Si52208-A02AGM [SILICON]

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator;
Si52208-A02AGM
型号: Si52208-A02AGM
厂家: SILICON    SILICON
描述:

12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock Generator

PC
文件: 总71页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si52212/Si52208/Si52204/Si52202 Data  
Sheet  
12/8/4/2-Output PCI-Express Gen 1/2/3/4 and SRIS Clock  
Generator  
KEY FEATURES OR KEY POINTS  
• 12/8/4/2-output low-power, push-pull HCSL  
compatible PCI-Express Gen 1, Gen 2,  
Gen 3, Gen 4 and SRIS-compliant outputs  
The Si522xx is the industry's highest performance and lowest power PCI Express clock  
generator family for 1.5–1.8 V PCIe Gen1/2/3/4 and SRIS applications. The Si52212,  
Si52208, and Si52204 can source twelve, eight, and four 100 MHz PCIe differential  
clock outputs, respectively, plus one 25 MHz LVCMOS reference clock output. The  
Si52202 can source two 100 MHz PCIe clock outputs only. All differential clock outputs  
are compliant to PCIe Gen1/2/3/4 common clock and separate reference clock architec-  
tures specifications.  
• Low jitter: 0.4 ps max  
2
Individual hardware control pins and I C  
controls for Output Enable, Spread  
Spectrum Enable and Frequency Select  
• Triangular spread spectrum for EMI  
reduction, down spread 0.25% or 0.5%  
The Si522xx features individual hardware control pins for enabling and disabling each  
output, spread spectrum enable/disable for EMI reduction, and frequency select to se-  
lect 133 MHz or 200 MHz differential output frequencies. These features can also be  
controlled via I2C.  
• Internal 100 Ω or 85 Ω line matching  
• Adjustable output slew rate  
• Power down (PWRDNb) function supports  
Wake-on LAN (except Si52202)  
The small footprint and low power consumption make this family of PCIe clock genera-  
tors ideal for industrial and consumer applications.  
• One non-spread, LVMCOS reference clock  
output (except Si52202)  
• Frequency Select to select 133 MHz or  
200 MHz (except Si52202)  
For more information about PCI-Express, Silicon Labs' complete PCIe portfolio, applica-  
tion notes, and design tools, including the Silicon Labs PCIe Clock Jitter Tool for PCI-  
Express compliance, please visit http://www.silabs.com/pcie-learningcenter.  
• 25 MHz crystal input or clock input  
2
I C support with readback capabilities  
Applications  
• Extended temperature: –40 to 85 °C  
• Servers  
• 1.5–1.8 V power supply, with separate  
VDD and VDD_IO  
• Storage  
• Data Centers  
• Small QFN packages  
• PCIe Add-on Cards  
• Network Interface Cards (NIC)  
• Graphics Adapter Cards  
• Multi-function Printers  
• Digital Single-Lens Reflex (DSLR) Cameras  
• Digital Still Cameras  
• Digital Video Cameras  
• Docking Stations  
• Pb-free, RoHS-6 compliant  
silabs.com | Building a more connected world.  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Preliminary Rev. 0.7  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Feature List  
1. Feature List  
• 12/8/4/2-output 100 MHz PCIe Gen1/2/3/4 and SRIS compliant clock generator, with push-pull HCSL output drivers  
• High port count with push-pull HCSL outputs to support highly integrated solution, eliminating external resistors for the HCSL out-  
put drivers  
• Low jitter of 0.4 ps max to meet PCIe Gen4 specifications with design margin  
• Low power consumption.  
• Lowest power consumption in the industry for a 2-output PCIe clock generator  
Individual hardware control pins and I2C controls for Output Enable, Spread Spectrum Enable and Frequency Select  
• Output Enable function easily disables unused outputs for power saving  
• Spread Enable function to turn on/off spread spectrum and to select spread levels, either down spread 0.25% or 0.5%  
• Frequency Select function to select output frequency of 100 MHz, 133 MHz, or 200 MHz (except Si52202 where the output fre-  
quency is limited to 100 MHz. Please contact Silicon Labs for 133 MHz or 200 MHz in Si52202)  
All above functions are controlled by individual hardware pins or I2C  
• Internal 100 Ω or 85 Ω line matching  
• Eliminates external line matching resistor to reduce board space  
• Adjustable slew rate to improve signal quality for different applications and board designs  
• Power down (PWRDNb) function supports Wake-on LAN (except Si52202)  
• One non-spread, 25 MHz LVMCOS reference clock output (except Si52202)  
• A buffered 25 MHz LVCMOS clock output to drive ASICS or SoCs on board  
• 25 MHz reference input  
• Supports a standard crystal or clock input for flexibility  
I2C support with readback capabilities  
• 1.5–1.8 V power supply with separate VDD and VDD_IO  
• Temperature range: –40 °C to 85 °C  
• Small QFN packages to optimize board space. Smallest 2-output PCIe clock generator in the industry  
• 64-pin QFN (9 x 9 mm) : 12-output  
• 48-pin QFN (6 x 6 mm) : 8-output  
• 32-pin QFN (5 x 5 mm) : 4-output  
• 20-pin QFN (3 x 3 mm) : 2-output  
• Pb-free, RoHS-6 compliant  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 2  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Si522x Ordering Guide  
Number of Outputs  
Internal Termination  
Part Number  
Package Type  
64-QFN  
Temperature  
Si52212-A01AGM  
Si52212-A01AGMR  
Si52212-A02AGM  
Si52212-A02AGMR  
Si52208-A01AGM  
Si52208-A01AGMR  
Si52208-A02AGM  
Si52208-A02AGMR  
Si52204-A01AGM  
Si52204-A01AGMR  
Si52204-A02AGM  
Si52204-A02AGMR  
Si52202-A01AGM  
Si52202-A01AGMR  
Si52202-A02AGM  
Si52202-A02AGMR  
Extended, –40 to 85 °C  
100 Ω  
85 Ω  
64-QFN - Tape and Reel Extended, –40 to 85 °C  
64-QFN Extended, –40 to 85 °C  
64-QFN - Tape and Reel Extended, –40 to 85 °C  
48-QFN Extended, –40 to 85 °C  
48-QFN - Tape and Reel Extended, –40 to 85 °C  
48-QFN Extended, –40 to 85 °C  
48-QFN - Tape and Reel Extended, –40 to 85 °C  
32-QFN Extended, –40 to 85 °C  
32-QFN - Tape and Reel Extended, –40 to 85 °C  
32-QFN Extended, –40 to 85 °C  
32-QFN - Tape and Reel Extended, –40 to 85 °C  
20-QFN Extended, –40 to 85 °C  
20-QFN - Tape and Reel Extended, –40 to 85 °C  
20-QFN Extended, –40 to 85 °C  
20-QFN - Tape and Reel Extended, –40 to 85 °C  
12-output  
100 Ω  
85 Ω  
8-output  
4-output  
100 Ω  
85 Ω  
100 Ω  
85 Ω  
2-output  
2.1 Technical Support  
Table 2.2. Technical Support URLs  
Frequently Asked Questions  
PCIe Clock Jitter Tool  
PCIe Learning Center  
Development Kit  
www.silabs.com/Si522xx-FAQ  
www.silabs.com/products/timing/pci-express-learning-center  
www.silabs.com/products/timing/pci-express-learning-center  
www.silabs.com/products/development-tools/timing/clock/si52204-evb-evaluation-kit.html  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 3  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1 Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Functional Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
5. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.1 Crystal Recommendations . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.2 Crystal Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
5.3 Calculating Load Capacitors . . . . . . . . . . . . . . . . . . . . . . . . .20  
5.4 PWRGD/PWRDNb (Power Down) Pin. . . . . . . . . . . . . . . . . . . . . .21  
5.5 PWRDNb (Power Down) Assertion . . . . . . . . . . . . . . . . . . . . . . .21  
5.6 PWRDNb (Power Down) Deassertion . . . . . . . . . . . . . . . . . . . . . .21  
5.7 OEb Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.8 OEb Assertion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.9 OEb Deassertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5.10 FS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
6. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . 23  
7. PCIe Clock Jitter Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
8. Control Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2
8.1 I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8.2 Block Read/Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8.3 Block Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8.4 Block Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8.5 Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8.6 Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8.7 Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
8.8 Data Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
8.9 Register Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8.9.1 Si52212 Registers . . . . . . . . . . . . . . . . . . . . . . . . . .31  
8.9.2 Si52208 Registers . . . . . . . . . . . . . . . . . . . . . . . . . .34  
8.9.3 Si52204 Registers . . . . . . . . . . . . . . . . . . . . . . . . . .37  
8.9.4 Si52202 Registers . . . . . . . . . . . . . . . . . . . . . . . . . .40  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.1 Si52212 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .43  
9.2 Si52208 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .46  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 4  
9.3 Si52204 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .49  
9.4 Si52202 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .51  
10. Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
10.1 Si52212 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
10.2 Si52212 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
10.3 Si52208 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
10.4 Si52208 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
10.5 Si52204 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
10.6 Si52204 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
