Si5342 [SILICON]

10-Channel, Any-Frequency, Any-Output Jitter Attenuator/ Clock Multiplier;
Si5342
型号: Si5342
厂家: SILICON    SILICON
描述:

10-Channel, Any-Frequency, Any-Output Jitter Attenuator/ Clock Multiplier

文件: 总60页 (文件大小:1092K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5345/44/42 Rev D Data Sheet  
10-Channel, Any-Frequency, Any-Output Jitter Attenuator/  
Clock Multiplier  
KEY FEATURES  
• Generates any combination of output  
frequencies from any input frequency  
These jitter attenuating clock multipliers combine fourth-generation DSPLLand  
MultiSynthtechnologies to enable any-frequency clock generation and jitter attenu-  
ation for applications requiring the highest level of jitter performance. These devices  
are programmable via a serial interface with in-circuit programmable non-volatile  
memory (NVM) so they always power up with a known frequency configuration. They  
support free-run, synchronous, and holdover modes of operation, and offer both au-  
tomatic and manual input clock switching. The loop filter is fully integrated on-chip,  
eliminating the risk of noise coupling associated with discrete solutions. Furthermore,  
the jitter attenuation bandwidth is digitally programmable, providing jitter perform-  
ance optimization at the application level. Programming the Si5345/44/42 is easy  
• Ultra-low jitter of 90 fs rms  
• External Crystal: 25 to 54 MHz  
• Input frequency range  
• Differential: 8 kHz to 750 MHz  
• LVCMOS: 8 kHz to 250 MHz  
• Output frequency range  
• Differential: 100 Hz to 1028 MHz  
• LVCMOS: 100 Hz to 250 MHz  
with Silicon Labs’ ClockBuilder Prosoftware. Factory preprogrammed devices are  
also available.  
• Meets G.8262 EEC Option 1, 2 (SyncE)  
• Highly configurable outputs compatible with  
LVDS, LVPECL, LVCMOS, CML, and HCSL  
with programmable signal amplitude  
Applications:  
• Si5345: 4 input, 10 output, 64-QFN 9×9 mm  
• Si5344: 4 input, 4 output, 44-QFN 7×7 mm  
• Si5342: 4 input, 2 output, 44-QFN 7×7 mm  
• OTN muxponders and transponders  
• 10/40/100 G networking line cards  
• GbE/10 GbE/100 GbE Synchronous Ethernet (ITU-T G.8262)  
• Carrier Ethernet switches  
• SONET/SDH line cards  
• Broadcast video  
• Test and measurement  
• ITU-T G.8262 (SyncE) compliant  
25-54 MHz XTAL  
XA  
XB  
OSC  
÷INT  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
÷INT  
OUT0  
OUT1  
OUT2  
÷INT  
÷INT  
÷INT  
÷INT  
IN0  
IN1  
IN2  
÷INT  
÷INT  
÷INT  
DSPLL  
OUT3  
4 Input  
Clocks  
Up to 10  
Output Clocks  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
IN3/FB_IN  
Status Flags  
I2C / SPI  
Status Monitor  
Control  
NVM  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
Si5345/44/42 Rev D Data Sheet  
Features List  
1. Features List  
The Si5345/44/42 Rev D features are listed below:  
• Generates any combination of output frequencies from any in-  
put frequency  
• Optional zero delay mode  
• Fastlock feature for low nominal bandwidths  
• Glitchless on the fly output frequency changes  
• DCO mode: as low as 0.001 ppb step size  
• Core voltage  
• Ultra-low jitter of 90 fs rms  
• Input frequency range  
• Differential: 8 kHz–750 MHz  
• LVCMOS: 8 kHz–250 MHz  
• VDD: 1.8 V ±5%  
• Output frequency range  
• VDDA: 3.3 V ±5%  
• Differential: 100 Hz to 1028 MHz  
• LVCMOS: 100 Hz to 250 MHz  
• Programmable jitter attenuation bandwidth: 0.1 Hz to 4 kHz  
• Meets G.8262 EEC Option 1, 2 (SyncE)  
• Independent output clock supply pins  
• 3.3 V, 2.5 V, or 1.8 V  
Serial interface: I2C or SPI  
• In-circuit programmable with non-volatile OTP memory  
• ClockBuilder Pro software simplifies device configuration  
• Si5345: 4 input, 10 output, 64-QFN 9×9 mm  
• Si5344: 4 input, 4 output, 44-QFN 7×7 mm  
• Si5342: 4 input, 2 output, 44-QFN 7×7 mm  
• Temperature range: –40 to +85 °C  
• Highly configurable outputs compatible with LVDS, LVPECL,  
LVCMOS, CML, and HCSL with programmable signal ampli-  
tude  
• Status monitoring (LOS, OOF, LOL)  
• Hitless input clock switching: automatic or manual  
• Locks to gapped clock inputs  
• Pb-free, RoHS-6 compliant  
• Free-run and holdover modes  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
Si5345/44/42 Rev D Data Sheet  
Ordering Guide  
2. Ordering Guide  
Ordering Part Number  
(OPN)  
Number of Input/ Output Clock Frequency Supported Frequency  
Temperature  
Package  
Output Clocks  
Range (MHz)  
Synthesis Modes  
Range  
Si5345  
Si5345A-D-GM1, 2  
Si5345B-D-GM1, 2  
Si5345C-D-GM1, 2  
Integer and  
Fractional  
0.001 to 1028 MHz  
0.001 to 350 MHz  
0.001 to 1028 MHz  
0.001 to 350 MHz  
64-QFN  
–40 to 85 °C  
9×9 mm  
4/10  
Integer Only  
Si5345D-D-GM1, 2  
Si5344  
Si5344A-D-GM1, 2  
Si5344B-D-GM1, 2  
Si5344C-D-GM1, 2  
Integer and  
Fractional  
0.001 to 1028 MHz  
0.001 to 350 MHz  
0.001 to 1028 MHz  
0.001 to 350 MHz  
44-QFN  
–40 to 85 °C  
7×7 mm  
4/4  
Integer Only  
Si5344D-D-GM1, 2  
Si5342  
Si5342A-D-GM1, 2  
Si5342B-D-GM1, 2  
Si5342C-D-GM1, 2  
Integer and  
Fractional  
0.001 to 1028 MHz  
0.001 to 350 MHz  
0.001 to 1028 MHz  
0.001 to 350 MHz  
44-QFN  
–40 to 85 °C  
7×7 mm  
4/2  
Integer Only  
Si5342D-D-GM1, 2  
Si5345/44/42-D-EVB  
Si5345-D-EVB  
Si5344-D-EVB  
Si5342-D-EVB  
Notes:  
Evaluation  
Board  
1. Add an R at the end of the OPN to denote tape and reel ordering options.  
2. Custom, factory preprogrammed devices are available. Ordering part numbers are assigned by Silicon Labs and the ClockBuilder  
Pro software utility. Custom part number format is “Si5345A-Dxxxxx-GM” where “xxxxx” is a unique numerical sequence repre-  
senting the preprogrammed configuration.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
Si5345/44/42 Rev D Data Sheet  
Ordering Guide  
Figure 2.1. Ordering Part Number Fields  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3. Functional Description  
The Si5345’s internal DSPLL provides jitter attenuation and any-frequency multiplication of the selected input frequency. Fractional in-  
put dividers (P) allow the DSPLL to perform hitless switching between input clocks (INx) that are fractionally related. Input switching is  
controlled manually or automatically using an internal state machine. The oscillator circuit (OSC) provides a frequency reference which  
determines output frequency stability and accuracy while the device is in free-run or holdover mode. The high-performance MultiSynth  
dividers (N) generate integer or fractionally related output frequencies for the output stage. A crosspoint switch connects any of the  
MultiSynth generated frequencies to any of the outputs. Additional integer division (R) determines the final output frequency.  
3.1 Frequency Configuration  
The frequency configuration of the DSPLL is programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of fractional input dividers (Pn/Pd), fractional frequency multiplication (Mn/Md), fractional output MultiSynth division  
(Nn/Nd), and integer output division (Rn) allows the generation of virtually any output frequency on any of the outputs. All divider values  
for a specific frequency plan are easily determined using the ClockBuilder Pro utility.  
3.2 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth set-  
tings in the range of 0.1 Hz to 4 kHz are available for selection. Since the loop bandwidth is controlled digitally, the DSPLL will always  
remain stable with less than 0.1 dB of peaking regardless of the loop bandwidth selection.  
3.3 Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g. 0.1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting  
a temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will ena-  
ble the DSPLLs to lock faster. Fastlock Loop Bandwidth settings of in the range of 100 Hz to 4 kHz are available for selection. The  
DSPLL will revert to its normal loop bandwidth once lock acquisition has completed.  
3.4 Modes of Operation  
Once initialization is complete the DSPLL operates in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or  
Holdover Mode. A state diagram showing the modes of operation is shown in Figure 3.1 Modes of Operation on page 5. The follow-  
ing sections describe each of these modes in greater detail.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.4.1 Initialization and Reset  
Once power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks will be generated until the initialization is complete. There are two types of resets available. A hard  
reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM, and all circuits including the  
serial interface will be restored to their initial state. A hard reset is initiated using the RSTb pin or by asserting the hard reset register bit.  
A soft reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
An input is  
qualified and  
available for  
selection  
Locked  
Mode  
No valid input  
clocks available  
for selection  
Holdover  
Mode  
Input Clock  
Switch  
Selected input  
clock fails  
Yes  
No  
Other Valid  
Clock Inputs  
Available?  
Yes  
Holdover  
History  
Valid?  
