Si4770 [SILICON]

HIGH-PERFORMANCE CONSUMER ELECTRONICS; 高性能消费电子
Si4770
型号: Si4770
厂家: SILICON    SILICON
描述:

HIGH-PERFORMANCE CONSUMER ELECTRONICS
高性能消费电子

电子
文件: 总54页 (文件大小:419K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4770/77-A20  
HIGH-PERFORMANCE CONSUMER ELECTRONICS  
BROADCAST RADIO RECEIVER AND HD RADIO TUNER  
Features  
Worldwide FM band support  
AM/FM hi-cut control  
AM lo-cut filter  
(64–108 MHz)  
Worldwide AM band support  
2
L/R analog and digital (I S) audio  
(520–1710 kHz)  
outputs  
AM/FM HD Radio support  
Digital Low-IF architecture  
(Si4777 only)  
Frequency synthesizer with fully  
Comprehensive signal quality  
metrics: RSSI, SNR, multipath  
interference, frequency offset,  
adjacent channel RSSI,  
frequency deviation, and image  
RSSI  
integrated PLL-VCO  
Fully integrated AM/FM front-end  
including high performance LNA,  
AGC with integrated resistor and  
capacitor banks, and RF and IF  
peak detectors  
Ordering Information:  
See page 49.  
Pin Assignments  
Si4770/77-A20  
Advanced patented RDS soft-  
Integrated crystal oscillator  
decision decoder  
2
Digital (I S) Zero-IF AM/FM I/Q  
Advanced, patented FM channel  
equalizer for multipath  
interference  
outputs (Si4777 only)  
1.2 to 5 V power supplies  
QFN 40-pin, 6x6x0.85 mm  
Pb-free/RoHS compliant  
Dynamic AM/FM channel  
bandwidth control  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC  
FMXIP  
FMXIN  
RFGND  
RFREG  
FMO  
NC/BLEND  
DCLK  
Programmable AM/FM soft mute  
FM stereo-mono blend  
FM hi-blend control  
3
DFS  
4
DOUT  
5
NC/QOUT  
NC/IOUT  
NC/IQFS  
NC/IQCLK  
VIO2  
GND PAD  
6
7
FMI  
8
NC  
Applications  
9
NC  
10  
AMI  
DBYP  
Audio/video receivers  
Consumer electronics  
Boom boxes  
Home theater systems  
Description  
Patents pending  
The Si4770/77-A20 broadcast receiver and HD Radio tuner (Si4777 only)  
employs an advanced, proven digital low-IF architecture to bring  
outstanding receiver performance to high-performance consumer  
electronics.  
Rev. 0.9 6/12  
Copyright © 2012 by Silicon Laboratories  
Si4770/77-A20  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Si4770/77-A20  
Functional Block Diagram  
Si4770/77  
LOUT/  
MPXOUT  
ADC  
DAC  
DAC  
FMXIP  
FMXIN  
DSP  
IF PKD  
RF PKD  
ADC  
ROUT  
RFREG  
REG  
LNA  
RL  
DCLK  
DFS  
DOUT  
FMO  
FMI  
0°/90°  
RDS  
RF PKD  
RF PKD  
INTB  
RSTB  
VIO1  
VIO2  
AMI  
LNA  
CNTRL  
ClK  
Gen  
RFGND  
2
Rev. 0.9  
Si4770/77-A20  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.2. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.3. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
4.4. FM Receiver Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
4.5. AM Receiver Front-End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
4.6. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.7. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
4.8. Channel Equalizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.9. Digital ZIF I/Q Interface (Si4777 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
4.10. IBOC Blend Mode for HD Radio (Si4777 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
4.11. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
4.12. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.13. Analog Audio and FM MPX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.14. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.15. AM/FM Dynamic Bandwidth Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.16. Seek and Valid Station Qualification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
4.17. AM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
4.18. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
4.19. FM Hi-Blend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
4.20. AM Lo-Cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
5. RDS/RBDS Advanced Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
6. Programming Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
2
7. I C Control Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
2
7.1. I C Device Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
2
7.2. I C Standard Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
8. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
9. Pin Descriptions: Si4770/77-A20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
10. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
11. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
12. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
13. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
13.1. Si4770/77-A20 Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
13.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Rev. 0.9  
3
Si4770/77-A20  
1. Electrical Specifications  
Table 1. Recommended Operation Conditions*  
Parameter  
Symbol  
Test Condition  
Min  
4.5  
2.7  
1.7  
1.2  
Typ  
5
Max  
5.5  
3.6  
3.6  
3.6  
Unit  
V
Analog Supply Voltage  
Digital Supply Voltage  
Interface Supply Voltage  
V
A
V
3.3  
3.3  
3.3  
V
D
V
V
V
IO1  
IO2  
V
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VD = 3.3 V, VIO1 = 3.3 V, VIO2 = 3.3 V, VA = 5 V, and 25 °C unless otherwise stated. Parameters  
are tested in production unless otherwise stated.  
Table 2. DC Characteristics  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Mode  
Total Supply Power  
671  
121  
47  
850  
130  
60  
1049  
139  
79  
mW  
mA  
mA  
µA  
V Supply Current  
I
VA  
A
V Supply Current  
I
VD  
D
V Supply Power Down  
I
20  
90  
170  
A
VA  
Current  
V Supply Power Down  
I
5
20  
50  
µA  
D
VD  
Current  
AM Mode  
Total Supply Power  
707  
129  
47  
900  
140  
60  
1100  
147  
81  
mW  
mA  
mA  
µA  
V Supply Current  
I
VA  
A
V Supply Current  
I
VD  
D
V Supply Power Down  
I
20  
90  
170  
A
VA  
Current  
V Supply Power Down  
I
5
20  
50  
µA  
D
VD  
Current  
*Note: See "7. I2C Control Bus" on page 44.  
4
Rev. 0.9  
Si4770/77-A20  
Table 2. DC Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Interface Supplies  
V
V
V
Supply Current  
I
I
0.1  
0.1  
0.5  
0.2  
0.82  
0.5  
mA  
mA  
µA  
IO1  
IO2  
IO1  
VIO1  
Supply Current  
VIO2  
Supply Power Down  
I
I
150  
250  
420  
PD  
PD  
Current*  
V
Supply Power Down  
5
20  
150  
µA  
IO2  
Current*  
Inputs Pins SCL, SDA, RSTB, A0, A1  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
V
0.7 x V  
V
V
IH  
IO1  
V
0.3xV  
10  
IL  
IO1  
I
V
= V = 3.6 V  
–10  
µA  
µA  
IH  
IN  
I01  
I
V
= 0 = V,  
= 3.6 V  
–10  
10  
IL  
IN  
V
I01  
Input Pins DCLK, DFS  
High Level Input Voltage  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
V
0.7 x V  
V
V
IH  
IO2  
V
0.3 x V  
10  
IL  
IO2  
I
V
= V = 3.6 V  
–10  
µA  
µA  
IH  
IN  
I02  
I
V
= 0 V,  
IN  
–10  
10  
IL  
V
= 3.6 V  
I02  
Input Pins GPIO1, GPIO2  
GPIO1 and GPIO2  
are internally regu-  
lated at 3.6 V  
High Level Input Voltage  
V
2.52  
V
IH  
Low Level Input Voltage  
High Level Input Current  
Low Level Input Current  
Output Pins INTB  
V
1.08  
10  
V
IL  
I
V
= 3.6 V  
IN  
–10  
–10  
μA  
μA  
IH  
I
V
= 0 V  
IN  
10  
IL  
Output is common  
drain output with  
internal 10 kpull-  
High Level Output Voltage  
V
0.8xV  
V
V
OH  
IO1  
up to V  
IO1  
Low Level Output Voltage  
V
I
= –500 μA  
0.2xV  
IO1  
OL  
OUT  
*Note: See "7. I2C Control Bus" on page 44.  
Rev. 0.9  
5
Si4770/77-A20  
Table 2. DC Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pins SDA  
Output is common  
drain output with  
external 4.7 k  
High Level Output Voltage  
V
0.8xV  
V
V
OH  
IO1  
pull-up to V  
IO1  
Low Level Output Voltage  
V
I
= –500 μA  
0.2xV  
OL  
OUT  
IO1  
Output Pins GPIO1, GPIO2  
GPIO1 and GPIO2  
are internally regu-  
lated at 3.6 V,  
High Level Output Voltage  
Low Level Output Voltage  
V
2.88  
V
V
OH  
IOUT = +500 μA  
V
I
= –500 μA  
OUT  
0.72  
OL  
Output Pins IQCLK, IQFS, IOUT, QOUT, DFS, DCLK, DOUT  
High Level Output Voltage  
Low Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
IO2  
V
I
= –500 µA  
0.2 x V  
IO2  
OL  
OUT  
*Note: See "7. I2C Control Bus" on page 44.  
6
Rev. 0.9  
Si4770/77-A20  
Table 3. Digital Audio Interface Characteristics*  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DCLK Input Cycle Time  
t
70  
ns  
CYC: DCLK  
DCLK Input Pulse Width  
High  
t
0.4 x t  
0.6 x t  
ns  
ns  
HI: DCLK  
CYC:DCLK  
CYC:DCLK  
DCLK Input Pulse Width  
Low  
t
0.4 x t  
0.6 x t  
CYC:DCLK  
LO: DCLK  
CYC:DCLK  
DFS Setup Time  
DFS Hold Time  
t
10  
5
35  
10  
15  
ns  
ns  
ns  
SU:DFS  
t
HD:DFS  
DOUT ouTput Delay  
t
0
PD:DOUT  
VIO < 1.33 V  
2
Capacitive Loading  
C
pF  
B
VIO > 1.33 V  
2
*Note: Guaranteed by characterization.  
tCYC:DCLK  
tHI:DCLK tLO:DCLK  
DCLK in  
tSU:DFS  
tHD:DFS  
DFS in  
tPD:DOUT  
DOUT out  
Figure 1. Digital Audio  
Rev. 0.9  
7
Si4770/77-A20  
Table 4. Digital Zero-IF I/Q Interface Characteristics (Si4777 Only)1  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test  
Min  
Typ  
Max  
Unit  
Condition  
2
IQCLK Output Cycle Time  