10.7 Si52202 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
10.8 Si52202 Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
10.9 Si52212 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .66  
10.10 Si52208 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .67  
10.11 Si52204 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .68  
10.12 Si52202 Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . .69  
11. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
11.1 Revision 0.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 5  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Block Diagrams  
3. Functional Block Diagrams  
Si52212  
XIN/CLKIN  
XOUT  
REF  
PLL  
(SSC)  
DIFF[11:0]  
Divider  
FS  
SCLK  
SDA  
Control  
&
PWRGD/PWRDNb  
SS_EN  
Memory  
OEb[11:0]  
Figure 3.1. Si52212 Block Diagram 12-output, 64-QFN  
Si52208  
XIN/CLKIN  
REF  
XOUT  
PLL  
(SSC)  
DIFF[7:0]  
Divider  
FS  
SCLK  
SDA  
Control  
&
Memory  
PWRGD/PWRDNb  
SS_EN  
OEb[7:0]  
Figure 3.2. Si52208 Block Diagram 8-output, 48-QFN  
Si52204  
XIN/CLKIN  
REF  
XOUT  
PLL  
(SSC)  
DIFF[3:0]  
Divider  
FS  
SCLK  
SDA  
Control  
&
PWRGD/PWRDNb  
SS_EN  
Memory  
OEb[3:0]  
Figure 3.3. Si52204 Block Diagram 4-output, 32-QFN  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 6  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Block Diagrams  
Si52202  
PLL  
(SSC)  
XIN/CLKIN  
XOUT  
DIFF[1:0]  
Divider  
SCLK  
SDA  
Control  
&
Memory  
PWRGD/PWRDNb  
SS_EN  
OEb[1:0]  
Figure 3.4. Si52202 Block Diagram 2-output, 20-QFN  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 7  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
Table 4.1. DC Electrical Specifications (VDD = 1.5 V ±5%)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1.5 V Operating Voltage  
VDD core  
VDDIO  
1.5 V ±5%  
1.425  
1.5  
1.575  
V
Supply voltage for differential Low  
Power outputs  
Output Supply Voltage  
1.5 V Input High Voltage  
1.5V Input Mid Voltage  
1.5 V Input Low Voltage  
0.9975  
0.75 VDD  
0.4 VDD  
–0.3  
1.05–1.5  
1.575  
V
V
V
V
Control input pins, except SDATA,  
SCLK  
VIH  
VIM  
VIL  
VDD + 0.3  
0.6 VDD  
0.25 VDD  
Tri-level control input pins, except  
SDATA, SCLK  
0.5 VDD  
Control input pins, except SDA-  
TA,SCLK  
VIHI2C  
VILI2C  
Input High Voltage  
SDATA, SCLK  
SDATA, SCLK  
At VOL  
1.14  
3.3  
0.6  
V
V
Input Low Voltage  
IPULLUP  
SDATA, SCLK Sink Current  
4
mA  
Single-ended inputs, VIN = GND,  
VIN = VDD  
IIN  
–5  
5
uA  
Single-ended inputs, VIN = 0 V, in-  
puts with internal pull-up resistors  
VIN = VDD, inputs with internal  
pull-down resistors  
Input current  
IINP  
–200  
200  
uA  
CIN  
COUT  
LIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
1.5  
5
6
7
pF  
pF  
nH  
Si52212 Current Consumption (VDD = 1.5 V ±5%)  
IDD_PD_total  
All outputs off  
1.3  
0.4  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 2 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.0  
mA  
Wake-on LAN Current  
PWRGD_PWRDNb = "0"  
Byte 2, bit 2 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.6  
0.3  
mA  
mA  
VDD_IO, all differential outputs off,  
REF running  
IDD_IOWOL  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 8  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.5V_Total  
82  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at 100  
MHz  
IDD_OP  
17  
mA  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs ac-  
tive at 100 MHz  
IDD_IOOP  
58  
Si52208 Current Consumption (VDD = 1.5 V ±5%)  
IDD_PD_total  
All outputs off  
1.3  
0.4  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 2 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.0  
mA  
Wake-on LAN Current  
PWRGD_PWRDNb = "0"  
Byte 2, bit 2 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.6  
0.3  
mA  
mA  
VDD_IO, all differential outputs off,  
REF running  
IDD_IOWOL  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.5V_Total  
63  
17  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at 100  
MHz  
IDD_OP  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs ac-  
tive at 100 MHz  
IDD_IOOP  
39  
Si52204 Current Consumption (VDD = 1.5 V ±5%)  
IDD_PD_total  
All outputs off  
1.3  
0.4  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 2 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.0  
mA  
Wake-on LAN Current  
PWRGD_PWRDNb = "0"  
Byte 2, bit 2 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.6  
0.3  
mA  
mA  
VDD_IO, all differential outputs off,  
REF running  
IDD_IOWOL  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 9  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.5V_Total  
44  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at 100  
MHz  
IDD_OP  
17  
mA  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs ac-  
tive at 100 MHz  
IDD_IOOP  
20  
Si52202 Current Consumption (VDD = 1.5 V ±5%)  
IDD_PD_total  
All outputs off  
1.3  
0.4  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 2 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.3  
0.6  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.0  
mA  
Wake-on LAN Current  
PWRGD_PWRDNb = "0"  
Byte 2, bit 2 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.6  
0.3  
mA  
mA  
VDD_IO, all differential outputs off,  
REF running  
IDD_IOWOL  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.5V_Total  
34  
17  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at 100  
MHz  
IDD_OP  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs ac-  
tive at 100 MHz  
IDD_IOOP  
10  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 10  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Table 4.2. DC Electrical Specifications (VDD = 1.8 V ±5%)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1.8 V Operating Voltage  
VDD core  
1.8 V ±5%  
1.71  
1.8  
1.89  
V
Supply voltage for differential Low  
Power outputs  
Output Supply Voltage  
1.8 V Input High Voltage  
1.8 V Input Mid Voltage  
1.8 V Input Low Voltage  
VDDIO  
VIH  
0.9975  
0.75 VDD  
0.4 VDD  
-0.3  
1.05–1.8  
1.9  
V
V
V
V
Control input pins, except SDATA,  
SCLK  
VDD+0.3  
0.6 VDD  
0.25 VDD  
Tri-level control input pins, except  
SDATA, SCLK  
VIM  
0.5 VDD  
Control input pins, except SDA-  
TA,SCLK  
VIL  
VIHI2C  
VILI2C  
Input High Voltage  
SDATA, SCLK  
SDATA, SCLK  
At VOL  
1.11  
3.3  
0.6  
V
V
Input Low Voltage  
IPULLUP  
SDATA, SCLK Sink Current  
4
mA  
Single-ended inputs, VIN = GND,  
VIN = VDD  
IIN  
–5  
5
uA  
Single-ended inputs, VIN = 0V, in-  
puts with internal pull-up resistors  
VIN = VDD, inputs with internal  
pull-down resistors  
Input current  
IINP  
–200  
200  
uA  
CIN  
COUT  
LIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
1.5  
5
6
7
pF  
pF  
nH  
Si52212 Current Consumption (VDD = 1.8 V ±5%)  
IDD_PD_total  
All outputs off  
1.4  
0.5  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 3 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.5  
mA  
Wake-on LAN Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 3 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.7  
0.5  
mA  
mA  
VDD_IO, all differential outputs  
off, REF running  
IDD_IOWOL  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 11  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.8V_Total  
84  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at  
100 MHz  
IDD_OP  
19  
mA  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs  
active at 100 MHz  
IDD_IOOP  
58  
Si52208 Current Consumption (VDD = 1.8 V ±5%)  
IDD_PD_total  
All outputs off  
1.4  
0.5  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = ''0"  
Byte 2, bit 3 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.5  
mA  
Wake-on LAN Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 3 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.7  
0.5  
mA  
mA  
VDD_IO, all differential outputs  
off, REF running  
IDD_IOWOL  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.8V_Total  
65  
19  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at  
100 MHz  
IDD_OP  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs  
active at 100 MHz  
IDD_IOOP  
39  
Si52204 Current Consumption (VDD = 1.8 V ±5%)  
IDD_PD_total  
All outputs off  
1.4  
0.5  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 3 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.5  
mA  
Wake-on LAN Current  
PWRGD/PWRDNb = ''0"  
Byte 2, bit 3 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.7  
0.5  
mA  
mA  
VDD_IO, all differential outputs  
off, REF running  
IDD_IOWOL  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 12  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.8V_Total  
46  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at  
100 MHz  
IDD_OP  
19  
mA  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs  
active at 100 MHz  
IDD_IOOP  
20  
Si52202 Current Consumption (VDD = 1.8 V ±5%)  
IDD_PD_total  
All outputs off  
1.4  
0.5  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all outputs off  
Power Down Current  
PWRGD/PWRDNb = "0"  
Byte 2, bit 3 = 0  
IDD_PD  
IDD_APD  
IDD_IOPD  
VDDA, all outputs off  
0.6  
0.3  
mA  
mA  
VDD_IO, all outputs off  
VDD, except VDDA and VDD_IO,  
all differential outputs off, REF  
running  
IDD_WOL  
4.5  
mA  
Wake-on LAN Current  
PWRGD/PWRDNb = ''0"  
Byte 2, bit 2 = 1  
VDDA, all differential outputs off,  
REF running  
IDD_AWOL  
0.7  
0.5  
mA  
mA  
VDD_IO, all differential outputs  
off, REF running  
IDD_IOWOL  
All outputs enabled. Differential  
clocks with 5” traces and 2 pF  
load.  