No  
Figure 3.1. Modes of Operation  
3.4.2 Freerun Mode  
The DSPLL will automatically enter freerun mode once power is applied to the device and initialization is complete. The frequency ac-  
curacy of the generated output clocks in freerun mode is entirely dependent on the frequency accuracy of the external crystal or refer-  
ence clock on the XA/XB pins. For example, if the crystal frequency is ±100 ppm, then all the output clocks will be generated at their  
configured frequency ±100 ppm in freerun mode. Any drift of the crystal frequency will be tracked at the output clock frequencies. A  
TCXO or OCXO is recommended for applications that need better frequency accuracy and stability while in freerun or holdover modes.  
3.4.3 Lock Acquisition Mode  
The device monitors all inputs for a valid clock. If at least one valid clock is available for synchronization, the DSPLL will automatically  
start the lock acquisition process. If the fast lock feature is enabled, the DSPLL will acquire lock using the Fastlock Loop Bandwidth  
setting and then transition to the DSPLL Loop Bandwidth setting when lock acquisition is complete. During lock acquisition the outputs  
will generate a clock that follows the VCO frequency change as it pulls in to the input clock frequency.  
3.4.4 Locked Mode  
Once locked, the DSPLL will generate output clocks that are both frequency and phase locked to their selected input clocks. At this  
point, any XTAL frequency drift will not affect the output frequency. A loss of lock pin (LOL) and status bit indicate when lock is ach-  
ieved. See 3.8.4 LOL Detection for more details on the operation of the loss-of-lock circuit.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.4.5 Holdover Mode  
The DSPLL will automatically enter holdover mode when the selected input clock becomes invalid and no other valid input clocks are  
available for selection. The DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the disturbance  
of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit for the DSPLL stores up to 120 sec-  
onds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is calculated from a  
programmable window within the stored historical frequency data. Both the window size and the delay are programmable as shown in  
the figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring frequency  
data that may be corrupt just before the input clock failure.  
Clock Failure and Entry  
into Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window used to  
determine the final holdover value  
Programmable delay  
30ms, 60ms, 1s,10s, 30s, 60s  
120s  
0s  
1s,10s, 30s, 60s  
Figure 3.2. Programmable Holdover Window  
When entering holdover, the DSPLL will pull its output clock frequency to the calculated averaged holdover frequency. While in hold-  
over, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the XA/XB pins. If  
the clock input becomes valid, the DSPLL will automatically exit the holdover mode and re-acquire lock to the new input clock. This  
process involves pulling the output clock frequency to achieve frequency and phase lock with the input clock. This pull-in process is  
glitchless and its rate is controlled by the DSPLL or the Fastlock bandwidth.  
The DSPLL output frequency when exiting holdover can be ramped (recommend). Just before the exit is initiated, the difference be-  
tween the current holdover frequency and the new desired frequency is measured. Using the calculated difference and a user-selecta-  
ble ramp rate, the output is linearly ramped to the new frequency. The ramp rate can be 0.2 ppm/s, 40,000 ppm/s, or any of about 40  
values in between. The DSPLL loop BW does not limit or affect ramp rate selections (and vice versa). CBPro defaults to ramped exit  
from holdover. The same ramp rate settings are used for both exit from holdover and ramped input switching. For more information on  
ramped input switching, see 3.7.4 Ramped Input Switching.  
Note: If ramped holdover exit is not selected, the holdover exit is governed either by (1) the DSPLL loop BW or (2) a user-selectable  
holdover exit BW.  
3.5 External Reference (XA/XB)  
An external crystal (XTAL) is used in combination with the internal oscillator (OSC) to produce an ultra low jitter reference clock for the  
DSPLL and for providing a stable reference for the free-run and holdover modes. A simplified diagram is shown in Figure 3.3 Crystal  
Resonator and External Reference Clock Connection Options on page 7. The device includes internal XTAL loading capacitors  
which eliminates the need for external capacitors and also has the benefit of reduced noise coupling from external sources. Refer to  
Table 5.12 Crystal Specifications on page 36 for crystal specifications. A crystal in the range of 48 MHz to 54 MHz is recommended  
for best jitter performance. Frequency offsets due to CL mismatch can be adjusted using the frequency adjustment feature which allows  
frequency adjustments of ±200 ppm. The Si5345/44/42 Family Reference Manual provides additional information on PCB layout recom-  
mendations for the crystal to ensure optimum jitter performance.  
To achieve optimal jitter performance and minimize BOM cost, a crystal is recommended on the XA/XB reference input. For SyncE line  
card PLL applications (e.g. loop bandwidth set to 0.1 Hz), a TCXO is required on the XA/XB reference to minimize wander and to pro-  
vide a stable holdover reference. See the Si5345/44/42 Family Reference Manual for more information. Selection between the external  
XTAL or REFCLK is controlled by register configuration. The internal crystal loading capacitors (CL) are disabled in the REFCLK mode.  
Refer to Table 5.3 Input Clock Specifications on page 25 for REFCLK requirements when using this mode. A PREF divider is availa-  
ble to accommodate external clock frequencies higher than 54 MHz. Frequencies in the range of 48 MHz to 54 MHz will achieve the  
best output jitter performance.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.6 Digitally Controlled Oscillator (DCO) Mode  
The output MultiSynths support a DCO mode where their output frequencies are adjustable in predefined steps defined by frequency  
step words (FSW). The frequency adjustments are controlled through the serial interface or by pin control using frequency increment  
(FINC) or decrement (FDEC). A FINC will add the frequency step word to the DSPLL output frequency, while a FDEC will decrement it.  
Any number of MultiSynths can be updated at once or independently controlled. The DCO mode is available when the DSPLL is operat-  
ing in either free-run or locked mode.  
25-54MHz  
XO  
25-54MHz  
XO  
25-54MHz  
XTAL  
100  
XA  
XB  
XA  
XB  
XA  
XB  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
OSC  
OSC  
OSC  
PREF  
÷
PREF  
PREF  
÷
÷
Si5345/44/42  
Si5345/44/42  
Si5345/44/42  
Crystal Resonator  
Connection  
Differential XO  
Connection  
Single-Ended XO  
Connection  
Figure 3.3. Crystal Resonator and External Reference Clock Connection Options  
3.7 Inputs (IN0, IN1, IN2, IN3)  
There are four inputs that can be used to synchronize the DSPLL. The inputs accept both differential and single-ended clocks. Input  
selection can be manual (pin or register controlled) or automatic with user definable priorities.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.7.1 Manual Input Switching (IN0, IN1, IN2, IN3)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit determines input selection  
as pin selectable or register selectable. The IN_SEL pins are selected by default. If there is no clock signal on the selected input, the  
device will automatically enter free-run or holdover mode. When the zero delay mode is enabled, IN3 becomes the feedback input  
(FB_IN) and is not available for selection as a clock input.  
Table 3.1. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input  
Zero Delay Mode Disabled  
Zero Delay Mode Enabled  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN0  
IN1  
IN2  
Reserved  
3.7.2 Automatic Input Selection (IN0, IN1, IN2, IN3)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on input clock qualification, input priority, and the revertive option. Only input clocks that are valid can be selected by  
the automatic clock selection state machine. If there are no valid input clocks available the DSPLL will enter the holdover mode. With  
revertive switching enabled, the highest priority input with a valid input clock is always selected. If an input with a higher priority be-  
comes valid then an automatic switchover to that input will be initiated. With non-revertive switching, the active input will always remain  
selected while it is valid. If it becomes invalid an automatic switchover to a valid input with the highest priority will be initiated.  
3.7.3 Hitless Input Switching  
Hitless switching is a feature that prevents a phase offset from propagating to the output when switching between two clock inputs that  
have a fixed phase relationship. A hitless switch can only occur when the two input frequencies are frequency locked meaning that they  
have to be exactly at the same frequency, or at a fractional frequency relationship to each other. When hitless switching is enabled, the  
DSPLL simply absorbs the phase difference between the two input clocks during a input switch. When disabled, the phase difference  
between the two inputs is propagated to the output at a rate determined by the DSPLL Loop Bandwidth. The hitless switching feature  
supports clock frequencies down to the minimum input frequency of 8 kHz.  
3.7.4 Ramped Input Switching  
When switching between two plesiochronous input clocks (i.e., the frequencies are "almost the same" but not quite), ramped input  
switching should be enabled to ensure a smooth transition between the two inputs. Ramped input switching avoids frequency transients  
and overshoot when switching between frequencies and so is the default switching mode in CBPro. The feature should be turned off  
when switching between input clocks that are always frequency locked (i.e., are always the same exact frequency). The same ramp  
rate settings are used for both holdover exit and clock switching. For more information on ramped exit from holdover see 3.4.5 Holdover  
Mode.  
3.7.5 Glitchless Input Switching  
The DSPLL has the ability of switching between two input clock frequencies that are up to ±500 ppm apart. The DSPLL will pull-in to the  
new frequency using the DSPLL Loop Bandwidth or using the Fastlock Loop Bandwidth if enabled. The loss of lock (LOL) indicator will  
assert while the DSPLL is pulling-in to the new clock frequency. There will be no abrupt phase change at the output during the transi-  
tion.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.7.6 Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination schemes are shown  
in Figure 14. Differential signals must be ac-coupled, while single-ended LVCMOS signals can be ac or dc-coupled. Unused inputs can  
be disabled and left unconnected when not in use.  