IQCLK Output Pulse Width High  
IQCLK Output Pulse Width Low  
IQFS Output Delay  
t
0.8 x per  
0.22 x per  
0.41 x per  
0
per  
1.2 x per  
0.59 x per  
0.78 x per  
(0.5 x per) + 18  
ns  
ns  
ns  
ns  
ns  
CYC:IQCLK  
t
HI:IQCLK  
t
LO:IQCLK  
t
PD:IQFS  
SU:IQFS  
IQFS Output Setup to IQCLK  
t
(0.5 x per) – 18  
3
Rise  
IOUT Output Delay  
t
0
(0.5 x per) + 18  
ns  
ns  
ns  
ns  
PD:IOUT  
QOUT Output Delay  
t
0
(0.5 x per) + 18  
PD:QOUT  
3
IOUT Output Setup to IQCLK rise  
t
(0.5 x per) – 18  
(0.5 x per) – 18  
SU:IOUT  
QOUT Output Setup to IQCLK  
t
SU:QOUT  
3
Rise  
Notes:  
1. Guaranteed by characterization.  
2. per is the IQCLK I/Q bit clock period. Refer to Table 15 on page 35 for IQCLK bit clock frequencies.  
3. Minimum time the Si4770/77-A20 will produce between valid output and the next rising edge of IQCLK  
t
CYC:IQCLK Max  
tCYC:IQCLK Min  
IQCLK out  
tHI:IQCLK MIN  
tLO:IQCLK MAX  
tLO:IQCLK MIN  
tHI:IQCLK MAX  
tPD:IQFS MAX  
tPD:IQFS MIN  
tSU:IQFS  
tSU:IOUT  
tSU:QOUT  
IQFS out  
IOUT out  
QOUT out  
tPD:IOUT MAX  
t
PD:IOUT MIN  
tPD:QOUT MAX  
tPD:QOUT MIN  
Figure 2. Digital Zero-IF I/Q  
8
Rev. 0.9  
Si4770/77-A20  
Table 5. Reference Clock and Crystal Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock, Pin RCLK  
RCLK Supported  
Frequencies  
36.4  
37.8  
MHz  
37.209375  
–100  
100  
ppm  
RCLK Frequency  
Tolerance  
RCLK = 36.4 MHz, 37.8 MHz, 37.209375 MHz  
Phase Noise  
100 Hz offset  
1 kHz offset  
10 kHz offset  
7
–86  
–101  
–108  
–122  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
pF  
100 kHz offset  
Input Capacitance  
Input Voltage  
AC coupling capacitor = 1 µF  
Square wave input  
400  
mV  
PP  
AC coupling capacitor = 1 µF  
Sine wave input  
300  
900  
mV  
PP  
Crystal Oscillator, Pins XTAL1, XTAL2  
Crystal Frequency  
36.4  
37.8  
MHz  
37.209375  
–100  
5
100  
ppm  
pF  
Crystal Frequency  
Tolerance  
Load Capacitance, Pro-  
grammable, Each Pin to  
GND  
21.8  
Rev. 0.9  
9
Si4770/77-A20  
Table 6. I2C Control Interface Characteristics  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Pins SCL, SDA  
SCL Frequency  
SCL Low Time  
SCL High Time  
f
0
400  
kHz  
µs  
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCL Input to SDA Setup  
(START)  
t
t
µs  
SU:STA  
SCL Input from SDA Hold  
0.6  
µs  
HD:STA  
(START)  
SDA Input to SCL Setup  
SDA Input from SCL Hold  
SDA Output Delay  
t
t
100  
0
ns  
ns  
ns  
SU:DAT  
900  
900  
HD:DAT  
t
300  
PD:DAT  
SCL Input to SDA Setup  
(STOP)  
t
0.6  
1.3  
µs  
SU:STO  
STOP to START Time  
SDA Output Fall Time  
t
µs  
ns  
BUF  
t
250  
f:OUT  
CB  
----------  
20 + 0.1  
1pF  
SDA Input, SCL Rise/Fall  
Time  
t
t
300  
ns  
f:IN, r:IN  
CB  
----------  
1pF  
20 + 0.1  
Capacitive Loading  
C
50  
50  
pF  
ns  
B
Pulse Width Rejected by  
Input Filter  
t
SP  
10  
Rev. 0.9  
Si4770/77-A20  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
30%  
SCL  
SDA  
70%  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tPD:DAT  
tr:IN  
STOP  
START  
Figure 3. I2C Control Interface Read and Write Timing Parameters  
SCL  
Command  
7-0  
Arg1  
7-0  
SDA  
(Write)  
A6-A0, 0  
START  
START  
ADDRESS + R/W  
ACK  
ACK  
DATA  
ACK  
ACK  
DATA  
ACK  
ACK  
STOP  
Status  
7-0  
Response  
7-0  
SDA  
(Read)  
A6-A0, 1  
ADDRESS + R/W  
DATA  
DATA  
STOP  
Figure 4. I2C Control Interface Read and Write Timing Diagram  
Rev. 0.9  
11  
Si4770/77-A20  
Table 7. FM Receiver Characteristics  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, FM modulation (L = R), FMOD = 1 kHz, FDEV = 22.5 kHz, Deemphasis = 75 µsec, RF level = 60 dBµV, and  
FRF = 98 MHz in application circuit unless otherwise specified)  
Parameter  
Test Condition  
Min  
64  
Typ  
Max  
108  
200  
Unit  
MHz  
kHz  
Input Frequency  
Frequency Step  
Resolution  
10  
1,2  
Powerup Time  
100  
ms  
RCLK or Crystal = 36.4 MHz, 37.8 MHz,  
37.209375 MHz  
1
Tune time  
1.5  
20  
ms  
ms  
1
Seek Time/Channel  
Max Frequency  
At LOUT and ROUT pins  
Audio THD <1%,  
over-deviation handling enabled  
150  
kHz  
1
Deviation  
RF AGC Range  
AGC Gain  
Resolution  
40  
2
dB  
dB  
3
RF AGC Threshold  
Accuracy  
2
1
dB  
dB  
3
IF AGC Threshold  
3
Accuracy  
Following FM Receiver Specifications Refer to Si4770/77-A20 Application Circuit Input  
6
IP3  
Blockers at 400/800 kHz offset  
AGC disabled (Max RF gain)  
115  
117  
dBµV  
dBµV  
6
Sensitivity  
Audio SINAD = 26 dB  
–3.5  
–2  
AGC disabled (Max RF gain)  
1
Image Rejection  
Deviation = 22.5 kHz  
Audio SINAD = 26 dB  
65  
63  
70  
65  
dB  
dB  
Adjacent Channel  
1,6  
Rejection  
Desired = 40dBµV, F  
= 1 kHz,  
MOD  
F
= 22.5 kHz  
DEV  
Undesired at ±100 kHz offset, F  
= 400 Hz,  
MOD  
F
= 22.5 kHz  
DEV  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. Guaranteed by design.  
4. IP3 measured at the FMXIP and FMXIN pins reflects IP3 for mixer stage and all subsequent downstream blocks.  
5. Refer to FM test circuit in Figure 5.  
6. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
7. Input resistance is software configurable.  
8. IP3 measured at the FMI input pin reflects IP3 for FMI LNA stage.  
9. RDS Synchronization Persistence is the minimum RF level at which the tuner loses synchronization to the RDS PI code  
as the RF level decreases from high to low levels.  
10. RDS Synchronization Stability is the minimum RF level at which the tuner achieves synchronization to the RDS PI code  
as the RF level increases from low to high levels.  
11. Noise integrated from 30 Hz to 120 kHz for audio SINAD and SNR measurements.  
12  
Rev. 0.9  
Si4770/77-A20  
Table 7. FM Receiver Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, FM modulation (L = R), FMOD = 1 kHz, FDEV = 22.5 kHz, Deemphasis = 75 µsec, RF level = 60 dBµV, and  
FRF = 98 MHz in application circuit unless otherwise specified)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
Alternate Channel  
Rejection  
Audio SINAD = 26 dB  
65  
72  
dB  
6
Desired = 40 dBµV, F  
= 1 kHz,  
MOD  
F
= 22.5 kHz  
DEV  
Undesired at ±200 kHz offset, F  
= 400 Hz,  
MOD  
F
= 22.5 kHz  
DEV  
THD  
F
= 75 kHz  
66  
64  
0.05  
75  
0.1  
%
DEV  
6
Mono (S+N)/N  
dB  
dB  
6
Stereo (S+N)/N  
Stereo modulation (L = 1, R = 0),  
deviation = 67.5 kHz,  
70  
pilot deviation = 6.75 kHz  
1
AM Suppression  
AM: m = 0.3/Fmod = 1 kHz, RF level = 60 dBµV  
50  
70  
45  
–1  
40  
55  
75  
50  
43  
80  
54  
1
dB  
µsec  
µsec  
dB  
De-Emphasis Time  
3
Constant  
L/R Imbalance  
Deviation = 75 kHz  
Stereo Separation  
Stereo modulation (L = 1, R = 0),  
dB  
Deviation = 67.5 kHz, pilot deviation = 6.75 kHz  
Stereo THD  
Stereo modulation (L = 1, R = 0),  
Deviation = 67.5 kHz, pilot deviation = 6.75 kHz  
0.1  
55  
0.2  
%
Pilot Signal  
Stereo modulation (L = 1, R = 0),  
Deviation = 67.5 kHz, pilot deviation = 6.75 kHz  
dB  
1
Rejection  
1
RDS Sensitivity  
f = 2 kHz, RDS BLER < 5%  
13  
70  
14.5  
dBµV  
ms  
RDSSynchronization  
f = 2 kHz  
RF input = 60 dBµV  
1
Time  
1
RDS PI Lock Time  
f = 2 kHz  
85  
ms  
RF input = 60 dBµV  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. Guaranteed by design.  
4. IP3 measured at the FMXIP and FMXIN pins reflects IP3 for mixer stage and all subsequent downstream blocks.  
5. Refer to FM test circuit in Figure 5.  
6. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
7. Input resistance is software configurable.  
8. IP3 measured at the FMI input pin reflects IP3 for FMI LNA stage.  
9. RDS Synchronization Persistence is the minimum RF level at which the tuner loses synchronization to the RDS PI code  
as the RF level decreases from high to low levels.  
10. RDS Synchronization Stability is the minimum RF level at which the tuner achieves synchronization to the RDS PI code  
as the RF level increases from low to high levels.  
11. Noise integrated from 30 Hz to 120 kHz for audio SINAD and SNR measurements.  
Rev. 0.9  
13  
Si4770/77-A20  
Table 7. FM Receiver Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, FM modulation (L = R), FMOD = 1 kHz, FDEV = 22.5 kHz, Deemphasis = 75 µsec, RF level = 60 dBµV, and  
FRF = 98 MHz in application circuit unless otherwise specified)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Mixer Inputs: Pins FMXIP, FMXIN  
Maximum RF Input  
Voltage  
1 dB compression point of mixer  
112  
8
dBµV  
k  
3
Mixer Input  
Resistance  
3
Mixer Input  
Capacitance  
6
pF  
3
4,5,6  
IP3  
Blockers at 400/800 kHz offset,  
Max Gain (AGC disabled)  
123  
3.5  
dBµV  
dBµV  
5,6  
Sensitivity  
Audio SINAD = 26 dB  
Max Gain (AGC disabled)  
FM Resistor Banks: FMAGC1, FMAGC2  
FMAGC1 Min  
2.5  
800  
800  
2.5  
FMAGC1 Max  
FMAGC1 Step Size  
FMAGC2 Min  
Maximum parallel resistance change  
FMAGC2 Max  
800  
800  
FMAGC2 Step Size  
FM LNA: Pins FMI, FMO  
Single Receiver Mode  
FMI Input  
Maximum parallel resistance change  
50  
2
3,7  
Resistance  
FMI Input  
Capacitance  
pF  
dB  
3
3
FMI Return Loss  
64 MHz < F < 108 MHz  
15  
FMI Input Referred  
