SL28504BZC [SILICON]

Clock Generator for IntelEaglelake Chipset;
SL28504BZC
型号: SL28504BZC
厂家: SILICON    SILICON
描述:

Clock Generator for IntelEaglelake Chipset

文件: 总31页 (文件大小:246K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28504  
Clock Generator for IntelEaglelake Chipset  
• 25MHz Free run for WOL  
Features  
• Selectable 25MHz/24.576MHz  
• Buffered Reference Clock 14.318 MHz  
• Compliant to Intel® CK505  
• Low power push-pull type differential output buffers  
• Integrated voltage regulator  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Integrated resistors on differential clocks  
• Scalable low voltage VDD_IO (3.3V to 1.05V)  
• Differential CPU clocks with selectable frequency  
• 100 MHz Differential SRC clocks  
• 96 MHz Differential DOT clock  
• Triangular Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V Power supply  
• 64-pin TSSOP packages  
CPU  
SRC  
PCI  
x6  
REF  
x 2  
DOT96 USB_48 24.576M 25M  
x 1 x1 x1 x2  
• 48 MHz USB clocks  
x2 / x3  
x8/x11  
• 33 MHz PCI clock  
Pin Configuration  
PCI_0/ CR#_A  
VDD_PCI  
1
64  
SCLK  
2
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
SDATA  
PCI_1 / CR#_B  
PCI_2 / TME  
PCI_3  
3
REF0/FSC/TEST_SEL  
VDD_REF  
4
5
XTAL_IN  
PCI_4 / GCLK_SEL  
PCIF_0 / ITP_EN  
VSS_PCI  
6
XTAL_OUT  
7
VSS_REF  
8
FSB/ TEST_MODE  
CK_PWRGD / PWRDWN#  
VDD_CPU  
VDD_48  
9
USB_48 / FSA  
VSS_48  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CPU0  
VDD_IO  
CPU0#  
SRC0 / DOT96  
SRC0# / DOT96#  
VSS_IO  
VSS_CPU  
CPU1  
CPU1#  
VDD_PLL3  
VDD_CPU_IO  
*SEL_24.576M  
SRC8 / CPU2_ITP  
SRC8# / CPU2_ITP#  
VDD_SRC_IO  
SRC7 / CR#_F  
SRC7# / CR#_E  
VSS_SRC  
SRC1 / 25M0_F  
SRC1#/ 25M1_24.576M  
VSS_PLL3  
SL28504  
VDD_PLL3_IO  
SRC2 / SATA  
SRC2# / SATA#  
VSS_SRC  
SRC3 / CR#_C  
SRC3# / CR#_D  
VDD_SRC_IO  
SRC4  
SRC6  
SRC6#  
VDD_SRC  
SRC5/ PCI_STOP#  
SRC5#/ CPU_STOP#  
VDD_SRC_IO  
SRC10#  
SRC4#  
VSS_SRC  
SRCT9  
SRCC9  
SRC10  
SRC11# / CR#_G  
SRC11 / CR#_H  
* Internal Pull-Down  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 1 of 31  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28504  
Block Diagram  
Xin  
14.318MHz  
Crystal  
REF0  
Xout  
PLL Reference  
Divider  
CPU[1:0]  
PLL1  
SRC8/CPU2_ITP  
PCI[4:0]; PCIF0  
SRC  
PLL3  
Divider  
SRC_SATA  
25M0_F  
Divider  
PLL4  
PLL2  
25M1_24.576M  
DOT96/SRC0  
USB_48  
Divider  
PCI_STOP#  
CPU_STOP#  
FSC:A]  
SATA_SEL  
Control Logic  
CK_PWRGD/PD#  
SDATA  
SEL_24.576M  
SCLK  
64-TSSOP Pin Definitions  
Pin No.  
Name  
PCI0 / CR#_A  
Type  
Description  
1
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 0 or SRC 2. Default PCI0.  
To configure this pin to serve as a Clock Request pin for either SRC pair 2 or pair  
0 using the CR#_A_EN bit located in byte 5 bit 7, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI0 enabled (default)  
1= CR#_A enabled.  
Byte 5, bit 6 controls whether CR#_A controls SRC0 or SRC2 pair  
Byte 5, bit 6:  
0 = CR#_A controls SRC0 pair (default)  
1= CR#_A controls SRC2 pair  
2
3
VDD_PCI  
PWR 3.3V Power supply for PCI PLL.  
PCI1 / CR#_B  
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 1 or SRC 4. Default PCI1.  
To configure this pin to serve as a Clock Request pin for either SRC pair 1 or pair  
4 using the CR#_B_EN bit located in byte 5, bit 5, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI1 enabled (default)  
1= CR#_B enabled.  
Byte 5, bit 4 controls whether CR#_B controls SRC1 or SRC4 pair  
Byte 5, bit 4:  
0 = CR#_B controls SRC1 pair (default)  
1= CR#_B controls SRC4 pair  
4
PCI_2  
O, SE 33 MHz clock.  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 2 of 31  
SL28504  
64-TSSOP Pin Definitions  
Pin No.  
Name  
Type  
Description  
5
PCI_3  
O, SE 33 MHz clock.  
6
7
PCI4 /SRC5_EN  
PCIF_0/ITP_EN  
I/O, SE 33 MHz clock output/3.3V-tolerant input for SRC enable  
(Sampled on CKPWRGD assertion)  
1 = SRC5, 0 =CPU_STOP#/PCI_STOP#  
I/O, SE 3.3V LVTTL input to enable SRC8 or CPU2_ITP/33 MHz clock output. (sampled  
on the CK_PWRGD assertion)  
1 = CPU2_ITP, 0 = SRC8  
8
VSS_PCI  
GND Ground for outputs.  
9
VDD_48  
PWR 3.3V Power supply for outputs and PLL.  
10  
USB_48/FSA  
I/O  
3.3V tolerant input for CPU frequency selection/fixed 48 MHz clock output. Refer  
to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
11  
12  
13  
VSS_48  
GND Ground for outputs.  
VDD_IO  
PWR 3.3V-1.05V Power supply for outputs.  
SRC0/DOT96T  
O, DIF 100 MHz Differential serial reference clocks/Fixed 96 MHz clock output. Selected  
via I2C default is SRC0.  
14  
SRC0#/DOT96#  
O, DIF 100 MHz Differential serial reference clocks/Fixed 96 MHz clock output. Selected  
via I2C default is SRC0.  
15  
16  
17  
18  
VSS_IO  
GND Ground for PLL2.  
VDD_PLL3  
PWR 3.3V Power supply for PLL3  
SRC1/25M0_F  
SRC1#/25M1_24.576M  
O, SE 100 MHz Differential serial reference clocks/ Free run 25MHz clock output  
O, SE 100 MHz Differential serial reference clocks/ 25MHz clock output/24.576MHz clock  
output  
19  
20  
21  
22  
23  
24  
VSS_PLL3  
GND Ground for PLL3.  
VDD_PLL3_IO  
SRC2_SATA  
SRC2#_SATA#  
VSS_SRC  
PWR 3.3V-1.05V power supply for PLL3  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRC3 / CR#_C  
I/O, 100 MHz differential serial reference clock output /3.3V Clock Request #_C/D  
DIF input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
25  
SRC3# / CR#_D  
I/O, 100 MHz differential serial reference clock output/3.3V Clock Request #_C/D  
DIF input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
26  
27  
28  
29  
30  
31  
32  
VDD_SRC_IO  
SRC4  
PWR 3.3V-1.05V power supply for SRC outputs.  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRC4#  
VSS_SRC  
SRC9  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
SRC9#  