IDD_1.8V_Total  
36  
19  
mA  
mA  
VDD, except VDDA and VDD_IO,  
all differential outputs active at  
100 MHz  
IDD_OP  
Dynamic Supply Current  
VDDA, all differential outputs ac-  
tive at 100 MHz  
IDD_AOP  
7
mA  
mA  
VDD_IO, all differential outputs  
active at 100 MHz  
IDD_IOOP  
10  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 13  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Table 4.3. AC Electrical Specifications  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Clock Input  
CLKIN Frequency  
CLKIN Duty Cycle  
25  
MHz  
%
TDC  
Measured at VDD/2  
45  
55  
4
CLKIN Rising and Falling  
Slew Rate  
Measured between 0.2 VDD and  
0.8 VDD  
TR/TF  
0.5  
V/ns  
VIH  
VIL  
0.75 VDD  
Input High Voltage  
Input Low Voltage  
Input Common Mode  
Input Amplitude  
XIN/CLKIN pin  
XIN/CLKIN pin  
V
V
0.25 VDD  
1000  
VCOM  
VSWING  
Common mode input voltage  
Peak to Peak value  
300  
mV  
mV  
300  
1450  
Control Input Pins  
Rise time of single-ended control  
inputs  
Tr  
Tf  
Trise  
5
5
ns  
ns  
Fall time of single-ended control  
inputs  
Tfall  
(Max VIL – 0.15) to  
(Min VIH + 0.15)  
TrI2C  
SDATA, SCLK Rise Time  
SDATA, SCLK Fall Time  
1000  
300  
400  
ns  
(Min VIH + 0.15) to  
(Max VIL – 0.15)  
TfI2C  
ns  
SMBus Operating  
Frequency  
Maximum SMBus operating  
frequency  
2
FmaxI C  
kHz  
LVCMOS – REF (VDD = 1.5 V ±5%)  
Variation from reference  
frequency  
Long Accuracy  
Clock Period  
ppm  
TPERIOD  
Trf  
0
ppm  
ns  
25 MHz output  
40  
0.5  
Byte 2[1:0] = 48 (Slowest), 20% to  
80% of VDDREF  
V/ns  
Byte 2[1:0] = 49 (Slow), 20% to  
80% of VDDREF  
0.7  
0.9  
0.9  
V/ns  
V/ns  
V/ns  
Slew Rate  
Byte 2[1:0] = 4A (Fast), 20% to  
80% of VDDREF  
Byte 2[1:0] = 4B (Fastest), 20% to  
80% of VDDREF  
Duty Cycle1  
TDC_REF  
TCCJ_REF  
RMSREF  
VT = VDD/2 V  
VT = VDD/2 V  
45  
50  
45  
55  
%
ps  
Cycle-to-Cycle Jitter  
Phase Jitter  
12 kHz to 5MHz  
1 kHz offset  
0.35  
–132  
–143  
ps  
TJ1kHz_REF  
TJ10kHz_REF  
REF Noise Floor  
REF Noise Floor  
dBc  
dBc  
10 kHz offset to Nyquist  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 14  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
LVCMOS – REF (VDD = 1.8 V ±5%)  
Variation from reference  
frequency  
Long Accuracy  
Clock Period  
ppm  
TPERIOD  
Trf  
0
ppm  
ns  
25 MHz output  
40  
0.7  
Byte 2[1:0] = 48 (Slowest), 20% to  
80% of VDDREF  
V/ns  
Byte 2[1:0] = 49 (Slow), 20% to  
80% of VDDREF  
1.0  
1.2  
1.3  
V/ns  
V/ns  
V/ns  
Slew Rate  
Byte 2[1:0] = 4A (Fast), 20% to  
80% of VDDREF  
Byte 2[1:0] = 4B (Fastest), 20% to  
80% of VDDREF  
Duty Cycle1  
TDC_REF  
TCCJ_REF  
RMSREF  
VT = VDD/2 V  
VT = VDD/2 V  
45  
50  
30  
55  
%
ps  
Cycle-to-Cycle Jitter  
Phase Jitter  
12 kHz to 5 MHz  
1 kHz offset  
0.32  
–132  
–145  
ps  
TJ1kHz_REF  
TJ10kHz_REF  
REF Noise Floor  
REF Noise Floor  
DIFF HCSL  
dBc  
dBc  
10 kHz offset to Nyquist  
TDC  
Duty Cycle  
Measured at 0 V differential  
Measured at 0 V differential  
45  
50  
10  
55  
%
TSKEW  
Output-to-Output Skew  
ps  
Measured differentially from  
±150 mV (fast setting)  
2.3  
V/ns  
TR/TF  
Slew Rate  
Measured differentially from  
±150 mV (slow setting)  
1.8  
2
V/ns  
%
Delta TR/TF  
Slew Rate Matching  
Tmax-freqmod-  
Max modulation frequency  
df/dt  
1250  
ppm/usec  
slew  
VHIGH  
VLOW  
VMAX  
VMIN  
Voltage High  
Voltage Low  
Max Voltage  
Min Voltage  
600  
–150  
850  
150  
mV  
mV  
mV  
mV  
750  
0
1150  
–300  
Absolute crossing point voltage at  
0.7 V Swing  
VOX  
Crossing Point Voltage  
250  
550  
33  
mV  
Variation of VOX over all rising  
clock edges  
VOX_DELTA  
FMOD  
Crossing Point Voltage (var)  
35  
mV  
Modulation Frequency  
30  
31.5  
kHz  
Enable/Disable and Setup  
Clock Stabilization from  
Power-up  
TSTABLE  
1
ms  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 15  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
Differential outputs start after  
OE_b assertion Differential out-  
puts stop after OE_b deassertion  
TOEBLAT  
OE_b Latency  
2
clocks  
PD_b Latency to differential  
outputs enable  
Differential outputs enable after  
PD_b de-assertion  
TPDb  
490  
µs  
Note:  
1. This is for XTAL mode only. For CLKIN mode, there would be a duty cycle distortion spec of ±0.5 ns.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 16  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Table 4.4. PCIe and Intel QPI Jitter Specifications  
Jitter  
Limit  
Parameter  
DIFF HCSL  
Symbol  
Condition  
Min  
Typ  
Max  
Unit  
ps  
(pk-pk)  
JCCJ  
Cycle to Cycle Jitter  
Measured at 0 V differential  
PCIe Gen 1  
0
23  
21  
ps  
(pk-pk)  
JPk-Pk  
PCIe Gen 1 Pk-Pk Jitter  
86  
3
ps  
(RMS)  
10 kHz < F < 1.5 MHz  
1.5 MHz < F < Nyquist  
0
0.9  
1.4  
0.3  
0.39  
0.3  
0.41  
JRMSGEN2  
PCIe Gen 2 Phase Jitter  
PCIe Gen 3 Phase Jitter  
ps  
(RMS)  
0
3.1  
1.0  
0.7  
0.5  
0.5  
Includes PLL BW 2–4 MHz,  
CDR = 10 MHz  
ps  
(RMS)  
JRMSGEN3  
JRMSGen3_SRIS  
JRMSGen4  
0.4  
0.5  
0.4  
0.5  
PCIe Gen 3 SRIS1  
Phase Jitter  
Includes PLL BW 2–4 MHz,  
CDR = 10 MHz  
ps  
(RMS)  
Includes PLL BW 2–4 MHz,  
CDR = 10 MHz  
ps  
(RMS)  
PCIe Gen 4 Phase Jitter  
PCIe Gen 4 SRIS1  
Phase Jitter  
Includes PLL BW 2–4 MHz,  
CDR = 10 MHz  
ps  
(RMS)  
JRMSGen4_SRIS  
Intel QPI Specifications for 100 MHz and 133 MHz  
Intel QPI and SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
8 Gb/s, 100 MHz, 12UI  
9.6 Gb/s, 100 MHz, 12UI  
0.13  
0.11  
0.4  
accummulated jitter2, 3, 4  
Intel QPI and SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
accummulated jitter2, 3, 4  
Intel QPI and SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
4.8 Gb/s, 133 MHz, 12UI, 17.04M  
4.8 Gb/s, 133 MHz, 12UI, 7.8M  
6.4 Gb/s, 133 MHz, 12UI, 17.04M  
6.4 Gb/s, 133 MHz, 12UI, 7.8M  
accummulated jitter2, 3, 4  
Intel QPI and SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
0.2  
accummulated jitter2, 3, 4  
Intel QPI and SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
0.3  
accummulated jitter2, 3, 4  
Intel QPI & SMI REFCLK  
JRMSQPI_SMI  
ps  
(RMS)  
0.15  
accummulated jitter2, 3, 4  
Note:  
1. The SRIS jitter limit is the system RefClk simulation budget divided by sqrt (2) for equal allocation of uncorrelated jitter between  
two clocks.  
2. Post processed evaluation through Intel supplied Matlab scripts  
3. Measuring on 100 MHz output using the template file in the PCIe Jitter Tool  
4. Measuring on 100 MHz, 133 MHz outputs using the template file in the PCIe Jitter Tool. Visit www.pcisig.com for complete PCIe  
specifications.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 17  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Electrical Specifications  
Table 4.5. Absolute Maximum Conditions  
Parameter  
Symbol  
VDD_1.8V  
VIN  
Test Condition  
Functional  
Min  
Typ  
Max  
2.5  
Unit  
V
Main Supply Voltage  
Input Voltage  
Relative to VSS  
SDATA and SCLK  
–0.5  
VDD + 0.5  
3.6  
V
Input High Voltage I2C  
VIH_I2C  
V
Temperature, Storage  
TS  
TA  
Non-functional  
Functional  
–65  
–40  
150  
85  
Celsius  
Celsius  
Temperature, Operating Ambient  
Temperature, Junction  
TJ  
Functional  
150  
22  
Celsius  
Dissipation, Junction to Case  
θJC  
JEDEC  
Celsius/W  
(JESD 51)  
Dissipation, Junction to Ambient  
θJA  
JEDEC  
(JESD 51)  
30  
Celsius/W  
V
ESD Protection  
ESDHBM  
JEDEC  
–2000  
2000  
(Human Body Model)  
(JESD 22-A114)  
Flammability Rating  
UL-94  
UL (Class)  
V–0  
Note: While using multiple power supplies, the voltage on any input or I/O pin cannot exceed the power pin during power-up. Power  
supply sequencing is not required.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 18  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Description  
5. Functional Description  
5.1 Crystal Recommendations  
The clock device requires a parallel resonance crystal.  
Table 5.1. Crystal Recommendations  
Frequency  
(Fund)  
Cut  
Loading  
Load Cap  
Shunt Cap  
(max)  
Motional  
(max)  
Tolerance  
(max)  
Stability  
(max)  
Aging (max)  
25 MHz  
AT  
Parallel  
8–15 pF  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
5.2 Crystal Loading  
Crystal loading is critical in achieving low ppm performance. To realize low ppm performance, use the total capacitance the crystal sees  
to calculate the appropriate capacitive loading (CL).  
The figure below shows a typical crystal configuration using the two trim capacitors. It is important that the trim capacitors are in series  
with the crystal.  