Standard AC Coupled Differential LVDS  
Si5345/44/42  
Standard  
50  
INx  
100  
INxb  
3.3V, 2.5V  
LVDS or  
50  
CML  
Pulsed CMOS  
Standard AC Coupled Differential LVPECL  
Si5345/44/42  
50  
Standard  
INx  
100  
INxb  
50  
3.3V, 2.5V  
LVPECL  
Pulsed CMOS  
Standard AC Coupled Single Ended  
Si5345/44/42  
Standard  
INx  
50  
3.3V, 2.5V, 1.8V  
INxb  
LVCMOS  
Pulsed CMOS  
Pulsed CMOS DC Coupled Single Ended  
R1  
Si5345/44/42  
Standard  
50  
INx  
3.3V, 2.5V, 1.8V  
LVCMOS  
R2  
INxb  
R1 (Ohm) R2 (Ohm)  
VDD  
1.8 V  
2.5 V  
3.3 V  
324  
511  
634  
665  
475  
365  
Pulsed CMOS  
Figure 3.4. Termination of Differential and LVCMOS Input Signals  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.7.7 Synchronizing to Gapped Input Clocks  
The DSPLL supports locking to an input clock that has missing periods. This is also referred to as a gapped clock. The purpose of  
gapped clocking is to modulate the frequency of a periodic clock by selectively removing some of its cycles. Gapping a clock severely  
increases its jitter so a phase-locked loop with high jitter tolerance and low loop bandwidth is required to produce a low-jitter periodic  
clock. The resulting output will be a periodic non-gapped clock with an average frequency of the input with its missing cycles. For  
example, an input clock of 100 MHz with one cycle removed every 10 cycles will result in a 90 MHz periodic non-gapped output clock.  
This is shown in the following figure. For more information on gapped clocks, see “AN561: Introduction to Gapped Clocks and PLLs”.  
Gapped Input Clock  
100 MHz clock  
1 missing period every 10  
Periodic Output Clock  
90 MHz non-gapped clock  
100 ns  
100 ns  
DSPLL  
1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
10  
Period Removed  
10 ns  
11.11111... ns  
Figure 3.5. Generating an Averaged Clock Output Frequency from a Gapped Clock Input  
A valid gapped clock input must have a minimum frequency of 10 MHz with a maximum of two missing cycles out of every eight. Lock-  
ing to a gapped clock will not trigger the LOS, OOF, and LOL fault monitors. Clock switching between gapped clocks may violate the  
hitless switching specification in Table 5.8 Performance Characteristics on page 31 when the switch occurs during a gap in either  
input clock.  
3.8 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the fig-  
ure below. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLL. There is  
also a Loss Of Lock (LOL) indicator which is asserted when the DSPLL loses synchronization.  
XA XB  
Si5345/44/42  
OSC  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
IN0b  
DSPLL  
IN1  
Precision  
Fast  
LOL  
IN1b  
PD  
LPF  
÷M  
Precision  
Fast  
IN2  
IN2b  
IN3/FB_IN  
Precision  
Fast  
IN3/FB_INb  
Figure 3.6. Si5345/44/42 Fault Monitors  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.8.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits has its own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility.  
The LOS status for each of the monitors is accessible by reading a status register. The live LOS register always displays the current  
LOS state and a sticky register always stays asserted until cleared. An option to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.7. LOS Status Indicators  
3.8.2 XA/XB LOS Detection  
A LOS monitor is available to ensure that the external crystal or reference clock is valid. By default the output clocks are disabled when  
XAXB_LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB_LOS is  
detected.  
3.8.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its “0_ppm” reference. This  
OOF reference can be selected as either:  
• XA/XB pins  
• Any input clock (IN0, IN1, IN2, IN3)  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure  
below. An option to disable either monitor is also available. The live OOF register always displays the current OOF state, and its sticky  
register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
OOF  
OOF  
Live  
en  
Figure 3.8. OOF Status Indicator  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.8.3.1 Precision OOF Monitor  
The precision OOF monitor circuit measures the frequency of all input clocks to within ±1/16 ppm accuracy with respect to the selected  
OOF frequency reference. A valid input clock frequency is one that remains within the OOF frequency range which is register configura-  
ble up to ±500 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from toggling  
at the failure boundary. An example is shown in the figure below. In this case, the OOF monitor is configured with a valid frequency  
range of ±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of  
the XA/XB pins is available. This option is register configurable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF Reference  
Figure 3.9. Example of Precise OOF Monitor Assertion and Deassertion Triggers  
3.8.3.2 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1/16 ppm of frequency measurement accuracy, it must measure the monitored  
input clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in  
frequency. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quick-  
ly detect a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by greater than  
±4000 ppm.  
3.8.4 LOL Detection  
The Loss Of Lock (LOL) monitor asserts a LOL register bit when the DSPLL has lost synchronization with its selected input clock.  
There is also a dedicated loss of lock pin that reflects the loss of lock condition. The LOL monitor functions by measuring the frequency  
difference between the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL  
indicator (LOL Set) and another that clears the indicator (LOL Clear). An optional timer is available to delay clearing of the LOL indicator  
to allow additional time for the DSPLL to completely lock to the input clock. The timer is also useful to prevent the LOL indicator from  
toggling or chattering as the DSPLL completes lock acquisition. A block diagram of the LOL monitor is shown in the figure below. The  
live LOL register always displays the current LOL state and a sticky register always stays asserted until cleared. The LOL pin reflects  
the current state of the LOL monitor.  
LOL Monitor  
Sticky  
LOL  
Clear  
Timer  
LOL  
LOL  
Set  
Live  
LOLb  
DSPLL  
fIN  
PD LPF  
Feedback  
Clock  
÷M  
Si5345/44/42  
Figure 3.10. LOL Status Indicators  
The LOL frequency monitors have an adjustable sensitivity which is register configurable from 0.1 ppm to 10,000 ppm. Having two sep-  
arate frequency monitors allows for hysteresis to help prevent chattering of LOL status.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
An example configuration where LOCK is indicated when there is less than 0.1 ppm frequency difference at the inputs of the phase  
detector and LOL is indicated when there’s more than 1 ppm frequency difference is shown in the following figure.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
Lost Lock  
LOL  
Hysteresis  
LOCKED  
0
0.1  
1
10,000  
Phase Detector Frequency Difference (ppm)  
Figure 3.11. LOL Set and Clear Thresholds  
Note: In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these signaling standards.  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely lock to the input  
clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisition. The  
configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calculated using  
the ClockBuilder Pro utility.  
3.8.5 Interrupt Pin (INTRb)  
An interrupt pin (INTRb) indicates a change in state of the status indicators (LOS, OOF, LOL, HOLD). Any of the status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the status register that caused the  
interrupt.  
3.9 Outputs  
Each driver has a configurable voltage swing and common mode voltage covering a wide variety of differential signal formats. In addi-  
tion to supporting differential signals, any of the outputs can be configured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing  
up to 20 single-ended outputs, or any combination of differential and single-ended outputs.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.9.1 Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the MultiSynths as shown in the figure below. The crosspoint config-  
uration is programmable and can be stored in NVM so that the desired output configuration is ready at power up.  
VDDO0  
OUT0  
OUT0b  
Multi  
Synth  
N0n  
N0d  
÷
÷
÷
÷
÷
t0  
t1  
t2  
t3  
t4  
÷R0  
VDDO1  
OUT1  
OUT1b  
Multi  
Synth  
N1n  
N1d  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
VDDO2  
OUT2  
OUT2b  
Multi  
Synth  
N2n  
N2d  
Multi  
Synth  
N3n  
N3d  
VDDO3  
OUT3  
OUT3b  
Multi  
Synth  
N4n  
N4d  
VDDO4  
OUT4  
OUT4b  
VDDO5  
OUT5  
OUT5b  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
VDDO9  
OUT9  
OUT9b  
Figure 3.12. MultiSynth to Output Driver Crosspoint  
3.9.2 Output Signal Format  
The differential output swing and common mode voltage are both fully programmable covering a wide variety of signal formats including  
LVDS and LVPECL. In addition to supporting differential signals, any of the outputs can be configured as LVCMOS (3.3 V, 2.5 V, or 1.8  
V) drivers providing up to 20 single-ended outputs, or any combination of differential and single-ended outputs.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.9.3 Differential Output Terminations  
The differential output drivers support both ac-coupled and dc-coupled terminations as shown in the figure below.  
Note: In this document, the terms, LVDS and LVPECL, refer to driver formats that are compatible with these signaling standards.  
DC Coupled LVDS/LVPECL  
V
DDO = 3.3V, 2.5V, 1.8V  
50  
50  
OUTx  
100  
OUTxb  
AC Coupled LVPECL  
VDD – 1.3V  
Si5345/44/42  
V
DDO = 3.3V, 2.5V  
50  
50  
50  
OUTx  
OUTxb  
AC Coupled LVDS/LVPECL  
50  
V
DDO = 3.3V, 2.5V, 1.8V  
Si5345/44/42  
50  
50  
OUTx  
100  
OUTxb  
Internally  
self-biased  
Si5345/44/42  
Figure 3.13. Supported Differential Output Terminations  
3.9.4 LVCMOS Output Terminations  
LVCMOS outputs are dc-coupled, as shown in the following figure.  
DC Coupled LVCMOS  
3.3V, 2.5V, 1.8V  
LVCMOS  
V
DDO = 3.3V, 2.5V, 1.8V  
50  
Rs  
OUTx  
OUTxb  
50  
Si5345/44/42  
Rs  
Figure 3.14. LVCMOS Output Terminations  
3.9.5 Programmable Common Mode Voltage For Differential Outputs  
The common mode voltage (VCM) for the differential modes are programmable so that LVDS specifications can be met and for the best  
signal integrity with different supply voltages. When dc coupling the output driver, it is essential that the receiver have a relatively high  
common mode impedance so that the common mode current from the output driver is very small.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.9.6 LVCMOS Output Impedance Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances. A source termination resistor  
is recommended to help match the selected output impedance to the trace impedance, where Rs = Transmission line impedance – ZO.  
There are three programmable output impedance selections (CMOS1, CMOS2, CMOS3) for each VDDO option as shown in the follow-  
ing table.  
Table 3.2. Typical Output Impedance (ZS)  
VDDO  
CMOS Drive Selections  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
3.3 V  
2.5 V  
1.8 V  
38 Ω  
43 Ω  
30 Ω  
35 Ω  
46 Ω  
22 Ω  
24 Ω  
31 Ω  
3.9.7 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers.  