SRC11#/ CR#_G  
I/O, 100 MHz differential serial reference clocks/3.3V CR#_G Input.  
DIF Selected via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
33  
SRC11/ CR#_H  
I/O, 100 MHz Differential serial reference clocks/3.3V CR#_H Input.  
DIF Selected via CR#_G_EN/CR#_H_EN bit located in byte 6 bit 5 and 4.  
When selected, CR#_G controls SRC9, CR#_H controls SRC10  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 3 of 31  
SL28504  
64-TSSOP Pin Definitions  
Pin No.  
34  
Name  
Type  
Description  
SRC10  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
PWR 3.3V-1.05V power supply for SRC outputs.  
35  
SRC#10  
36  
VDD_SRC_IO  
37  
CPU_STOP#/SRC5#  
I/O, 3.3V tolerant input for stopping CPU outputs./100 MHz Differential serial reference  
Dif clocks. The option is selected by SRC5_EN  
38  
PCI_STOP#/SRC5  
I/O, 3.3V tolerant input for stopping PCI and SRC outputs./ 100 MHz Differential serial  
Dif reference clocks.The option is selected by SRC5_EN  
39  
40  
41  
42  
43  
44  
45  
46  
VDD_SRC  
SRC6#  
PWR 3.3V Power supply for SRC PLL.  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
GND Ground for outputs.  
SRC6  
VSS_SRC  
SRC7#  
O, DIF 100 MHz Differential serial reference clocks  
O, DIF 00 MHz Differential serial reference clocks  
PWR 3.3V-1.05V power supply for SRC outputs.  
SRC7  
VDD_SRC_IO  
SRC8#/CPUC2_ITP#  
O, DIF Selectable differential CPU or SRC clock output. ITP_EN = 0 @ CK_PWRGD  
assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
Note: CPU2 is an iAMT clock in iAMT mode depending on the configuration set in Byte 11  
Bit3:2.  
47  
48  
SRC8/CPUT2_ITP  
SEL_24.576M  
O, DIF Selectable differential CPU or SRC clock output. ITP_EN = 0 @ CK_PWRGD  
assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
Note: CPU2 is an iAMT clock in iAMT mode depending on the configuration set in Byte 11  
Bit3:2.  
I, PD Select 25M1_24.576M output and SRC1  
0 = 25M1, M= SRC1, 1 = 24.576M  
49  
50  
VDD_CPU_IO  
CPU1#  
PWR 3.3V-1.05V power supply for CPU outputs.  
O, DIF Differential CPU clock outputs. Note: CPU1 is an iAMT clock in iAMT mode depending  
on the configuration set in Byte 11 Bit3:2.  
51  
CPU1  
O, DIF Differential CPU clock outputs. Note: CPU1 is an iAMT clock in iAMT mode depending  
on the configuration set in Byte 11 Bit3:2.  
52  
53  
54  
55  
56  
VSS_CPU  
GND Ground for outputs.  
CPU0#  
O, DIF Differential CPU clock outputs.  
O, DIF Differential CPU clock outputs.  
PWR 3.3V Power supply for CPU PLL.  
CPU0  
VDD_CPU  
CK_PWRGD/PWRDWN#  
I
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A, FS_B,  
FS_C, and ITP_EN.  
After CK_PWRGD (active HIGH) assertion, this pin becomes a real-time input for  
asserting power down (active LOW).  
57  
FSB/TEST_MODE  
I
3.3V tolerant input for CPU frequency selection.  
Selects Ref/N or Tri-state when in test mode  
0 = Tri-state, 1 = Ref/N.  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
58  
59  
60  
61  
VSS_REF  
XTAL_OUT  
XTAL_IN  
GND Ground for outputs.  
O, SE 14.318 MHz Crystal output.  
I
14.318 MHz Crystal input.  
VDD_REF  
PWR 3.3V Power supply for outputs and also maintains SMBUS registers during  
power-down.  
62  
REF0/FSC/TEST_SEL  
I/O  
3.3V tolerant input for CPU frequency selection/fixed 14.318 clock output. Selects  
test mode if pulled to VIHFS_C when CK_PWRGD is asserted HIGH. Refer to DC  
Electrical Specifications table for VILFS_C, VIMFS_C, VIHFS_C specifications.  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 4 of 31  
SL28504  
64-TSSOP Pin Definitions  
Pin No.  
63  
Name  
SMB_DATA  
SMB_CLK  
Type  
I/O  
I
Description  
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
64  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 5 of 31  
SL28504  
Frequency Select Pin (FSA, FSB and FSC)  
FSC  
0
FSB  
0
FSA  
0
CPU  
SRC  
PCIF/PCI  
REF  
DOT96  
USB  
266 MHz  
133 MHz  
200 MHz  
166 MHz  
333 MHz  
100 MHz  
400 MHz  
Reserved  
0
0
1
0
1
0
0
1
1
100 MHz  
33 MHz  
14.318 MHz  
Reserved  
96 MHz  
48 MHz  
1
0
0
1
0
1
1
1
0
1
1
1
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
Frequency Select Pin (FSA, FSB and FSC)  
Apply the appropriate logic levels to FSA, FSB, and FSC  
inputs before CK-PWRGD assertion to achieve host clock  
frequency selection. When the clock chip sampled HIGH on  
CK-PWRGD and indicates that VTT voltage is stable then  
FSA, FSB, and FSC input values are sampled. This process  
employs a one-shot functionality and once the CK-PWRGD  
sampled a valid HIGH, all other FSA, FSB, FSC, and  
CK-PWRGD transitions are ignored except in test mode  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, Access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 1.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
The block write and block read protocol is outlined in Table 2  
while Table 3 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h)  
their default setting at power-up. The use of this interface is  
.
Table 1. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
Byte Count–8 bits  
20  
(Skip this step if I2C_EN bit set)  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
45:38  
37:30  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 6 of 31  
SL28504  
Table 2. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
46  
....  
....  
....  
....  
Description  
Acknowledge from slave  
Bit  
38  
Acknowledge  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 3. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 7 of 31  
SL28504  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
HW  
HW  
HW  
0
Name  
FS_C  
Description  
CPU Frequency Select Bit, set by HW  
6
FS_B  
CPU Frequency Select Bit, set by HW  
CPU Frequency Select Bit, set by HW  
5
FS_A  
4
iAMT_EN  
