9. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
10. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
11. Top Marking: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
11.1. Si8900/1/2 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
11.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Rev. 1.2  
2
Si8900/1/2  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
Condition  
Min  
2.7  
Typ  
Max  
3.6  
Unit  
V
Input Side Supply Voltage  
Input Side Supply Current  
V
With respect to GNDA  
DDA  
DDA  
I
V
= 3.3 V, Si890x active  
10  
13.3  
11.4  
5.5  
mA  
DDA  
V
= 3.3 V, Si890x idle  
8.6  
DDA  
Output Side Supply Voltage  
Output Side Supply Current  
V
With respect to GNDB  
= 3.3 V to 5.5 V, Si890x active  
2.7  
V
DDB  
I
V
4.4  
3.3  
5.8  
mA  
DDB  
DDB  
V
= 3.3 V to 5.5 V, Si890x idle  
3.9  
DDB  
Operating Temperature  
T
–40  
+85  
°C  
A
Table 2. Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
ADC  
Resolution  
R
10  
bits  
LSB  
LSB  
Integral Nonlinearity  
INL  
DNL  
VREF = 2.4 V  
±0.5  
±0.5  
±1  
±1  
Differential Nonlinearity  
VREF = 2.4 V,  
Guaranteed Monotonic  
Offset Error  
OFS  
FSE  
–2  
–2  
0
0
0
+2  
+2  
LSB  
LSB  
ppm/°C  
V
Full Scale Error  
Offset Tempco  
T
45  
OS  
Input Voltage Range  
Sampling Capacitance  
Input MUX Impedance  
V
V
REF  
IN  
C
5
5
pF  
IN  
R
k  
MUX  
Power Supply  
Rejection  
PSRR  
–70  
dB  
Reference Voltage  
V
Default V  
= V  
0
12  
V
V
REF  
REF  
DDA  
DDA  
VREF Supply Current  
ADC Conversion Time  
I
µA  
µs  
VREF  
t
2.5  
CONV  
Rev. 1.2  
3
Si8900/1/2  
Table 2. Electrical Specifications (Continued)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reset and Undervoltage Lockout  
Power-on RESET  
Voltage Threshold High  
VRSTH  
1.7  
1.8  
1
V
V
Power-on RESET  
Voltage Threshold Low  
VRSTL  
VDDA Power-On Reset Ramp  
Time  
tRAMP Time from VDDA = 0 V  
to VDDA > VRST  
ms  
Power-On Reset  
Delay Time  
tPOR  
tRAMP < 1 ms  
0.3  
ms  
Output Side UVLO Threshold  
UVLO  
H
2.3  
V
Output side UVLO  
Hysteresis  
100  
mV  
Digital Inputs  
Logic High Level Input Voltage  
Logic Low Level Input Voltage  
Logic Input Current  
V
0.7 x V  
0.6  
+10  
V
V
IH  
DDB  
V
IL  
I
VIN = 0 V or V  
–10  
µA  
pF  
IN  
DD  
Input Capacitance  
C
15  
IN  
Digital Outputs  
Logic High Level Output Voltage  
V
V
= 5 V,  
= –4 mA  
V
V
– 0.4  
4.8  
3.1  
0.2  
50  
V
V
V
OH  
DDB  
DDB  
DDB  
I
OH  
V
= 3.3 V,  
= –4 mA  
– 0.4  
DDB  
I
OH  
Logic Low Level Output Voltage  
V
V
= 3.3 to 5 V,  
= 4 mA  
0.4  
OL  
DDB  
I
OL  
Digital Output Source  
Impedance  
R
OUT  
Serial Ports  
UART Bit Rate  
60  
500  
240  
kbps  
kbps  
2
SMBus/I C Bit Rate  
Slave  
Address = 1111000x  
SPI Port Bit Rate  
Mode 3: CPOL = 1,  
CPHA = 1  
2
Mbps  
4
Rev. 1.2  
Si8900/1/2  
Table 2. Electrical Specifications (Continued)  
Parameter  
SPI Port Timing  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
EN Falling Edge to SCLK Rising  
Edge  
t
80  
ns  
SE  
Last Clock Edge to /EN Rising  
EN Falling to SDO Valid  
SCLK High Time  
t
80  
160  
ns  
ns  
ns  
ns  
ns  
ns  
SD  
t
SEZ  
t
200  
200  
80  
CKH  
SCLK Low Time  
t
CKL  
SDI Valid to SCLK Sample Edge  
t
SIS  
SCLK Sample Edge to SDI  
Change  
t
80  
SIH  
SCLK Shift Edge to SDO  
Change  
t
160  
ns  
SOH  
EN  
tSE  
tCKL  
tSD  
SCLK  
tCLKH  
tSIS  
tSIH  
SDI  
tSOH  
tSEZ  
tSDZ  
SDO  
Figure 1. SPI Port Timing Characteristics  
Rev. 1.2  
5
Si8900/1/2  
Table 3. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
WB SOIC-16  
Unit  
IC Junction-to-Air Thermal Resistance  
100  
ºC/W  
JA  
500  
450  
VDDA, VDDB = 2.70 V  
400  
370  
V
DDA, VDDB = 3.6 V  
300  
220  
200  
VDDA, VDDB = 5.5 V  
100  
0
0
50  
100  
Temperature (ºC)  
150  
200  
Figure 2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values  
with Ambient Temperature  
6
Rev. 1.2  
Si8900/1/2  
Table 4. Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
Min  
–65  
–40  
–0.5  
–0.5  
–0.5  
Typ  
Max  
150  
Unit  
°C  
°C  
V
T
STG  
Ambient Temperature under Bias  
Input-Side Supply Voltage  
Output-Side Supply Voltage  
Input/Output Voltage  
T
85  
A
V
6.0  
DDA  
DDB  
V
6.0  
V
V
VDD +0.5  
10  
V
I
Output Current Drive  
I
mA  
°C  
O
Lead Solder Temperature (10 s)  
Maximum Isolation Voltage  
260  
6500  
V
RMS  
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability.  
Rev. 1.2  
7
Si8900/1/2  
2. Regulatory Information  
The Si8900/1/2 family is certified by Underwriters Laboratories, CSA International, and VDE. Table 5 summarizes  
the certification levels supported.  
Table 5. Regulatory Information  
CSA  
The Si89xx is certified under CSA Component Acceptance Notice 5A. For more details, see Master Contract Number 232873.  
62368-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.  
VDE  
The Si89xx is certified according to VDE 0884-10. For more details, see File 5006301-4880-0001.  
0884-10: Up to 1200 Vpeak for basic insulation working voltage.  
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.  
UL  
The Si89xx is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 5000 VRMS isolation voltage for basic protection.  
8
Rev. 1.2  
Si8900/1/2  
3. Functional Description  
The Si8900/1/2 (Figure 3) are isolated monitoring ADCs that convert input signals into digital format and transmit  
the resulting data through an on-chip isolated serial port to an external master processor (typically a  