3.9.8 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output, it generates a clock signal on both pins (OUTx and OUTxb). By default, the clock  
on the OUTx pin is generated with the same polarity (in phase) as the clock on the OUTxb pin. The polarity of these clocks is configura-  
ble, enabling complementary clock generation and/or inverted polarity with respect to other output drivers.  
3.9.9 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling the output drivers. When the OEb pin is held high, all outputs are  
disabled. When held low, the outputs are enabled. Outputs in the enabled state can be individually disabled through register control.  
3.9.10 Output Driver State When Disabled  
The disabled state of an output driver is configurable as disable low or disable high.  
3.9.11 Synchronous Output Disable Feature  
The output drivers provide a selectable synchronous disable feature. Output drivers with this feature turned on will wait until a clock  
period has completed before the driver is disabled. This prevents unwanted runt pulses from occurring when disabling an output. When  
this feature is turned off, the output clock will disable immediately without waiting for the period to complete.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.9.12 Output Skew Control (Δt0 – Δt4)  
The Si5345/44/42 uses independent MultiSynth dividers (N0 – N4) to generate up to five unique frequencies to its ten outputs through a  
crosspoint switch. By default, all clocks are phase-aligned. A delay path (Δt0 – Δt4) associated with each of these dividers is available  
for applications that need a specific output skew configuration. This is useful for PCB trace length mismatch compensation. The resolu-  
tion of the phase adjustment is approximately 0.28 ps per step, definable in a range of ±9.14 ns. Phase adjustments are register-config-  
urable. An example of generating two frequencies with unique configurable path delays is shown in the following figure.  
VDDO0  
OUT0  
OUT0b  
÷R0  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO1  
OUT1  
OUT1b  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO2  
OUT2  
OUT2b  
VDDO3  
OUT3  
OUT3b  
VDDO4  
OUT4  
OUT4b  
VDDO5  
OUT5  
OUT5b  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
VDDO9  
OUT9  
OUT9b  
÷R9  
Figure 3.15. Example of Independently-Configurable Path Delays  
All phase delay values are restored to their default values after power-up, hard reset, or a reset using the RSTb pin. Phase delay de-  
fault values can be written to NVM, allowing a custom phase offset configuration at power-up or after power-on reset, or after a hard-  
ware reset using the RSTb pin.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 17  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.9.13 Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs.  
The zero delay mode is configured by opening the internal feedback loop through software configuration and closing the loop externally  
as shown in the figure below.  
This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the output drivers. Any one of the  
outputs can be fed back to the FB_IN pins, although using the output driver that achieves the shortest trace length will help to minimize  
the input-to-output delay. The OUT9 and FB_IN pins are recommended for the external feedback connection. The FB_IN input pins  
must be terminated and ac-coupled when zero delay mode is used. A differential external feedback path connection is necessary for  
best performance. Note that the hitless switching feature is not available when zero delay mode is enabled.  
IN0  
Si5345/44/42  
÷P0  
IN0b  
IN1  
DSPLL  
÷P1  
IN1b  
PD LPF  
IN2  
÷P2  
IN2b  
÷M  
IN3/FB_IN  
÷P3  
VDDO0  
OUT0  
OUT0b  
IN3/FB_INb  
÷R0  
VDDO1  
OUT1  
OUT1b  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
÷R1  
÷R2  
VDDO2  
OUT2  
OUT2b  
VDDO7  
OUT7  
OUT7b  
÷R7  
÷R8  
÷R9  
VDDO8  
OUT8  
OUT8b  
VDDO9  
OUT9  
OUT9b  
External Feedback Path  
Figure 3.16. Si5345 Zero Delay Mode Setup  
3.9.14 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the hard reset bit will have the same  
result. Asserting the sync register bit provides another method of realigning the R dividers without resetting the device.  
3.10 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Family Reference Manual and ClockBuilder Pro  
configuration utility for details.  
3.11 In-Circuit Programming  
The Si5345/44/42 is fully configurable using the serial interface (I2C or SPI). At power-up the device downloads its default register val-  
ues from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to  
generate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power  
supply voltages applied to its VDD and VDDA pins. The NVM is two time writable. Once a new configuration has been written to NVM,  
the old configuration is no longer accessible. Refer to the Family Reference Manual for a detailed procedure for writing registers to  
NVM.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 18  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
3.12 Serial Interface  
Configuration and operation of the Si5345/44/42 is controlled by reading and writing registers using the I2C or SPI interface. The  
I2C_SEL pin selects I2C or SPI operation. Communication with both 3.3 V and 1.8 V host is supported. The SPI mode operates in  
either 4-wire or 3-wire. See the Family Reference Manual for details.  
3.13 Custom Factory Preprogrammed Parts  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory preprogrammed part will generate clocks at power-up. Custom, factory-preprog-  
rammed devices are available. The ClockBuilder Pro custom part number wizard can be used to quickly and easily generate a custom  
part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your preprogrammed device will typically ship in about two weeks.  
3.14 Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro for Factory Preprogrammed Devices  
As with essentially all modern software utilities, ClockBuilder Pro is continually being updated and enhanced. By registering at www.si-  
labs.com, you will be notified about changes and their impact. This update process will ultimately enable ClockBuilder Pro users to ac-  
cess all features and register setting values documented in this data sheet and the Family Reference Manual.  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is not yet available in CBPro, you must contact a Silicon Labs applications engineer for assis-  
tance. One example of this type of feature or custom setting is the customizable output amplitude and common voltages for the clock  
outputs. After careful review of your project file and requirements, the Silicon Labs applications engineer will email back your CBPro  
project file with your specific features and register settings enabled using what's referred to as the manual "settings override" feature of  
CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in a CBPro  
design report are shown in the following table.  
Table 3.3. Setting Overrides  
Location  
0x04535[0]  
0x0B48[0:4]  
Name  
Type  
No NVM  
User  
Target  
N/A  
Dec Value  
Hex Value  
0x1  
FORCE_HOLD  
OOF_DIV_CLK_DIS  
1
0
OPN&EVB  
0x00  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 19  
Si5345/44/42 Rev D Data Sheet  
Functional Description  
Once you receive the updated design file, simply open it in CBPro. The device will begin operation after startup with the values in the  
NVM file. The flowchart for this process is shown in the following figure.  
End: Place  
sample order  
Start  
Do I need a  
pre-programmed device with  
a feature or setting which is  
unavailable in ClockBuilder  
Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
non-standard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 3.17. Process for Requesting Non-Standard CBPro Features  
Note: Contact Silicon Labs Technical Support at www.silabs.com/support/Pages/default.aspx.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 20  
Si5345/44/42 Rev D Data Sheet  
Register Map  
4. Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains frequently accessible  
registers, such as alarm status, resets, device identification, etc. Other pages contain registers that need less frequent access such as  
frequency configuration, and general device settings. A high level map of the registers is shown in “6.2. High-Level Register Map” .  
Refer to the Family Reference Manual for a complete list of register descriptions and settings. Silicon Labs strongly recommends using  
ClockBuilder Pro to create and manage register settings.  
4.1 Addressing Scheme  
The device registers are accessible using a 16-bit address that consists of an 8-bit page address plus an 8-bit register address. By  
default, the page address is set to 0x00. Changing to another page is accomplished by writing to the "Set Page Address" byte located  
at address 0x01 of each page.  
4.2 High-Level Register Map  
Table 4.1. High-Level Register Map  
16-Bit Address  
Content  
8-bit Page Address  
8-bit Register Address Range  
00  
01  
Revision IDs  
Set Page Address  
02–0A  
0B–15  
17–1B  
1C  
Device IDs  
Alarm Status  
INTR Masks  
00  
Reset controls  
1D  
FINC, FDEC Control Bits  
SPI (3-Wire vs 4-Wire)  
Alarm Configuration  
NVM Controls  
2B  
2C–E1  
E2–E4  
FE  
Device Ready Status  
Set Page Address  
01  
08–3A  
41–42  
FE  
Output Driver Controls  
Output Driver Disable Masks  
Device Ready Status  
Set Page Address  
01  
01  
02–05  
08–2F  
30  
XTAL Frequency Adjust  
Input Divider (P) Settings  
Input Divider (P) Update Bits  
Output Divider (R) Settings  
User Scratch Pad Memory  
Device Ready Status  
02  
47–6A  
6B–72  
FE  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 21  
Si5345/44/42 Rev D Data Sheet  
Register Map  
16-Bit Address  
Content  
8-bit Page Address  
8-bit Register Address Range  
01  
02–37  
0C  
Set Page Address  
MultiSynth Divider (N0–N4) Settings  
MultiSynth Divider (N0) Update Bit  
MultiSynth Divider (N1) Update Bit  
MultiSynth Divider (N2) Update Bit  
MultiSynth Divider (N3) Update Bit  
MultiSynth Divider (N4) Update Bit  
FINC/FDEC Settings N0–N4  
Output Delay (Δt) Settings  
Device Ready Status  
17  
22  
03  
2D  
38  
39–58  
59–62  
FE  
04  
05  
87  
Zero Delay Mode Set Up  
Fast Lock Loop Bandwidth  
Feedback Divider (M) Settings  
Input Select Control  
0E–14  
15–1F  
2A  
2B  
Fast Lock Control  
2C–35  
36  
Holdover Settings  
Input Clock Switching Mode Select  
Input Priority Settings  
38–39  
3F  
Holdover History Valid Data  
Reserved  
06–08  
09  
00–FF  
01  
Set Page Address  
1C  
Zero Delay Mode Settings  
Control I/O Voltage Select  
Input Settings  
43  
49  
10–FF  
00–FF  
Reserved  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 22  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions1  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C  
Parameter Symbol  
Ambient Temperature  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
TA  
TJMAX  
VDD  
Junction Temperature  
125  
1.89  
3.47  
3.47  
2.62  
1.89  
3.47  
1.89  
1.71  
3.14  
3.14  
2.37  
1.71  
3.14  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
3.30  
1.80  
Core Supply Voltage  
VDDA  
V
V
VDDO  
Clock Output Driver Supply Voltage  
V
V
V
VDDS  
Status Pin Supply Voltage  
V
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 23  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.2. DC Characteristics  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
IDD  
Test Condition  
Min  
Typ  
135  
120  
Max  
260  
130  
Unit  
mA  
mA  
Core Supply Current1, 2, 3  
IDDA  
LVPECL Output4  
@ 156.25 MHz  
LVDS Output4  
22  
15  
22  
18  
12  
26  
18  
30  
23  
16  
mA  
mA  
mA  
mA  
mA  
@ 156.25 MHz  
3.3 V LVCMOS Output5  
@ 156.25 MHz  
2.5 V LVCMOS Output5  
@ 156.25 MHz  
1.8 V LVCMOS Output5  
@ 156.25 MHz  
Si53451  
IDDOx  
Output Buffer Supply Current  
900  
730  
670  
1200  
1000  
950  
mW  
mW  
mW  
Total Power Dissipation6  
Si53442  
Pd  
Si53423  
Notes:  