0.73  
3
nV/ Hz  
dBµV  
Noise  
3,8  
FMI LNA IP3  
Blockers at 400/800 kHz offset, Max Gain  
128  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. Guaranteed by design.  
4. IP3 measured at the FMXIP and FMXIN pins reflects IP3 for mixer stage and all subsequent downstream blocks.  
5. Refer to FM test circuit in Figure 5.  
6. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
7. Input resistance is software configurable.  
8. IP3 measured at the FMI input pin reflects IP3 for FMI LNA stage.  
9. RDS Synchronization Persistence is the minimum RF level at which the tuner loses synchronization to the RDS PI code  
as the RF level decreases from high to low levels.  
10. RDS Synchronization Stability is the minimum RF level at which the tuner achieves synchronization to the RDS PI code  
as the RF level increases from low to high levels.  
11. Noise integrated from 30 Hz to 120 kHz for audio SINAD and SNR measurements.  
14  
Rev. 0.9  
Si4770/77-A20  
Table 7. FM Receiver Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, FM modulation (L = R), FMOD = 1 kHz, FDEV = 22.5 kHz, Deemphasis = 75 µsec, RF level = 60 dBµV, and  
FRF = 98 MHz in application circuit unless otherwise specified)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
FMO Output  
Resistance  
Nominal FMI to FMO gain = 8 dB,  
125  
3
Source load = 50   
FMO Output  
Capacitance  
2
pF  
3
Dual Receiver Mode  
FMI Input  
Resistance  
100  
1.5  
7,3  
FMI Input  
Capacitance  
pF  
dB  
3
3
FMI Return Loss  
64 MHz < F < 108 MHz  
15  
FMI Input Referred  
1.20  
3
nV/ Hz  
dBµV  
Noise  
3,8  
FMI LNA IP3  
Blockers at 400/800 kHz offset, Max Gain  
126  
250  
FMO Output  
Resistance  
Nominal FMI to FMO gain = 8dB,  
3
Source load = 50   
FMO Output  
Capacitance  
2
pF  
3
Audio Outputs: Pins LOUT and ROUT  
Audio Frequency  
Response Low  
±3 dB  
±3 dB  
15  
30  
50  
Hz  
kHz  
1,2  
Audio Frequency  
1,2  
Response High  
Output Load  
At LOUT and ROUT pins  
At LOUT and ROUT pins  
10 k  
3
Resistance  
Output Load  
Capacitance  
pF  
3
Output Voltage  
Deviation = 22.5 kHz  
99  
112  
45  
125  
mVRMS  
dB  
Power Supply  
Rejection Ratio  
100 Hz ripple on power supply lines.  
Ripple voltage = 100 mV of power supply  
PP  
3
(PSRR)  
voltage  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. Guaranteed by design.  
4. IP3 measured at the FMXIP and FMXIN pins reflects IP3 for mixer stage and all subsequent downstream blocks.  
5. Refer to FM test circuit in Figure 5.  
6. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
7. Input resistance is software configurable.  
8. IP3 measured at the FMI input pin reflects IP3 for FMI LNA stage.  
9. RDS Synchronization Persistence is the minimum RF level at which the tuner loses synchronization to the RDS PI code  
as the RF level decreases from high to low levels.  
10. RDS Synchronization Stability is the minimum RF level at which the tuner achieves synchronization to the RDS PI code  
as the RF level increases from low to high levels.  
11. Noise integrated from 30 Hz to 120 kHz for audio SINAD and SNR measurements.  
Rev. 0.9  
15  
Si4770/77-A20  
Table 7. FM Receiver Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, FM modulation (L = R), FMOD = 1 kHz, FDEV = 22.5 kHz, Deemphasis = 75 µsec, RF level = 60 dBµV, and  
FRF = 98 MHz in application circuit unless otherwise specified)  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
FM MPX Output: Pins MPXOUT  
F
= 83 MHz, RF level = 65 dBµV,  
RF  
F
1
= 3 kHz, F  
= 76 kHz  
Output Voltage  
14  
16  
mVRMS  
DEV  
MOD  
unless otherwise noted  
Output Load  
Resistance  
10  
50  
k  
3
Output Load  
Capacitance  
pF  
3
100 Hz ripple on power supply lines.  
3
PSRR  
45  
dB  
Ripple voltage = 100 mV of power supply volt-  
PP  
age  
1
Bandwidth  
110  
kHz  
Following FM MPX Specifications Refer to Si4770/77-A20 Application Circuit  
F
= 83 MHz, RF level = 65 dBµV,  
RF  
F
1,11  
= 3 kHz, F  
= 76 kHz  
(S+N)/N  
25  
30  
19  
dB  
DEV  
MOD  
unless otherwise noted  
= 83 MHz, F = 3 kHz, F = 76 kHz  
MOD  
F
RF  
DEV  
1,11  
unless otherwise noted,  
Sensitivity  
25  
dBµV  
SINAD = 5 dB  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. Guaranteed by design.  
4. IP3 measured at the FMXIP and FMXIN pins reflects IP3 for mixer stage and all subsequent downstream blocks.  
5. Refer to FM test circuit in Figure 5.  
6. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
7. Input resistance is software configurable.  
8. IP3 measured at the FMI input pin reflects IP3 for FMI LNA stage.  
9. RDS Synchronization Persistence is the minimum RF level at which the tuner loses synchronization to the RDS PI code  
as the RF level decreases from high to low levels.  
10. RDS Synchronization Stability is the minimum RF level at which the tuner achieves synchronization to the RDS PI code  
as the RF level increases from low to high levels.  
11. Noise integrated from 30 Hz to 120 kHz for audio SINAD and SNR measurements.  
16  
Rev. 0.9  
Si4770/77-A20  
Signal Generator  
50  
FMXIP  
FMXIN  
Si477x  
Figure 5. FM Test Circuit for Mixer Input IP3 and Sensitivity Measurement  
Table 8. AM Receiver Characteristics  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, AM modulation = 30%, FMOD = 1 kHz, RF level = 74 dBµV, and FRF = 1 MHz unless otherwise specified)  
Parameter  
Test Condition  
Min Typ Max  
Unit  
kHz  
kHz  
Input Frequency  
520  
1
1710  
10  
Frequency Step  
Resolution  
1,2  
Powerup Time  
RCLK or Crystal = 36.4 MHz, 37.8 MHz,  
37.209375 MHz  
100  
ms  
1
Tune Time  
15  
55  
93  
ms  
ms  
1
Seek Time/Channel  
At LOUT and ROUT pins  
Maximum RF Input  
Mod = 90%, Fmod = 1 kHz, SINAD = 57 dB  
dBµV  
1,2  
Voltage  
1,3  
Image Rejection  
68  
57  
72  
62  
dB  
dB  
Adjacent Channel  
SINAD = 20 dB  
1,3  
Rejection  
Desired = 40 dBµV, F  
= 1 kHz, MOD = 30%  
MOD  
Undesired at ±9 kHz offset, F  
MOD = 30%  
= 400 Hz,  
MOD  
Alternate Channel  
Rejection  
SINAD = 20 dB  
Desired = 40dBµV, F = 1 kHz, MOD = 30%  
59  
62  
dB  
1,3  
MOD  
Undesired at ±18 kHz offset, F  
MOD = 30%  
= 400 Hz,  
MOD  
1,3  
IP3  
Blockers at 40/80 kHz, AGC disabled (Max gain)  
110 120  
dBµV  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
4. Guaranteed by design.  
Rev. 0.9  
17  
Si4770/77-A20  
Table 8. AM Receiver Characteristics (Continued)  
(TAMB = –40 to 85 °C, VA = 4.5 to 5.5 V, VD = 2.7 to 3.6 V, VIO1 = 1.7 to 3.6 V, VIO2 = 1.2 to 3.6 V. Typical values measured at  
TAMB = 25 °C, AM modulation = 30%, FMOD = 1 kHz, RF level = 74 dBµV, and FRF = 1 MHz unless otherwise specified)  
Parameter  
Test Condition  
Min Typ Max  
Unit  
1,3  
IP2  
Desired = 700 kHz,  
Undesired = 1000 kHz, 1700 kHz  
AGC disabled (Max gain)  
142 146  
dBµV  
RF AGC Range  
50  
2
dB  
dB  
dB  
AGC Step Resolution  
RF AGC Threshold  
2
4
Accuracy  
IF AGC Threshold  
2
dB  
4
Accuracy  
1,3  
Sensitivity  
SINAD = 20 dB, AGC Disabled (Max RF Gain)  
14  
0.1  
0.2  
65  
17  
dBµV EMF  
1,3  
THD  
Mod = 30%  
Mod = 90%  
Mod = 30%  
%
%
1,3  
Audio SNR  
60  
dB  
µH  
3
Antenna Inductance  
180  
540  
Audio Outputs: Pins LOUT and ROUT  
Audio Output Resistance  
Load  
10k  
4
Audio Output  
Capacitance Load  
Single Ended  
50  
pF  
4
Audio Output Voltage  
96  
108  
45  
121  
mVRMS  
dB  
PSRR at Audio Output  
Ripple test should be for 100 Hz ripple on power  
supply lines  
4
Pins  
Ripple voltage = 100 mV of power supply voltage  
PP  
Notes:  
1. Guaranteed by characterization.  
2. Measured at TAMB = 25 °C.  
3. No A-weighting. Noise integrated from 30 Hz to 15 kHz for audio SINAD and SNR measurements.  
4. Guaranteed by design.  
18  
Rev. 0.9  
Si4770/77-A20  
Table 9. Thermal Conditions  
Parameter  
Symbol  
Test Conditions  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
Ambient Temperature  
Junction Temperature  
T
AMB  
T
115  
°C  
J
*
Delta from Junction to Ambient  
θ
27  
°C/W  
JA  
*Note: The θJA is layout-dependent, and, therefore, PCB layout must provide adequate heat-sink capability. The θJA is  
specified assuming adequate ground plane.  
Table 10. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–0.5  
–0.5  
–0.5  
–0.5  
–10  
–0.3  
–10  
–0.3  
–40  
–55  
–1  
Max  
5.9  
3.9  
3.9  
3.9  
10  
Unit  
V
Analog Supply Voltage  
Digital Supply Voltage  
I/O 1 Supply Voltage  
I/O 2 Supply Voltage  
V
A
V
V
D
V
V
V
IO1  
IO2  
IN1  
V
2
I/O 1 Input Current  
I
µA  
V
2
I/O 1 Input Voltage  
V
V
V
+ 0.3  
I01  
IN1  
IN2  
3
I/O 2 Input Current  
I
10  
+ 0.3  
µA  
V
3
I/O 2 Input Voltage  
V
IN2  
OP  
I02  
Operating Temperature  
Storage Temperature  
T
95  
°C  
°C  
V
T
150  
STG  
RFIN  
RFIN  
4
AM RF Input Level  
V
V + 1  
A
4
AM RF Input Current  
I
–100  
–1  
100  
1
mA  
V
5
FM RF Input Level  
V
RFIN  
RFIN  
5
FM RF Input Current  
I
–100  
–2  
100  
2
mA  
kV  
V
HBM ESD  
MM ESD  
V
HBM  
V
–200  
–500  
–750  
200  
500  
750  
MM  
6
CDM ESD  
V
V
V
CDM  
CDM  
7
CDM ESD  
V
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond recommended  