microcontroller). The Si890x access protocol is simple: The master configures and controls the start of ADC  
conversion by writing a configuration register (CNFG_0) Command Byte to the Si890x. The master then acquires  
ADC conversion data by reading the Si890x serial port. Devices in this series differ only in the type of serial port.  
2
Options include a UART with on-chip baud rate generator that operates at 500 kbps max (Si8900), an SMBus/I C  
port that operates at 240 kbps max (Si8901), and an SPI Port that operates at 2 MHz max (Si8902).  
The integrated ADC subsystem consists of a three-channel analog input multiplexer (MUX) followed by a series  
gain amplifier (selectable 1x or 0.5x gain) and 10-bit SAR ADC. Serial-port-accessible ADC options allow the user  
to select VDDA or a different reference voltage applied to the VREF pin, set the programmable gain amplifier  
(PGA), and select the ADC MUX address. The master can configure the Si890x to return ADC data on-demand  
(Demand Mode) or continuously (Burst Mode). For more information, see " CNFG_0 Command Byte" on page 20.  
The RST pin on the input side resets the state machine. For the Si8901, the RSDA pin connects to an external  
pullup resistor to VDDA to allow operation of I2C/SMBus communication.  
Rev. 1.2  
9
Si8900/1/2  
VDDA  
VDDB  
AIN0  
AIN1  
Tx  
Rx  
10Bit  
ADC  
Tx Data  
MUX  
PGA  
UART  
AIN2  
VREF  
VREF  
All  
Blocks  
GNDB  
ADC Subsystem  
ISOLATION  
State Machine/  
User Registers  
RST  
GNDA  
Si8900  
VDDA  
VDDB  
AIN0  
AIN1  
SDA  
SCL  
10Bit  
ADC  
Tx Data SMBus/  
I2C  
MUX  
PGA  
All  
Blocks  
AIN2  
VREF  
GNDB  
ADC Subsystem  
VREF  
RST  
ISOLATION  
State Machine/  
User Registers  
RSDA  
GNDA  
Si8901  
VDDA  
VDDB  
SCK  
SDI  
AIN0  
AIN1  
10Bit  
ADC  
Tx Data  
MUX  
PGA  
SPI Port  
SDO  
EN  
AIN2  
VREF  
VREF  
All  
Blocks  
ADC Subsystem  
GNDB  
ISOLATION  
RST  
State Machine/  
User Registers  
GNDA  
Si8902  
Figure 3. Si8900/1/2 Block Diagrams  
10  
Rev. 1.2  
Si8900/1/2  
4. ADC Data Transmission Modes  
The Si890x ADC performs conversions by exercising the serial port. Each of the three channels can be in Demand  
Mode (MODE=1) or Burst Mode (MODE=0). Upon power cycle or reset, all channels are initialized to Demand  
Mode. The CNFG=0 command byte can be used to switch a channel between Demand and Burst modes. Demand  
Mode ADC conversions are initiated by Demand Mode CNFG=0 commands. Once a channel is in Burst Mode,  
ADC conversions are initiated by byte reads of the serial port. An advantage of Burst Mode is the conversion time  
of each ADC sample is masked by the time it takes to read data bytes on the serial port. An advantage of Demand  
Mode over multiple channels in Burst Mode is the master controller will dictate which ADC channel is sampled  
immediately.  
4.1. Demand Mode  
Master to Slave  
Slave to Master  
Master writes CNFG_0  
Command Byte to Si8900 Rx  
CNFG_0  
Command  
Byte  
tCONV  
MODE = 1  
CNFG_0  
Command  
ADC_H  
ADC_L  
Byte  
Master reads updated CNFG_0 and ADC  
Data From Si8900 (Tx output)  
B) Si8900 Demand Mode ADC Read  
Master to Slave  
Slave to Master  
Master writes Slave Address and  
CNFG_0 Command Byte to Si8901 SDA  
CNFG_0  
Command  
Byte  
Slave  
Address  
Slave Address  
tCONV  
MODE = 1  
CNFG_0  
Command  
ADC_H  
ADC_L  
Byte  
Master reads Slave Address, updated CNFG_0  
and ADC Data from Si 8901(SDA pin)  
C) Si8901 Demand Mode ADC Read  
Master writes CNFG_0  
Command Byte to Si8902SDI  
Master to Slave  
Slave to Master  
CNFG_0  
Command  
Byte  
tCONV  
MODE = 1  
CNFG_0  
Command  
Byte  
ADC_H  
ADC_L  
The master must wait 8µS  
(trackandhold time) before  
reading ADC data packet .  
Master reads updated CNFG_0 and  
ADC Data from Si8902 SDO  
D) Si8902 Demand Mode ADC Read  
Figure 4. ADC Demand Mode Operation  
Rev. 1.2  
11  
Si8900/1/2  
Referring to Figure 4A, a Demand Mode ADC read is initiated when the master writes a Command Byte to the  
Si8900. Upon receipt of the Command Byte, the Si8900 updates its CNFG_0 register and triggers the start of an  
ADC conversion, at which time the master may immediately begin reading ADC conversion data from the Si8900  
UART. The ADC conversion data packet contains an echo of the Command Byte for verification and two-bytes of  
ADC conversion data. The Si8901 (Figure 4B) ADC read transaction is identical to that of the Si8900 with the  
2
exception of the added I C/SMBus Slave Address byte (Si8901 Slave Address is 0xF0). For the slower UART and  
2
I C, the required tconv delay is consumed by reading the echo command byte. Since SPI supports the fastest data  
rate, the master controller may need to delay before reading the SPI port. If the SPI read request occurs before  
valid data is available, the Si8902 will output 0xFF bytes until valid data is available. The Si8902 Demand Mode  
ADC read transaction (Figure 4C) is the same as that of the Si8900, except the master must wait 8 µs after the  
transmission of the Command Byte before reading the Si8902 SPI port because byte transmission time is two  
times shorter versus the Si8900/01.  
4.2. Burst Mode  
Figure 5 shows the byte sequence for a channel operating in Burst Mode. A channel is switched from Demand  
Mode to Burst Mode by writing a command CNFG_0 byte with MODE=0. Placing a channel in Burst Mode negates  
the need to write subsequent CNFG_0 commands to initiate ADC conversions. At all serial port communication  