1. Si5345 test configuration: 7 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
2. Si5344 test configuration: 4 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
3. Si5342 test configuration: 2 x 2.5 V LVDS outputs enabled at 156.25 MHz. Excludes power in termination resistors.  
4. Differential outputs terminated into an AC-coupled 100 Ω load.  
5. LVCMOS outputs measured into a 6 inch 50 Ω PCB trace with 5 pF load. Measurements were made in CMOS3 mode.  
Differential Output Test Configuration  
LVCMOS Output Test Configuration  
IDDO  
0.1 uF  
IDDO  
6 inch  
50  
50  
OUT  
OUTa  
100  
50  
OUTb  
OUTb  
5 pF  
0.1 uF  
6. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 24  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.3. Input Clock Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Input Buffer with Differential or Single-Ended - AC Coupled (IN0/IN0, IN1/IN1, IN2/IN2, IN3/IN3, FB_IN/FB_IN)  
Differential  
0.008  
0.008  
750  
250  
MHz  
MHz  
fIN  
Input Frequency Range  
All Single-ended signals  
(including LVCMOS)  
Differential AC-coupled  
fIN < 250 MHz  
100  
225  
100  
1800  
1800  
3600  
mVpp_se  
mVpp_se  
mVpp_se  
Differential AC-coupled  
250 MHz < fIN < 750 MHz  
Single-ended AC-coupled  
fIN < 250 MHz  
Voltage Swing1  
VIN  
Slew Rate2, 3  
SR  
DC  
CIN  
RIN  
400  
40  
60  
V/µs  
%
Duty Cycle  
Input Capacitance  
Input Resistance  
0.3  
16  
pF  
kΩ  
Pulsed CMOS Input Buffer—DC Coupled (IN0, IN1, IN2, IN4)3  
fIN_PULSED_CM  
Input Frequency  
0.008  
250  
MHz  
OS  
VIL  
–0.2  
0.8  
400  
40  
8
0.4  
60  
V
V
Input Voltage  
VIH  
Slew Rate2, 3  
SR  
DC  
PW  
RIN  
V/µs  
%
Duty Cycle  
Minimum Pulse Width  
Input Resistance  
Pulse Input  
1.6  
ns  
kΩ  
REFCLK (Applied to XA/XB)  
Full operating range. Jit-  
ter performance may be  
reduced.  
24.97  
48  
54.06  
54  
MHz  
MHz  
Range for best jitter.  
fIN_REF  
REFCLK Frequency  
TCXO frequency for  
SyncE applications. Jitter  
performance may be re-  
duced.  
40  
MHz  
Input Single-ended Voltage  
Swing  
VIN_SE  
VIN_DIFF  
SR  
365  
2000  
mVpp_se  
Input Differential Voltage Swing  
Slew Rate2, 3  
365  
400  
2500  
mVpp_diff  
V/µs  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 25  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Input Duty Cycle  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DC  
40  
60  
%
1. Voltage swing is specified as single-ended mVpp.  
OUTx  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
Vcm  
OUTxb  
2. Imposed for jitter performance.  
3. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 – 0.2) x VIN_Vpp_se) / SR. Pulsed  
CMOS mode is intended primarily for single-ended LVCMOS input clocks < 1 MHz that must be dc-coupled because they have a  
duty cycle significantly less than 50%. A typical application example is a low-frequency video frame sync pulse. Since the input  
thresholds (VIL, VIH) of this buffer are non-standard (0.4 and 0.8 V, respectively) refer to the input attenuator circuit for dc-coupled  
pulsed LVCMOS in the Family Reference Manual. Otherwise, for standard LVCMOS input clocks, use the Standard Differential or  
Single-Ended ac-coupled input mode.  
Table 5.4. Control Input Pin Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5345 Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, A1, SCLK, A0/CSb, FINC, FDEC, SDA/SDIO)  
0.3 ×  
VDDIO  
VIL  
VIH  
V
V
1
Input Voltage  
0.7 ×  
VDDIO  
1
CIN  
RIN  
PW  
TUR  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Update Rate  
2
pF  
kΩ  
ns  
µs  
20  
RSTb, FINC and FDEC  
FINC and FDEC  
100  
1
Si5344/42 Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, A1, SCLK, A0/CSb, SDA/SDIO)  
0.3 ×  
VDDIO  
VIL  
VIH  
V
V
1
Input Voltage  
0.7 ×  
VDDIO  
1
CIN  
RIN  
PW  
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
2
pF  
kΩ  
ns  
20  
RSTb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Family Reference Manual for more details  
on the proper register settings.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 26  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Si5342/44/45  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
0.0001  
733.33  
825  
720  
800.00  
1028  
720  
MHz  
MHz  
MHz  
MHz  
%
MultiSynth not used  
fOUT  
Output Frequency  
Duty Cycle  
MultiSynth used  
fOUT < 400 MHz  
0.0001  
48  
52  
DC  
400 MHz < fOUT < 1028  
MHz  
45  
55  
65  
%
Outputs on same  
MultiSynth  
Output-Output Skew  
TSKS  
ps  
Using Same MultiSynth  
(Measured at 712.5 MHz)  
Outputs from different  
MultiSynths  
Output-Output Skew  
Between MultiSynths  
TSKD  
90  
ps  
(Measured at 712.5 MHz)  
Measured from the positive  
to negative output pins  
OUT-OUTb Skew  
TSK_OUT  
0
50  
ps  
VDDO = 3.3 V,  
2.5 V, 1.8 V  
LVDS  
350  
640  
430  
750  
510  
900  
mVpp_se  
mVpp_se  
Output Voltage Swing1  
VOUT  
VDDO = 3.3 V,  
2.5 V  
LVPECL  
LVDS  
LVPECL  
LVPECL  
LVDS  
1.10  
1.90  
1.2  
2.0  
1.3  
2.1  
V
V
VDDO = 3.3 V  
Common Mode Voltage1, 2  
(100 Ω load line-to-line)  
VCM  
VDDO = 2.5 V  
VDDO = 1.8 V  
1.1  
0.8  
1.2  
0.9  
1.3  
1.0  
V
V
sub-LVDS  
Rise and Fall Times  
(20% to 80%)  
tR/tF  
ZO  
100  
150  
ps  
Differential Output Impedance  
100  
–101  
–96  
–99  
–97  
–72  
–88  
Ω
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Si5345  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Power Supply Noise Rejec-  
tion2  
PSRR  
Output-output Crosstalk3  
XTALK  
Si5342/44  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 27  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Notes:  
1. Output amplitude and common-mode settings are programmable through register settings and can be stored in NVM. Each out-  
put driver can be programmed independently. Note that the maximum LVDS single-ended amplitude can be up to 110 mV higher  
than the TIA/EIA-644 maximum. Refer to the Si5345/44/42 Family Reference Manual for more suggested output settings. Not all  
combinations of voltage amplitude and common mode voltages settings are possible.  
OUTx  
Vcm  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
OUTxb  
2. Measured for 156.25 MHz carrier frequency. 100 mVpp sinewave noise added to VDDO = 3.3 V and noise spur amplitude meas-  
ured.  
3. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25  
MHz. Refer to “AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems” for guidance on  
crosstalk optimization. Note that all active outputs must be terminated when measuring crosstalk.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 28  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.6. LVCMOS Clock Output Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
0.0001  
48  
Typ  
Max  
250  
52  
Unit  
MHz  
%
fOUT  
Output Frequency  
fOUT <100 MHz  
100 MHz < fOUT < 250 MHz  
When outputs are on same MultSynth.  
FOUT = 156.25 MHz  
Duty Cycle  
DC  
45  
55  
%
TSK  
Output-to-Output Skew  
30  
140  
ps  
VDDO = 3.3 V  
IOH = –10 mA VDDO x 0.85  
IOH = –12 mA VDDO x 0.85  
IOH = –17 mA VDDO x 0.85  
VDDO = 2.5 V  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
Output Voltage High1, 2, 3  
VOH  
IOH = –6 mA  
IOH = –8 mA  
VDDO x 0.85  
VDDO x 0.85  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
IOH = –11 mA VDDO x 0.85  
VDDO = 1.8 V  
IOH = –4 mA  
IOH = –5 mA  
VDDO x 0.85  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
VDDO x 0.85  
VDDO = 3.3 V  
IOL = 10 mA  
IOL = 12 mA  
IOL = 17 mA  
VDDO x 0.15  
VDDO x 0.15  
VDDO x 0.15  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
VDDO = 2.5 V  
Output Voltage Low1, 2, 3  
VOL  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO x 0.15  
VDDO x 0.15  
VDDO x 0.15  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
V
V
V
VDDO = 1.8 V  
IOL = 4 mA  
IOL = 5 mA  
VDDO x 0.15  
VDDO x 0.15  
600  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
VDDO = 3.3V  
V
V
400  
450  
550  
ps  
ps  
ps  
LVCMOS Rise and Fall  
Times3  
VDDO = 2.5 V  
tr/tf  
600  
(20% to 80%)  
VDDO = 1.8 V  
750  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 29  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Note:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Family Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A series termination resistor (Rs) is recommended to help match the source impedance to a 50 Ω PCB trace. A 5 pF capacitive  
load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3, at 156.25 MHz.  