Set via SMBus or by combination of PWRDWN, CPU_STP, and PCI_STP  
0 = Legacy Mode, 1 = iAMT Enabled  
3
2
1
0
0
0
Reserved  
Reserved  
SATA_SEL  
Reserved  
Reserved  
Select source of SATA clock  
0 = PLL3, 1= PLL4  
0
1
PD_Restore  
Save Config. In powerdown  
0 = Config. Cleared, 1 = Config. Saved  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
0
SRC0_SEL  
Select for SRC0 or DOT96  
0 = SRC0, 1 = DOT96  
6
5
0
0
PLL1_SS_DC  
PLL3_SS_DC  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
4
3
2
1
0
0
0
0
1
1
Reserved  
Reserved  
Reserved  
Reserved  
PCI_SEL  
Reserved  
Reserved  
Reserved  
Reserved  
Select source of PCI clocks  
0=PLL1, 1=PLL3  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
REF0_OE  
Output enable for REF0  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
USB48_OE  
PCIF0_OE  
PCI4_OE  
PCI3_OE  
PCI2_OE  
PCI1_OE  
PCI0_OE  
Output enable for USB48  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCIF5  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI4  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI3  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI0  
0 = Output Disabled, 1 = Output Enabled  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 8 of 31  
SL28504  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
SRC11_OE  
Output enable for SRC11  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
1
1
1
1
SRC10_OE  
SRC9_OE  
Output enable for SRC10  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC9  
0 = Output Disabled, 1 = Output Enabled  
SRC8/CPU2_ITP_OE  
SRC7_OE  
Output enable for SRC8 or CPU2_ITP  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC7  
0 = Output Disabled, 1 = Output Enabled  
SRC6_OE  
Output enable for SRC6  
0 = Output Disabled, 1 = Output Enabled  
1
0
1
1
RESERVED  
SRC4_OE  
RESERVED  
Output enable for SRC4  
0 = Output Disabled, 1 = Output Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
1
SRC3_OE  
Output enable for SRC3  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC2/SATA_OE  
SRC1_OE  
Output enable for SRC2/SATA  
0 = Output Disabled, 1 = Output Enabled  
Output enable for SRC1  
0 = Output Disabled, 1 = Output Enabled  
SRC0/DOT96_OE  
CPU1_OE  
Output enable for SRC0/DOT96  
0 = Output Disabled, 1 = Output Enabled  
Output enable for CPU1  
0 = Output Disabled, 1 = Output Enabled  
CPU0_OE  
Output enable for CPU0  
0 = Output Disabled, 1 = Output Enabled  
PLL1_SS_EN  
PLL3_SS_EN  
Enable PLL1s spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
Enable PLL3s spread modulation  
0 = Spread Disabled, 1 = Spread Enabled  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
CR#_A_EN  
Enable CR#_A (clk req)  
0 = Disabled, 1 = Enabled,  
6
5
4
3
2
0
0
0
0
0
CR#_A_SEL  
CR#_B_EN  
CR#_B_SEL  
CR#_C_EN  
CR#_C_SEL  
Set CR#_A SRC0 or SRC2  
0 = CR#_ASRC0, 1 = CR#_ASRC2  
Enable CR#_B(clk req)  
0 = Disabled, 1 = Enabled,  
Set CR#_B SRC1 or SRC4  
0 = CR#_BSRC1, 1 = CR#_BSRC4  
Enable CR#_C (clk req)  
0 = Disabled, 1 = Enabled  
Set CR#_C SRC0 or SRC2  
0 = CR#_CSRC0, 1 = CR#_CSRC2  
........................ DOC #: SP-AP-0052 (Rev. AA) Page 9 of 31  
SL28504  
Byte 5: Control Register 5 (continued)  
Bit  
@Pup  
Name  
Description  
1
0
CR#_D_EN  
Enable CR#_D (clk req)  
0 = Disabled, 1 = Enabled  
0
0
CR#_D_SEL  
Set CR#_D SRC1 or SRC4  
0 = CR#_DSRC1, 1 = CR#_DSRC4  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
CR#_E_EN  
Enable CR#_E (clk req) SRC6  
0 = Disabled, 1 = Enabled  
6
5
4
0
0
0
CR#_F_EN  
CR#_G_EN  
CR#_H_EN  
Enable CR#_F (clk req) SRC8  
0 = Disabled, 1 = Enabled  
Enable CR#_G (clk req) SRC9  
0 = Disabled, 1 = Enabled  
Enable CR#_H (clk req) SRC10  
0 = Disabled, 1 = Enabled  
3
2
1
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
SRC_STP_CTRL  
Allows control of SRC with assertion of PCI_STOP#  
0 = Free running SRC 1 = Stopped with PCI_STOP#  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
0
1
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
0
0
0
1
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
0000 = 56-TSSOP  
0001 = 64-TSSOP  
0010 = Reserved  
0011 = 56-QFN  
6
5
0100 = 64-QFN  
0101 = Reserved  
0110 = Reserved  
0111 = 56-SSOP  
1000 = Reserved  
1001 = Reserved  
1010 = Reserved  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
4
...................... DOC #: SP-AP-0052 (Rev. AA) Page 10 of 31  
SL28504  
Byte 8: Control Register 8 (continued)  
Bit  
3
@Pup  
Name  
Reserved  
Reserved  
25M0_F_OE  
Description  
0
0
1
Reserved  
2
Reserved  
1
Output enable for 25M0_F  
0 = Output Disabled, 1 = Output Enabled  
0
1
25M1_24.576M_OE  
Output enable for 25M1_24.576M  
0 = Output Disabled, 1 = Output Enabled  
Byte 9: Control Register 9  
Bit  
@Pup  
Name  
Description  
7
0
PCIF5_STP_CTRL  
Allows control of PCIF5 with assertion of PCI_STOP#  
0 = Free running PCIF, 1 = Stopped with PCI_STOP#  
6
5
0
1
Reserved  
REF Bit1  
Reserved  
REF drive strength Setting 1 of 3 (see Byte 13 and 14 for more settings)  
0 = Low, 1 = High  
4
3
0
0
TEST _MODE_SEL  
Test mode select either REF/N or tri-state  
0 = All outputs tri-state, 1 = All output REF/N  
TEST_MODE_ENTRY  
Allows entry into test mode  
0 = Normal Operation, 1 = Enter test mode(s)  
2
1
0
1
0
1
12C_VOUT<2>  
12C_VOUT<1>  
12C_VOUT<0>  
I2C_VOUT[2:0]  
000 = 0.30V  
001 = 0.40V  
010 = 0.50V  
011 = 060V  
100 = 0.70V  
101 = 0.80V (default)  
110 = 0.90V  
111 = 1.00V  
Byte 10: Control Register 10  
Bit  
@Pup  
Name  
Description  
7
HW  
SRC5_EN  
SRC5_EN latche status  
0= CPU_STP#/PCI_STP#; 1= SRC5  
6
5
4
3
2
1
0
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CPU1_STP_CTRL  
Enable CPU_STOP# control of CPU1  
0 = Free running, 1= Stoppable  
0
1
CPU0_STP_CTRL  
Enable CPU_STOP# control of CPU0  