Figure 5.1. Crystal Capacitive Clarification  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 19  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Description  
5.3 Calculating Load Capacitors  
In addition to the standard external trim capacitors, consider the trace capacitance and pin capacitance to calculate the crystal loading  
correctly. Again, the capacitance on each side is in series with the crystal. The total capacitance on both sides is twice the specified  
crystal load capacitance (CL). Trim capacitors are calculated to provide equal capacitive loading on both sides.  
Figure 5.2. Crystal Loading Example  
Use the following formulas to calculate the trim capacitor values for Ce1 and Ce2:  
Load Capacitance (each side)  
Ce = 2 × CL (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe =  
1
1
+
(
)
Ce + Cs1 + Ci1 Ce2 + Cs2 + Ci2  
• CL: Crystal load capacitance  
• CLe: Actual loading seen by crystal using standard value trim capacitors  
• Ce: External trim capacitors  
• Cs: Stray capacitance (terraced)  
• Ci : Internal capacitance (lead frame, bond wires, etc.)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 20  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Description  
5.4 PWRGD/PWRDNb (Power Down) Pin  
The PWRGD/PWRDNb pin is a dual-function pin. During initial power up, the pin functions as the PWRGD pin. Upon the first power up,  
if the PWRGD pin is low, the outputs will be disabled, but the crystal oscillator and I2C logics will be active. Once the PWRGD pin has  
been sampled high by the clock chip, the pin assumes a PWRDNb functionality. When the pin has assumed a PWRDNb functionality  
and is pulled low, the device will be placed in power down mode. The PWRGD/PWRDNb pin is required to be driven at all times. The  
assertion and dessertion of PWRDNb is asynchronous.  
Tstable  
<1.8 ms  
PWRDWN  
DIF  
DIF  
Tdrive_Pwrdn#  
<300 µs; > 200 mV  
Figure 5.3. Differential (CLOCK–CLOCK) Measurement Points (Tperiod, Duty Cycle, Jitter)  
5.5 PWRDNb (Power Down) Assertion  
The PDB pin is an asynchronous active low input used to disable all output clocks in a glitch-free manner. All outputs will be driven low  
in power down mode. In power down mode, all outputs, the crystal oscillator, and the I2C logic are disabled.  
PWRDWN  
DIF  
DIF  
Figure 5.4. PWRDNb Assertion  
5.6 PWRDNb (Power Down) Deassertion  
When a valid rising edge on PWRGD/PWRDNb pin is applied, all outputs are enabled in a glitch-free manner within two to six output  
clock cycles.  
5.7 OEb Pin  
The OEb pin is an active low input used to enable and disable the output clock. To enable the output clock, the OEb pin needs to be  
logic low, and I2C OE bit needs to be logic high. By default, the OEb pin is set to logic low, and I2C OE bit is set to logic high.There are  
two methods to disable the output clock: the OEb pin is pulled to a logic high, or the I2C OEb bit is set to a logic low. The OEb pin is  
required to be driven at all times.  
5.8 OEb Assertion  
The OEb pin is an active low input used for synchronous stopping and starting the respective output clock while the rest of the clock  
generator continues to function. The assertion of the OEb function is achieved by pulling the OEb pin low while the I2C OE bit is high,  
which causes the respective stopped output to resume normal operation. No short or stretched clock pulses are produced when the  
clocks resume. The maximum latency from the assertion to active outputs is no more than two to six output clock cycles.  
5.9 OEb Deassertion  
The OEb function is deasserted by pulling high or writing the I2C OE bit to a logic low. The corresponding output is stopped cleanly and  
the final output state is driven low.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 21  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Functional Description  
5.10 FS Pin  
The FS pin will select 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz. This is a tri-state pin, and this pin has a weak internal pull-down of  
approximately 100 kΩ.  
The default output frequency is 100 MHz.  
The following figure shows the recommended configurations for tri-state.  
VDD  
VDD  
R1  
1 k  
R1  
1 k  
MCU  
With Tri-State Outputs  
MCU  
With Tri-State Outputs  
FS Pin  
FS Pin  
FS Pin  
Outputs  
Outputs  
0, High Z and VDD  
0, VDD/2 and VDD  
R2  
1 k  
1 k  
R2  
Static Option  
Tri-State Dynamic Option  
The user can use an MCU with  
strong Tri-State outputs to drive  
the FS pin. 1 k-ohm resistors  
should be adequate for most MCU  
drivers; however, the resistance  
can be increased to compensate  
for a weaker driver. Increasing the  
resistors will increase noise levels  
on the FS pin line.  
3-Level Dynamic Option  
An MCU with a 3-level output  
capability can be directly  
connected to the FS Pin.  
The user can NP either R1, R2, or  
neither to constantly maintain low,  
high, or mid levels, respectively.  
Figure 5.5. Si522xx FS Tri-State Pin Circuit Configuration Suggestions  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 22  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Test and Measurement Setup  
6. Test and Measurement Setup  
The following diagrams show the test load configuration for the differential clock signals.  
Measurement  
L1  
Point  
OUT+  
50  
2 pF  
L1 = 5"  
Measurement  
Point  
L1  
OUT-  
50  
2 pF  
Figure 6.1. 0.7 V Differential Load Configuration  
Figure 6.2. Differential Output Signals (for AC Parameters Measurement)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 23  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Test and Measurement Setup  
Figure 6.3. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 24  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
PCIe Clock Jitter Tool  
7. PCIe Clock Jitter Tool  
The PCIe Clock Jitter Tool is designed to enable users to quickly and easily take jitter measurements for PCIe Gen1/2/3/4 and SRNS/  
SRIS. This software removes all the guesswork for PCIe Gen1/2/3/4 and SRNS/SRIS jitter measurements and margins in board de-  
signs. This software tool will provide accurate results in just a few clicks, and is provided in an executable format to support various  
common input waveform files, such as .csv, .wfm, and .bin. The easy-to-use GUI and helpful tips guide users through each step. Re-  
lease notes and other documentation are also included in the software package.  
Download it for free at http://www.silabs.com/pcie-learningcenter.  
Figure 7.1. PCIe Clock Jitter Tool  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 25  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8. Control Registers  
8.1 I2C Interface  
To enhance the flexibility and function of the clock synthesizer, an I2C interface is provided. Through the I2C interface, various device  
functions, such as individual clock output buffers, are individually enabled or disabled. The registers associated with the I2C interface  
initialize to their default setting at power-up. The use of this interface is optional. Clock device register changes are normally made at  
system initialization, if any are required.  
8.2 Block Read/Write  
The clock driver I2C protocol accepts block write and block read operations from the controller. For block write/read operation, access  
the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any complete byte is transfer-  
red. The block write and block read protocol is outlined in Table 8.2 Block Read and Block Write Protocol on page 29.  
8.3 Block Read  
After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The slave acknowledges the  
register index in the command byte. The master sends a repeat start function. After the slave acknowledges this, the slave sends the  
number of bytes it wants to transfer (>0 and <33). The master acknowledges each byte except the last and sends a stop function.  
1
7
1 1  
8
1 1  
A
7
1 1  
r
Rd  
Wr  
A
A
T Slave  
Command Code  
Slave  
Register # to  
read  
MSB = 0  
repeat starT  
Acknowledge  
Command  
starT  
Condition  
Master to  
Slave to  
8
1
8
1
8
1 1  
Data Byte  
Data Byte 0  
A Data Byte 1 N P  
A
Not acknowledge  
stoP Condition  
Block Read Protocol  
Figure 8.1. Block Read Protocol  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 26  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.4 Block Write  
After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The lower seven bits  
indicate the register at which to start the transfer. If the command byte is 00h, the slave device will be compatible with existing block  
mode slave devices. The next byte of a write must be the count of bytes that the master will transfer to the slave device. The byte count  
must be greater than zero and less than 33. Following this byte are the data bytes to be transferred to the slave device. The slave  
device always acknowledges each byte received. The transfer is terminated after the slave sends the Ack and the master sends a stop  
function.  
1
7
1 1  
8
1
A
Master to  
Slave to  
Wr  
Command  
A
T Slave Address  
Register # to  
write  
Command bit  
starT  
Acknowledge  
MSB = 0  
Condition  
1
8
1
8
1 1  
8
A Data Byte 1 A P  
Byte Count = 2  
Data Byte 0  
A
stoP Condition  
Block Write Protocol  
Figure 8.2. Block Write Protocol  
8.5 Byte Read/Write  
Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register number. Refer to Table  
8.3 Byte Read and Byte Write Protocol on page 30 for byte read and byte write protocol.  
8.6 Byte Read  
The standard byte read is as shown in the figure below. It is an extension of the byte write. The write start condition is repeated; then,  
the slave device starts sending data, and the master acknowledges it until the last byte is sent. The master terminates the transfer with  
a NAK, then a stop condition. For byte operation, the MSB bit of the command byte must be set. For block operations, the MSB bit must  
be reset. If the bit is not set, the next byte must be the byte transfer count.  
1
7
1 1  
8
1 1  
A
7
1 1  
8
1 1  
r
Rd  
Data Byte 0  
Wr  
A
A
N
T Slave  
Command  
P
Slave  
Register # to  
read  
MSB bit = 1  
Not ack  
Command  
starT  
Condition  
repeat starT  
Acknowledge  
stoP  
Condition  
Master to  
Slave to  
Byte Read Protocol  
Figure 8.3. Byte Read Protocol  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 27  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.7 Byte Write  
The figure below illustrates a simple, typical byte write. For byte operation, the MSB bit of the command byte must be set. For block  
operations, the MSB bit must be reset. If the bit is not set, the next byte must be the byte transfer count. The count can be between 1  
and 32. It is not allowed to be zero or to exceed 32.  