operating conditions for extended periods may affect device reliability.  
2. For input pins SCL, SDA, RSTB, A0, A1, GPIO1, GPIO2.  
3. For input pins DCLK and DFS.  
4. At RF input pins AM1.  
5. At RF input pins FMXIN, FMXIP, FMI, FMAGC1, FMAGC2.  
6. All pins.  
7. Corner pins.  
Rev. 0.9  
19  
Si4770/77-A20  
2. Typical Application Schematic  
Figure 6 shows the proposed application schematic.  
2 0  
V A  
V D  
3 1  
3 2  
3 3  
3 4  
3 5  
3 6  
3 7  
3 8  
3 9  
4 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
1 2  
1 1  
L O U T  
R O U T  
X T A L 2  
X T A L 1  
V I O 1  
I N T B  
S C L  
S D A  
R S T B  
N C  
D A C R E F  
G P I O 2  
G P I O 1  
F M A G C 2  
F M A G C 1  
3 . 2 x 2 . 5  
N C  
A 1  
A 0  
4 1  
G N D _ P A D  
20  
Rev. 0.9  
Si4770/77-A20  
3. Bill of Materials  
Table 11. Si4770/77-A20 Bill of Materials  
Item  
Qty  
1
Ref  
T2  
Package  
Transformer, Thru-hole  
BALUN, 1:1, Toko  
CAP, SM, 0402  
CAP, SM, 0402  
CAP, SM, 0402  
CAP, SM, 0402  
CAP, SM, 0402  
Value  
Mfr  
Part Number  
1
2
3
5
6
7
8
Silicon Laboratories  
Toko  
SL755TF01  
1
T1  
458PT1566  
2
C13, C21  
C1  
0.1 µF  
100 pF  
18 pF  
1 nF  
Murata  
GRM155R71A204KA01D  
GRM1555C1H101JZ01  
GRM1555C1H180JZ01  
GRM155R61H102KA01  
GRM155R71H222KA01  
1
Murata  
1
C10  
C8  
Murata  
1
Murata  
5
C2, C3,  
2.2 nF  
Murata  
C4, C5, C7  
9
1
2
1
1
C9  
C6, C20  
J1  
CAP, SM, 0402  
CAP, SM, 0603  
62 pF  
10 µF  
Murata  
Digikey  
GRM1555C1H620JD01  
490-3896-2-ND  
10  
11  
12  
CONN, SMA, Edgemount  
AEP Connectors  
Samtec  
JP1  
CONN, TH, HEADER,  
.100 PITCH,1X2  
HTSW-101-07-G-D  
13  
14  
2
1
D1, D3  
U1  
ESD Protector, SM  
TE Connectivity  
PESD0402-140  
Si4770/77  
IC, SM, Si4770/77-A20,  
QFN40  
Silicon Laboratories  
15  
16  
17  
18  
21  
1
1
1
1
1
L9  
L3  
L1  
L2  
X1  
IND, SM, 0603  
IND, SM, 0603  
10 nH  
150 nH  
Murata  
Murata  
LQW18ANR15G00  
LQW18ANR22G00  
LQW18AN47NG00  
See Table 12  
IND, SM, 0603  
220 nH  
Murata  
IND, SM, 0603  
47 nH  
Murata  
XTAL, SM, 3.2 x 2.5 mm  
See Table 12  
See Table 12  
Rev. 0.9  
21  
Si4770/77-A20  
Table 12. Crystal Options  
Series  
Frequency  
(MHz)  
Mfr  
P/N  
36.400000  
37.800000  
37.209375  
36.400000  
37.800000  
37.209375  
36.400000  
NDK  
NDK  
NX3225SA  
NX3225SA  
EXS00A-CS02420  
EXS00A-CS02421  
EXS00A-CS02422  
TZ1514A  
NDK  
NX3225SA  
TaiSaw  
TaiSaw  
TaiSaw  
Jauch  
SMD 3.2x2.5 36.4 MHz Crystal Unit  
SMD 3.2x2.5 37.8 MHz Crystal Unit  
SMD 3.2x2.5 37.209375 MHz Crystal Unit  
JXE115  
TZ1517A  
TZ1522A  
Q36,40-JAS32P4-12-10/20-  
T1-LF  
37.800000  
37.209375  
Jauch  
Jauch  
JXE115  
JXE115  
Q37,80-JAS32P4-12-10/20-  
T1-LF  
Q37,209375-JAS32P4-12-10/  
20-T1-LF  
36.400000  
37.800000  
37.209375  
Epson Toyocom  
Epson Toyocom  
Epson Toyocom  
TSX-3225  
TSX-3225  
TSX-3225  
OUTD-2B-0541  
OUTD-2B-0541  
OUTD-2B-0541  
22  
Rev. 0.9  
Si4770/77-A20  
4. Functional Description  
4.1. Overview  
Si4770/77  
LOUT/  
DAC  
ADC  
MPXOUT  
FMXIP  
RF PKD  
FMXIN  
DSP  
IF PKD  
ADC  
DAC  
ROUT  
RFREG  
REG  
RL  
DCLK  
DFS  
DOUT  
LNA  
FMO  
FMI  
0°/90°  
RDS  
RF PKD  
RF PKD  
INTB  
RSTB  
VIO1  
VIO2  
AMI  
LNA  
CNTRL  
ClK  
Gen  
RFGND  
Figure 7. Si4770/77-A20 Block Diagram  
The Si4770/77-A20 radio receiver family employs 100% The proven digital techniques provide excellent  
RF CMOS technology to bring outstanding receiver sensitivity in weak signal environments and superb  
performance to the consumer electronics industry. The selectivity and intermodulation immunity in strong signal  
Si4770/77-A20 receiver family supports worldwide radio environments. The solution offers dynamic AM/FM  
reception. The Si4770/77-A20 incorporates a digital pre- channel bandwidth control, auto-calibrated digital  
processor for the European Radio Data System (RDS) tuning, and proven AM/FM seek functionality based on  
and the North American Radio Broadcast Data System multiple signal quality and band parameters. The family  
(RBDS) including all required symbol decoding, block offers highly flexible and advanced audio processing  
synchronization, error detection, and error correction including programmable softmute, FM stereo-mono  
functions. The Si4777 supports AM/FM HD radio blend, dynamic AM/FM channel bandwidth, AM/FM hi-  
2
channel reception with digital (I S) Zero-IF (ZIF) I/Q cut, FM hi-blend, and AM lo-cut filters. In addition, the  
outputs for interface to an HD radio processor.  
Si4770/77-A20 provides an integrated clock oscillator or  
accepts a reference clock and an I C-compatible, 2-wire  
2
The family leverages Silicon Laboratories’ patented low-  
IF digital architecture, delivering superior RF  
performance and interference rejection. The low-IF  
architecture delivers superior performance while  
integrating the great majority of external components  
required by competing solutions.  
control interface. The Si4770/77-A20 receiver system  
specifies a minimal bill of materials, resulting in a small  
board space requirement and making the solution ideal  
for any consumer electronics application from single  
tuner radios to multiple tuner radios.  
Rev. 0.9  
23  
Si4770/77-A20  
Table 13. Part Number Descriptions  
Si4770  
Si4777  
AM/FM RDS,  
VICS  
AM/FM RDS,  
VICS, HD Tuner  
24  
Rev. 0.9  
Si4770/77-A20  
4.2. Clocking  
4.3. Tuning  
The Si4770/77-A20 generates all internal clocking from The Si4770/77-A20 includes a complete on-chip PLL-  
an external crystal using an on-chip oscillator or an VCO frequency synthesizer to generate the quadrature  
external programmable reference clock. The reference LO input to the image-reject AM and FM mixers. The  
clock of Si4770/77-A20 is a sinusoidal or rectangular Si4770/77-A20 employs a single-conversion mix (down  
clock provided by an external source on pin RCLK. The conversion) to a fixed low IF center frequency. An  
supported crystal and external clock source frequencies innovative high-performance image reject mixer  
are selected frequencies in the 36–38 MHz range.  
architecture allows for IF center frequencies below  
300 kHz, thereby eliminating ceramic filters required in  
10.7 MHz IF tuner architectures. The tune command  
automatically programs the LO frequency to the center  
of the desired channel plus (minus) the output center IF  
frequency when using a high-side (low-side) mix. The  
Si4770/77-A20 supports 50, 100, or 200 kHz channel  
spacing for FM, 9 or 10 kHz for AM.  
The power up command enables the selection of an  
external crystal or reference clock. The reference clock  
and/or crystal accuracy should be ±100 ppm. In a multi-  
receiver system, a single crystal can be shared between  
all Si4770/77-A20 receivers. The Si4770/77-A20 family  
features programmable loading capacitors for the on-  
chip crystal oscillator, eliminating external loading  
capacitors.  
CLK  
Si477x  
Audio Receiver 1  
CLK  
Si477x  
Audio Receiver 2  
Figure 8. Xtal Share between Two Tuners  
Rev. 0.9  
25  
Si4770/77-A20  
4.4. FM Receiver Front-End  
The Si4770/77-A20 provides a very flexible front-end  
interface to accommodate a wide range of applications  
from cost-sensitive to high-performance.  
An advanced AGC on the Si4770/77-A20 is  
implemented with the use of internal RF peak and IF  
peak detectors with programmable thresholds (trip  
points). The AGC adjusts the resistor values  
automatically. Attack and release rates for the AGC are  
programmable, providing flexible fast attack and slow  
release AGC performance.  
FMXIP  
FMXIN  
RF Pkd  
Reg  
For cost-effective performance and superior FM  
sensitivity, the antenna output can be received on the  
FMI pin (Figure 9). The FM band can be received on the  
FMI pin via an input coupling network. This input  
coupling network isolates the FM band for best  
performance. An internal LNA provides gain for the  
signal. The LNA output is routed externally to the FM  
mixer input pins. The LNA gain is regulated with an  
internal voltage regulator supply via an internal resistor  
RFREG  
FMO  
RL  
LNA  
50  
FMI  
RF Pkd  
Si477x  
Figure 10. Conceptual Illustration of the  
Lowest-Cost Configuration  
bank, R . The AGC circuit automatically controls the  
L
4.4.1. FMI LNA for FM Loop-Through Usage  
LNA gain, resistor banks FMAGC1, FMAGC2, and R to  
L
optimize sensitivity and strong signal handling.  
In dual receiver applications, two receivers (Figure 11)  
can be attached to a single antenna. The dual receiver  
solution allows for independent radio station listening in  
different rooms.  
The FMI LNA input impedance is software-configurable  
and provides two options: 50 and 100 . Configuring  
the input impedance for 100 facilitates a Si4770/77-  
A20 receiver 1 and the Si4770/77-A20 receiver 2 to be  
interfaced to the antenna output in parallel, providing a  
matched 50 input impedance. AGC is coordinated  
between both receivers whereby the resistor banks,  
FMXIP  
RF Pkd  