AC Test Configuration  
Trace length 5 inches  
499  
DC Block  
56  
IDDO  
IOL/IOH  
50  
50 probe, scope  
50 probe, scope  
OUT  
4.7 pF  
Zs  
OUTb  
VOL/VOH  
499  
DC Block  
56  
50  
4.7 pF  
Table 5.7. Output Status Pin Specifications  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5345 Status Output Pins (LOLb, INTRb, SDA/SDIO1, SDO)  
VDDIO2 x  
0.85  
VOH  
IOH = –2 mA  
V
V
Output Voltage  
VDDIO2 x  
0.15  
VOL  
Si5344/42 Status Output Pins (INTRb, SDA/SDIO11, SDO)  
VOH IOH = –2 mA  
IOL = 2 mA  
VDDIO2 x  
0.85  
V
V
Output Voltage  
VDDIO2 x  
0.15  
VOL  
IOL = 2 mA  
Si5344 Status Output Pins (LOLb, LOS_XAXBb)  
Si5342 Status Output Pins (LOLb, LOS_XAXBb, LOS0b, LOS1b, LOS2b, LOS3b)  
VOH  
VOL  
IOH = –2 mA  
IOL = 2 mA  
VDDS x 0.85  
V
V
Output Voltage  
VDDS x 0.15  
Notes:  
1. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused  
with I2C_SEL pulled high. VOL remains valid in all cases.  
2. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Family Reference Manual for more details  
on the proper register settings.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 30  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.8. Performance Characteristics  
VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VCO Frequency Range  
FVCO  
13.5  
14.4  
GHz  
PLL Loop Bandwidth Program-  
ming Range1  
fBW  
0.1  
4000  
45  
Hz  
ms  
Time from power-up to  
when the device gener-  
ates free-running clocks  
tSTART  
Initial Start-Up Time  
PLL Lock Time2  
30  
tACQ  
tDELAY_frac  
tDELAY_int  
tRANGE  
fIN = 19.44 MHz  
280  
0.28  
71.4  
±9.14  
300  
ms  
ps  
f
VCO = 14 GHz  
Output Delay Adjustment  
ps  
ns  
POR to Serial Interface Ready3  
Jitter Peaking  
tRDY  
15  
ms  
Measured with a frequen-  
cy plan running a 25 MHz  
input, 25 MHz output, and  
a Loop Bandwidth of 4 Hz  
JPK  
0.1  
dB  
Compliant with G.8262  
Options 1 and 2 Carrier  
Frequency = 10.3125  
GHz  
JTOL  
Jitter Tolerance  
3180  
UI pk-pk  
Jitter Modulation  
Frequency = 10 Hz  
Only valid for a single au-  
tomatic switch between  
two input clocks at same  
frequency.  
2.0  
1.3  
ns  
ns  
Maximum Phase Transient  
During a Hitless Switch  
tSWITCH  
Only valid for a single  
manual switch between  
two input clocks at same  
frequency.  
ωP  
Pull-in Range  
500  
ppm  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 31  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
1.8  
Unit  
ns  
Measured between a  
common 2 MHz input and  
2 MHz output with differ-  
ent MultiSynths on the  
same unit.  
DSPLL BW = 4 kHz  
tIODELAY  
Measured between a  
common 2 MHz input and  
2 MHz output with differ-  
ent MultiSynths between  
units.  
2.0  
ns  
Input-to-Output Delay Variation  
DSPLL bandwidth = 4  
kHz  
Delay between reference  
and feedback input with  
both clocks at 10 MHz  
and same slew rate. Ref  
clock rise time must be  
<200 ps.  
tZDELAY  
110  
ps  
Integer Mode  
12 kHz to 20 MHz  
Fractional Mode  
12 kHz to 20 MHz  
90  
145  
170  
fs rms  
fs rms  
RMS Phase Jitter4  
JGEN  
120  
Note:  
1. Actual loop bandwidth might be lower; please refer to CBPro for actual value for your frequency plan.  
2. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL tresholds, etc. For this case, lock  
time was measured with nominal and fastlock bandwidths set to 100 Hz, LOL set/clear thresholds of 6/0.6 ppm respectively, us-  
ing IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time between the first rising  
edge of the clock reference and the LOL indicator deassertion.  
3. Measured as time from valid VDD/VDDA rails (90% of their value) to when the serial interface is ready to respond to commands.  
4. Jitter generation test conditions: fIN = 19.44 MHz, fOUT = 156.25 MHz LVPECL, loop bandwidth = 100 Hz, FXTAL = 48 MHz.  
Table 5.9. I2C Timing Specifications (SCL,SDA)  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Parameter  
Symbol  
Test Condition  
Unit  
Min  
Max  
Min  
Max  
fSCL  
SCL Clock Frequency  
SMBus Timeout  
100  
400  
kHz  
ms  
When Timeout is  
Enabled  
25  
35  
25  
35  
Hold time (Repeated)  
START condition  
tHD:STA  
tLOW  
4.0  
4.7  
4.0  
0.6  
1.3  
0.6  
µs  
µs  
µs  
Low Period of the SCL Clock  
HIGH Period of the SCL  
Clock  
tHIGH  
Setup Time for a Repeated  
START Condition  
tSU:STA  
4.7  
0.6  
µs  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 32  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Standard Mode  
100 kbps  
Fast Mode  
Parameter  
Symbol  
Test Condition  
400 kbps  
Unit  
Min  
100  
250  
Max  
Min  
Max  
tHD:DAT  
tSU:DAT  
Data Hold Time  
100  
100  
ns  
ns  
Data Setup Time  
Rise Time of both SDA and  
SCL Signals  
tr  
tf  
1000  
300  
20  
300  
300  
ns  
ns  
µs  
Fall Time of both SDA and  
SCL Signals  
Setup Time for STOP Condi-  
tion  
tSU:STO  
4.0  
0.6  
Bus Free Time between a  
STOP and START Condition  
tBUF  
4.7  
1.3  
µs  
µs  
µs  
tVD:DAT  
tVD:ACK  
Data Valid Time  
3.45  
3.45  
0.9  
0.9  
Data Valid Acknowledge  
Time  
Figure 5.1. I2C Serial Port Timing Standard and Fast Modes  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 33  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.10. SPI Timing Specifications (4-Wire)  
VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
TD1  
Delay Time, SCLK Fall to SDO Active  
Delay Time, SCLK Fall to SDO  
Delay Time, CSb Rise to SDO Tri-State  
Setup Time, CSb to SCLK  
12.5  
10  
10  
18  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, SCLK Fall to CSb  
5
ns  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
5
ns  
5
ns  
TCS  
TC  
Delay Time Between Chip Selects (CSb)  
2
TD1  
TC  
TSU1  
SCLK  
CSb  
TH1  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 34  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.11. SPI Timing Specifications (3-Wire)  
VDD = 1.8 V ±5%, VDDA = 3.3V ±5%, TA = –40 to 85 °C  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
TD1  
12.5  
10  
10  
20  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, CSb to SCLK Fall  
5
ns  
Setup Time, SDI to SCLK Rise  
5
ns  
Hold Time, SDI to SCLK Rise  
5
ns  
Delay Time Between Chip Selects (CSb)  
TCS  
2
TC  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 35  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.12. Crystal Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Crystal Frequency Range  
fXTAL  
Full operating range. Jit-  
ter performance may be  
reduced.  
24.97  
54.06  
MHz  
Range for best jitter.  
48  
8
54  
MHz  
pF  
Load Capacitance  
CL  
dL  
Crystal Drive Level  
200  
µW  
Equivalent Series Resistance  
Shunt Capacitance  
rESR  
CO  
Refer to the Si5345/44/42 Reference Manual to determine ESR and shunt capac-  
itance.  
Note:  
1. Refer to the Si5345/44/42 Reference Manual for recommended 48 to 54 MHz crystals. The Si5345/44/42 are designed to work  
with crystals that meet these specifications.  
Table 5.13. Thermal Characteristics  
Test Condition 1  
Parameter  
Symbol  
Value  
Unit  
Si5345-64QFN  
Still Air  
22  
°C/W  
°C/W  
°C/W  
Thermal Resistance  
Junction to Ambient  
θJA  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
Thermal Resistance  
Junction to Case  
θJC  
9.5  
°C/W  
θJB  
9.4  
9.3  
°C/W  
°C/W  
Thermal Resistance  
Junction to Board  
ΨJB  
Thermal Resistance  
Junction to Top Center  
Si5344, Si5342-44QFN  
ΨJT  
0.2  
°C/W  
Still Air  
22.3  
19.4  
18.4  
°C/W  
°C/W  
°C/W  
Thermal Resistance  
Junction to Ambient  
θJA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Thermal Resistance  
Junction to Case  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
θJC  
10.9  
°C/W  
θJB  
9.3  
9.2  
°C/W  
°C/W  
ΨJB  
ΨJT  
0.23  
°C/W  
1. Based on PCB Dimension: 3" x 4.5" PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 36  
Si5345/44/42 Rev D Data Sheet  
Electrical Specifications  
Table 5.14. Absolute Maximum Ratings 1, 2, 3  
Parameter  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
VDDA  
VDDO  
VDDS  
V
DC Supply Voltage  
V
V
4
VI1  
IN0–IN3/FB_IN  
V
IN_SEL1, IN_SEL0, RSTb,  
OEb, I2C_SEL, FINC, FDEC,  
SDI, SCLK, A0/CSb, A1,  
SDA/SDIO  
Input Voltage Range  
VI2  
–0.5 to 3.8  
–0.5 to 2.7  
V
V
VI3  
LU  
XA/XB  
Latch-up Tolerance  
JESD78 Compliant  
ESD Tolerance  
HBM  
TSTG  
TJCT  
100 pF, 1.5 kΩ  
2.0  
–55 to 150  
125  
kV  
°C  
°C  
Storage Temperature Range  
Maximum Junction Temperature in Operation  
Soldering Temperature  
TPEAK  
260  
°C  
s
(Pb-free profile)5  
Soldering Temperature Time at TPEAK  
TP  
20–40  
(Pb-free profile)5  
Note:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 64-QFN and 44-QFN packages are RoHS-6 compliant.  