1
7
1 1  
8
1
A
8
1 1  
A
P
Wr  
A
T Slave  
Command  
Data Byte 0  
Register # to  
write  
MSB bit = 1  
Command  
starT Condition  
stoP Condition  
Acknowledge  
Master to  
Slave to  
Byte Write Protocol  
Figure 8.4. Byte Write Protocol  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 28  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.8 Data Protocol  
The clock driver I2C protocol accepts byte write, byte read, block write, and block read operations from the controller. For block write/  
read operation, access the bytes in sequential order from lowest to highest (most significant bit first) with the ability to stop after any  
complete byte is transferred. For byte write and byte read operations, the system controller can access individually indexed bytes. The  
block write and block read protocol is outlined in Table 8.2 Block Read and Block Write Protocol on page 29 while Table 8.3 Byte  
Read and Byte Write Protocol on page 30 outlines byte write and byte read protocol.  
Table 8.1. SA State on First Application of PWRGD/PWRDNb  
Description  
SA  
0
Address  
1101001  
1101010  
State of SA on first application of PWRGD/PWRDNb1  
1
Note:  
1. Si52202 default address is 0x6A  
Table 8.2. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Bit  
1
Description  
Start  
Bit  
1
Description  
Start  
8:2  
Slave address—7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
9
10  
Acknowledge from slave  
Command Code—8 bits  
Acknowledge from slave  
Byte Count—8 bits  
Acknowledge from slave  
Data byte 1–8 bits  
Acknowledge from slave  
Data byte 2–8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
....  
....  
....  
....  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
Data bytes from slave/Acknowl-  
edge  
....  
....  
....  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 29  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.3. Byte Read and Byte Write Protocol  
Byte Read Protocol  
Byte Write Protocol  
Bit  
1
Description  
Start  
Bit  
1
Description  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 30  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.9 Register Tables  
8.9.1 Si52212 Registers  
Table 8.4. Control Register 0. Byte 0  
Bit  
7
Name  
If Bit = 0  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
If Bit = 1  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
DIFF7_OE  
DIFF6_OE  
DIFF5_OE  
DIFF4_OE  
DIFF3_OE  
DIFF2_OE  
DIFF1_OE  
DIFF0_OE  
1
1
1
1
1
1
1
1
Output enable for DIFF[7]  
Output enable for DIFF[6]  
Output enable for DIFF[5]  
Output enable for DIFF[4]  
Output enable for DIFF[3]  
Output enable for DIFF[2]  
Output enable for DIFF[1]  
Output enable for DIFF[0]  
6
5
4
3
2
1
0
Table 8.5. Control Register 1. Byte 1  
Bit  
7
Name  
If Bit = 0  
Disabled  
Disabled  
Disabled  
Disabled  
If Bit = 1  
Enabled  
Enabled  
Enabled  
Enabled  
Type  
RW  
RW  
RW  
RW  
Default  
Function  
DIFF11_OE  
DIFF10_OE  
DIFF9_OE  
DIFF8_OE  
1
1
1
1
0
0
0
Output enable for DIFF[11]  
Output enable for DIFF[10]  
Output enable for DIFF[9]  
Output enable for DIFF[8]  
6
5
4
3
Reserved  
Reserved  
2
1
SS_EN_READ1  
SS_EN_READ0  
R
R
Spread Enable software readback  
00 = –0.25%; 01 = –0.5%; 10 =  
OFF; 11 = –0.5%  
0
0
Table 8.6. Control Register 2. Byte 2  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Read back Byte  
1[1:0]  
SS control by  
Byte 2 [6:5]  
7
SS_EN_SW_HW_CTRL  
RW  
0
Enable software control of spread  
6
5
SS_EN_SW1  
SS_EN_SW0  
RW  
RW  
0
1
Software control of spread 00 = –  
0.25%; 01 = OFF; 10 = OFF; 11 = –  
0.5%  
4
3
Reserved  
Disabled  
0
1
Reserved  
REF_OE  
Enabled  
RW  
RW  
Output Enable for REF  
Wake-on LAN for REF. To have REF  
output enabled in Power Down,  
REF_OE needs to be enabled at the  
same time.  
REF output is  
disabled in Pow- enabled in Pow-  
er Down. er Down  
REF output is  
2
REF PWRDN  
0
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 31  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
1
RW  
0
1
REF Output Slew Rate Control 00 =  
Slowest; 01 = Slow; 10 = Fast; 11 =  
Fastest  
REF_SLR  
0
RW  
Table 8.7. Control Register 3. Byte 3  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
7
6
5
4
3
2
1
0
SR_SEL_DIFF7  
SR_SEL_DIFF6  
SR_SEL_DIFF5  
SR_SEL_DIFF4  
SR_SEL_DIFF3  
SR_SEL_DIFF2  
SR_SEL_DIFF1  
SR_SEL_DIFF0  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
1
1
1
1
1
1
1
1
Slew rate control for DIFF7  
Slew rate control for DIFF6  
Slew rate control for DIFF5  
Slew rate control for DIFF4  
Slew rate control for DIFF3  
Slew rate control for DIFF2  
Slew rate control for DIFF1  
Slew rate control for DIFF0  
Table 8.8. Control Register 4. Byte 4  
Bit  
7
Name  
SR_SEL_DIFF11  
SR_SEL_DIFF10  
SR_SEL_DIFF9  
SR_SEL_DIFF8  
AMP  
If Bit = 0  
If Bit = 1  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
Slow setting  
Slow setting  
Slow setting  
Slow setting  
Fast setting  
Fast setting  
Fast setting  
Fast setting  
1
1
1
1
0
0
0
0
Slew rate control for DIFF11  
Slew rate control for DIFF10  
Slew rate control for DIFF9  
Slew rate control for DIFF8  
6
5
4
3
2
AMP  
Controls Output Amplitude  
1
AMP  
0
AMP  
Table 8.9. Control Register 5. Byte 5  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
R
Rev Code [7:4]  
Vendor ID[3:0]  
Revision Code  
R
R
R
R
Vendor Identification Code  
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 32  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.10. Control Register 6. Byte 6  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
0
0
0
0
0
0
0
0
6
R
5
R
4
R
Programming ID [7:0]  
Programming ID (Internal Only)  
3
R
2
R
1
R
0
R
Table 8.11. Control Register 7. Byte 7  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
7
6
5
4
3
2
1
0
BC  
BC  
BC  
BC  
BC  
BC  
BC  
BC  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 33  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.9.2 Si52208 Registers  
Table 8.12. Control Register 0. Byte 0  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Reserved  
0
1
1
0
0
1
1
1
Reserved  
6
DIFF4_OE  
DIFF3_OE  
Disabled  
Disabled  
Enabled  
Enabled  
RW  
RW  
Output enable for DIFF_4  
Output enable for DIFF_3  
Reserved  
5
4
Reserved  
Reserved  
Disabled  
3
Reserved  
2
DIFF2_OE  
DIFF1_OE  
DIFF0_OE  
Enabled  
Enabled  
Enabled  
RW  
RW  
RW  
Output enable for DIFF_2  
Output enable for DIFF_1  
Output enable for DIFF_0  
1
Disabled  
Disabled  
0
Table 8.13. Control Register 1. Byte 1  
Bit  
7
Name  
If Bit = 0  
Disabled  
Disabled  
If Bit = 1  
Enabled  
Enabled  
Type  
RW  
Default  
Function  
DIFF7_OE  
DIFF6_OE  
1
1
0
1
0
0
0
Output enable for DIFF_7  
Output enable for DIFF_6  
Reserved  
6
RW  
5
Reserved  
Disabled  
4
DIFF5_OE  
Enabled  
RW  
Output enable for DIFF_5  
3
Reserved  
Reserved  
2
1
SS_EN_READ1  
SS_EN_READ0  
R
R
Spread Enable software readback  
00 = –0.25%; 01 = –0.5%; 10 =  
OFF; 11 = –0.5%  
0
0
Table 8.14. Control Register 2. Byte 2  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Read back Byte  
1[1:0]  
SS control by  
Byte 2 [6:5]  
7
SS_EN_SW_HW_CTRL  
RW  
0
Enable software control of spread  
6
5
SS_EN_SW1  
SS_EN_SW0  
RW  
RW  
0
1
Software control of spread 00 = –  
0.25%; 01 = OFF; 10 = OFF; 11 = –  
0.5%  
4
3
Reserved  
Disabled  
0
1
Reserved  
REF_OE  
Enabled  
RW  
RW  
Output Enable for REF  
Wake-on LAN for REF. To have REF  
output enabled in Power Down,  
REF_OE needs to be enabled at the  
same time.  