FMAGC1, FMAGC2, and R , from one receiver are  
L
used to optimize sensitivity and strong signal handling.  
FMXIN  
RFREG  
Reg  
RL  
LNA  
FMO  
50  
FMI  
RF Pkd  
Si477x  
Figure 9. Conceptual Illustration of the Use of  
the FMI LNA for Cost-Optimized and Superior  
FM Sensitivity Performance  
Cost can be further reduced by eliminating the 1:1 balun  
and directly interfacing the signal to the FM mixer by  
programming the mixer for single-ended input mode  
(Figure 10). The trade-off is a drop in linearity of 6 dBµV  
in IP3.  
26  
Rev. 0.9  
Si4770/77-A20  
4.5. AM Receiver Front-End  
The Si4770/77-A20 contains an integrated LNA,  
providing an AM receive chain from antenna to audio  
out. There are few external components and no manual  
alignment required. The AM signal is received on the  
AMI pin. An advanced AGC on the Si4770/77-A20 is  
implemented with the use of internal RF peak and IF  
peak detectors with programmable thresholds (trip  
points). Attack and release rates for the AGC are  
programmable providing flexible fast attack and slow  
release AGC performance.  
FMXIP  
RF Pkd  
FMXIN  
RFREG  
Reg  
LNA  
The Si4770/77-A20 provides highly-accurate digital AM  
tuning without factory adjustments. To offer maximum  
flexibility, the receiver supports a wide range of ferrite  
loop sticks from 180~688 µH. An air loop antenna is  
supported by using a transformer to increase the  
effective inductance of the air loop. Using a 1:5 turn  
ratio inductor, the inductance is increased by 25 times  
and easily supports all typical AM air loop antennas  
which generally vary between 10 and 20 µH.  
RL  
FMO  
FMI  
50  
100  
RF Pkd  
Si477x  
FMXIP  
RF Pkd  
FMXIN  
RFREG  
Reg  
LNA  
RL  
FMO  
FMI  
100  
RF Pkd  
Si477x  
Figure 11. Conceptual Illustration of Si4770/77-  
A20 Receivers Interfaced to a Single Antenna  
Using the FMI LNA in Loop-Through Mode  
Rev. 0.9  
27  
Si4770/77-A20  
4.7.1. Audio Data Formats  
4.6. Received Signal Qualifiers  
2
In I S format, by default the MSB is captured on the  
A tuned signal's quality can vary with the environmental  
conditions, time of day, and geographical location  
among many other factors. To adequately manage the  
audio output and avoid unpleasant audible effects to the  
end-user, the Si4770/77-A20 monitors and provides  
indicators of signal quality, allowing the on-chip DSP  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
and host processor (if required) to perform signal In Left-Justified format, by default, the MSB is captured  
processing. The Si4770/77-A20 monitors and reports a on the first rising edge of DCLK following each DFS  
set of industry-standard signal quality metrics including transition. The remaining bits of the word are sent in  
on-channel RSSI, adjacent channel RSSI (100 kHz and order, down to the LSB. The left channel is transferred  
200 kHz), image RSSI, SNR, multi-path interference on first when the DFS is high, and the right channel is  
FM signal, ultra-sonic noise, and FM pilot detection. As transferred when the DFS is low.  
with other Si4770/77-A20 features, how these variables  
In Right-Justified format, by default, the LSB is captured  
are used to improve audio performance can be left to  
on the last rising edge of DCLK in each valid DFS  
the Silicon Labs on-chip algorithms (recommended), or  
interval. The left channel is transferred first when the  
they can be brought out for host-processor instructions.  
DFS is high, and the right channel is transferred when  
the DFS is low.  
4.7. Digital Audio Interface  
In DSP format, the DFS becomes a pulse with a width of  
The digital audio 3-pin interface consists of data serial  
one DCLK period. The left channel is transferred first,  
lines containing audio data, a bit clock, and a word  
followed right away by the right channel. There are two  
frame for left and right channel data. The digital audio  
options in transferring the digital audio data in DSP  
interface operates in slave mode and supports five  
format; the MSB of the left channel can be transferred  
different audio data formats:  
on the first rising edge of DCLK following the DFS pulse  
(left-justified DSP format) or on the second rising edge.  
2
I S Audio  
Left-Justified Audio  
Right-Justified Audio  
DSP Audio  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. In addition, if  
preferred, the user can configure the MSB to be  
captured on the falling edge of DCLK via properties.  
The number of audio bits can be configured for 8, 16,  
20, or 24 bits.  
DSP Left-Justified Audio  
4.7.2. Audio Sample Rates  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz.  
28  
Rev. 0.9  
Si4770/77-A20  
Rev. 0.9  
29  
Si4770/77-A20  
30  
Rev. 0.9  
Si4770/77-A20  
4.9.1. ZIF I/Q Data Formats  
4.8. Channel Equalizer  
2
In I S format, by default, the MSB is captured on the  
The Si4770/77-A20 supports advanced FM multi-path  
channel equalization. Multi-path interference results in  
fading of the FM signal at the receiver. Frequency  
selective fading causes different frequencies of an input  
second rising edge of IQCLK following each IQFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB.  
signal to be attenuated and phase shifted differently in a In Left-Justified format, by default, the MSB is captured  
channel. Frequency selective fading gives rise to on the first rising edge of IQCLK following each IQFS  
notches in the frequency response of the channel. The transition. The remaining bits of the word are sent in  
Si4770/77-A20 channel equalizer performs blind order, down to the LSB.  
equalization utilizing proprietary constant modulus  
algorithm (CMA) to restore the flat response of the  
on the last rising edge of IQCLK in each valid IQFS  
channel.  
In Right-Justified format, by default, the LSB is captured  
interval.  
In DSP format, the IQFS becomes a pulse with a width  
of 1 IQCLK period. There are two options in transferring  
4.9. Digital ZIF I/Q Interface  
(Si4777 Only)  
the digital baseband I/Q data in DSP format: the MSB of  
The digital ZIF I/Q output can provide the down  
I and Q data can be transferred on the first rising edge  
converted channelized AM/FM signal at baseband to a  
of IQCLK following the IQFS pulse (left-justified DSP  
third-party processor for AM/FM HD radio processor for  
format) or on the second rising edge.  
IBOC signal processing. The Si4777 provide a 500 kHz  
In all data formats, depending on the word size, IQCLK  
BW signal for FM IBOC signal processing and a 30 kHz  
frequency, and sample rates, there may be unused  
BW signal for AM IBOC signal processing. The ZIF I/Q  
IQCLK cycles after the LSB of each word before the  
4-pin interface consists of two data serial lines  
next IQFS transition and MSB of the next word. In  
containing I and Q data, a bit clock, and a word frame  
addition, if preferred, the user can configure the MSB to  
for each data sample. The interface operates in master  
be captured on the falling edge of IQCLK via properties.  
mode and supports five different data formats:  
The number of baseband I/Q bits is configured for 16  
2
I S ZIF  
bits.  
Left-Justified ZIF  
Right-Justified ZIF  
DSP ZIF  
DSP Left-Justified ZIF  
Table 14. ZIF I/Q Interface Description  
Pin  
Description  
IOUT  
QOUT  
IQFS  
16-bit baseband I word  
16-bit baseband Q word  
Word frame sync for I and Q words  
Bit clock for I and Q data  
IQCLK  
Rev. 0.9  
31  
Si4770/77-A20  
32  
Rev. 0.9  
Si4770/77-A20  
Rev. 0.9  
33  
Si4770/77-A20  
34  
Rev. 0.9  
Si4770/77-A20  
4.9.2. ZIF I/Q Sample Rates and Clocking Requirements  
The device supports a number of industry-standard sampling rates including 650, 675, and 744.1875 kHz.  
The external crystal and/or reference clock frequency must be the following to support the following ZIF I/Q  
samples rates for interface to an HD radio demodulator/decoder or DSP.  
Table 15. Crystal/Reference Clock Frequency Requirements for the ZIF I/Q Sample Rates and  
Bit Clock Rates Supported  
RCLK/XTAL  
Frequency (MHz)  
IQFS ZIF I/Q  
Sample Rate (kHz)  
IQCLK  
I/Q Bit Clock (MHz)  
Broadcast Reception  
Modes  
650.0000  
325.0000  
40.6250  
10.4000  
5.2000  
2.2750  
10.8000  
5.4000  
2.3625  
14.88375  
7.4419  
1.8605  
AM/FM HD-Radio  
FM Analog  
36.4000  
37.8000  
AM Analog/HD-Radio  
AM/FM HD-Radio  
FM Analog  
675.0000  
337.5000  
42.1875  
AM Analog/HD-Radio  
AM/FM HD-Radio  
FM Analog  
744.1875  
372.0938  
46.5117  
37.209375  
AM Analog/HD-Radio  
Rev. 0.9  
35  
Si4770/77-A20  
The blended audio can be output on the analog output  
pins, LOUT and ROUT and/or a digital audio port to a  
third party audio DSP.  
4.10. IBOC Blend Mode for HD Radio  
(Si4777 Only)  
For HD-Radio reception IBOC blend is supported on the  
Si4777. This feature supports the ability to blend  
between analog and digital audio. When the bit error  
rate (BER) of the HD-Radio digital signal falls below a  
predefined threshold (set by the HD-Radio  