speeds, the tconv is masked by the data rate of the data byte reads. Like the Demand Mode example, the Si8901  
has a Slave Address byte prior to the CNFG_0 Command Byte. When using the Si8901, the master must write the  
2
I C port address prior to reading the serial port. The Si8902 Burst Mode (Figure 5C) is similar to that of the Si8900/  
1, except the master must wait 8 µs before reading the first Burst Mode ADC data packet. After reading the first  
Burst Mode ADC data packet, the master may read all ADC data packets that follow without delay.  
12  
Rev. 1.2  
Si8900/1/2  
Master writes CNFG_0  
Command Byte to Si8900 Rx  
CNFG_0  
Command  
Byte 0  
MODE = 0  
Master to Slave  
Slave to Master  
tCONV  
tCONV  
tCONV  
CNFG_0  
Command  
Byte  
ADC_H  
Data  
ADC_H  
Data  
ADC_L  
Data  
ADC_L  
Data  
Master reads updated CNFG_0 Command Byte and ADC data from Si8900 Tx  
A) Si8900 ADC Burst Mode (MODE = 0)  
Master writes Slave Address & CNFG_0  
Command Byte to Si8901 SDA  
CNFG_0  
Command  
Byte 0  
Slave Addrress  
Write  
MODE = 0  
tCONV  
tCONV  
tCONV  
CNFG_0  
Command  
Byte  
Master to Slave  
ADC_H  
Data  
ADC_H  
Data  
Slave Address  
Read  
ADC_L  
Data  
ADC_L  
Data  
Slave to Master  
Master reads Slave Address, updated CNFG_0 and ADC data from Si8901 SDA  
B) Si8901 ADC Burst Mode (MODE = 0)  
Master writes CNFG_0 Command  
Byte to Si8902 SDI  
CNFG_0  
Command  
Byte  
Master to Slave  
Slave to Master  
tCONV  
tCONV  
tCONV  
MODE = 0  
CNFG_0  
Command  
Byte  
ADC_H  
Data  
ADC_H  
Data  
ADC_L  
Data  
ADC_L  
Data  
Master reads updated CNFG_0 and ADC data from Si8902 SDO  
C) Si8902 ADC Burst Mode (MODE = 0)  
Figure 5. ADC Burst Mode Operation  
Rev. 1.2  
13  
Si8900/1/2  
4.3. Multiple Channel Burst Mode  
It is possible to set any channel from Demand to Burst Mode and any Burst Mode Channel back to Demand Mode.  
However, CNFG_0 command byte can only write to one channel at a time. To operate two or more channels in  
Burst Mode, first set one channel to Burst Mode. This will enable the first Burst Channel operation. The master  
controller will then need to set additional channels to Burst Mode by writing another CNFG_0 command byte.  
For the Si8901, communication is half duplex. Therefore, the data reads of a previously set burst channel must be  
interrupted by writing a new CNFG_0 command to set the additional channel to Burst Mode.  
For the Si8900 and Si8902, communication is full duplex, and a new CFNG_0 command byte can be written at the  
same time as reading data from a previously set burst channel. Depending on where the new CNFG_0 command  
is received during the burst read, the Si8902 may output data with MX0 = 1 and MX1 = 1 (see “5. Si8900/1/2  
Configuration Registers” ), which does not point to a valid channel. Ignore that ADC_H byte and the following  
ADC_L byte. This is a temporary artifact of having restarted the burst sequence with an additional burst-enabled  
channel. See "4.7. Master Controller Firmware" on page 19.  
To parse the data stream for multiple burst mode channels, the master controller must analyze the MX0 and MX1  
bits of the ADC_H byte. For each ADC_H byte received, the next ADC_L byte received is the second part of that  
channel's data. The Si890x will cycle through all Burst Mode channels sequentially. For example, if channels 0 and  
1 are in Burst Mode, the data read back will have this order: ADC_H (MX1=0, MX0=0), ADC_L, ADC_H (MX1=0,  
MX0=1), ADC_L, ADC_H (MX1=0, MX0=0), ADC_L, and so on.  
14  
Rev. 1.2  
Si8900/1/2  
4.4. UART (Si8900)  
The UART is a two-wire interface (Tx, Rx) and operates as an asynchronous, full-duplex serial port with internal  
auto baud rate generator that measures the period of incoming data stream and automatically adjusts the internal  
baud rate generator to match. The auto baud rate detection and matching optimizes UART timing for minimum bit  
error rate. For more information, see “AN635: Si8900 Automatic Baud Rate Detection”.  
There are a total of 10 bits per data byte: One start bit, eight data bits (LSB first), and one stop bit with data  
transmitted LSB first as shown in Figure 6. Figure 7A and Figure 7B show master/Si8900 ADC read transactions  
for Demand Mode and Burst Mode, respectively.  
MARK  
SPACE  
Start Bit  
D5  
D6  
D7  
D2  
D4  
D0  
D1  
D3  
STOP BIT  
BIT TIMES  
BIT SAMPLING  
Figure 6. UART Data Byte  
Master to Slave  
Slave to Master  
CNFG_0 Write Command Byte  
S
1
1
P
D0 D1 D2 D3 D4 D5 D6 D7  
ADC Data  
S
1
1
P
S
0
1
P
S
0
0 S  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Read Data  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Write Command Byte  
A) Si8900 Demand Mode ADC Read  
S
1
1 P  
D0 D1 D2 D3 D4 D5 D6 D7  
Periodic ADC Data  
1
1
S
P
S
0 1 P S 0  
0 P S  
0 1 P  
S
0
0 P S  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
CNFG_0 Read Data  
D0 D1 D2 D3 D4 D5 D6 D7  
D0 D1 D2 D3 D4 D5 D6 D7  
B) Si8900 Burst Mode ADC Read  
Figure 7. Si8900 ADC Read Operation  
Rev. 1.2  
15  
Si8900/1/2  
2
4.5. I C/SMBus (Si8901)  
2
The I C/SMBus serial port is a two-wire serial bus where data line SDA is bidirectional and clock line SCL is  
2
unidirectional. Reads and writes to this interface by the master are byte-oriented, with the I C/SMBus master  
controlling the serial data rates up to 240 kbps. The SDA and SCL lines must be pulled high through pull-up  
resistors of 5 kor less. An Si8901 ADC read transaction begins with a START condition (“S” or Repeated START  