0 = Free running, 1= Stoppable  
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
Description  
0
0
1
Reserved  
Reserved  
25M0_F  
Reserved  
Reserved  
6
5
25M0_F Output Enabled applies to Powerdown / M1  
0 = 25MHz disabled in Powerdown / M1  
1 = 25MHz enabled in Powerdown / M1; Sticky 1  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 11 of 31  
SL28504  
Byte 11: Control Register 11 (continued)  
4
3
2
0
0
1
Reserved  
Reserved  
CPU2_iAMT_EN  
CPU1_iAMT_EN  
PCIF5/ITP_EN  
AMT_EN  
CPU2_AMT_EN CPU1_AMT_EN  
Description  
x
x
1
1
1
1
1
1
0
0
1
1
0
1
0
1
Reserved  
CPU1 = M1 Clock  
CPU2 - M1 Clock  
CPU1 and CPU2 = M1 Clock  
1
0
0
1
Reserved  
Reserved  
CPU2_STP_CRTL  
Allow control of CPU2 with assertion of CPU_STOP#  
0 = Free running, 1 = Stopped with CPU_STOP#  
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
Reserved  
Reserved  
BC5  
Description  
0
0
0
1
0
0
1
1
Reserved  
Reserved  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
6
5
4
BC4  
3
BC3  
2
BC2  
1
BC1  
0
BC0  
Byte 13: Control Register 13  
Bit  
7
@Pup  
Name  
Description  
0
1
0
0
1
0
0
0
PCIF/PCI Bit 2  
PCIF/PCI Bit 1  
PCIF/PCI Bit 0  
USB Bit 2  
Drive Strength Control - Bit[2:0]  
Note: REF Bit 1 is located in Byte 9 Bit 5  
6
5
Buffer  
Strength  
Bit 2  
(Various Bytes)  
Bit 1  
Bit 0  
(Various Bytes) (Various Bytes)  
4
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Strongest  
3
USB Bit 1  
2
USB Bit 0  
1
REF Bit 2  
0
REF Bit 0  
Default  
Weakest  
Byte 14: Control Register 14  
Bit  
@Pup  
Name  
Description  
7
0
SE1/SE2 Bit 2  
SE1/SE2 Bit 2 drive strength  
0 = Low, 1 = High  
6
5
1
0
SE1/SE2 Bit 1  
SE1/SE2 Bit 0  
SE1/SE2 Bit 1 drive strength  
0 = Low, 1 = High  
SE1/SE2 Bit 0 drive strength  
0 = Low, 1 = High  
4
3
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 12 of 31  
SL28504  
Bit  
@Pup  
Name  
Description  
Enable SATA spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
2
1
SATA_SS_EN  
1
0
1
1
EN_CFG0_SET  
SW_PCI  
By defalult CFG0 pin strap sets the SMBus initial values to select the HW  
mode. When this bit is written0, subsequent SMBus accesses is the Lathes  
Open state, can overwrite the CFG0 pin setting into the SMBus bits and set  
the mode before the M0 state: specifically B0b2, B1b[6,4,3], B9b1, B11b5  
SW PCI_STP# Function  
0 = SW PCI_STP assert, 1 = SW PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs are  
stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs are  
resumed in a synchronous manner with no short pulses.  
Byte 15: Control Register 15  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N7  
CPU_DAF_N6  
CPU_DAF_N5  
CPU_DAF_N4  
CPU_DAF_N3  
CPU_DAF_N2  
CPU_DAF_N1  
CPU_DAF_N0  
If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and  
CPU_DAF_M[6:0] are used to determine the CPU output frequency.  
6
5
4
3
2
1
0
Byte 16: Control Register 16  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
0
CPU_DAF_N8  
CPU_DAF_M6  
CPU_DAF_M5  
CPU_DAF_M4  
CPU_DAF_M3  
CPU_DAF_M2  
CPU_DAF_M1  
CPU_DAF_M0  
See Byte 14 for description  
6
If Prog_CPU_EN is set, the values programmed in CPU_DAF_N[8:0] and  
CPU_DAF_M[6:0] are used to determine the CPU output frequency.  
5
4
3
2
1
0
Byte 17: Control Register 17  
Bit  
7
@Pup  
Name  
Description  
PCI-E Dial-A-Frequency® Bit N7  
PCI-E Dial-A-Frequency Bit N6  
PCI-E Dial-A-Frequency Bit N5  
PCI-E Dial-A-Frequency Bit N4  
PCI-E Dial-A-Frequency Bit N3  
PCI-E Dial-A-Frequency Bit N2  
PCI-E Dial-A-Frequency Bit N1  
PCI-E Dial-A-Frequency Bit N0  
0
0
0
0
0
0
0
0
PCI-E_N7  
PCI-E_N6  
PCI-E_N5  
PCI-E_N4  
PCI-E_N3  
PCI-E_N2  
PCI-E_N1  
PCI-E_N0  
6
5
4
3
2
1
0
...................... DOC #: SP-AP-0052 (Rev. AA) Page 13 of 31  
SL28504  
Byte 18: Control Register 18  
Bit  
@Pup  
Name  
Description  
7
0
SMSW_EN  
Enable Smooth Switching  
0 = Disabled, 1= Enabled  
6
5
4
0
0
0
SMSW_SEL  
Prog_PCI-E_EN  
Prog_CPU_EN  
Smooth switch select  
0 = CPU_PLL, 1 = SRC_PLL  
Programmable PCI-E frequency enable  
0 = Disabled, 1= Enabled  
Programmable CPU frequency enable  
0 = Disabled, 1= Enabled  
3
2
1
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Table 4. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The SL28504 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal causes the SL28504 to  
operate at the wrong frequency and violates the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading  
crystal loading correctly. Again, the capacitance on each side  
is in series with the crystal. The total capacitance on both side  
is twice the specified crystal load capacitance (CL). Trim  
capacitors are calculated to provide equal capacitive loading  
on both sides.  
Crystal Loading  
C lo ck C h ip  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, use the total capac-  
itance the crystal sees to calculate the appropriate capacitive  
loading (CL).  
C i2  
C i1  
P in  
3 to 6 p  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. It is important that the trim capacitors are in  
series with the crystal. It is not true that load capacitors are in  
parallel with the crystal and are approximately equal to the  
load capacitance of the crystal.  
X 2  
X 1  
C s2  
C s1  
T ra ce  
2 .8 p F  
X T A L  
C e 1  
C e 2  
T rim  
3 3 p F  
Figure 2. Crystal Loading Example  
,
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Figure 1. Crystal Capacitive Clarification  
Total Capacitance (as seen by the crystal)  
Calculating Load Capacitors  
1
CLe  
=
1
1
(
)
In addition to the standard external trim capacitors, consider  
the trace capacitance and pin capacitance to calculate the  
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 14 of 31  
SL28504  
CL ................................................... Crystal load capacitance  
CLe .........................................Actual loading seen by crystal  
using standard value trim capacitors  
Smooth Switching  
The device contains one smooth switch circuit that is shared  
by the CPU PLL and SRC PLL. The smooth switch circuit  
ensures that when the output frequency changes by  
overclocking, the transition from the old frequency to the new  
frequency is a slow, smooth transition containing no glitches.  
The rate of change of output frequency when using the smooth  
switch circuit is less than 1 MHz/0.667 s. The frequency  
overshoot and undershoot is less than 2%.  
Ce .....................................................External trim capacitors  
Cs ............................................. Stray capacitance (terraced)  
Ci .......................................................... Internal capacitance  
(lead frame, bond wires, etc.)  
Dial-A-Frequency® (CPU and PCIEX)  
The Smooth Switch circuit assigns auto or manual. In Auto  
mode, clock generator assigns smooth switch automatically  
when the PLL does overclocking. For manual mode, assign  
the smooth switch circuit to PLL via Smbus. By default the  
smooth switch circuit is set to auto mode. PLL can be  
over-clocked when it does not have control of the smooth  
switch circuit but it is not guaranteed to transition to the new  
frequency without large frequency glitches.  
This feature allows the user to over-clock their system by  
slowly stepping up the CPU or SRC frequency. When the  
programmable output frequency feature is enabled, the CPU  
and SRC frequencies are determined by the following  
equation:  
Fcpu = G * N/M or Fcpu=G2 * N, where G2 = G / M.  
Do not enable over-clocking and change the N values of both  
PLLs in the same SMBUS block write and use smooth switch  
mechanism on spread spectrum on/off.  
• “N” and “M” are the values programmed in Programmable  
Frequency Select N-Value Register and M-Value Register,  
respectively.  
• “G” stands for the PLL Gear Constant, which is determined  
by the programmed value of FS[E:A]. See Table ,  
Frequency Select Table for the Gear Constant for each  
Frequency selection. The PCI Express only allows user  
control of the N register, the M value is fixed and  
documented in Table , Frequency Select Table.  
PD_RESTORE  
If a ‘0’ is set for Byte 0 bit 0 then, upon assertion of PWRDWN#  
LOW, the SL28504 initiates a full reset. The result of this is that  
the clock chip emulates a cold power on start and goes to the  
“Latches Open” state. If the PD_RESTORE bit is set to a ‘1’  
then the configuration is stored upon PWRDWN# asserted  
LOW. Note that if the iAMT bit, Byte 0 bit 3, is set to a ‘1’ then  
the PD_RESTORE bit must be ignored. In other words, in Intel  
iAMT mode, PWRDWN# reset is not allowed.  
In this mode, the user writes the desired N and M values into  
the DAF I2C registers. The user cannot change only the M  
value and must change both the M and the N values at the  
same time, if they require a change to the M value. The user  
may change only the N value.  
PWRDWN# (Power down) Clarification  
The CKPWRGD/PWRDWN# pin is a dual-function pin. During  
initial power up, the pin functions as CKPWRGD. Once  
CKPWRGD has been sampled HIGH by the clock chip, the pin  
assumes PD# functionality. The PD# pin is an asynchronous  
active LOW input used to shut off all clocks cleanly before  
shutting off power to the device. This signal is synchronized  
internally to the device before powering down the clock  
synthesizer. PD# is also an asynchronous input for powering  
up the system. When PD# is asserted LOW, clocks are driven  
to a LOW value and held before turning off the VCOs and the  
crystal oscillator.  
Associated Register Bits  
CPU_DAF Enable – This bit enables CPU DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the CPU_DAF_N  
register. Note that the CPU_DAF_N and M register must  
contain valid values before CPU_DAF is set. Default = 0,  
(No DAF).  
CPU_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table , Frequency Select Table.  
PWRDWN# (Power down) Assertion  
CPU DAF M – There are 7 bits (for 128 values) to linearly  
change the CPU frequency (limited by VCO range). Default  
= 0, the allowable values for M are detailed in Table ,  
Frequency Select Table  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must held  
LOW. When PD mode is desired as the initial power on state,  
PD must be asserted HIGH in less than 10 s after asserting  
CKPWRGD.  
SRC_DAF Enable – This bit enables SRC DAF mode. By  
default, it is not set. When set, the operating frequency is  
determined by the values entered into the SRC_DAF_N  
register. Note that the SRC_DAF_N register must contain  
valid values before SRC_DAF is set. Default = 0, (No DAF).  
PWRDWN# Deassertion  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD# pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD# deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
SRC_DAF_N – There are nine bits (for 512 values) to  
linearly change the CPU frequency (limited by VCO range).  
Default = 0, (0000). The allowable values for N are detailed  
in Table , Frequency Select Table.  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 15 of 31  
SL28504  
each clock. Figure 4 is an example showing the relationship of  
clocks coming up.  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 3. Power down Assertion Timing Waveform  
Ts table  
<1.8 ms  
PD#  
CP UT , 133MHz  
CP UC, 133MHz  
S RCT 100MHz  
S RCC 100MHz  
US B , 48MHz  
DOT 96T  
DOT 96C  
P CI, 33MHz  
REF  
Tdriv e_PW R D N #  
<300 s , >200m V  
Figure 4. Power down Deassertion Timing Waveform  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 16 of 31  
SL28504  
Figure 5. CK_PWRGD Timing Diagram  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 17 of 31  
SL28504  
CPU_STP# Assertion  
CPU_STP# Deassertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable are stopped  
within two to six CPU clock periods after sampled by two rising  
edges of the internal CPUC clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
The deassertion of the CPU_STP# signal causes all stopped  
CPU outputs to resume normal operation in a synchronous  
manner. No short or stretched clock pulses are produced when  
the clock resumes. The maximum latency from the  
deassertion to active outputs is no more than two CPU clock  
cycles.  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
1.8 ms  
CPU_STOP#  
PD#  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 18 of 31  
SL28504  
1.8 ms  
CPU_STOP#  
PD#  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 9. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
.
PCI_STP# Assertion  
The PCI_STP# signal is an active LOW input used for  
synchronously stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 10.) The PCIF clocks are affected by this pin if their  
corresponding control bit in the SMBus register is set to allow  
them to be free running.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 10. PCI_STP# Assertion Waveform  
PCI_STP# Deassertion  
.
The deassertion of the PCI_STP# signal causes all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods, after PCI_STP# transi-  
tions to a HIGH level.  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 19 of 31  
SL28504  
.
Table 5. Output Driver Status during PCI-STOP# and CPU-STOP#  
PCI_STOP# Asserted  
CPU_STOP# Asserted  
Running  
SMBus OE Disabled  
Single-ended Clocks Stoppable  
Non stoppable  
Stoppable  
Driven low  
Driven low  
Running  
Running  
Differential Clocks  
Clock driven high  
Clock# driven low  
Running  
Clock driven high  
Clock# driven low  
Running  
Clock driven Low or 20K  
pulldown  
Non stoppable  
Table 6. Output Driver Status  
All Differential Clocks except  
CPU1  
All Single-ended Clocks  
w/o Strap w/ Strap  
Low Hi-z  
CPU1  
Clock  
Clock#  
Clock  
Clock#  
Latches Open State  
Powerdown  
M1  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low  
Low  
Hi-z  
Hi-z  
Running  
Running  
.
Figure 12. Clock Generator Power up/Run State Diagram  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 20 of 31  
SL28504  
C l o c k O f f t o M1  
3.3V  
Vcc  
2.0V  
T_delay t  
FSC  
FSB  
FSA  
CPU_STOP#  
PCI_STOP#  
CKPWRGD/PWRDWN  
CK505 SMBUS  
CK505 State  
Off  
Latches Open  
Off  
M1  
BSEL[0..2]  
Off  
CK505 Core Logic  
PLL1  
Locked  
CPU1  
PLL2 & PLL3  
All Other Clocks  
REF Oscillator  
T_delay2  
T_delay3  
Figure 13. BSEL Serial Latching  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 21 of 31  
SL28504  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Analog Supply Voltage  
IO Supply Voltage  
Input Voltage  
Condition  
Min.  
Max.  
4.6  
4.6  
1.5  
4.6  
150  
85  
Unit  
V
VDD_A  
VDD_IO  
VIN  
V
V
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
-40  
VDC  
°C  
°C  
TS  
Temperature, Storage  
TA  
Temperature, Operating  
Ambient  
TJ  
Temperature, Junction  
Functional  
150  
20  
°C  
ØJC  
Dissipation, Junction to Case Mil-STD-883E Method 1012.1  
°C/  
W
ØJA  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
60  
°C/  
W
ESDHBM  
ESD Protection (Human Body MIL-STD-883, Method 3015  
Model)  
2000  
V
UL-94  
MSL  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
VDD core  
Description  
Condition  
Min.  
3.135  
2.0  
Max.  
3.465  
VDD + 0.3  
0.8  
Unit  
3.3V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
3.3 ± 5%  
V
V
VIH  
VIL  
VSS – 0.3  
2.2  
V
VIHI2C  
VILI2C  
VIH_FS  
VIL_FS  
VIHFS_C_TEST  
SDATA, SCLK  
SDATA, SCLK  
V
Input Low Voltage  
1.0  
V
FS_[A,B] Input High Voltage  
FS_[A,B] Input Low Voltage  
FS_C, Input High Voltage  
0.7  
1.5  
V
VSS – 0.3  
2
0.35  
VDD + 0.3  
1.5  
V
V
VIMFS_C_NORMAL FS_C, Input Middle Voltage  
VILFS_C_NORMAL FS_C, Input Low Voltage  
0.7  
V
VSS – 0.3  
0.35  
5
V
IIH  
SEL_24.576M_HI SEL_24.576M Input High  
Voltage  
SEL_24.576M_MI SEL_24.576M Input Mid  
Voltage  
SEL_24.576M_LO SEL_24.576M Input Low  
Input High Leakage Current  
Except internal pull-down resistors, 0 < VIN < VDD  
Typ. 2.75V  
A  
V
2.40  
VDD  
GH  
Typ. 1.65V  
1.30  
0
2.00  
V
V
D
Typ. 0.550V  
0.900  
Voltage  
W
IIL  
Input Low Leakage Current  
Except internal pull-up resistors, 0 < VIN < VDD  
–5  
2.4  
A  
V
VOH  
VOL  
3.3V Output High Voltage (SE) IOH = –1 mA  
3.3V Output Low Voltage (SE) IOL = 1 mA  
Low Voltage IO Supply Voltage  
0.4  
V
VDD IO  
VOH  
VOL  
1
3.465  
0.90  
0.40  
10  
3.3V Input High Voltage (DIFF)  
0.70  
V
V
3.3V Input Low Voltage (DIFF)  
IOZ  
High-impedance Output  
Current  
–10  
1.5  
A  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
5
6
pF  
pF  
COUT  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 22 of 31  
SL28504  
DC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
7
Unit  
LIN  
Pin Inductance  
nH  
V
VXIH  
Xin High Voltage  
Xin Low Voltage  
0.7VDD  
VDD  
0.3VDD  
250  
VXIL  
0
V
IDD3.3V  
Dynamic Supply Current  
mA  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 23 of 31  
SL28504  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
The device operates reliably with input  
dutycyclesupto30/70buttheREFclock  
duty cycle will not be within specification  
47.5  
52.5  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
71.0  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and 0.7VDD  
10.0  
500  
ns  
ps  
TCCJ  
As an average over 1-s duration  
CPU at 0.7V  
TDC  
45  
55  
CPUT and CPUC Duty Cycle  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.99900  
7.49925  
5.99940  
4.99950  
3.74963  
2.99970  
2.49975  
10.0100  
7.50075  
6.00060  
5.00050  
3.75038  
3.00030  
2.50025  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
100 MHz CPUT and CPUC Period  
133 MHz CPUT and CPUC Period  
166 MHz CPUT and CPUC Period  
200 MHz CPUT and CPUC Period  
266 MHz CPUT and CPUC Period  
333 MHz CPUT and CPUC Period  
400 MHz CPUT and CPUC Period  
10.02406 10.02607  
100 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
133 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
166 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
200 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
266 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
333 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
400 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
7.51804  
6.01444  
5.01203  
3.75902  
3.00722  
2.50601  
9.91400  
7.51955  
6.01564  
5.01303  
3.75978  
3.00782  
2.50652  
10.0860  
100 MHz CPUT and CPUC Absolute  
period  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
7.41425  
5.91440  
4.91450  
3.66463  
2.91470  
2.41475  
9.91406  
7.41430  
5.91444  
4.91453  
3.66465  
7.58575  
6.08560  
5.08550  
3.83538  
3.08530  
2.58525  
10.1362  
7.62340  
6.11572  
5.11060  
3.85420  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
133 MHz CPUT and CPUC Absolute  
period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
166 MHz CPUT and CPUC Absolute  
period  
200 MHz CPUT and CPUC Absolute  
period  
266 MHz CPUT and CPUC Absolute  
period  
333 MHz CPUT and CPUC Absolute  
period  
400 MHz CPUT and CPUC Absolute  
period  
TPERIODSSAbs 100 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 133 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 166 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 200 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 266 MHz CPUT and CPUC Absolute  
period, SSC  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 24 of 31  
SL28504  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
2.91472  
3.10036  
TPERIODSSAbs 333 MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
ns  
2.41477  
2.59780  
TPERIODSSAbs 400 MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
ns  
TCCJ  
CPU Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at 0V differential  
85  
125  
100  
100  
150  
8
ps  
ps  
TCCJ2  
Measured at 0V differential  
LACC  
Measured at 0V differential  
ppm  
ps  
TSKEW  
TSKEW2  
TR / TF  
TRFM  
CPU0 to CPU1 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
CPU Rising/Falling Slew rate  
Rise/Fall Matching  
Measured at 0V differential  
Measured at 0V differential  
ps  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
V/ns  
%
20  
VHIGH  
Voltage High  
1.15  
V
VLOW  
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.7V  
TDC  
SRC Duty Cycle  
Measured at 0V differential  
45  
55  
%
ns  
ns  
ns  
ns  
ns  
9.99900  
10.0010  
TPERIOD  
TPERIODSS  
TPERIODAbs  
100 MHz SRC Period  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
10.02406 10.02607  
100 MHz SRC Period, SSC  
100 MHz SRC Absolute Period  
9.87400  
9.87406  
10.1260  
10.1762  
3.0  
TPERIODSSAbs 100 MHz SRC Absolute Period, SSC  
TSKEW(window) Any SRC Clock Skew from the earliest Measured at 0V differential  
bank to the latest bank  
TCCJ  
SRC Cycle to Cycle Jitter  
SRC Long Term Accuracy  
SRC Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
125  
100  
8
ps  
ppm  
V/ns  
%
LACC  
Measured at 0V differential  
TR / TF  
TRFM  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
VHIGH  
VLOW  
VOX  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.7V  
TDC  
DOT96 Duty Cycle  
Measured at 0V differential  
45  
55  
10.4177  
10.6677  
250  
100  
8
%
ns  
ns  
ps  
ppm  
V/ns  
%
10.4156  
TPERIOD  
TPERIODAbs  
TCCJ  
DOT96 Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
10.1656  
DOT96 Absolute Period  
DOT96 Cycle to Cycle Jitter  
DOT96 Long Term Accuracy  
DOT96 Rising/Falling Slew Rate  
Rise/Fall Matching  
LACC  
TR / TF  
TRFM  
2.5  
20  
VHIGH  
VLOW  
VOX  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
Rise/Fall Matching  
550  
20  
mV  
%
TRFM  
Measured single-endedly from ±75 mV  
VHIGH  
VLOW  
VOX  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 25 of 31  
SL28504  
AC Electrical Specifications (continued)  
Parameter  
TDC  
Description  
PCI Duty Cycle  
Condition  
Measurement at 1.5V  
Min.  
Max.  
Unit  
%
45  
55  
29.99700 30.00300  
30.08421 30.23459  
29.49700 30.50300  
29.56617 30.58421  
TPERIOD  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
TPERIODSS  
TPERIODAbs  
ns  
ns  
TPERIODSSAbs Spread Enabled PCIF/PCI Period  
ns  
THIGH  
TLOW  
THIGH  
Spread Enabled PCIF and PCI high time Measurement at 2V  
Spread Enabled PCIF and PCI low time Measurement at 0.8V  
12.27095 16.27995 ns  
11.87095 16.07995 ns  
12.27365 16.27665 ns  
Spread Disabled PCIF and PCI high  
time  
Measurement at 2.V  
TLOW  
Spread Disabled PCIF and PCI low time Measurement at 0.8V  
11.87365 16.07665 ns  
TR / TF  
TSKEW  
TCCJ  
PCIF/PCI Rising/Falling Slew Rate  
Measured between 0.8V and 2.0V  
1.0  
4.0  
1000  
500  
100  
V/ns  
ps  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
PCIF and PCI Cycle to Cycle Jitter  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
Measurement at 1.5V  
ps  
LACC  
ppm  
48_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
8.216563 11.15198  
7.816563 10.95198  
TPERIOD  
TPERIODAbs  
THIGH  
TLOW  
Period  
Absolute Period  
48_M High time  
ns  
ns  
48_M Low time  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
TR / TF  
TCCJ  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
1.0  
2.0  
350  
100  
V/ns  
ps  
LACC  
ppm  
25_M  
Measurement at 1.5V  
45  
39.996  
1.0  
55  
40.004  
4.0  
%
ns  
TDC  
Duty Cycle  
Measurement at 1.5V  
TPERIOD  
TR/TF  
Period  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
25M Long Term Accuracy  
500  
TCCJ  
Measurement at 1.5V  
50  
ppm  
LACC  
1394A - 24.576M  
Measurement at 1.5V  
45  
40.686  
1.0  
55  
40.694  
4.0  
%
ns  
TDC  
Duty Cycle  
Measurement at 1.5V  
TPERIOD  
TR/TF  
TCCJ  
Period  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
24M Long Term Accuracy  
200  
Measurement at 1.5V  
–30  
30  
ppm  
LACC  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
69.82033 69.86224  
68.83429 70.84826  
29.97543 38.46654  
29.57543 38.26654  
TPERIOD  
TPERIODAbs  
THIGH  
TLOW  
REF Period  
ns  
REF Absolute Period  
REF High time  
ns  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
REF Low time  
TR / TF  
TSKEW  
TCCJ  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
1.0  
4.0  
500  
V/ns  
ps  
1000  
ps  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 26 of 31  
SL28504  
AC Electrical Specifications (continued)  
Parameter  
LACC  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
Description  
Condition  
Measurement at 1.5V  
Min.  
Max.  
Unit  
Long Term Accuracy  
100  
ppm  
1.8  
ms  
ns  
10.0  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the test load configurations for  
the single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
22  
L1  
L2  
50  
4 pF  
4 pF  
L1 = 0.5", L2 = 8"  
22  
PCI/USB  
Measurement  
Point  
50  
L2  
L1  
Figure 14. Single-ended PCI and USB Double Load Configuration  
Measurement  
15  
L2  
L1  
Point  
50  
4 pF  
Measurement  
Point  
4 pF  
15  
15  
L1  
L1  
L2  
REF  
50  
Measurement  
Point  
4 pF  
L2  
50  
Figure 15. Single-ended REF Triple Load Configuration  
Figure 16. Single-ended Output Signals (for AC Parameters Measurement)  
For CPU, SRC, and DOT96 Signals and Reference  
This diagram shows the test load configuration for the differential CPU and SRC outputs  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 27 of 31  
SL28504  
Figure 17. 0.7V Differential Load Configuration  
Clock Period (Differential)  
Positive Duty Cycle (Differential)  
Negative Duty Cycle (Differential)  
0.0V  
0.0V  
Clck-Clck#  
Rise  
Edge  
Rate  
Fall  
Edge  
Rate  
VIH = +150V  
0.0V  
VIH = +150V  
0.0V  
VIL = -150V  
VIL = -150V  
Clock-Clock#  
Figure 18. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
V M  
=
1 .1 5 V  
V M  
=
A X  
1 .1 5 V  
A X  
C L K #  
V c ro s s M  
V c r o s s M  
=
=
5 5 0 m V  
3 0 0 m V  
V c r o s s M  
V c r o s s M  
=
5 5 0 m V  
3 0 0 m V  
A X  
A X  
IN  
=
IN  
C L K  
V M  
=
0 .3 0 V  
V M  
=
IN  
0 .3 0 V  
IN  
C L K #  
V c r o s s d e lta  
= 1 4 0 m V  
V c r o s s d e lta  
=
1 4 0 m V  
C L K #  
C L K #  
V c r o s s m e d ia n + 7 5 m V  
V c r o s s m e d ia n  
V c r o s s m e d ia n  
V c r o s s m e d ia n - 7 5 m V  
C L K  
C L K  
Figure 19. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 28 of 31  
SL28504  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28504BZC  
SL28504BZCT  
SL28504BZI  
64-pin TSSOP  
Commercial, 0to 85C  
Commercial, 0to 85C  
Industrial, -40to 85C  
Industrial, -40to 85C  
64-pin TSSOP–Tape and Reel  
64-pin TSSOP  
SL28504BZIT  
64-pin TSSOP–Tape and Reel  
Packaging Designator for Tape and Reel  
SL  
B
28 504 Z C T  
Temperature Designator  
C : Commercial spec; I: Industrial spec  
Package Designator  
Z: TSSOP; L: QFN  
Revision Number  
A = 1st revision; B = 2nd revision......  
Generic Part Number  
Designated Family Number  
Company Initials  
Package Diagrams  
64-Lead Thin Shrunk Small Outline Package (6 mm x 17 mm) Z64  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 29 of 31  
SL28504  
Package Diagrams  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 30 of 31  
SL28504  
Document History Page  
Document Title: SL28504 Clock Generator for IntelEaglelake Chipset  
Orig. of  
REV.  
1.0  
ECR#  
Issue Date Change  
Description of Change  
10/5/07  
10/19/07  
01/21/08  
BSHEN Initial Release  
1.1  
BSHEN Add SRC1 to pin 17/18. and tri-level trigger at 24.576M  
1.2  
BSHEN 1. Change Revision ID Byte7[7:4] to be 0001  
2. Updated block diagram  
3. Change Byte10[6:2] and Byte11[4] to be reserved  
1.3  
1.4  
05/26/09  
06/24/09  
BSHEN 1. Update TSSOP64 package dimension to compliant to SLI-POD spec  
BSHEN 1. Correct the pin out with CLK request pin  
2. Correct the CLK request register  
3. Remove QFN package,  
AA  
1576  
04/28/10  
BSHEN 1. Updated Industrial ordering information  
2. Correct VDD_IO pin description  
3. Updated document format for ISO compliance.  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
...................... DOC #: SP-AP-0052 (Rev. AA) Page 31 of 31  

相关型号:

SL28504BZC-1T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO64, TSSOP-64
SILICON

SL28504BZC-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, ROHS COMPLIANT, MO-153, TSSOP-56
SILICON

SL28504BZC-2T

Clock Generator for Intel®Eaglelake Chipset
SILICON

SL28504BZCT

Clock Generator for IntelEaglelake Chipset
SILICON

SL28504BZI

Processor Specific Clock Generator, 400MHz, CMOS, PDSO64, LEAD FREE, MO-153EF, TSSOP-64
SILICON

SL28504BZI-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153EE, TSSOP-56
SILICON

SL28504BZI-2T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153EE, TSSOP-56
SILICON

SL28504BZIT

Clock Generator for IntelEaglelake Chipset
SILICON

SL28506

Clock Generator for Intel® Eaglelake Chipset
SILICON

SL28506-2

Clock Generator for Intel® Eaglelake Chipset
SILICON

SL28506BZC

Clock Generator for Intel® Eaglelake Chipset
SILICON

SL28506BZC-2

Clock Generator for Intel® Eaglelake Chipset
SILICON