demodulator) and the digital audio fades out, the analog  
audio is blended in. This prevents the received audio  
from muting when the digital signal is lost. The audio will  
"blend to digital" upon reacquisition of the digital signal.  
Figure 22 illustrates the system implementation with a  
third party HD-Radio demodulator. ZIF I/Q data is output  
to the HD-Radio demodulator. The HD-Radio  
demodulator demodulates and decodes the received  
An on-chip asynchronous re-sampling converter  
(ASRC) allows the Si4777 to be slaved to the Audio  
DSP’s digital frame sync and bit clock from 32 kHz to  
48 kHz.  
Audio level alignment and calibration is implemented in  
the Si4777 by multiplying the input HD-R audio signal  
by a scaling constant (determined at manufacturing time  
in the factory) and a dynamic constant that is HD-R  
station-dependent. The dynamic constant is determined  
by the HD-R demodulator during reception and is  
relayed to the Si4777 by the host controller for the  
blend.  
2
2
HD-Radio signal. It outputs digital audio (I S three-wire  
4.10.1. IBOC Blend and I C Device Address  
mode) to the Si4777 where the IBOC blend is  
performed. An on-chip asynchronous resampling  
converter (ASRC) allows the Si4777 to be slaved to the  
HD-Radio demodulator digital audio output at any  
sample rate from 32 kHz to 48 kHz.  
Selection  
In applications not requiring HD-Radio reception and  
IBOC blend, with the Si4777, two I C device addresses,  
A0 and A1 (pins 11 and 12), are available, allowing up  
to four Si4777 receivers to share the same I C bus (see  
2
2
The HD-R demodulator sends a 1-bit "BLEND" signal to  
the Silicon Labs tuner. When this signal is "1", the  
Si4777 initiates a crossover from full AM/FM analog  
audio into full HD-R audio following a time ramp at a  
programmable ramp rate. This process continues until  
HD-R audio is fully blended to analog or until the  
BLEND bit becomes a "0". When the BLEND bit is "0",  
the reverse crossover occurs (crossover from HD-R to  
AM/FM analog following a programmable ramp rate).  
This process continues until AM/FM is fully blended or  
until BLEND becomes "1".  
"7. I2C Control Bus" on page 44). However in utilizing  
IBOC blend for HD-radio reception on the Si4777, only  
one device address A0 (pin 11) is available. Pin 12 is  
repurposed for the Interrupt output INTB, whilst Pin 18  
is repurposed for the digital audio clock input DFS2.  
The 7-bit device address consists of a fixed part (6  
MSBs), followed by a programmable 1-bit part. The LSB  
of the device address signals whether a read or write  
2
I C operation occurs. The voltage on the A0 pin is used  
to set the programmable 1-bit part of the device  
address. The A0 pin is tied to ground and or is left to  
2
float for address selection. The various I C device  
addresses can be selected as summarized in Table 16.  
Table 16. I2C Device Address Selection in IBOC Blend Mode for Si4777  
Device Address [6…1]  
110001  
Device Address [0]  
A0 Voltage (Pin connection)  
1
0
VIO1  
GND  
110001  
36  
Rev. 0.9  
Si4770/77-A20  
HD Radio Demod  
QOUT (Pin 26)  
IOUT (Pin 25)  
IQFS (Pin24)  
IQCLK (Pin 23)  
Digital I/Q ZIF  
(I2S)  
Audio /Data  
Decoders  
Demod  
Master  
4-wire mode  
Master  
3-wire mode  
Si4777  
AM/FM Analog demodulation  
Weak signal processing  
X
Blend Flag  
Digital bit clock  
BLEND (Pin 30)  
DCLK (Pin 29)  
DFS (Pin 28)  
DIN (Pin 27)  
IBOC  
Digital frame sync  
HD audio (MP1)  
ASRC  
ASRC  
blend  
PLL  
AM/FM  
audio  
Blended  
audio  
Blended audio  
DOUT2 (Pin 14)  
Digital bit clock  
DSP  
DCLK2 (Pin 13)  
DFS2 (Pin 18)  
Digital frame sync  
Master  
Figure 22. System Implementation of HD-Radio Reception with IBOC Blend on the Si4777  
Rev. 0.9  
37  
Si4770/77-A20  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC  
BLEND  
DCLK  
DFS  
FMXIP  
FMXIN  
RFGND  
RFREG  
FMO  
3
4
DIN  
5
QOUT  
IOUT  
IQFS  
GND PAD  
6
7
FMI  
8
NC  
IQCLK  
VIO2  
9
NC  
10  
AMI  
DBYP  
Figure 23. Si4777 Pin Descriptions for IBOC Blend Mode  
Table 17. Pin Descriptions for Si4777 for IBOC Blend Mode  
Pin Number  
Name  
NC  
I/O  
Description  
1
2
I
I
I
No connect: Leave floating  
FMXIP  
FMXIN  
RFGND  
RFREG  
FMO  
FMI  
Balanced input to FM mixer (positive)  
Balanced input to FM mixer (negative)  
RF Ground  
3
4
5
O
O
I
FM LNA regulator  
6
FM LNA output  
7
FM LNA input  
8
NC  
No connect: Leave floating  
No connect: Leave floating  
AM single-ended input  
9
NC  
10  
11  
12  
13  
14  
AMI  
I
I
2
A0  
I C Address 0  
INTB  
DCLK2  
DOUT2  
O
I
Interrupt active low (Si4777 for IBOC blend mode)  
Digital audio bit clock input (Si4777 for IBOC blend mode)  
Digital audio output (Si4777 for IBOC blend mode)  
O
38  
Rev. 0.9  
Si4770/77-A20  
Table 17. Pin Descriptions for Si4777 for IBOC Blend Mode (Continued)  
Pin Number  
Name  
RSTB  
I/O  
Description  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PDL  
I
Global Chip Reset  
2
SDA  
I/O I C Data input/output  
2
SCL  
I
I
I C clock  
DFS2  
Digital audio bit clock input (Si4777 for IBOC blend mode)  
Host I/O Supply Voltage (all pads except digital audio and I/Q)  
Digital Voltage Supply  
VIO1  
S
S
I
VD  
DBYP  
Digital bypass to Ground  
VIO2  
S
O
O
O
O
I
Digital audio and I/Q interface supply voltage  
ZIF I/Q bit clock output (Si4777)  
ZIF I/Q frame sync output (Si4777)  
ZIF I data output (Si4777)  
IQCLK  
IQFS  
IOUT  
QOUT  
DIN  
ZIF Q data output (Si4777)  
Digital audio data input (Si4777 for IBOC blend mode)  
Digital audio frame sync input  
DFS  
I
DCLK  
I
Digital audio bit clock input  
BLEND  
VA  
I
Blend Flag Control  
S
O
O
I
Analog Voltage Supply  
LOUT/ MPXOUT  
ROUT  
XTAL2/RCLK  
XTAL1  
DACREF  
GPIO2  
GPIO1  
FMAGC2  
FMAGC1  
GND PAD  
Left audio line out / FM MPX output  
Right audio line out  
Crystal oscillator input/Reference clock input  
Crystal oscillator output  
O
I
Voltage Reference for analog outputs  
I/O General-purpose input/output  
I/O General-purpose input/output  
I
I
I
FM automatic gain control 2  
FM automatic gain control 1  
Ground. Reference ground  
Rev. 0.9  
39  
Si4770/77-A20  
4.11.1. Stereo Decoder  
4.11. Stereo Audio Processing  
The Si4770/77-A20's integrated stereo decoder  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
The output of the FM demodulator is a stereo  
multiplexed (MPX) signal. The MPX standard was  
developed in 1961, and is used worldwide. Today's  
MPX signal format consists of left + right (L+R) audio,  
left – right (L–R) audio, a 19 kHz pilot tone, and RDS/  
RBDS data as shown in Figure 24.  
4.11.2. Stereo-Mono Blending  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Signal metrics such as on-channel  
RSSI, ultra-sonic noise (USN), and multi-path  
interference are monitored simultaneously in forcing a  
blend from stereo to mono. The metric, reflecting the  
poorest signal quality, takes priority and the stereo  
signal is blended appropriately. The thresholds for  
activating stereo-mono blend are programmable, as are  
the levels for a fully blended state. The attack and decay  
rates for each metric are programmable. The pilot  
detection metric is additionally available for read-out.  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
Figure 24. MPX Signal Spectrum  
Stereo thld  
SNR (dB)  
Mono thld  
Stereo thld  
RSSI (dBuV)  
Mono thld  
Mono thld  
Multi-path %  
Stereo thld  
T< Trelease  
Stereo  
Blend level  
Mono  
Figure 25. Conceptual Illustration of Stereo-Mono Blend  
40  
Rev. 0.9  
Si4770/77-A20  
4.12. De-emphasis  
4.16. Seek and Valid Station Qualification  
Pre-emphasis and de-emphasis is a technique used by The seek function will search up or down the selected  
FM broadcasters to improve the signal-to-noise ratio of frequency band for a valid channel. A valid channel is  
FM receivers by reducing the effects of high-frequency qualified according to a series of programmable signal  
interference and noise. When the FM signal is indicators and thresholds. The seek function can be  
transmitted,  
a
pre-emphasis filter is applied to made to stop at the band edge and provide an interrupt,  
accentuate the high audio frequencies. The Si4770/77- or wrap the band and continue seeking until arriving at  
A20 incorporate a de-emphasis filter which attenuates the original departure frequency. The device sets  
high frequencies to restore a flat frequency response. interrupts with found valid stations or, if the seek results  
Two time constants are used in various regions. The de- in zero found valid stations, the device indicates failure  
emphasis time constant is programmable to 50 or and again sets an interrupt.  
75 μs.  
The Si4770/77-A20 seek functionality is performed  
completely on-chip or can be brought out to a  
4.13. Analog Audio and FM MPX  
companion processor. The Si4770/77-A20 can provide  
High-fidelity digital-to-analog converters (DACs) drive  
base values for signal quality variables to a companion  
analog audio signals or the FM MPX signal onto the  