REF output is  
disabled in Pow- enabled in Pow-  
er Down. er Down  
REF output is  
2
REF PWRDN  
0
1
0
RW  
RW  
0
1
REF Output Slew Rate Control 00 =  
Slowest; 01 = Slow; 10 = Fast; 11 =  
Fastest  
REF_SLR  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 34  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.15. Control Register 3. Byte 3  
Bit  
7
Name  
If Bit = 0  
Reserved  
If Bit = 1  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
1
1
1
1
1
1
1
1
Reserved  
6
SR_SEL_DIFF_4  
SR_SEL_DIFF_3  
Slow setting  
Slow setting  
Reserved  
Fast setting  
Fast setting  
Slew rate control for DIFF_4  
Slew rate control for DIFF_3  
Reserved  
5
4
3
Reserved  
Reserved  
2
SR_SEL_DIFF_2  
SR_SEL_DIFF_1  
SR_SEL_DIFF_0  
Slow setting  
Slow setting  
Slow setting  
Fast setting  
Fast setting  
Fast setting  
Slew rate control for DIFF_2  
Slew rate control for DIFF_1  
Slew rate control for DIFF_0  
1
0
Table 8.16. Control Register 4. Byte 4  
Bit  
7
Name  
If Bit = 0  
Slow setting  
Slow setting  
Reserved  
If Bit = 1  
Fast setting  
Fast setting  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
SR_SEL_DIFF_7  
SR_SEL_DIFF_6  
1
1
1
1
0
0
0
0
Slew rate control for DIFF_7  
Slew rate control for DIFF_6  
Reserved  
6
5
4
SR_SEL_DIFF_5  
Slow setting  
Fast setting  
Slew rate control for DIFF_5  
3
AMP  
AMP  
AMP  
AMP  
2
Controls Output Amplitude  
1
0
Table 8.17. Control Register 5. Byte 5  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
R
Rev Code [7:4]  
Vendor ID[3:0]  
Revision Code  
R
R
R
R
Vendor Identification Code  
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 35  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.18. Control Register 6. Byte 6  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
0
0
0
0
0
0
0
0
6
R
5
R
4
R
Programming ID [7:0]  
Programming ID (Internal Only)  
3
R
2
R
1
R
0
R
Table 8.19. Control Register 7. Byte 7  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
7
6
5
4
3
2
1
0
BC  
BC  
BC  
BC  
BC  
BC  
BC  
BC  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 36  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.9.3 Si52204 Registers  
Table 8.20. Control Register 0. Byte 0  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Reserved  
Reserved  
0
1
1
0
0
1
0
0
6
DIFF2_OE  
DIFF1_OE  
Disabled  
Disabled  
Enabled  
Enabled  
RW  
RW  
Output enable for DIFF_2  
Output enable for DIFF_1  
Reserved  
5
4
Reserved  
Reserved  
Disabled Enabled  
3
Reserved  
2
DIFF0_OE  
RW  
RW  
RW  
Output enable for DIFF_0  
Reserved  
1
Reserved  
Reserved  
0
Reserved  
Table 8.21. Control Register 1. Byte 1  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Reserved  
Reserved  
0
0
0
1
0
0
0
6
Reserved  
Reserved  
Reserved  
5
Reserved  
4
DIFF3_OE  
Disabled  
Enabled  
RW  
Output enable for DIFF_3  
3
Reserved  
Reserved  
2
1
SS_EN_READ1  
SS_EN_READ0  
R
R
Spread Enable software readback  
00 = –0.25%; 01 = –0.5%; 10 =  
OFF; 11 = –0.5%  
0
0
Table 8.22. Control Register 2. Byte 2  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Read back  
Byte 1[1:0]  
SS control by  
Byte 2 [6:5]  
7
SS_EN_SW_HW_CTRL  
RW  
0
Enable software control of spread  
6
5
SS_EN_SW1  
SS_EN_SW0  
RW  
RW  
0
1
Software control of spread 00 = –  
0.25%; 01 = OFF; 10 = OFF; 11 = –  
0.5%  
4
3
Reserved  
0
1
Reserved  
REF_OE  
Disabled  
Enabled  
RW  
RW  
Output Enable for REF  
Wake-on LAN for REF. To have REF  
output enabled in Power Down,  
REF_OE needs to be enabled at the  
same time.  
REF output is  
disabled in  
Power Down.  
REF output is  
enabled in  
Power Down  
2
REF PWRDN  
0
1
0
RW  
RW  
0
1
REF Output Slew Rate Control 00 =  
Slowest; 01 = Slow; 10 = Fast; 11 =  
Fastest  
REF_SLR  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 37  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.23. Control Register 3. Byte 3  
Bit  
7
Name  
If Bit = 0  
Reserved  
Slow setting  
Slow setting  
Reserved  
Reserved  
Slow setting  
Reserved  
Reserved  
If Bit = 1  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
Reserved  
1
1
1
1
1
1
1
1
6
SR_SEL_DIFF_2  
SR_SEL_DIFF_1  
Fast setting  
Fast setting  
Slew rate control for DIFF_2  
Slew rate control for DIFF_1  
Reserved  
5
4
3
Reserved  
2
SR_SEL_DIFF_0  
Fast setting  
Slew rate control for DIFF_0  
Reserved  
1
0
Reserved  
Table 8.24. Control Register 4. Byte 4  
Bit  
7
Name  
If Bit = 0  
Reserved  
Reserved  
Reserved  
Slow setting  
If Bit = 1  
Type  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Default  
Function  
Reserved  
1
1
1
1
0
0
0
0
6
Reserved  
5
Reserved  
4
SR_SEL_DIFF_3  
Fast setting  
Slew rate control for DIFF_3  
3
AMP  
AMP  
AMP  
AMP  
2
Controls Output Amplitude  
1
0
Table 8.25. Control Register 5. Byte 5  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
R
Rev Code [7:4]  
Vendor ID[3:0]  
Revision Code  
R
R
R
R
Vendor Identification Code  
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 38  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.26. Control Register 6. Byte 6  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
0
0
0
0
0
0
0
0
6
R
5
R
4
R
Programming ID [7:0]  
Programming ID (Internal Only)  
3
R
2
R
1
R
0
R
Table 8.27. Control Register 7. Byte 7  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
7
6
5
4
3
2
1
0
BC  
BC  
BC  
BC  
BC  
BC  
BC  
BC  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 39  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
8.9.4 Si52202 Registers  
Table 8.28. Control Register 0. Byte 0  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Reserved  
Reserved  
0
1
0
0
0
0
0
0
6
DIFF0_OE  
Disabled  
Enabled  
RW  
Output enable for DIFF_0  
Reserved  
5
Reserved  
4
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Reserved  
2
Reserved  
1
Reserved  
0
Reserved  
Table 8.29. Control Register 1. Byte 1  
Bit  
7
Name  
If Bit = 0  
Reserved  
Reserved  
Disabled  
If Bit = 1  
Type  
Default  
Function  
Reserved  
0
0
1
0
0
0
0
6
Reserved  
5
DIFF1_OE  
Enabled  
RW  
Output enable for DIFF_1  
Reserved  
4
Reserved  
3
Reserved  
Reserved  
2
1
SS_EN_READ1  
SS_EN_READ0  
R
R
Spread Enable software readback  
00 = –0.25%; 01 = –0.5%; 10 =  
OFF; 11 = –0.5%  
0
0
Table 8.30. Control Register 2. Byte 2  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
Default  
Function  
Read back  
Byte 1[1:0]  
SS control by  
Byte 2 [6:5]  
7
SS_EN_SW_HW_CTRL  
RW  
0
Enable software control of spread  
6
5
SS_EN_SW1  
SS_EN_SW0  
RW  
RW  
0
1
Software control of spread 00 = –  
0.25%; 01 = OFF; 10 = OFF; 11 = –  
0.5%  
4
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 40  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.31. Control Register 3. Byte 3  
Bit  
7
Name  
If Bit = 0  
Reserved  
Slow setting  
Reserved  
If Bit = 1  
Type  
Default  
Function  
Reserved  
1
1
1
1
1
1
1
1
6
SR_SEL_DIFF_0  
Fast setting  
RW  
Slew rate control for DIFF_2  
Reserved  
5
4
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
3
Reserved  
2
Reserved  
1
Reserved  
0
Reserved  
Table 8.32. Control Register 4. Byte 4  
Bit  
7
Name  
If Bit = 0  
Reserved  
Reserved  
Slow setting  
Reserved  
If Bit = 1  
Type  
Default  
Function  
Reserved  
1
1
1
1
0
0
0
0
6
Reserved  
5
SR_SEL_DIFF_1  
Fast setting  
RW  
Slew rate control for DIFF_1  
Reserved  
4
3
AMP  
AMP  
AMP  
AMP  
RW  
RW  
RW  
RW  
2
Controls Output Amplitude  
1
0
Table 8.33. Control Register 5. Byte 5  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
R
Rev Code [7:4]  
Vendor ID[3:0]  
Revision Code  
R
R
R
R
Vendor Identification Code  
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 41  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Control Registers  
Table 8.34. Control Register 6. Byte 6  
Bit  
7
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
0
0
0
0
0
0
0
0
6
R
5
R
4
R
Programming ID [7:0]  
Programming ID (Internal Only)  
3
R
2
R
1
R
0
R
Table 8.35. Control Register 7. Byte 7  
Bit  
Name  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Function  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
Byte Count  
7
6
5
4
3
2
1
0
BC  
BC  
BC  
BC  
BC  
BC  
BC  
BC  
0
0
0
0
1
0
0
0
R
R
R
R
R
R
R
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 42  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
9.1 Si52212 Pin Descriptions  
1
2
3
4
VDDA  
GNDA  
48 GND  
47  
DIFF_7b  
NC  
46 DIFF_7  
45  
GND  
OE_7b  
SS_EN  
OE_6b  
5
6
44  
43  
PWRGD/PWRDNb  
GND  
DIFF_6b  
DIFF_6  
7
8
42  
41  
XIN/CLKIN  
GND  
Si52212  
9
40  
39  
38  
37  
36  
XOUT  
VDDX  
VDDR  
VDD  
10  
11  
DIFF_5b  
DIFF_5  
OE_5b  
12  
13  
REF / SA  
VSSR  
SDA  
SCLK  
FS  
OE_4b  
DIFF_4b  
DIFF_4  
GND  
14  
15  
35  
34  
16  
33  
Figure 9.1. 64-Pin QFN  
Table 9.1. Si52212 64-Pin QFN Descriptions  
Pin #  
Name  
VDDA  
GNDA  
NC  
Type  
PWR  
PWR  
Description  
1
2
3
4
Analog Power Supply  
Analog Ground  
No connect  
GND  
GND  
I
Ground  
Spread spectrum enable pin. 0 = –0.25% spread, mid= Off, 1= –0.5% spread (This  
pin has an internal pull-up)  
5
6
SS_EN  
Active low input pin asserts power down (PDb) and disables all outputs, except  
REF (This pin has an internal pull-up). Refer also to settings of Byte 2, Bit2 and  
Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF.  
PWRGD/  
PWRDNb  
I, PU  
7
8
GND  
XIN/CLKIN  
XOUT  
GND  
I
Ground  
25.00 MHz crystal input or 25 MHz Clock Input.  
25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input).  
Power supply for crystal  
9
O
10  
11  
VDDX  
PWR  
PWR  
VDDR  
Power supply for REF output  
REF = 25MHz LVCMOS output. SA = Address select for I2C. When part is pow-  
ered up, SA will be latched to select SM bus address. Refer to Table 8.1 SA State  
on First Application of PWRGD/PWRDNb on page 29.  