3. Moisture sensitivity level is MSL2. For more packaging information, go to the Silicon Labs RoHS information page.  
4. The minimum voltage at these pins can be as low as –1.0 V when an ac input signal of 8 kHz or greater is applied. See Table  
5.3 Input Clock Specifications on page 25 for single-ended ac-coupled fIN < 250 MHz.  
5. The device is compliant with JEDEC J-STD-020.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 37  
Si5345/44/42 Rev D Data Sheet  
Typical Application Schematic  
6. Typical Application Schematic  
100 MHz (HCSL)  
PCIe 3.0  
133.333 MHz (CMOS)  
CPU/NPU  
Si5345  
83.333 MHZ (CMOS)  
50 MHz (CMOS)  
DSPLL  
100 MHz  
125 MHz  
FPGA/ASIC/  
SWITCH  
156.25 MHz (LVDS)  
156.25 MHz (LVDS)  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
MultiSynth  
19.44 MHz  
2.048 MHz  
156.525 MHz (LVDS)  
155.52 MHz (LVDS)  
10G PHY  
10G PHY  
125 MHz (LVPECL)  
125 MHz (LVPECL)  
1G PHY  
1G PHY  
Figure 6.1. 10G Ethernet Data Center Switch and Compute Blade Schematic  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 38  
Si5345/44/42 Rev D Data Sheet  
Detailed Block Diagrams  
7. Detailed Block Diagrams  
48-54MHz XTAL or  
REFCLK  
3
XA  
XB  
Si5345  
OSC  
IN_SEL[1:0]  
PREF  
÷
IN0  
IN0b  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
IN1b  
P1d  
PD  
LPF  
P2n  
÷
IN2  
P2d  
IN2b  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
Feedback  
IN3/FB_INb  
P3d  
VDDO0  
OUT0  
OUT0b  
Multi  
Synth  
N0n  
÷
t0  
÷R0  
N0d  
VDDO1  
OUT1  
Multi  
Synth  
N1n  
÷
t1  
t2  
t3  
t4  
N1d  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
÷R9  
OUT1b  
VDDO2  
OUT2  
OUT2b  
Multi  
Synth  
N2n  
÷
N2d  
Multi  
Synth  
N3n  
÷
VDDO3  
OUT3  
OUT3b  
N3d  
Multi  
Synth  
N4n  
÷
VDDO4  
OUT4  
OUT4b  
N4d  
VDDO5  
OUT5  
OUT5b  
I2C_SEL  
VDDO6  
OUT6  
OUT6b  
SDA/SDIO  
A1/SDO  
SCLK  
SPI/  
I2C  
NVM  
VDDO7  
OUT7  
OUT7b  
A0/CSb  
VDDO8  
OUT8  
OUT8b  
INTRb  
Status  
Monitors  
LOLb  
VDDO9  
OUT9  
OUT9b  
Figure 7.1. Si5345 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 39  
Si5345/44/42 Rev D Data Sheet  
Detailed Block Diagrams  
48-54MHz XTAL or  
REFCLK  
2
4
XA  
XB  
Si5344  
OSC  
IN_SEL[1:0]  
PREF  
÷
IN0  
IN0b  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
IN1b  
P1d  
PD  
LPF  
P2n  
÷
IN2  
P2d  
IN2b  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
Feedback  
IN3/FB_INb  
P3d  
I2C_SEL  
SDA/SDIO  
A1/SDO  
SCLK  
VDDO0  
OUT0  
OUT0b  
SPI/  
I2C  
Multi  
Synth  
N0n  
N0d  
÷
÷
÷
÷
t0  
÷R0  
A0/CSb  
VDDO1  
OUT1  
OUT1b  
Multi  
Synth  
N1n  
N1d  
t1  
t2  
t3  
÷R1  
÷R2  
÷R3  
NVM  
VDDO2  
OUT2  
OUT2b  
Multi  
Synth  
N2n  
N2d  
Multi  
Synth  
N3n  
N3d  
VDDO3  
OUT3  
OUT3b  
Status  
Monitors  
Figure 7.2. Si5344 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 40  
Si5345/44/42 Rev D Data Sheet  
Detailed Block Diagrams  
48-54MHz XTAL or  
REFCLK  
2
4
3
XA  
XB  
Si5342  
OSC  
IN_SEL[1:0]  
PREF  
÷
IN0  
IN0b  
IN1  
P0n  
÷
P0d  
P1n  
÷
DSPLL  
IN1b  
P1d  
PD  
LPF  
P2n  
÷
IN2  
P2d  
IN2b  
IN3/FB_IN  
Mn  
Md  
P3n  
÷
÷
Optional  
External  
Feedback  
IN3/FB_INb  
P3d  
I2C_SEL  
VDDO0  
OUT0  
OUT0b  
Multi  
Synth  
N0n  
N0d  
SDA/SDIO  
A1/SDO  
SCLK  
÷
÷
t0  
t1  
SPI/  
I2C  
÷R0  
÷R1  
VDDO1  
OUT1  
OUT1b  
Multi  
Synth  
N1n  
N1d  
A0/CSb  
NVM  
Status  
Monitors  
Figure 7.3. Si5342 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 41  
Si5345/44/42 Rev D Data Sheet  
Typical Operating Characteristics  
8. Typical Operating Characteristics  
The phase noise plots below were taken under the following conditions: VDD = 1.8 V; VDDA = 3.3 V; VDDS = 3.3 V, 1.8 V; TA = 25 °C.  
Figure 8.1. Input = 25 MHz; Output = 625 MHz, 2.5 V LVDS  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 42  
Si5345/44/42 Rev D Data Sheet  
Typical Operating Characteristics  
Figure 8.2. Input = 25 MHz; Output = 156.25 MHz, 2.5 V LVDS  
Figure 8.3. Input = 25 MHz; Output = 155.52 MHz, 2.5 V LVDS  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 43  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
Si5345  
Top View  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
2
IN1  
IN1b  
IN_SEL0  
IN_SEL1  
RSVD  
RSTb  
X1  
FINC  
LOLb  
3
VDD  
4
OUT6  
5
OUT6b  
VDDO6  
OUT5  
6
7
XA  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
GND  
Pad  
9
XB  
10  
11  
X2  
OEb  
INTRb 12  
OUT4b  
VDDO4  
OUT3  
13  
14  
15  
VDDA  
IN2  
IN2b  
OUT3b  
VDDO3  
SCLK 16  
Si5344 44QFN  
Top View  
Si5342 44QFN  
Top View  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
33  
IN1  
IN1b  
IN1  
IN1b  
INTRb  
VDD  
OUT2  
INTRb  
32  
VDD  
3
3
31  
30  
29  
28  
27  
26  
25  
24  
23  
LOS1b  
LOS0b  
VDDS  
IN_SEL0  
IN_SEL0  
4
4
OUT2b  
VDDO2  
LOS_XAXBb  
LOLb  
X1  
XA  
X1  
XA  
5
5
GND  
Pad  
GND  
Pad  
6
6
LOS_XAXBb  
LOLb  
XB  
XB  
7
7
X2  
X2  
VDDS  
VDDS  
8
8
VDDA  
VDDA  
OUT1  
OUT1  
9
9
VDDA  
IN2  
VDDA  
IN2  
10  
11  
10  
11  
OUT1b  
VDDO1  
OUT1b  
VDDO1  
IN2b  
IN2b  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 44  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
Table 9.1. Si5345/44/42 Pin Descriptions  
Pin Number  
Si5344  
Pin Type1  
Si5342  
Pin Name  
Function  
Si5345  
Inputs  
XA  
8
9
7
5
6
4
5
6
4
I
I
I
Crystal Input. Input pins for external crystal (XTAL). Alternatively  
these pins can be driven with an external reference clock  
(REFCLK). An internal register bit selects XTAL or REFCLK  
mode. Default is XTAL mode.  
XB  
X1  
XTAL Shield. Connect these pins directly to the XTAL ground  
pins. X1, X2 and the XTAL ground pins should be separated from  
the PCB ground plane. Refer to the Si5345/44/42 Family Refer-  
ence Manual for layout guidelines. These pins should be left dis-  
connected when connecting XA/XB pins to an external reference  
clock (REFCLK).  
X2  
10  
7
7
I
IN0  
IN0b  
63  
64  
1
43  
44  
1
43  
44  
1
I
I
I
I
I
I
I
Clock Inputs. These pins accept an input clock for synchronizing  
the device. They support both differential and single-ended clock  
signals. Refer to 3.7.6 Input Configuration and Terminations for  
input termination options. These pins are high-impedance and  
must be terminated externally. The negative side of the differen-  
tial input must be grounded through a capacitor when accepting a  
single-ended clock.  
IN1  
IN1b  
2
2
2
IN2  
14  
15  
61  
10  
11  
41  
10  
11  
41  
IN2b  
IN3/FB_IN  
Clock Input 3/External Feedback Input. By default these pins  
are used as the fourth clock input (IN3/IN3b). They can also be  
used as the external feedback input (FB_IN/FB_INb) for the op-  
tional zero delay mode. See 3.9.13 Zero Delay Mode for details  
on the optional zero delay mode.  