processor for qualification or can further process the  
LOUT/MPXOUT and ROUT pins. At powerup time the  
base values to qualify valid or invalid stations.  
user can configure the analog outputs for either audio or  
The Si4770/77-A20 uses RSSI, SNR, and frequency  
MPX output. In applications where MPX and audio  
offset to qualify stations. These variables have  
outputs are required simultaneously, the analog MPX  
programmable thresholds to tailor the seek function to  
signal can be driven onto the MPXOUT pin and the  
the subjective tastes of customers.  
audio signals can be sourced from the digital audio  
RSSI is employed first to screen all possible candidate  
interface.  
stations. SNR and frequency offset are subsequently  
The audio output may be muted. Volume is adjusted  
used in screening the RSSI qualified stations. The more  
digitally. It is necessary that the volume be maintained  
thresholds the system engages, the higher the  
at maximum levels to ensure the highest dynamic range  
confidence that any found stations will indeed be valid  
audio outputs to the external audio processing stage in  
broadcast stations; however, the more challenging  
a car radio.  
levels the thresholds are set to, the longer the overall  
seek time as more stations and more qualifiers will be  
assessed.  
4.14. Soft Mute  
The soft mute feature is available to attenuate the audio  
It is recommended that RSSI be set to a midlevel  
outputs and minimize audible noise in compromised  
threshold in conjunction with an SNR threshold set to a  
signal conditions. The Si4770/77-A20 triggers soft mute  
level delivering acceptable audio performance. This  
by monitoring signal metrics such as on-channel RSSI  
trade-off will eliminate very low RSSI stations whilst  
or SNR. The thresholds for activating soft mute are  
keeping the seek time to acceptable levels. Generally,  
programmable, as are soft mute attenuation levels and  
the time to auto-scan and store valid channels for an  
attack and decay rates. The Si4770/77-A20 provides  
entire AM or FM band with all thresholds engaged is  
the soft mute feature in FM and AM bands.  
very short depending on the band content.  
4.15. AM/FM Dynamic Bandwidth Control  
Seek is initiated using the AM and FM seek commands.  
The AM/FM IF channel bandwidth is dynamically The RSSI and SNR threshold settings are adjustable  
optimized according to on-channel RSSI, and with the using properties.  
aid of the adjacent and alternate channel RSSI metric.  
Rev. 0.9  
41  
Si4770/77-A20  
4.17. AM Hi-Cut Control  
4.19. FM Hi-Blend  
AM hi-cut control is employed on AM audio outputs with FM hi-blend control applies a low-pass filter on the (L-R)  
degradation of signal quality. Signal metrics such as audio upon degradation of received signal quality.  
SNR or on-channel RSSI activate the hi-cut filter. Signal metrics, such as USN, on-channel RSSI, and  
Programmable minimum and maximum thresholds are multipath interference, activate the hi-blend filter.  
available for all metrics. Attack and release rates for hi- Programmable minimum and maximum thresholds are  
cut are programmable for all metrics.  
available for all metrics. Attack and release rates for are  
also programmable for all metrics. The level of hi-blend  
applied can be monitored with the received signal  
quality command. Further information is provided in the  
Programming Guide.  
The level of hi-cut applied can be monitored with the  
received signal quality command. Hi-cut can be  
disabled by setting the hi-cut filter setting to the default  
audio bandwidth for AM. Further information is provided  
in the Programming Guide.  
4.20. AM Lo-Cut  
4.18. FM Hi-Cut Control  
AM lo-cut is employed on audio outputs for rejection of  
power-supply 50/60 Hz interference. AM lo-cut is a high  
pass filter. Lo-cut is enabled by default and can be  
disabled by programming the filter to being switched off.  
FM hi-cut control applies a low-pass filter on the (L+R)  
audio upon degradation of received signal quality.  
Signal metrics, such as USN, on-channel RSSI, and  
multipath interference, activate the hi-cut filter.  
Programmable minimum and maximum thresholds are  
available for all metrics. Attack and release rates are  
also programmable for all metrics. The level of hi-cut  
applied can be monitored with the received signal  
quality command. Further information is provided in the  
Programming Guide.  
42  
Rev. 0.9  
Si4770/77-A20  
5. RDS/RBDS Advanced Processor  
6. Programming Section  
The Si4770/77-A20 implements an advanced, patented, To ease development time and offer maximum  
high-performance RDS processor for demodulation, customization, the Si4770/77-A20 provides a simple  
symbol decoding, block synchronization, error and powerful software command protocol in addition to  
2
detection, and error correction. The RDS decoder the 2-wire I C serial interface to communicate with the  
applies advanced decoding and statistical decision  
host processor.The device is programmed using  
commands, arguments, properties, and responses. To  
perform an action, the user writes a command byte and  
associated arguments, causing the chip to execute the  
given command. Commands control actions such as  
powerup, powerdown, or tune to a station. Arguments  
are specific to a given command and are used to modify  
the command. Properties are a special command +  
argument used to modify the default chip operation and  
are generally configured immediately after powerup.  
Examples of properties are de-emphasis level, RSSI  
seek threshold, and soft mute attenuation threshold.  
Responses provide information and are echoed after a  
command + argument is issued and processed. All  
commands provide a one-byte status update indicating  
interrupt and clear-to-send status information.  
techniques to provide high-performance  
synchronization at very noisy signal levels, and  
excellent sensitivity at industry-standard block error rate  
(BLER) levels (5%).  
The  
Si4770/77-A20’s  
strong  
synchronization  
performance in very noisy/low SNR environments  
minimizes the number of instances of lost  
synchronization. Other less robust tuners must attempt  
to resynchronize in low SNR environments, resulting in  
lost data and lengthy delays in reestablishing data  
reception.  
The  
Si4770/77-A20  
maintains  
synchronization to the RDS transmission, despite high  
BLER. This results in fewer dropped connections,  
minimal resynchronization time, and greater data  
reliability in low SNR environments.  
The  
Si4770/77-A20  
reports  
RDS  
decoder  
synchronization status and detailed bit errors for each  
RDS block. The range of reportable bit errors detected  
and corrected are 0, 1-2, 3-5, and “not correctable.”  
More than five errors indicate that the corresponding  
block information word is non-correctable.  
The Si4770/77-A20 also provides highly configurable  
interrupts based on RDS-driven events and conditions.  
The default settings provide an interrupt when RDS is  
synchronized and when RDS group data has been  
received. The configurable interrupts can be set to  
provide frequent interrupts down to a single received  
block with BLER. The configurable interrupts also can  
be set to provide very infrequent interrupts, buffering up  
to 25 complete RDS groups (100 blocks) with BLER  
information by block in the on-chip FIFO. The Si4770/  
77-A20 also provides configurable interrupts on  
changes or receipt of the key RDS blocks A and B. This  
flexibility allows adopters to either conduct extensive  
RDS data processing on the host or reserve the host  
processor in power-saving modes with minimal RDS  
interrupts, allowing the Si4770/77-A20 to perform RDS  
processing on-chip.  
Rev. 0.9  
43  
Si4770/77-A20  
7. I2C Control Bus  
A serial port slave interface is provided, which allows an external controller to send commands and receive  
responses from the Si4770/77-A20.  
2
7.1. I C Device Address Selection  
2
2
Two device I C addresses are available, allowing up to four Si4770/77-A20 receivers to share the same I C bus.  
The 7-bit device address consists of a fixed part (5 MSBs), followed by a programmable 2-bit part. The LSB of the  
device address signals whether a read or write I C operation occurs. The voltage on the A0 and A1 pins are used  
2
to set the programmable 2-bit part of the device address. The A0 and A1 pins are tied to ground and are left to float  
2
for address selection. The various I C device addresses can be selected as summarized in Table 18.  
2
7.2. I C Standard Operation  
2
The I C bus interface is provided for configuration and monitoring of all internal registers. The Si4770/77-A20  
supports a 7-bit device addressing procedure and is capable of operating at clock rates up to 400 kHz. Individual  
2
data transfers to and from the device are eight bits. The I C bus consists of two wires: a serial clock line (SCL) and  
2
a serial data line (SDA). The device always operates as a bus slave. In order to be active, the I C block requires  
that VIO1 and VD supplies be turned on.  
A transaction begins with the START condition, which occurs when SDA falls while SCL is high. Next, the user  
drives an 8-bit control byte serially on SDA, which is captured by the device on rising edges of SCL. The control  
byte consists of a 7-bit device address followed by a read/write bit (read = 1, write = 0). The Si4770/77-A20  
acknowledges the control word by driving SDA low on the next falling edge of SCL.  
2
Read and write operations are performed in accordance with the I C bus specification. For write operations, the  
host sends an 8-bit data byte on SDA, which is captured by the device on rising edges of SCL. The Si4770/77-A20  
acknowledges each data byte by driving SDA low for one cycle, after the next falling edge of SCL. The host may  
write any number of data bytes in a single two-wire transaction. The first byte is a command, and the next bytes are  
arguments.  
For read operations, after the Si4770/77-A20 has acknowledged the control byte, it drives an 8-bit data byte on  
SDA, changing the state of SDA after the falling edge of SCL. The host acknowledges each data byte by driving  
SDA low for one cycle, after the next falling edge of SCL. If a data byte is not acknowledged, the transaction ends.  
The host may read any number of data bytes in a single two-wire transaction. These bytes contain the response  
data from the Si4770/77-A20. A 2-wire transaction ends with the STOP condition, which occurs when SDA rises  
while SCL is high.  
Table 18. I2C Device Address Selection  
Device Address [6…2] Device Address [1:0]  
A1 Voltage  
A0 Voltage  
(Pin Connection) (Pin Connection)  
11000  
11000  
11000  
11000  
11  
10  
01  
00  
Floating  
Floating  
GND  
Floating  
GND  
Floating  
GND  
GND  
44  
Rev. 0.9  
Si4770/77-A20  
Write Operation  
...  
S
Device Addr W A  
Command  
Status  
A
A
ARG 1  
A
A
ARG 2  
A
A
A
A
P
P
...  
Read Operation  
...  
...  
S
Device Addr  
R
A
Response 1  
Response 2  
Slave  
Master  
A= Acknowledge  
R = Read  
S = Start condition  
P = Stop condition  
W = Write  
Figure 26. I2C Command/Response Protocol  
Rev. 0.9  
45  
Si4770/77-A20  
8. Reset, Powerup, and Powerdown  
Setting the RSTB pin low will disable analog and digital circuitry, reset the registers to their default settings, and  
disable the bus. Setting the RSTB pin high will bring the device out of reset.  
The powerup mode powers up the device and provides mode selection. Mode selections include the following:  
AM, FM reception (Si4770/77-A20 only).  
Crystal oscillator or reference clock input  
A powerdown mode is available to reduce power consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry while keeping the bus active.  
VIO1  
VIO2  
VD  
VA  
100 µsec min  
RSTB  
100 µsec min  
SCL  
SDA  
POWER_UP Command  
Figure 27. Startup Timing  
46  
Rev. 0.9  
Si4770/77-A20  
9. Pin Descriptions: Si4770/77-A20  
1
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
NC  
NC  
2
FMXIP  
DCLK  
3
FMXIN  
DFS  
4
RFGND  
DOUT  
5
RFREG  
NC/QOUT  
NC/IOUT  
NC/IQFS  
NC/IQCLK  
VIO2  
GND PAD  
6
FMO  
7
8
FMI  
NC  
9
NC  
10  
AMI  
DBYP  
Figure 28. Si4770/77 Pin Descriptions  
Table 19. Pin Descriptions for Si4770/77  
Pin Number  
Name  
NC  
I/O  
Description  
1
2
I
I
I
No connect: Leave floating  
Balanced input to FM mixer (positive)  
Balanced input to FM mixer (negative)  
RF Ground  
FMXIP  
FMXIN  
RFGND  
RFREG  
FMO  
FMI  
3
4
5
O
O
I
FM LNA regulator  
6
FM LNA output  
7
FM LNA input  
8
NC  
No connect: Leave floating  
No connect: Leave floating  
AM single-ended input  
9
NC  
10  
11  
12  
13  
AMI  
I
I
I
2
A0  
I C Address 0  
2
A1  
I C Address 1  
NC  
No connect: Leave floating  
Rev. 0.9  
47  
Si4770/77-A20  
Table 19. Pin Descriptions for Si4770/77 (Continued)  
Pin Number  
Name  
NC  
I/O  
Description  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
No connect: Leave floating  
RSTB  
SDA  
I
Global Chip Reset  
2
I/O I C Data input/output  
2
SCL  
I
I C clock  
INTB  
O
S
S
I
Interrupt, Active Low  
VIO1  
Host I/O Supply Voltage (all pads except digital audio and I/Q)  
Digital Voltage Supply  
VD  
DBYP  
VIO2  
Digital bypass to Ground  
S
O
O
Digital audio and I/Q interface supply voltage  
No Connect: Leave floating (Si4770); ZIF I/Q bit clock output (Si4777)  
NC/IQCLK  
NC/IQFS  
No Connect: Leave floating (Si4770); ZIF I/Q frame sync output  
(Si4777)  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
PDL  
NC/IOUT  
NC/QOUT  
DOUT  
O
O
O
I
No Connect: Leave floating (Si4770); ZIF I data output (Si4777)  
No Connect: Leave floating (Si4770); ZIF Q data output (Si4777)  
Digital audio data output  
DFS  
Digital audio frame sync input  
DCLK  
I
Digital audio bit clock input  
NC  
No Connect: Leave floating  
VA  
S
O
O
I
Analog Voltage Supply  
LOUT/ MPXOUT  
ROUT  
Left audio line out / FM MPX output  
Right audio line out  
XTAL2/RCLK  
XTAL1  
Crystal oscillator input/Reference clock input  
Crystal oscillator output  
O
I
DACREF  
GPIO2  
Voltage Reference for analog outputs  
I/O General-purpose input/output  
I/O General-purpose input/output  
GPIO1  
FMAGC2  
FMAGC1  
GND PAD  
I
I
I
FM automatic gain control 2  
FM automatic gain control 1  
Ground. Reference ground  
48  
Rev. 0.9  
Si4770/77-A20  
10. Ordering Guide  
,
Description  
Package  
Type  
Operating  
Temperature  
Part Number *  
Si4770-A20-GM  
AM/FM RDS Broadcast Radio Receiver  
6 x 6 40-pin QFN  
Pb-Free  
–40 to 85 °C  
–40 to 85 °C  
Si4777-A20-GM  
AM/FM RDS Broadcast Radio Receiver and HD  
Radio Tuner  
6 x 6 40-pin QFN  
Pb-Free  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option.  
Rev. 0.9  
49  
Si4770/77-A20  
11. Package Outline  
Figure 29. 40-Pin Quad Flat No-Lead (QFN)  
Table 20. Package Dimensions  
Dimensions  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
D
0.25  
6.00 BSC.  
4.10  
D2  
3.95  
4.25  
e
0.50 BSC.  
6.00 BSC.  
4.10  
E
E2  
3.95  
0.30  
4.25  
0.50  
L
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
Notes:  
0.10  
0.10  
0.08  
0.10  
0.05  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, Variation VJJD-2.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.  
50  
Rev. 0.9  
Si4770/77-A20  
12. PCB Land Pattern  
Figure 30. PCB Land Pattern  
Rev. 0.9  
51  
Si4770/77-A20  
Table 21. PCB Land Pattern Dimensions  
Dimensions  
Min  
Max  
e
E
0.50 BSC.  
5.42 REF.  
5.42 REF.  
D
E2  
D2  
GE  
GD  
X
4.00  
4.00  
4.53  
4.53  
4.20  
4.20  
0.28  
Y
0.89 REF.  
ZE  
ZD  
6.31  
6.31  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least  
Material Condition (LMC) is calculated based on a Fabrication Allowance of  
0.05 mm.  
Solder Mask Design  
5. All metal pads are to be non-solder mask defined (NSMD). Clearance between  
the solder mask and the metal pad is to be 60 µm minimum, all the way around  
the pad.  
Stencil Design  
6. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls  
should be used to assure good solder paste release.  
7. The stencil thickness should be 0.125 mm (5 mils).  
8. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter  
pads.  
9. A 4 x4 array of 0.80 mm square openings on 1.05 mm pitch should be used  
for the center ground pad.  
Card Assembly  
10. A No-Clean, Type-3 solder paste is recommended.  
11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020  
specification for Small Body Components.  
52  
Rev. 0.9  
Si4770/77-A20  
13. Top Marking  
13.1. Si4770/77-A20 Top Marking  
13.2. Top Marking Explanation  
Mark Method:  
Pin 1 Mark:  
Laser  
Circle = 0.90 mm diameter  
(Bottom-Left-Justified)  
Font Size:  
0.70 mm Right-Justified  
Line 1 Mark Format: Device Number  
4770 = Si4770  
4777 = Si4777  
A = Part Revision A  
20 = Firmware Revision 2.0  
Line 2 Mark Format: TTTTTT = Mfg Code  
Manufacturing Code from the Assembly Purchase  
Order Form.  
Line 3 Mark Format: YY = Year  
Assigned by the Assembly House. Corresponds to the  
year and work week of the assembly date.  
WW = Work Week  
Rev. 0.9  
53  
Si4770/77-A20  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: FMinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
54  
Rev. 0.9  

相关型号:

SI4770-77-A20

HIGH-PERFORMANCE CONSUMER ELECTRONICS
SILICON

SI4770-A20

Telecom Circuit, 1-Func, CMOS, QFN-40
SILICON

Si4770-A20-GM

HIGH-PERFORMANCE CONSUMER ELECTRONICS
SILICON

SI4770CY

MOSFET Driver, MOS, PDSO16,
VISHAY

SI4770CY-E3

MOSFET Driver, MOS, PDSO16,
VISHAY

SI4770CY-T1

IC HALF BRIDGE BASED PRPHL DRVR, PDSO16, SO-16, Peripheral Driver
VISHAY

SI4770CY-T1-E3

MOSFET Driver, MOS, PDSO16,
VISHAY

SI4774DY

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

SI4774DY-T1-GE3

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

SI4776DY

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

SI4776DY-T1-GE3

N-Channel 30 V (D-S) MOSFET with Schottky Diode
VISHAY

Si4777

HIGH-PERFORMANCE CONSUMER ELECTRONICS
SILICON