12  
13  
REF /SA  
VSSR  
O/I  
GND  
Ground  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 43  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin #  
14  
Name  
SDA  
Type  
I/O  
I
Description  
I2C compatible SDATA  
I2C compatible SCLOCK  
15  
SCLK  
Frequency select pin. 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (This pin has an  
internal pull-down)  
16  
FS  
I
17  
18  
DIFF_0  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
DIFF_0b  
Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
19  
20  
OE_0b  
OE_1b  
I, PD  
I, PD  
Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
21  
22  
23  
24  
25  
26  
27  
DIFF_1  
DIFF_1b  
GND  
O, DIF  
O, DIF  
GND  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Ground  
VDD  
PWR  
Power supply  
VDD_IO  
DIFF_2  
DIFF_2b  
PWR  
Output power supply  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
28  
29  
OE_2b  
OE_3b  
I, PD  
I, PD  
Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
30  
31  
32  
33  
34  
35  
DIFF_3  
DIFF_3b  
VDD_IO  
GND  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output power supply  
GND  
Ground  
DIFF_4  
DIFF_4b  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_4 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
36  
37  
OE_4b  
OE_5b  
I, PD  
I, PD  
Output enable for DIFF_5 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
38  
39  
40  
41  
42  
43  
DIFF_5  
DIFF_5b  
VDD  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Power supply  
GND  
GND  
Ground  
DIFF_6  
DIFF_6b  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_6 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
44  
45  
OE_6b  
OE_7b  
I, PD  
I, PD  
Output enable for DIFF_7 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 44  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin #  
46  
Name  
DIFF_7  
DIFF_7b  
GND  
Type  
O, DIF  
O, DIF  
GND  
Description  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Ground  
47  
48  
49  
VDD_IO  
DIFF_8  
DIFF_8b  
PWR  
Output power supply  
50  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
51  
Output enable for DIFF_8 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
52  
53  
OE_8b  
OE_9b  
I, PD  
I, PD  
Output enable for DIFF_9 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
54  
55  
56  
57  
58  
59  
60  
DIFF_9  
DIFF_9b  
VDD_IO  
VDD  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output power supply  
PWR  
Power supply  
GND  
GND  
Ground  
DIFF_10  
DIFF_10b  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_10 pair (This pin has an internal pull-down). 0 = Enable  
outputs; 1 = Disable outputs  
61  
62  
OE_10b  
OE_11b  
I, PD  
I, PD  
Output enable for DIFF_11 pair (This pin has an internal pull-down). 0 = Enable  
outputs; 1 = Disable outputs  
63  
64  
DIFF_11  
DIFF_11b  
GND PAD  
O, DIF  
O, DIF  
GND  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Ground pad. This pad provides an electrical and thermal connection to ground and  
must be connected for proper operation. Use as many vias as practical, and keep  
the via length to an internal ground plane as short as possible.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 45  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
9.2 Si52208 Pin Descriptions  
VDDA  
GNDA  
SS_EN  
1
2
3
4
VDD_IO  
NC  
36  
35  
OE_4b  
34  
33  
PWRGD/PWRDNb  
DIFF_4b  
DIFF_4  
5
6
32  
XIN/CLKIN  
XOUT  
31 VDD  
Si52208  
VDDX  
7
8
30 DIFF_3b  
VDDR  
29  
DIFF_3  
28  
27  
26  
25  
9
OE_3b  
NC  
REF / SA  
VSSR  
10  
SDA 11  
SCLK  
VDD_IO  
OE_2b  
12  
Figure 9.2. 48-pin QFN  
Pin  
1
Name  
VDDA  
GNDA  
SS_EN  
Type  
Description  
PWR  
PWR  
I
Analog Power Supply  
Analog Ground  
2
3
Spread spectrum enable pin. 0 = -0.25% spread, mid= Off, 1= -0.5%  
spread (This pin has an internal pull-up)  
4
PWRGD/PWRDNb  
I, PU  
Active low input pin asserts power down (PDb) and disables all outputs,  
except REF (This pin has an internal pull-up). Refer also to settings of  
Byte 2, Bit2 and Bit3 for REF. Settings for Bit3 (REF_OE) will take prece-  
dence for REF.  
5
6
7
8
9
XIN/CLKIN  
XOUT  
I
25.00 MHz crystal input or 25 MHz Clock Input.  
25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input).  
Power supply for crystal  
O
VDDX  
PWR  
PWR  
O/I  
VDDR  
Power supply for REF output  
REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part  
is powered up, SA will be latched to select SM bus address. Refer to Ta-  
ble 6.1  
REF /SA  
10  
11  
VSSR  
SDA  
GND  
I/O  
Power supply for crystal  
I2C compatible SDATA  
I2C compatible SCLOCK  
12  
13  
SCLK  
FS  
I
I
Frequency select pin. 0 = 100 MHz, mid = 200 MHz, 1 = 133 MHz (This  
pin has an internal pull-down)  
14  
NC  
NC  
No connect  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 46  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin  
15  
16  
17  
Name  
DIFF_0  
DIFF_0b  
OE_0b  
Type  
O, DIF  
O, DIF  
I, PD  
Description  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
18  
OE_1b  
I, PD  
Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
19  
20  
21  
22  
23  
24  
25  
DIFF_1  
DIFF_1b  
VDD  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Power supply  
VDD_IO  
DIFF_2  
DIFF_2b  
OE_2b  
PWR  
Output power supply  
O, DIF  
O, DIF  
I, PD  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
26  
27  
28  
VDD_IO  
NC  
PWR  
NC  
Output power supply  
No connect  
OE_3b  
I, PD  
Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
29  
30  
31  
32  
33  
34  
DIFF_3  
DIFF_3b  
VDD  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Power supply  
DIFF_4  
DIFF_4b  
OE_4b  
O, DIF  
O, DIF  
I, PD  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_4 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
35  
36  
37  
38  
39  
NC  
NC  
No connect  
VDD_IO  
DIFF_5  
DIFF_5b  
OE_5b  
PWR  
O, DIF  
O, DIF  
I, PD  
Output power supply  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_5 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
40  
41  
42  
43  
44  
45  
NC  
NC  
No connect  
VDD_IO  
VDD  
PWR  
PWR  
O, DIF  
O, DIF  
I, PD  
Output power supply  
Power supply  
DIFF_6  
DIFF_6b  
OE_6b  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_6 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
46  
OE_7b  
I, PD  
Output enable for DIFF_7 pair (This pin has an internal pull-down). 0 =  
Enable outputs; 1 = Disable outputs  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 47  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin  
47  
Name  
DIFF_7  
Type  
O, DIF  
O, DIF  
GND  
Description  
0.7 V, 100 MHz differential clock  
48  
DIFF_7b  
GND PAD  
0.7 V, 100 MHz differential clock  
Ground pad. This pad provides an electrical and thermal connection to  
ground and must be connected for proper operation. Use as many vias as  
practical, and keep the via length to an internal ground plane as short as  
possible.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 48  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
9.3 Si52204 Pin Descriptions  
1
2
3
4
SS_EN  
PWRGD/PWRDNb  
XIN/CLKIN  
XOUT  
24 VDD_IO  
23  
OE_2b  
22 DIFF_2b  
21  
DIFF_2  
Si52204  
VDDX  
NC  
5
6
20  
19  
VDDR  
VDD  
REF / SA  
7
8
18  
17  
DIFF_1b  
DIFF_1  
VSSR  
Figure 9.3. 32-pin QFN  
Table 9.2. Si52204 32-pin QFN Descriptions  
Pin #  
Name  
Type  
Description  
Spread spectrum enable pin. 0 = –0.25% spread; mid = Off; 1 = –0.5% spread (this  
pin has an internal pull-up).  
1
SS_EN  
I
Active low input pin asserts power down (PDb) and disables all outputs, except  
REF (This pin has an internal pull-up). Refer also to settings of Byte 2, Bit2 and  
Bit3 for REF. Settings for Bit3 (REF_OE) will take precedence for REF.  
PWRGD/  
PWRDNb  
2
I, PU  
3
4
5
6
XIN/CLKIN  
XOUT  
I
25.00 MHz crystal input or 25 MHz Clock Input.  
25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input).  
Power supply for crystal  
O
VDDX  
PWR  
PWR  
VDDR  
Power supply for REF output  
REF = 25 MHz LVCMOS output. SA = Address select for I2C. When part is pow-  
ered up, SA will be latched to select SM bus address. Refer to Table 8.1 SA State  
on First Application of PWRGD/PWRDNb on page 29.  
7
REF /SA  
O/I  
8
9
VSSR  
SDA  
GND  
I/O  
I
Ground  
I2C compatible SDATA  
I2C compatible SCLOCK  
10  
SCLK  
Frequency select pin. 0 = 100 MHz; mid = 200 MHz; 1 = 133 MHz (this pin has a  
internal pull-down)  
11  
FS  
I
12  
13  
DIFF_0  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
DIFF_0b  
Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
14  
15  
16  
17  
OE_0b  
VDD_IO  
OE_1b  
DIFF_1  
I, PD  
PWR  
I, PD  
Output power supply  
Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
O, DIF  
0.7 V, 100 MHz differential clock  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 49  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin #  
18  
Name  
DIFF_1b  
VDD  
Type  
O, DIF  
PWR  
NC  
Description  
0.7 V, 100 MHz differential clock  
Power supply  
19  
20  
NC  
No connect  
21  
DIFF_2  
DIFF_2b  
O, DIF  
O, DIF  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
22  
Output enable for DIFF_2 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
23  
OE_2b  
I, PD  
24  
25  
26  
VDD_IO  
DIFF_3  
PWR  
O, DIF  
O, DIF  
Output power supply  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
DIFF_3b  
Output enable for DIFF_3 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
27  
OE_3b  
I, PD  
28  
29  
30  
31  
32  
NC  
VDD  
NC  
No connect  
PWR  
NC  
Power supply  
No connect  
NC  
VDDA  
GNDA  
GND PAD  
PWR  
PWR  
GND  
Analog Power Supply  
Analog Ground  
Ground pad. This pad provides an electrical and thermal connection to ground and  
must be connected for proper operation. Use as many vias as practical, and keep  
the via length to an internal ground plane as short as possible.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 50  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
9.4 Si52202 Pin Descriptions  
1
2
3
4
5
15 VDD_IO  
PWRGD/PWRDNb  
XIN/CLKIN  
XOUT  
14  
OE_0b  
13  
12  
DIFF_0b  
DIFF_0  
GND  
Si52202  
VDDX  
11  
VSSR  
Figure 9.4. 20-pin QFN  
Table 9.3. Si52202 20-pin QFN Descriptions1  
Pin #  
Name  
Type  
Description  
1
PWRGD/  
PWRDNb  
I, PU  
Active low input pin asserts power down (PDb) and disables all outputs (This pin  
has an internal pull-up).  