condition “SR”), which is defined as a high-to-low transition on SDA while SCL is high (Figure 8). The master  
terminates a transmission with a STOP condition (P), defined as a low-to-high transition on SDA while SCL is high.  
The data on SDA must remain stable during the high period of the SCL clock pulse because such changes in either  
line will be interpreted as a control command (e.g., S, P SR). SDA and SCL idle in the high state when the bus is  
not busy. Acknowledge bits (Figure 9) provide detection of successful data transfers, whereas unsuccessful  
transfers conclude with a not-acknowledge bit (NACK). Both the master and the Si8901 generate ACK and NACK  
bits. An ACK bit is generated when the receiving device pulls SDA low before the rising edge of the acknowledged  
related (ninth) SCL pulse and maintains it low during the high period of the clock pulse. A NACK bit is generated  
when the receiver allows SDA to be pulled high before the rising edge of the acknowledged related SCL pulse and  
maintains it high during the high period of the clock pulse. An unsuccessful data transfer occurs if a receiving  
device is busy or if a system fault has occurred. In the event of an unsuccessful data transfer, the bus master  
2
attempts communication at a later time. Figure 10A shows the I C Slave Address Byte and CNFG_0 byte for the  
Si8901. Figure 10B and Figure 10C show master/Si8901 ADC read transactions for Demand Mode and Burst  
Mode, respectively.  
SR  
P
S
SDA  
SCL  
Figure 8. Start and Stop Conditions  
Not Acknowledge (NACK)  
S
SDA  
SCL  
Acknowledge (ACK)  
9
1
2
Figure 9. Acknowledge Cycle  
16  
Rev. 1.2  
Si8900/1/2  
Master to Slave  
Slave to Master  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
1
1
s6 s5 s4 s3 s2 s1 s0  
A
A P  
Si8901 CNFG_0 Write Data  
Si8901 Slave Address  
A) Si8901 CNFG_0 Write  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
s6 s5 s4 s3 s2 s1 s0  
A
1
1
A
P
Si8901 Write  
Slave Address  
Si8901 CNFG_0 Write Data  
ADC Data  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Slave Address = 0xF0  
S
s6 s5 s4 s3 s2 s1 s0  
A
S
1
1
1
0
0
0
A
A
A
P
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Read  
Slave Address  
Si8901 CNFG_0 Read Data  
B) Si8901 Demand Mode ADC Read  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
s6 s5 s4 s3 s2 s1 s0  
Si8901 Slave Address  
S
1
1
A
A P  
Si8901 CNFG_0 Write Data  
Periodic ADC Data  
D7 D6 D5D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
S
A S  
1
1
1
0
0
0
A
s6 s5 s4 s3 s2 s1 s0  
A
A
P
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
Si8901 Read  
Slave Address  
Si8901 CNFG_0  
Read Data  
C) Si8901 Burst Mode ADC Read  
Figure 10. Si8901 ADC Read Operation  
Rev. 1.2  
17  
Si8900/1/2  
4.6. SPI Port (Si8902)  
MASTER  
Si8902  
MOSI  
MISO  
SDI  
SDO  
EN  
SPI Shift Register  
7 6 5 4 3 2 1 0  
SPI Shift Register  
7 6 5 4 3 2 1 0  
Receive Buffer  
Receive Buffer  
Baud Rate  
Generator  
SCLK  
SCLK  
EN or Px.y  
Figure 11. Master Connection to Si8902  
EN  
SCLK  
SDI  
MSB  
MSB  
Bit 6  
Bit 6  
Bit 5  
Bit 5  
Bit 4  
Bit 4  
Bit 3  
Bit 3  
Bit 2  
Bit 2  
Bit 1  
Bit 1  
Bit 0  
Bit 0  
SDO  
Figure 12. Si8902 Data/Clock Relationship  
The Serial Peripheral Interface (SPI port) is a slave mode, full-duplex, synchronous, 4-wire serial bus that connects  
to the master as shown in Figure 11. The master's clock and data timing must match the Si8902 timing shown  
Figure 12 (for more information about clock and data timing, please see the “SPI Port” section of Table 2 on  
page 5).  
As shown in Figure 13, the Si8902 will update output data on SDO with falling SCLK edge and sample data on SDI  
with rising SCLK edge. For idle condition between bytes, EN and SCLK should be held high by the master  
controller. Also, during ADC_H and ADC_L byte reads, the master controller must hold SDI high. The master  
transmits data from its master-out/slave-in terminal (MOSI) to the Si8902 serial read/write input terminal (SDI). The  
Si8902 transmits data to the master from its serial data-out terminal (SDO) to the master-in/slave-out terminal  
(MISO), and data transfer ends when the master returns EN to the high state. Figure 13A shows the Si8902  
CNFG_0 Command Byte format, while Figures 13B and 13C show Si8902 Demand Mode and Burst Mode ADC  
reads.  
The Si8902 SDO pin will either drive low or drive high. It does not go into Hi-Z when EN is deasserted. Therefore,  
a system with multiple SPI slaves should use separate MISO signals to avoid SPI bus contentions.  
18  
Rev. 1.2  
Si8900/1/2  
Master to Slave  
Slave to Master  
D7 D6 D5 D4 D3 D2 D1 D0  
1
1
A) Si8902 CNFG_0 Command Byte  
D7  
D0  
D7  
D0  
8µS  
Delay  
8µS  
Delay  
1
1
SDI High during Read  
1
1
CNFG_0 Write Byte  
CNFG_0 Write Byte  
D7  
D0 D7  
D0 D7  
D0  
D7  
Anew CNFG _0 WriteByte  
and 8µS Delay are required  
to resample a Demand  
Mode Channel  
1
1
1
0
0
0
1
1
CNFG_0 Read Byte  
Demand Channel ADC Sample  
B) Si8902 ADC Demand Mode  
D7  
D0  
D7  
D0  
8µS  
Delay  
SDI High during Idle  
SDI High during Idle  
1
1
1
1
Optional CNFG_0 WriteByteto Enable  
Another Burst Channel or to Placean Existing  
Burst Channel Back to Demand Mode  
CNFG_0 Write Byte  
D7  
D0 D7  
D0 D7  
D0 D7  
D0 D7  
D0  
1
1
1
0
0
0
1
0
0
0
CNFG_0 Read Byte  
Fisrt Burst Channel ADC Sample  
Next Burst Channel ADC Sample  
Periodic ADC Data  
C) Si8902 ADC Burst Mode  
Figure 13. Si8902 ADC Read Operation  
4.7. Master Controller Firmware  
The user's master controller must include firmware to manage the Si890x Demand and Burst operating modes and  
serial port control. For more information on master controller firmware, see “AN637: Si890x Master Controller  
Recommendations”, available for download at www.silabs.com/isolation.  
Rev. 1.2  
19  
Si8900/1/2  
5. Si8900/1/2 Configuration Registers  
CNFG_0 Command Byte  
Bit  
D7  
1
D6  
1
D5  
D4  
D3  
D2  
D1  
MODE  
R/W  
D0  
Name  
Type  
MX1  
R/W  
MX0  
R/W  
VREF  
R/W  
PGA  
R/W  
R/W  
R/W  
R/W  
Bit  
7:6  
5:4  
Name  
Function  
1,1  
Internal use. These bits are always set to 1.  
MX1, MX0 ADC MUX Address.  
ADC MUX address selection is controlled by MX1, MX0 as follows:  
MX1  
MX0  
Selected ADC MUX Channel  
1
1
0
0
1
0
1
0
Not Used  
AIN2  
AIN1  
AIN0  
3
VREF  
ADC Voltage Reference Source  
VDD is selected as the reference voltage when this bit is set to 1. An externally con-  
nected voltage reference generator is selected when this bit is reset to 0.  
2
1
Not used.  
MODE  
ADC Read Mode  
ADC Demand Mode read is enabled when this bit is 1, and Burst Mode is enabled  
when this bit is 0. For more information on Demand and Burst mode operation,  
please see "4. ADC Data Transmission Modes" on page 11.  
0
PGA  
PGA Gain Set  
PGA gain is 1 when this bit is set to 1. PGA gain is 0.5 when this bit is reset to 0.  
ADC_H Byte  
Bit  
D7  
1
D6  
0
D5  
MX1  
R
D4  
MX0  
R
D3  
D9  
R
D2  
D8  
R
D1  
D7  
R
D0  
D6  
R
Name  
Type  
R
R
20  
Rev. 1.2  
Si8900/1/2  
Bit  
7:6  
5:4  
Name  
Function  
1,0  
Internal use. These bits are always set to 1,0.  
MX1, MX0 ADC MUX Address  
ADC input MUX address for the converted data in ADC_H, ADC_L.  
3:0  
D9: D6  
ADC conversion data bits D9:D6  
Most significant 4 bits of ADC conversion data.  
ADC_L Byte  
Bit  
D7  
0
D6  
D5  
R
D5  
D4  
R
D4  
D3  
R
D3  
D2  
R
D2  
D1  
R
D1  
D0  
R
D0  
0
Name  
Type  
R
R
Bit  
7
Name  
0
Function  
Internal use. This bit is always set to 0.  
6:1  
D5:D0  
ADC Conversion Data Bits D5:D0  
Least significant 6 bits of ADC conversion data.  
0
0
Internal use. This bit is always set to 0.  
Rev. 1.2  
21  
Si8900/1/2  
6. Applications  
6.1. Isolated Outputs  
The Si890x serial outputs are internally isolated from the device input side. To ensure safety in the end-user  
application, high voltage circuits (i.e., circuits with >30 VAC) must be physically separated from the safety extra-low  
voltage circuits (i.e., circuits with <30 VAC) by a certain distance (creepage/clearance). If a component straddles  
this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large  
high-voltage breakdown protection rating (commonly referred to as working voltage protection). Tables published in  
the component standards (UL1577, VDE 0884-10, CSA 5A) are readily accepted by certification bodies to provide  
proof for end-system specifications requirements. Refer to the end-system specification (62368-1, 60950-1, 60601-  
1, etc.) requirements before starting any circuit design that uses galvanic isolation. The nominal output impedance  
of a digital output is approximately 50 40%, which is a combination of the on-chip series termination resistor  
and channel resistance of the output driver FET. When driving high-impedance terminated PCB traces, outputs can  
be source terminated to minimize reflection.  
The Si890x supply inputs must be bypassed with a parallel combination of 10 µF and 0.1 µF capacitors at VDDA  
and VDDB as shown in Figure 14A. The 0.1 µF capacitors should be placed as close to the package as possible.  
The Si890x uses the VDDA supply as its internal ADC voltage reference by default. A precision external reference  
can be installed as shown in Figure 14A and must be bypassed with a parallel combination of 0.1 µF and 4.7 µF  
capacitors. (Note that the CNFG_0 VREF bit must be set to 0 when using the external reference.) The Si890x has  
an on-chip power-on-reset circuit (POR) that maintains the device in its reset state until VDDA has stabilized. A  
2 kpull-up resistor and 10 nF capacitor on RST is strongly recommended to reduce the possibility of external  
noise coupling into the reset input. The capacitor slows the rise of voltage on RST during power up. The delay  
ensures a state machine resets on power up. A state machine reset with power on using the RC on RST will suffice  
for most applications. For the master controller to have access to this pin, a single channel Si8610 digital isolator  
can be placed in parallel with the Si890x and connected to the RST input. The Si8901 requires a 5 kpull-up  
resistor to VDDA on the RSDA input.  
Board Edge  
2.7 V to 3.6 V  
2.7 V to 5.5 V  
Si890x  
VDDA  
VDDB  
0.1 µF  
10 µF  
0.1 µF  
10 µF  
VDDA  
Si890x  
VREF  
4.7 µF  
0.1 µF  
VREF  
GNDA  
GNDB  
Optional External VREF  
VDDA  
8 mm  
(min)  
GNDA  
GNDB  
10 nF  
5 KO  
2 KO  
RST  
RSDA  
GNDA  
Required  
for Si8901  
GNDB  
Board Edge  
Keepout Area  
(No metal in this area)  
A
B
Figure 14. Si890x Installation  
Figure 14B shows the required PCB ground configuration, where an 8 mm (min) “keep-out area” is provided to  
ensure adequate creepage and clearance distances between the two grounds. PCB metal traces cannot be  
present or cross through the keep-out area on the PCB top or bottom layer.  
22  
Rev. 1.2  
Si8900/1/2  
6.2. Device Reset  
During power-up, the Si890x is held in the reset state by the internal power-on reset signal (POR) until VDDA  
settles above VRST. When this condition is met, a delay is initiated that maintains the Si890x in the reset state for  
time period tPOR, after which the reset signal is driven high allowing the Si890x to start-up. Note the maximum  
allowable VDD ramp time (i.e. time from 0 V to VDDA settled above VRST) is 1 ms. Slower ramp times may cause  
the Si890x to be released from reset before VDDA reaches the VRST level.  
Figure 15 shows typical VDDA monitor reset timing where the internal reset is driven low (Si890x in reset) when  
VDDA falls below VRST (e.g., during a power down or VDDA brownout). The internal reset is released to its high  
state when VDDA again settles above VRST. External circuitry can also be used to force a reset event by driving  
the external RST input low. A 2 kpull-up resistor on RST is recommended to avoid erroneous reset events from  
external noise coupling to the RST input.  
VDDA  
VRSTH  
VRSTL  
VDDA(min)  
Internal  
RESET  
tPOR  
VDDA  
Monitor  
Reset  
PowerOn Reset  
Figure 15. Si890x Power-on and Monitor Reset  
Rev. 1.2  
23  
Si8900/1/2  
6.3. Application Example  
Figure 16 shows the Si8900 operating as a single-phase ac line voltage and current monitor. The VDDA dc bias  
circuit uses a low-cost 3.3 V linear regulator referenced to the neutral (white wire). The ac current is measured on  
ADC input AIN0. The ac line voltage is scaled by resistors R17 and R18 and level-shifted by the 1.5 V VREF. AC  
line current is measured using differential amplifier U1 connected across shunt resistor R1. Data is transferred to  
the external controller or processor via the isolated UART.  
SinglePhase  
AC Line  
1.5 V  
R2  
R3  
R4  
Si8900  
R1  
AIN0  
AIN1  
R6  
C2  
U1  
Low Cost  
Dual OpAmp  
R5  
R7  
R17  
R11  
C3  
R18  
R8  
TX  
RX  
R9  
R10  
1.5 V  
External  
Master Controller  
C1  
R12  
D1  
U2  
3.3 V  
LDO  
VDDA  
GNDA  
VDDB  
GNDB  
R14  
C5  
C4  
R13  
Output Side  
Bias Supply  
1.5 V  
R15  
Figure 16. AC Line Monitor Application Example  
24  
Rev. 1.2  
Si8900/1/2  
7. Device Pin Assignments  
VDDA  
VREF  
AIN0  
VDDA  
VREF  
AIN0  
VDDA  
RST  
VDDB  
NC  
VDDB  
NC  
VDDB  
NC  
NC  
NC  
NC  
SDO  
AIN1  
VREF  
AIN0  
AIN1  
AIN2  
GNDA  
AIN1  
Rx  
SCL  
SDA  
NC  
SCLK  
Si8900  
Si8901  
Si8902  
Tx  
AIN2  
SDI  
AIN2  
NC  
RST  
NC  
EN  
RST  
RSDA  
GNDA  
VDDB  
GNDB  
VDDB  
GNDB  
VDDB  
GNDB  
GNDA  
Figure 17. Si8900/1/2 Pinout (SOIC-16 WB)  
Table 6. Si8900/1/2 Pin Assignments  
Pin  
Si8900 Si8901 Si8902  
Description  
Pin  
Pin  
Pin  
1
2
VDDA  
Input side VDD bias voltage (typically 3.3 V)  
VREF  
RST Si8900/1: External voltage reference input.  
Si8902: Active low reset.  
3
4
5
6
7
AIN0  
AIN1  
AIN2  
NC  
AIN0  
NC Si8900: ADC analog input channel 0.  
Si8901: ADC analog input channel 0.  
Si8902: No connection  
AIN1 VREF Si8900: ADC analog input channel 1.  
Si8901: ADC analog input channel 1.  
Si8902: External VREF in.  
AIN2  
AIN0 Si8900: ADC analog input channel 2.  
Si8901: ADC analog input channel 2.  
Si8902: ADC analog input channel 0.  
RST  
AIN1 Si8900: No Connection.  
Si8901: Active low reset.  
Si8902: ADC analog input channel 1.  
RST  
RSDA AIN2 Si8900: Active low reset.  
Si8901: RSDA bias resistor (typically 5 k).  
Si8902: ADC analog input channel 2.  
8
GNDA  
GNDB  
VDDB  
Input side ground  
9
Output side ground  
10  
11  
12  
Output side VDD bias voltage (2.7 V to 5.5 V)  
EN Si8900/1: No connection. Si8902: SPI Port Enable.  
SDI Si8900: UART unidirectional transmit output.  
NC  
Tx  
SDA  
2
Si8901: I C bidirectional data input/output.  
Si8902: SPI port serial data in.  
Rev. 1.2  
25  
Si8900/1/2  
Table 6. Si8900/1/2 Pin Assignments (Continued)  
Pin  
Si8900 Si8901 Si8902  
Description  
Pin  
Pin  
Pin  
13  
Rx  
SCL  
SCLK Si8900: UART unidirectional receive input.  
2
Si8901: I C port unidirectional serial clock input.  
Si8902: SPI port unidirectional serial clock input.  
14  
NC  
SDO Si8900/1: No connection.  
Si8902: SPI port Serial data out (SDO)  
15  
16  
NC  
No connection  
VDDB  
Si8900/1/2: Output side VDD bias voltage (2.7 V to 5.5 V).  
26  
Rev. 1.2  
Si8900/1/2  
8. Ordering Guide  
Table 7. Product Ordering Information1,2  
Part Number (OPN)  
Serial Port  
Package  
Isolation Rating  
Temp Range  
Si8900B-A01-GS  
Si8900D-A01-GS  
Si8901B-A02-GS  
Si8901D-A02-GS  
Si8902B-A01-GS  
Si8902D-A01-GS  
Notes:  
UART  
UART  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
WB SOIC  
2.5 kV  
5.0 kV  
2.5 kV  
5.0 kV  
2.5 kV  
5.0 kV  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
–40 to +85 °C  
2
I C/SMBus  
2
I C/SMBus  
SPI Port  
SPI Port  
1. Add an “R” suffix to the part number to specify the tape and reel option. Example: “Si8900AB-A-ISR”.  
2. All packages are RoHS-compliant.  
Rev. 1.2  
27  
Si8900/1/2  
9. Package Outline: 16-Pin Wide Body SOIC  
Figure 18 illustrates the package details for the Si8900/1/2 Digital Isolator. Table 8 lists the values for the  
dimensions shown in the illustration.  
Figure 18. 16-Pin Wide Body SOIC  
28  
Rev. 1.2  
Si8900/1/2  
Table 8. Package Diagram Dimensions  
Millimeters  
Symbol  
Min  
Max  
A
A1  
A2  
b
2.65  
0.30  
0.10  
2.05  
0.31  
0.20  
0.51  
0.33  
c
D
10.30 BSC  
10.30 BSC  
7.50 BSC  
1.27 BSC  
E
E1  
e
L
0.40  
0.25  
0°  
1.27  
0.75  
8°  
h
θ
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.33  
0.10  
0.25  
0.10  
0.20  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise  
noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.  
4. Recommended reflow profile per JEDEC J-STD-020C specification  
for small body, lead-free components.  
29  
Rev. 1.2  
Si8900/1/2  
10. Land Pattern: 16-Pin Wide-Body SOIC  
Figure 19 illustrates the recommended land pattern details for the Si8900/1/2 in a 16-pin wide-body SOIC. Table 9  
lists the values for the dimensions shown in the illustration.  
Figure 19. 16-Pin SOIC Land Pattern  
Table 9. 16-Pin Wide Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
9.40  
1.27  
0.60  
1.90  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN  
for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card  
fabrication tolerance of 0.05 mm is assumed.  
30  
Rev. 1.2  
Si8900/1/2  
11. Top Marking: 16-Pin Wide Body SOIC  
11.1. Si8900/1/2 Top Marking  
Si890XY  
YYWWRTTTTT  
e4  
TW  
11.2. Top Marking Explanation  
Si890 = Isolator product series  
X = Serial Port  
Base Part Number  
0 = UART  
1 = I C  
Ordering Options  
2
Line 1 Marking:  
2 = SPI  
Y = Insulation rating  
(See Ordering Guide for more  
information).  
B = 2.5 kV; D = 5.0 kV  
YY = Year  
WW = Workweek  
Assigned by assembly subcontractor. Corresponds to the  
year and workweek of the mold date.  
Line 2 Marking:  
Line 3 Marking:  
Manufacturing code from assembly house  
“R” indicates revision  
RTTTTT = Mfg Code  
Circle = 1.7 mm Diameter  
(Center-Justified)  
“e4” Pb-Free Symbol  
TW = Taiwan  
Country of Origin ISO Code  
Abbreviation  
Rev. 1.2  
31  
Si8900/1/2  
DOCUMENT CHANGE LIST  
Revision 0.5 to Revision 1.0  
No changes.  
Revision 1.0 to Revision 1.1  
Removed “pending” throughout.  
Changed AN638 reference to AN637.  
Updated "11. Top Marking: 16-Pin Wide Body SOIC" on page 31.  
Revision 1.1 to Revision 1.2  
April, 2019  
Table 1, Changed GND1 to GNDA and GND2 to GNDB.  
Table 2, tconv changed from 2 µs to 2.5 µs.  
Table 2, Digital Outputs, changed min for Voh with VDDB=3.3 V to 3.1 V.  
Table 2, Digital Outputs, added typical for Voh with VDDB=3.3 V to 3.1 V.  
Table 2, Digital Outputs, changed specification name Digital Output Series Impedance to Digital Output Source  
Resistance.  
Table 2, Digital Outputs, changed typical source resistance from 85 to 50 typical.  
Table 2, Serial Ports, changed maximum UART Bit Rate from 234 kbps to 500 kbps.  
Table 2, Serial Ports, changed specification name SPI port to SPI Bit Rate.  
Table 2, Serial Ports, added test condition for SPI Port, Mode 3: CPOL=1, CPHA=1.  
Table 2, Serial Ports, changed maximum SPI Bit Rate from 2 mbps to 2.5 mbps.  
Table 3, Removed data from NB SOIC 16.  
Figure 2, Changed VDD1 and VDD2 to VDDA and VDDB.  
Table 5, Updated certification nomenclature for CSA from 61010-1 to 62368-1, up to 1000 VRMS basic  
insulation working voltage.  
Table 5, Updated certification nomenclature for VDE from IEC 60747-5-2 to VDE 0884-10.  
Removed Figure 3, NB SOIC 16 derating curve.  
Function Description, removed ADC option of internal voltage reference.  
Function Description, described RST and RSDA pin functions.  
Figure 4, Updated Si8902 GND pin names.  
ADC Data Transmission Modes, Updated description of Demand and Burst Modes.  
Figure 5, Showed tconv starting at the end of CNFG_0 byte for Si8901 Demand Mode.  
UART (Si8900), Changed name of AN635 from AC Line Monitoring to Si8900 Automatic Band Rate Detection.  
Figure 8A, Showed proper span of ADC data.  
Figure 11B and 11C, Added ACK bit between slave address and echo CNFG_0 byte.  
Figure 12, Removed EN signal from controlling SDO driver circuit.  
SPI Port (Si8902), Added requirement of SDI being held high during byte reads.  
SPI Port (Si8902), SDO does not enter Hi-Z state with EN function.  
Si8900/1/2 Configuration Registers, removed default setting from registers.  
Applications, Isolated Outputs, recommend a 10 nF capacitor from RST to GNDA for reliable reset on power  
cycle.  
Table 7, updated OPN for Si8901 from revision A01 to A02.  
Table 7, removed Note 3.  
32  
Rev. 1.2  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without  
further notice to the product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Without prior  
notification, Silicon Labs may update product firmware during the manufacturing process for security or reliability reasons. Such changes will not alter the specifications or the performance  
of the product. Silicon Labs shall have no liability for the consequences of use of the information supplied in this document. This document does not imply or expressly grant any license to  
design or fabricate any integrated circuits. The products are not designed or authorized to be used within any FDA Class III devices, applications for which FDA premarket approval is required  
or Life Support Systems without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails,  
can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. Silicon Labs  
disclaims all express and implied warranties and shall not be responsible or liable for any injuries or damages related to use of a Silicon Labs product in such unauthorized applications.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, Gecko  
OS, Gecko OS Studio, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® , Zentri, the Zentri logo and Zentri DMS, Z-Wave®,  
and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered  
trademark of ARM Limited. Wi-Fi is a registered trademark of the Wi-Fi Alliance. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI8901DB-T2-E1

Small Signal Field-Effect Transistor, 2-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, LEAD FREE, MICRO FOOT, 6 PIN
VISHAY

SI8901DB-T2-E3

Transistor
VISHAY

SI8901EDB

Bi-Directional P-Channel 20-V (D-S) MOSFET
VISHAY

SI8901EDB-T2-E3

TRANSISTOR 2 CHANNEL, P-CHANNEL, Si, SMALL SIGNAL, MOSFET, MICRO FOOT, CSP-6, FET General Purpose Small Signal
VISHAY

SI8901EDB_06

Bi-Directional P-Channel 20-V (D-S) MOSFET
VISHAY

SI8902

ISOLATED MONITORING ADC
SILICON

SI8902AEDB-T2-E1

Small Signal Field-Effect Transistor,
VISHAY

Si8902B-A01-GS

ISOLATED MONITORING ADC
SILICON

SI8902B-A01-GSR

ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOIC-16
SILICON

Si8902D-A01-GS

ISOLATED MONITORING ADC
SILICON

SI8902D-A01-GSR

ADC, Successive Approximation, 10-Bit, 1 Func, 3 Channel, Serial Access, CMOS, PDSO16, SOIC-16
SILICON

SI8902EDB

Bi-Directional N-Channel 20-V (D-S) MOSFET
VISHAY