SL28PCIE26ALIT [SILICON]

Clock Generator, CMOS, QFN-32;
SL28PCIE26ALIT
型号: SL28PCIE26ALIT
厂家: SILICON    SILICON
描述:

Clock Generator, CMOS, QFN-32

时钟 外围集成电路 晶体
文件: 总15页 (文件大小:390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28PCIe26  
EProClock® PCI Express Gen 2 & Gen 3 Generator  
• EProClock® Programmable Technology  
• I2C support with readback capabilities  
Features  
• Optimized 100 MHz Operating Frequencies to Meet the  
Next Generation PCI-Express Gen 2 & Gen 3  
• Triangular Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Low power push-pull type differential output buffers  
• Integrated voltage regulator  
• 25MHz Crystal Input or Clock input  
• Industrial Temperature -40oC to 85oC  
• 3.3V Power supply  
• Integrated resistors on differential clocks  
• Four 100-MHz differential PCI-Express clocks  
• Low jitter (<50pS)  
• 32-pin QFN package  
Block Diagram  
Pin Configuration  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 1 of 14  
400 West Cesar Chavez, Austin, TX 78701  
1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28PCIe26  
32-QFN Pin Definitions  
PinNo.  
1
Name  
Type  
Description  
VDD  
VSS  
PWR 3.3V Power Supply  
GND Ground  
2
3
NC  
NC  
NC  
No Connect.  
No Connect.  
4
NC  
5
VDD  
NC  
PWR 3.3V Power Supply  
6
NC  
NC  
No Connect.  
No Connect.  
7
NC  
8
VSS  
GND Ground  
GND Ground  
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
SRC0  
SRC0#  
VSS  
O, DIF 100MHz True differential serial reference clock  
O, DIF 100MHz Complement differential serial reference clock  
GND Ground  
SRC1  
SRC1#  
VDD  
NC  
O, DIF 100MHz True differential serial reference clock  
O, DIF 100MHz Complement differential serial reference clock  
PWR 3.3V Power Supply  
NC  
No Connect.  
VDD  
VDD  
SRC2#  
SRC2  
VSS  
PWR 3.3V Power Supply  
PWR 3.3V Power Supply  
O, DIF 100MHz Complement differential serial reference clock  
O, DIF 100MHz True differential serial reference clock  
GND Ground  
SRC3#  
SRC3  
VDD  
O, DIF 100MHz Complement differential serial reference clock  
O, DIF 100MHz True differential serial reference clock  
PWR 3.3V Power Supply  
CKPWRGD/PD#  
VSS  
I
3.3V LVTTT input pin. When PD# is asserted low, the device will power down.  
GND Ground  
XOUT  
O, SE 25MHz Crystal output, Float XOUT if using CLKIN (Clock Input)  
XIN/CLKIN  
VDD  
I
25MHz Crystal input or 3.3V, 25MHz Clock Input  
PWR 3.3V Power Supply  
NC  
NC  
I/O  
I
No Connect.  
SDATA  
SCLK  
SMBus compatible SDATA  
SMBus compatible SCLOCK  
EProClock® Programmable Technology  
EProClock® is the world’s first non-volatile programmable  
clock. The EProClock® technology allows board designer to  
promptly achieve optimum compliance and clock signal  
integrity; historically, attainable typically through device and/or  
board redesigns.  
EProClock® technology can be configured through SMBus or  
hard coded.  
- Differential duty cycle control on true or compliment or both  
- Differential amplitude control  
- Differential slew rate control  
- Program different spread profiles and modulation rates  
Serial Data Interface  
Features:  
- > 4000 bits of configurations  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
- Can be configured through SMBus or hard coded  
- Custom frequency sets  
- Differential skew control on true or compliment or both  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 2 of 14  
SL28PCIe26  
their default setting at power-up. The use of this interface is  
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
block write/read operation, access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 1.  
Data Protocol  
The block write and block read protocol is outlined in Table 2  
while Table 3 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h).  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
Table 1. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Byte Count–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
....  
....  
....  
Table 3. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
20  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 3 of 14  
 
 
 
SL28PCIe26  
Table 3. Byte Read and Byte Write Protocol  
28  
29  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
Name  
Description  
1
0
1
0
0
0
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
PD_Restore  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Save configuration when PD# is asserted  
0 = Config. cleared, 1 = Config. saved  
Byte 1: Control Register 1  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
1
0
RESERVED  
PLL1_SS_DC  
6
Select for down or center SS  
0 = -0.5% Down spread, 1 = +/-0.5% Center spread  
5
4
3
2
1
0
0
0
0
1
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 2: Control Register 2  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
1
1
1
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 3: Control Register 3  
Bit @Pup  
Name  
Description  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 4 of 14  
SL28PCIe26  
Byte 3: Control Register 3  
7
6
5
4
3
2
1
0
1
1
1
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 4: Control Register 4  
Bit  
7
@Pup  
Name  
Description  
1
1
RESERVED  
SRC0_OE  
RESERVED  
6
Output enable for SRC0  
0 = Output Disabled, 1 = Output Enabled  
5
1
SRC1_OE  
Output enable for SRC1  
0 = Output Disabled, 1 = Output Enabled  
4
3
0
1
RESERVED  
SRC3_OE  
RESERVED  
Output enable for SRC3  
0 = Output Disabled, 1 = Output Enabled  
2
1
0
1
0
1
SRC2_OE  
PLL1_SS_EN  
RESERVED  
Output enable for SRC2  
0 = Output Disabled, 1 = Output Enabled  
Enable PLL1s spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
RESERVED  
Byte 5: Control Register 5  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 6: Control Register 6  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 5 of 14  
SL28PCIe26  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
0
1
0
0
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
1
0
0
0
0
0
0
0
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Byte 9: Control Register 9  
Bit  
7
@Pup  
Name  
RESERVED  
Description  
0
0
1
0
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
TEST _MODE_SEL  
Test mode select either REF/N or tri-state  
0 = All outputs tri-state, 1 = All output REF/N  
3
0
TEST_MODE_ENTRY  
Allows entry into test mode  
0 = Normal Operation, 1 = Enter test mode(s)  
2
1
0
1
0
1
I2C_VOUT<2>  
I2C_VOUT<1>  
I2C_VOUT<0>  
Amplitude configurations differential clocks  
I2C_VOUT[2:0]  
000 = 0.30V  
001 = 0.40V  
010 = 0.50V  
011 = 0.60V  
100 = 0.70V  
101 = 0.80V (default)  
110 = 0.90V  
111 = 1.00V  
Byte 10: Control Register 10  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 6 of 14  
SL28PCIe26  
Byte 10: Control Register 10  
Bit  
2
@Pup  
Name  
Description  
Description  
0
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
1
0
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
0
0
0
0
0
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
Description  
0
0
0
0
1
1
1
1
Byte count register for block read operation.  
The default value for Byte count is 15.  
In order to read beyond Byte 15, the user should change the byte count  
limit.to or beyond the byte that is desired to be read.  
6
5
4
3
2
1
0
Byte 13: Control Register 13  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
1
1
1
1
1
1
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 14: Control Register 14  
Bit  
7
@Pup  
Name  
Description  
1
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 7 of 14  
SL28PCIe26  
Bit  
4
@Pup  
Name  
OTP_4  
OTP_3  
OTP_2  
OTP_1  
OTP_0  
Description  
0
0
1
0
1
OTP_ID  
Idenification for programmed device  
3
2
1
0
.
PD# (Power down) Assertion  
Table 4. Output Driver Status  
All Differential Clocks  
When PD is sampled HIGH by two consecutive rising edges  
of SRCC, differential clocks must held LOW. When PD mode  
is desired as the initial power on state, PD must be asserted  
HIGH in less than 10 s after asserting CKPWRGD.  
Clock  
Clock#  
PD# = 0 (Power down)  
Low  
Low  
PD# Deassertion  
PD# (Power down) Clarification  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD# pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD# deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
each clock. Figure 2 is an example showing the relationship of  
clocks coming up.  
The CKPWRGD/PD# pin is a dual-function pin. During initial  
power up, the pin functions as CKPWRGD. Once CKPWRGD  
has been sampled HIGH by the clock chip, the pin assumes  
PD# functionality. The PD# pin is an asynchronous active  
LOW input used to shut off all clocks cleanly before shutting  
off power to the device. This signal is synchronized internally  
to the device before powering down the clock synthesizer. PD#  
is also an asynchronous input for powering up the system.  
When PD# is asserted LOW, clocks are driven to a LOW value  
and held before turning off the VCOs and the crystal oscillator.  
Figure 1. Power down Assertion Timing Waveform  
Figure 2. Power down Deassertion Timing Waveform  
.
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 8 of 14  
 
SL28PCIe26  
Absolute Maximum Conditions  
Parameter  
VDD_3.3V  
Description  
Main Supply Voltage  
Input Voltage  
Condition  
Min.  
Max.  
4.6  
Unit  
V
Functional  
VIN  
TS  
TA  
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
0
4.6  
VDC  
°C  
Temperature, Storage  
150  
85  
Temperature, Operating  
Ambient, Commercial  
°C  
TA  
Temperature, Operating  
Ambient, Industrial  
Functional  
Functional  
–40  
85  
°C  
°C  
TJ  
Temperature, Junction  
150  
20  
ØJC  
Dissipation, Junction to Case JEDEC (JESD 51)  
°C/  
W
ØJA  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
60  
°C/  
W
ESDHBM  
UL-94  
ESD Protection (Human Body JEDEC (JESD 22 - A114)  
Model)  
2000  
V
Flammability Rating  
UL (Class)  
V–0  
DC Electrical Specifications  
Parameter  
VDD core  
Description  
Condition  
Min.  
3.135  
2.0  
Max.  
Unit  
V
3.3V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
3.3 ± 5%  
3.465  
VIH  
VDD + 0.3  
V
VIL  
VSS – 0.3  
2.2  
0.8  
V
VIHI2C  
VILI2C  
IIH  
SDATA, SCLK  
SDATA, SCLK  
V
Input Low Voltage  
1.0  
5
V
Input High Leakage Current  
Except internal pull-down resistors, 0 < VIN  
VDD  
<
A  
IIL  
Input Low Leakage Current  
Except internal pull-up resistors, 0 < VIN < VDD  
–5  
A  
A  
IOZ  
High-impedance Output  
Current  
–10  
10  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
1.5  
5
6
pF  
pF  
COUT  
LIN  
7
nH  
mA  
mA  
IDD_PD  
IDD_3.3V  
Power Down Current  
Dynamic Supply Current  
1
All outputs enabled. Differential clocks with 7”  
traces 2pF load.  
50  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 9 of 14  
SL28PCIe26  
AC Electrical Specifications  
Parameter  
Crystal  
LACC  
Description  
Condition  
Min.  
Max.  
Unit  
Long-term Accuracy  
Measured at VDD/2 differential  
250  
ppm  
Clock Input  
TDC  
CLKIN Duty Cycle  
Measured at VDD/2  
47  
0.5  
53  
4.0  
%
V/ns  
ps  
TR/TF  
CLKIN Rise and Fall Times  
CLKIN Cycle to Cycle Jitter  
CLKIN Long Term Jitter  
Input High Voltage  
Measured between 0.2VDD and 0.8VDD  
Measured at VDD/2  
TCCJ  
250  
350  
VDD+0.3  
0.8  
TLTJ  
Measured at VDD/2  
ps  
VIH  
XIN / CLKIN pin  
2
V
VIL  
Input Low Voltage  
XIN / CLKIN pin  
V
IIH  
Input HighCurrent  
XIN / CLKIN pin, VIN = VDD  
XIN / CLKIN pin, 0 < VIN <0.8  
35  
uA  
uA  
IIL  
Input LowCurrent  
-35  
SRC at 0.7V  
TDC  
Duty Cycle  
Period  
Measured at 0V differential  
45  
55  
%
ns  
ns  
ns  
ns  
ps  
9.99900  
10.0010  
TPERIOD  
TPERIODSS  
TPERIODAbs  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential  
10.02406 10.02607  
Period, SSC  
Absolute Period  
9.87400  
9.87406  
10.1260  
10.1762  
125  
TPERIODSSAbs Absolute Period, SSC  
TCCJ  
Cycle to Cycle Jitter  
RMSGEN1  
Output PCIe* Gen1 REFCLK phase  
jitter  
BER = 1E-12 (including PLL BW 8 - 16  
MHz, ζ = 0.54, Td=10 ns,  
0
0
108  
3.0  
ps  
ps  
Ftrk=1.5 MHz)  
RMSGEN2  
RMSGEN2  
RMSGEN3  
Output PCIe* Gen2 REFCLK phase  
jitter  
Includes PLL BW 8 - 16 MHz, Jitter  
Peaking = 3dB, ζ = 0.54, Td=10 ns),  
Low Band, F < 1.5MHz  
Output PCIe* Gen2 REFCLK phase  
jitter  
Includes PLL BW 8 - 16 MHz, Jitter  
Peaking = 3dB, ζ = 0.54, Td=10 ns),  
Low Band, F < 1.5MHz  
0
0
3.1  
1.0  
ps  
ps  
Output phase jitter impact – PCIe*  
Gen3  
Includes PLL BW 2 - 4 MHz,  
CDR = 10MHz)  
LACC  
TR / TF  
VHIGH  
VLOW  
VOX  
Long Term Accuracy  
Rising/Falling Slew Rate  
Voltage High  
Measured at 0V differential  
100  
8
ppm  
V/ns  
V
Measured differentially from ±150 mV  
2.5  
1.15  
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 10 of 14  
SL28PCIe26  
Test and Measurement Set-up  
For Differential Clock Signals  
This diagram shows the test load configuration for the differential clock signals  
Figure 3. 0.7V Differential Load Configuration  
Figure 4. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 11 of 14  
SL28PCIe26  
Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 12 of 14  
SL28PCIe26  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28PCIe26ALC  
SL28PCIe26ALCT  
SL28PCIe26ALI  
SL28PCIe26ALIT  
32-pin QFN  
Industrial, 0to 85C  
Industrial, 0to 85C  
Industrial, -40to 85C  
Industrial, -40to 85C  
32-pin QFN–Tape and Reel  
32-pin QFN  
32-pin QFN–Tape and Reel  
Package Diagrams  
32-Lead QFN 5x 5mm  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 13 of 14  
SL28PCIe26  
Document History Page  
Document Title: SL28PCIe26 PC EProClock® PCI Express Gen 2 & Gen 3 Generator  
DOC#: SP-AP-0774 (Rev. 0.2)  
Orig. of  
Change  
JMA  
REV.  
1.0  
Issue Date  
9/17/09  
Description of Change  
Initial Release  
1.1  
10/13/09  
05/17/10  
JMA  
Updated miscellanous text content  
AA  
JMA  
1. Added CLKINFeatures.  
2. Updated default spread to be non-spread PCI-Express  
3. Updated I2C registers  
4. Updated IDD Spec  
AA  
AA  
10/21/10  
11/17/10  
TRP  
TRP  
Updated miscellanous text content  
1. Updated IDD condition on trace lenght to 7”  
2. Added spread percentage on Byte1 bit6  
DOC#: SP-AP-0774 (Rev. 0.2)  
Page 14 of 14  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SL28PCIE30

EProClock® Programmable PCIe Gen 2 Clock Generator
SILICON

SL28PCIe30ALC

EProClock® Programmable PCIe Gen 2 Clock Generator
SILICON

SL28PCIe30ALCT

EProClock® Programmable PCIe Gen 2 Clock Generator
SILICON

SL28PCIe30ALI

EProClock® Programmable PCIe Gen 2 Clock Generator
SILICON

SL28PCIe30ALIT

EProClock® Programmable PCIe Gen 2 Clock Generator
SILICON

SL28S0

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28S1

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28S2

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28S3

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28S4

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28S5

Telecom and Datacom Connector, 28 Contact(s), Female, Crimp Terminal
MOLEX

SL28SRC01BZC

Clock Generator, CMOS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
SILICON