2
3
4
5
6
XIN/CLKIN  
XOUT  
VDDX  
VSSR  
I
25.00 MHz crystal input or 25 MHz Clock Input.  
25.00 MHz crystal output. Float XOUT if using only CLKIN (Clock input).  
Power supply for crystal  
O
PWR  
GND  
I/O  
Ground  
I2C compatible SDATA  
I2C compatible SCLOCK  
SDA  
7
8
SCLK  
I
I
SS_EN  
Spread spectrum enable pin. 0 = –0.25% spread; mid = Off; 1 = –0.5% spread.  
(this pin has an internal pull-up)  
9
GND  
VDD  
GND  
PWR  
GND  
Ground  
10  
11  
12  
13  
14  
Power supply  
GND  
Ground  
DIFF_0  
DIFF_0b  
OE_0b  
O, DIF  
O, DIF  
I, PD  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Output enable for DIFF_0 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
15  
16  
VDD_IO  
OE_1b  
PWR  
I, PD  
Output power supply  
Output enable for DIFF_1 pair (This pin has an internal pull-down). 0 = Enable out-  
puts; 1 = Disable outputs  
17  
18  
19  
DIFF_1  
DIFF_1b  
VDDA  
O, DIF  
O, DIF  
PWR  
0.7 V, 100 MHz differential clock  
0.7 V, 100 MHz differential clock  
Analog Power Supply  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 51  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Pin Descriptions  
Pin #  
Name  
GND  
Type  
GND  
GND  
Description  
20  
Ground  
GND PAD  
Ground pad. This pad provides an electrical and thermal connection to ground and  
must be connected for proper operation. Use as many vias as practical, and keep  
the via length to an internal ground plane as short as possible.  
Note:  
1. Contact factory for 133/200M output frequencies.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 52  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10. Packaging  
10.1 Si52212 Package  
The figure below illustrates the package details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values for the  
dimensions shown in the illustration.  
Figure 10.1. 64L 9 x 9 mm QFN Package Diagram  
Table 10.1. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.40  
aaa  
bbb  
ccc  
ddd  
eee  
0.15  
0.10  
0.08  
0.10  
0.05  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 53  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Dimension  
Min  
Nom  
Max  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MO-220.  
4. Recommended card reflow profile is per JEDEC/IPC J-STD-020D specification for Small Body Components.  
10.2 Si52212 Land Pattern  
The following figure illustrates the land pattern details for the Si52212 in a 64-Lead 9 x 9 mm QFN package. The table lists the values  
for the dimensions shown in the illustration.  
Figure 10.2. 64L 9 x 9 mm QFN Land Pattern  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 54  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Table 10.2. PCB Land Pattern Dimensions  
Dimension  
mm  
8.90  
8.90  
0.50  
0.30  
0.85  
5.30  
5.30  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
4. A 3x3 array of 1.25 mm square openings on a 1.80 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 55  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.3 Si52208 Package  
The figure below illustrates the package details for the Si52208 in a 48-Lead 6 x 6 mm QFN package. The table lists the values for the  
dimensions shown in the illustration.  
Figure 10.3. 48L 6 x 6 mm QFN Package Diagram  
Table 10.3. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.15  
Nom  
0.85  
Max  
0.90  
0.05  
0.25  
A
A1  
b
0.02  
0.20  
D
6.00 BSC  
3.6  
D2  
e
3.5  
3.7  
0.40 BSC  
6.00 BSC  
3.6  
E
E2  
L
3.5  
3.7  
0.30  
0.40  
0.50  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.10  
0.05  
0.08  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 56  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Dimension  
Min  
Nom  
Max  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC Outline MO-220.  
4. Recommended card reflow profile is per JEDEC/IPC J-STD-020 specification for Small Body Components.  
10.4 Si52208 Land Pattern  
The figure below illustrates the land pattern details for the Si52208 in a 48-Lead, 6 x 6 mm QFN package. The table lists the values for  
the dimensions shown in the illustration.  
Figure 10.4. 48L 6 x 6 mm QFN Land Pattern  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 57  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Table 10.4. PCB Land Pattern Dimensions  
Dimension  
mm  
5.90  
C1  
C2  
X1  
X2  
Y1  
Y2  
e
5.90  
0.20  
3.60  
0.85  
3.60  
0.40 BSC  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 3x3 array of 0.90 mm square openings on 1.15mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 58  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.5 Si52204 Package  
The figure below illustrates the package details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for the  
dimensions shown in the illustration.  
Figure 10.5. 32L 5 x 5 mm QFN Package Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 59  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Table 10.5. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
Nom  
0.85  
Max  
0.90  
0.05  
A
A1  
A3  
b
0.02  
0.20 REF  
0.25  
0.18  
4.90  
3.40  
0.30  
5.10  
3.60  
D/E  
D2/E2  
E
5.00  
3.50  
0.50 BSC  
K
0.20  
0.30  
0.09  
L
0.40  
0.50  
0.14  
R
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.15  
0.10  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220, Variation VKKD-4.  
4. Recommended card reflow profile is per JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 60  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.6 Si52204 Land Pattern  
The figure below illustrates the land pattern details for the Si52204 in a 32-Lead, 5 x 5 mm QFN package. The table lists the values for  
the dimensions shown in the illustration.  
Figure 10.6. 32L 5 x 5 mm QFN Land Pattern  
Table 10.6. PCB Land Pattern Dimensions  
Dimension  
mm  
4.01  
4.01  
3.50  
3.50  
0.50  
0.26  
0.86  
S1  
S
L1  
W1  
e
W
L
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on IPC-7351 guidelines.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 mm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size can be 1:1 for all perimeter pads.  
4. A 3x3 array of 0.85 mm square openings on 1.00 mm pitch can be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 61  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.7 Si52202 Package  
The figure below illustrates the package details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for the  
dimensions shown in the illustration.  
Figure 10.7. 20L 3 x 3 mm QFN Package Diagram  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 62  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Table 10.7. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
Nom  
0.85  
Max  
0.90  
0.05  
A
A1  
A3  
A3  
b
0.02  
0.65  
0.20 REF  
0.20  
0.15  
1.8  
0.25  
2.0  
D
3.00 BSC  
1.9  
D2  
E
3.00 BSC  
1.9  
E2  
e
1.8  
2.0  
0.40 BSC  
K
0.20  
0.20  
L
0.30  
0.40  
0.125  
R
0.075  
aaa  
bbb  
ccc  
ddd  
eee  
fff  
0.10  
0.07  
0.10  
0.05  
0.08  
0.10  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. The drawing complies with JEDEC MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 63  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.8 Si52202 Land Pattern  
The figure below illustrates the land pattern details for the Si52202 in a 20-Lead, 3 x 3 mm QFN package. The table lists the values for  
the dimensions shown in the illustration.  
Figure 10.8. 20L 3 x 3 mm QFN Land Pattern  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 64  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
Table 10.8. PCB Land Pattern Dimensions  
Dimension  
mm  
3.10  
C1  
C2  
X1  
X2  
Y1  
Y2  
e
3.10  
0.20  
1.90  
0.70  
1.90  
0.40 BSC  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-7351 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 3x3 array of 0.90 mm square openings on 1.15 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 65  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.9 Si52212 Top Markings  
Figure 10.9. Si52212 Top Marking  
Table 10.9. Si52212 Top Marking Explanation  
Line  
Characters  
Description  
1
2
3
52212  
A01A  
Device part number  
Device part number  
YY = Assembly year  
YYWWTTTTTT  
WW = Assembly work week  
TTTTTT = Manufacturing trace code  
4
e# CC  
e# = Lead-finish symbol. # is a number  
CC = Country of origin (ISO abbreviation)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 66  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.10 Si52208 Top Markings  
Figure 10.10. Si52208 Top Marking  
Table 10.10. Si52208 Top Marking Explanation  
Line  
Characters  
Description  
1
2
3
4
52208  
A01A  
Device part number  
Device part number  
TTTTTT  
YYWW  
TTTTTT = Manufacturing trace code  
YY = Assembly year  
WW = Assembly work week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 67  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.11 Si52204 Top Markings  
Figure 10.11. Si52204 Top Marking  
Table 10.11. Si52204 Top Marking Explanation  
Line  
Characters  
Description  
1
2
3
4
52204  
A01A  
Device part number  
Device part number  
TTTTTT  
YYWW  
TTTTTT = Manufacturing trace code  
YY = Assembly year  
WW = Assembly work week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 68  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Packaging  
10.12 Si52202 Top Markings  
Figure 10.12. Si52202 Top Marking  
Table 10.12. Si52202 Top Marking Explanation  
Line  
Characters  
Description  
1
2
3
5220  
TTTT  
YWW  
Device part number  
Manufacturing trace code  
Y = Assembly year  
WW = Assembly work week  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 69  
Si52212/Si52208/Si52204/Si52202 Data Sheet  
Revision History  
11. Revision History  
11.1 Revision 0.7  
September 20, 2017  
• Initial Release.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.7 | 70  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY