SL28SRC02 [SILICON]

PCI Express Gen 2 & Gen 3 Clock Generator;
SL28SRC02
型号: SL28SRC02
厂家: SILICON    SILICON
描述:

PCI Express Gen 2 & Gen 3 Clock Generator

PC
文件: 总14页 (文件大小:264K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28SRC02  
PCI Express Gen 2 & Gen 3 Clock Generator  
• SSON input for enabling spread spectrum clock  
• I2C support with readback capabilities  
Features  
• Low power PCI Express Gen 2 & Gen 3 clock generator  
• Two100-MHz differential SRC clocks  
• Triangular Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Low power push-pull output buffers (no 50ohm to  
ground needed)  
• Input frequency of 14.318MHz  
• Industrial Temperature -40oC to 85oC  
• 3.3V power supply  
• Integrated 33ohm series termination resistors  
• Low jitter (<50pS)  
• 20-pin TSSOP package  
Block Diagram  
Pin Configuration  
VDD 1  
SDATA 2  
SCLK 3  
VDD 4  
20 XIN  
19 XOUT  
18 VSS  
14.318MHz  
crystal or clock  
Crystal  
Oscillator/  
clock buffer  
SRC1  
17 SSON  
16 VDD  
15 VSS  
PLL  
SRC1#  
VSS 5  
SRC2  
VDD 6  
Control  
logic  
SRC2#  
SSON  
VSS 7  
14 VDD  
13 VDD  
12 SRC2#  
11 SRC2  
SRC1 8  
SRC1# 9  
VSS 10  
.................................................... Document #: Page 1 of 14  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28SRC02  
Pin Definitions  
Pin No.  
Name  
Type  
Description  
1
2
VDD  
PWR 3.3V Power supply  
SDATA  
SCLK  
VDD  
I/O  
I
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
3
4
PWR 3.3V power supply  
GND Ground  
5
VSS  
6
VDD  
PWR 3.3V power supply  
GND Ground  
7
VSS  
8
SRC1  
SRC1#  
VSS  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
GND Ground  
9
10  
11  
12  
13  
14  
15  
16  
17  
SRC2  
SRC2#  
VDD  
O, DIF 100 MHz Differential serial reference clocks.  
O, DIF 100 MHz Differential serial reference clocks.  
PWR 3.3V power supply  
VDD  
PWR 3.3V power supply  
VSS  
GND Ground  
VDD  
PWR 3.3V power supply  
SSON  
I
3.3V LVTTL input for enabling spread spectrum clock  
0 = Disable, 1 = Enable (-0.5% SS)  
External 10K ohm pull-up or pull-down resistor required  
18  
19  
20  
VSS  
XOUT  
XIN  
GND Ground  
O, SE 14.318 MHz Crystal output.  
I
14.318 MHz Crystal input.  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
their default setting at power-up. The use of this interface is  
optional. Clock device register changes are normally made at  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, Access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 1.  
The block write and block read protocol is outlined in Table 2  
while Table 3 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h)  
.
Table 1. Command Code Definition  
Bit  
Description  
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
7
....................................................Document #: Page 2 of 14  
SL28SRC02  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Byte Count–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
....  
....  
....  
Table 3. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
....................................................Document #: Page 3 of 14  
SL28SRC02  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
Name  
Description  
HW  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
1
4
0
3
0
2
0
1
0
0
1
Byte 1: Control Register 1  
Bit  
7
@Pup  
Name  
Description  
1
0
RESERVED  
PLL1_SS_DC  
RESERVED  
6
Select for down or center SS  
0 = Down spread, 1 = Center spread  
5
4
3
2
1
0
0
0
0
1
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
Byte 2: Control Register 2  
Bit  
7
@Pup  
Name  
Description  
1
1
1
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Byte 3: Control Register 3  
Bit  
7
@Pup  
Name  
Description  
1
1
1
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
....................................................Document #: Page 4 of 14  
SL28SRC02  
Byte 4: Control Register 4  
Bit  
7
@Pup  
Name  
Description  
1
1
RESERVED  
SRC1_OE  
RESERVED  
6
Output enable for SRC1  
0 = Output Disabled, 1 = Output Enabled  
5
1
SRC2_OE  
Output enable for SRC2  
0 = Output Disabled, 1 = Output Enabled  
4
3
2
1
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
PLL1_SS_EN  
RESERVED  
RESERVED  
RESERVED  
Enable PLL1s spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
0
1
RESERVED  
RESERVED  
Byte 5: Control Register 5  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 6: Control Register 6  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
0
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
1
1
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
....................................................Document #: Page 5 of 14  
SL28SRC02  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
1
0
0
0
0
0
1
1
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
2
1
0
Byte 9: Control Register 9  
Bit  
7
@Pup  
Name  
RESERVED  
Description  
0
0
1
0
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
TEST _MODE_SEL  
Test mode select either REF/N or tri-state  
0 = All outputs tri-state, 1 = All output REF/N  
3
0
TEST_MODE_ENTRY  
Allows entry into test mode  
0 = Normal Operation, 1 = Enter test mode(s)  
2
1
0
1
0
1
12C_VOUT<2>  
12C_VOUT<1>  
12C_VOUT<0>  
I2C_VOUT[2:0]  
000 = 0.30V  
001 = 0.40V  
010 = 0.50V  
011 = 060V  
100 = 0.70V  
101 = 0.80V (default)  
110 = 0.90V  
111 = 1.00V  
Byte 10: Control Register 10  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
0
0
0
0
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
RESERVED  
1
RESERVED  
0
RESERVED  
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
6
5
4
3
....................................................Document #: Page 6 of 14  
SL28SRC02  
Byte 11: Control Register 11 (continued)  
2
1
1
1
RESERVED  
PCI-E_GEN2  
RESERVED  
PCI-E_Gen2 Compliant  
0 = non Gen2, 1= Gen2 Compliant  
0
1
RESERVED  
RESERVED  
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
BC7  
BC6  
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
Description  
Byte count register for block read operation.  
The default value for Byte count is 14. In order to read more than 14 bytes,  
the system BIOS needs to change this register to the number of bytes to  
be read.  
0
0
0
0
1
1
1
1
6
5
4
3
2
1
0
....................................................Document #: Page 7 of 14  
SL28SRC02  
Table 4. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The SL28SRC02 requires a Parallel Resonance Crystal.  
Substituting series resonance crystal causes the  
SL28SRC02 to operate at the wrong frequency and violates  
the ppm specification. For most applications there is a  
300-ppm frequency shift between series and parallel crystals  
due to incorrect loading  
a
C lo ck C h ip  
C i2  
C i1  
P in  
3 to 6 p  
F
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, use the total capac-  
itance the crystal sees to calculate the appropriate capacitive  
loading (CL).  
X 2  
X 1  
C s2  
C s1  
T ra ce  
2 .8 p F  
X T A L  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. It is important that the trim capacitors are in  
series with the crystal. It is not true that load capacitors are in  
parallel with the crystal and are approximately equal to the  
load capacitance of the crystal.  
C e 1  
C e 2  
T rim  
3 3 p F  
Figure 2. Crystal Loading Example  
,
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL - (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
Figure 1. Crystal Capacitive Clarification  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, consider  
the trace capacitance and pin capacitance to calculate the  
crystal loading correctly. Again, the capacitance on each side  
is in series with the crystal. The total capacitance on both side  
is twice the specified crystal load capacitance (CL). Trim  
capacitors are calculated to provide equal capacitive loading  
on both sides.  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires, etc.)  
....................................................Document #: Page 8 of 14  
SL28SRC02  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Input Voltage  
Condition  
Min.  
Max.  
4.6  
Unit  
V
VIN  
TS  
TA  
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
-40  
4.6  
VDC  
°C  
Temperature, Storage  
150  
85  
Temperature, Operating  
Ambient  
°C  
TJ  
Temperature, Junction  
Functional  
150  
20  
°C  
ØJC  
Dissipation, Junction to Case Mil-STD-883E Method 1012.1  
°C/  
W
ØJA  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
60  
°C/  
W
ESDHBM  
ESD Protection (Human Body MIL-STD-883, Method 3015  
Model)  
2000  
V
UL-94  
MSL  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
DC Electrical Specifications  
Parameter  
VDD  
Description  
Condition  
Min.  
Max.  
Unit  
3.3V Operating Voltage  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input High Voltage  
3.3 ± 5%  
3.135  
3.465  
V
V
VIH  
2.0  
VDD + 0.3  
VIL  
VSS – 0.3  
0.8  
V
VIHI2C  
VILI2C  
IIH  
SDATA, SCLK  
SDATA, SCLK  
2.2  
V
Input Low Voltage  
1.0  
5
V
Input High Leakage Current  
Input Low Leakage Current  
3.3V Output High Voltage  
3.3V Output Low Voltage  
Except internal pull-down resistors, 0 < VIN < VDD  
Except internal pull-up resistors, 0 < VIN < VDD  
IOH = –1 mA  
A  
A  
V
IIL  
–5  
2.4  
VOH  
VOL  
IOZ  
IOL = 1 mA  
0.4  
10  
V
High-impedance Output  
Current  
–10  
A  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
1.5  
5
6
pF  
pF  
nH  
V
COUT  
LIN  
7
VXIH  
VXIL  
IDD3.3V  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
40  
Xin Low Voltage  
0
V
Dynamic Supply Current  
mA  
....................................................Document #: Page 9 of 14  
SL28SRC02  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
The device operates reliably with input  
dutycyclesupto30/70buttheREFclock  
duty cycle will not be within specification  
47.5  
52.5  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
71.0  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and 0.7VDD  
10.0  
500  
ns  
ps  
TCCJ  
As an average over 1-s duration  
SRC  
TDC  
SRC Duty Cycle  
Measured at 0V differential  
45  
55  
%
ns  
ns  
ns  
ns  
ps  
ps  
9.99900  
10.0010  
TPERIOD  
TPERIODSS  
TPERIODAbs  
100 MHz SRC Period  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential  
10.02406 10.02607  
100 MHz SRC Period, SSC  
100 MHz SRC Absolute Period  
9.87400  
9.87406  
10.1260  
10.1762  
100  
TPERIODSSAbs 100 MHz SRC Absolute Period, SSC  
TSKEW  
TCCJ  
SRC1 to SRC2  
SRC Cycle to Cycle Jitter  
Measured at 0V differential  
0
50  
RMSGEN1  
Output PCIe* Gen1 REFCLK phase  
jitter  
BER = 1E-12 (including PLL BW 8 - 16  
MHz, ζ = 0.54, Td=10 ns,  
Ftrk=1.5 MHz)  
108  
3.0  
ps  
ps  
RMSGEN2  
RMSGEN2  
RMSGEN3  
Output PCIe* Gen2 REFCLK phase  
jitter  
Includes PLL BW 8 - 16 MHz, Jitter  
Peaking = 3dB, ζ = 0.54, Td=10 ns),  
Low Band, F < 1.5MHz  
0
0
0
Output PCIe* Gen2 REFCLK phase  
jitter  
Includes PLL BW 8 - 16 MHz, Jitter  
Peaking = 3dB, ζ = 0.54, Td=10 ns),  
Low Band, F < 1.5MHz  
3.1  
ps  
Output phase jitter impact – PCIe*  
Gen3  
Includes PLL BW 2 - 4 MHz,  
CDR = 10MHz)  
1.0  
ps  
LACC  
SRC Long Term Accuracy  
SRC Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
2.5  
100  
8
ppm  
V/ns  
%
TR / TF  
TRFM  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
20  
VHIGH  
VLOW  
VOX  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
3.1  
mV  
pS  
Tjphasepll  
Phase Jitter  
RMS value  
(PLL BW 8-16MHz, 5-16MHz)  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
..................................................Document #: Page 10 of 14  
SL28SRC02  
Test and Measurement Set-up  
For SRC Signals  
This diagram shows the test load configuration for the differential SRC outputs  
Figure 3. 0.7V Differential Load Configuration  
Figure 4. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
.................................................. Document #: Page 11 of 14  
SL28SRC02  
VMAX = 1.15V  
VMAX = 1.15V  
CLK#  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
CLK  
VMIN = 0.30V  
VMIN = 0.30V  
CLK#  
Vcross delta = 140mV  
Vcross delta = 140mV  
CLK#  
CLK#  
Vcross median +75mV  
Vcross median  
Vcross median  
Vcross median -75mV  
CLK  
CLK  
Figure 5. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Package Type  
Product Flow  
Lead-free  
SL28SRC02BZI  
SL28SRC02BZIT  
20-pin TSSOP  
20-pin TSSOP–Tape and Reel  
Industrial, -40to 85C  
Industrial, -40to 85C  
SL 28 SRC02 B Z I T  
Packaging Designator for Tape and Reel  
Temperature Designator  
Package Designator  
Z : TSSOP  
Revision Number  
A = 1st Silicon  
Generic Part Number  
Designated Family Number  
Company Initials  
This device is Pb free and RoHS compliant  
..................................................Document #: Page 12 of 14  
SL28SRC02  
Package Diagrams  
20-pin TSSOP  
..................................................Document #: Page 13 of 14  
SL28SRC02  
Document History Page  
Document Title: SL28SRC02 PCI Express Gen 2 & Gen 3 Clock Generator  
Orig. of  
REV. Issue Date Change  
Description of Change  
1.0  
1.1  
10/28/09  
11/06/09  
JMA  
JMA  
New Datasheet  
Updated Figure 4  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the  
use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, repre-  
sentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized appli-  
cation, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
..................................................Document #: Page 14 of 14  

相关型号:

SL28SRC02BZCT

Clock Generator, 14.318MHz, CMOS, PDSO16, ROHS COMPLIANT, MO-153AB, TSSOP-16
SILICON

SL28SRC02BZI

PCI Express Gen 2 & Gen 3 Clock Generator
SILICON

SL28SRC02BZIT

PCI Express Gen 2 & Gen 3 Clock Generator
SILICON

SL28SRC04

PCI Express Gen 2 & Gen 3 Clock Generator
SILICON

SL28SRC04BZI

Clock Generator,
SILICON

SL28SRC04BZIT

PCI Express Gen 2 & Gen 3 Clock Generator
SILICON

SL28T0

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX

SL28T1

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX

SL28T2

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX

SL28T3

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX

SL28T4

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX

SL28T5

Telecom and Datacom Connector, 28 Contact(s), Female, Solder Terminal
MOLEX