IN3b/FB_INb  
62  
42  
42  
I
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 45  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
Table 9.2. Si5345/44/42 Pin Descriptions  
Pin Number  
Si5344  
Pin Type1  
Si5342  
Pin Name  
Function  
Si5345  
Outputs  
OUT0  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
59  
58  
20  
19  
25  
24  
31  
30  
36  
35  
20  
19  
25  
24  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
Output Clocks. These output clocks support a programmable  
signal swing and common mode voltage. Desired output signal  
format is configurable using register control. Termination recom-  
mendations are provided in 3.9.3 Differential Output Terminations  
and 3.9.4 LVCMOS Output Terminations. Unused outputs should  
be left unconnected.  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
OUT7  
OUT7b  
OUT8  
OUT8b  
OUT9  
OUT9b  
Serial Interface  
I2C Select2. This pin selects the serial interface mode as I2C  
(I2C_SEL = 1) or SPI (I2C_SEL = 0). This pin is internally pulled  
up by a ~ 20 kΩ resistor to the voltage selected by the  
IO_VDD_SEL register bit.  
I2C_SEL  
39  
18  
38  
13  
38  
13  
I
Serial Data Interface2  
This is the bidirectional data pin (SDA) for the I2C mode, or the  
bidirectional data pin (SDIO) in the 3-wire SPI mode, or the input  
data pin (SDI) in 4-wire SPI mode. When in I2C mode, this pin  
must be pulled-up using an external resistor of at least 1 kΩ. No  
pull-up resistor is needed when is SPI mode. Tie low when un-  
used.  
SDA/SDIO  
I/O  
Address Select 1/Serial Data Output2  
In I2C mode, this pin functions as the A1 address input pin and  
does not have an internal pull-up or pull-down resistor. In 4-wire  
SPI mode this is the serial data output (SDO) pin and drives high  
to the voltage selected by the IO_VDD_SEL bit. Leave discon-  
nected when unused.  
A1/SDO  
17  
15  
15  
I/O  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 46  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
Pin Number  
Si5344  
Pin Type1  
Pin Name  
Function  
Si5345  
Si5342  
Serial Clock Input2  
This pin functions as the serial clock input for both I2C and SPI  
SCLK  
16  
14  
16  
14  
I
modes. When in I2C mode, this pin must be pulled-up using an  
external resistor of at least 1 kΩ. No pull-up resistor is needed  
when in SPI mode. Tie high or low when unused.  
Address Select 0/Chip Select2  
This pin functions as the hardware controlled address A0 in I2C  
mode. In SPI mode, this pin functions as the chip select input (ac-  
tive low). This pin is internally pulled-up by a ~20 kΩ resistor and  
can be left unconnected when not in use.  
A0/CSb  
19  
16  
I
Control/Status  
Interrupt2  
INTRb  
12  
33  
17  
33  
17  
O
This pin is asserted low when a change in device status has oc-  
curred. It should be left unconnected when not in use.  
Device Reset2  
Active low input that performs power-on reset (POR) of the de-  
vice. Resets all internal logic to a known state and forces the de-  
vice registers to their default values. Clock outputs are disabled  
during reset. This pin is internally pulled-up and can be left un-  
connected when not in use.  
RSTb  
OEb  
6
I
Output Enable2  
11  
47  
12  
27  
12  
27  
I
This pin disables all outputs when held high. This pin is internally  
pulled low and can be left unconnected when not in use.  
Loss Of Lock (Si5345)2  
O
O
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). It can be left unconnected when not in use.  
LOLb  
Loss Of Lock (Si5344/42)3  
This output pin indicates when the DSPLL is locked (high) or out-  
of-lock (low). It can be left unconnected when not in use.  
Loss Of Signal for IN03  
LOS0b  
LOS1b  
28  
30  
31  
35  
36  
28  
O
O
O
O
O
This pin indicate a loss of clock at the IN0 pin when low.  
Loss Of Signal for IN13  
This pin indicate a loss of clock at the IN1 pin when low.  
Loss Of Signal for IN23  
LOS2b  
This pin indicate a loss of clock at the IN2 pin when low.  
Loss Of Signal for IN33  
LOS3b  
This pin indicate a loss of clock at the IN3 pin when low.  
Loss Of Signal on XA/XB Pins3  
LOS_XAXBb  
This pin indicates a loss of signal at the XA/XB pins when low.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 47  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
Pin Number  
Si5344  
Pin Type1  
Pin Name  
Function  
Si5345  
Si5342  
Frequency Increment Pin2  
This pin is used to step-up the output frequency of a selected out-  
put. The affected output and its frequency change step size is  
register configurable. This pin is internally pulled low and can be  
left unconnected when not in use.  
FINC  
48  
I
Frequency Decrement Pin2  
This pin is used to step-down the output frequency of a selected  
output. The affected output driver and its frequency change step  
size is register configurable. This pin is internally pulled low and  
can be left unconnected when not in use.  
FDEC  
25  
I
Input Reference Select2  
IN_SEL0  
IN_SEL1  
3
4
3
3
I
I
The IN_SEL[1:0] pins are used in manual pin controlled mode to  
select the active clock input as shown in Table 3.1 Manual Input  
Selection Using IN_SEL[1:0] Pins on page 8. These pins are in-  
ternally pulled low.  
37  
37  
5
20  
21  
55  
56  
Reserved  
RSVD  
These pins are connected to the die. Leave disconnected.  
No Connect  
NC  
22  
22  
These pins are not connected to the die. Leave disconnected.  
Power  
32  
46  
60  
13  
21  
32  
39  
40  
8
21  
32  
39  
40  
8
P
P
P
P
P
Core Supply Voltage  
The device operates from a 1.8 V supply. A 1.0 µF bypass capac-  
itor should be placed very close to this pin. See the Si5345/44/42  
Family Reference Manual for power supply filtering recommenda-  
tions.  
VDD  
Core Supply Voltage 3.3 V  
This core supply pin requires a 3.3 V power source. A 1 µF by-  
pass capacitor should be placed very close to this pin. See the  
Si5345/44/42 Family Reference Manual for power supply filtering  
recommendations.  
VDDA  
VDDS  
9
9
P
26  
26  
29  
P
P
Status Output Voltage  
The voltage on this pin determines VOL/VOH on the Si5342/44  
LOL_A and LOL_B outputs. Connect to either 3.3 V or 1.8 V. A  
1.0 µF bypass capacitor should be placed very close to this pin.  
34  
P
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 48  
Si5345/44/42 Rev D Data Sheet  
Pin Descriptions  
Pin Number  
Pin Type1  
Pin Name  
Function  
Si5345  
22  
Si5344  
18  
Si5342  
18  
23  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
P
P
P
P
P
P
P
P
P
P
26  
23  
29  
29  
33  
34  
Output Clock Supply Voltage  
36  
Supply voltage (3.3 V, 2.5 V, 1.8 V) for OUTn, OUTn outputs. For  
unused outputs, leave VDDO pins unconnected. An alternative  
option is to connect the VDDO pin to a power supply and disable  
the output driver to minimize current consumption.  
40  
43  
49  
52  
57  
Ground Pad  
This pad provides connection to ground and must be connected  
for proper operation. Use as many vias as practical, and keep the  
via length to an internal ground plane as short as possible.  
GND PAD  
P
Note:  
1. I = Input, O = Output, P = Power.  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. The voltage on the VDDS pin(s) determines 3.3 V or 1.8 V operation.  
4. Refer to the Family Reference Manual for more information on register setting names.  
5. All status pins except I2C and SPI are push-pull.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 49  
Si5345/44/42 Rev D Data Sheet  
Package Outlines  
10. Package Outlines  
10.1 Si5345 9x9 mm 64-QFN Package Diagram  
The following figure illustrates the package details for the Si5345. The table lists the values for the dimensions shown in the illustration.  
Figure 10.1. 64-Pin Quad Flat No-Lead (QFN)  
Table 10.1. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
9.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 50  
Si5345/44/42 Rev D Data Sheet  
Package Outlines  
10.2 Si5344 and Si5342 7x7 mm 44-QFN Package Diagram  
The following figure illustrates the package details for the Si5344 and Si5342. The table lists the values for the dimensions shown in the  
illustration.  
Figure 10.2. 44-Pin Quad Flat No-Lead (QFN)  
Table 10.2. Package Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.02  
0.25  
D
7.00 BSC  
5.20  
D2  
e
5.10  
5.30  
0.50 BSC  
7.00 BSC  
5.20  
E
E2  
L
5.10  
0.30  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 51  
Si5345/44/42 Rev D Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
The following figure illustrates the PCB land pattern details for the devices. The table lists the values for the dimensions shown in the  
illustration.  
Si5345  
Si5344 and Si5342  
Figure 11.1. PCB Land Pattern  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 52  
Si5345/44/42 Rev D Data Sheet  
PCB Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Si5345 (Max)  
8.90  
Si5344/42 (Max)  
C1  
C2  
E
6.90  
6.90  
0.50  
0.30  
0.85  
5.30  
5.30  
8.90  
0.50  
X1  
Y1  
X2  
Y2  
0.30  
0.85  
5.30  
5.30  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electropolished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 3x3 array of 1.25 mm square openings on 1.80 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 53  
Si5345/44/42 Rev D Data Sheet  
Top Marking  
12. Top Marking  
Figure 12.1. Si5345/44/42 Top Marking  
Table 12.1. Top Marking Explanation  
Line  
Characters  
Description  
Base part number and Device Grade for Any-frequency, Any-output, Jitter  
Cleaning Clock (single PLL):  
f = 5: 10-output Si5345: 64-QFN  
f = 4: 4-output Si5344: 44-QFN  
f = 2: 2-output Si5342: 44-QFN  
1
Si534fg-  
g = Device Grade (A, B, C, D). See 2. Ordering Guide for more information.  
– = Dash character.  
R = Product revision. (Refer to 2. Ordering Guide for latest revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code as-  
signed for custom, factory pre-programmed devices.  
2
3
Rxxxxx-GM  
Characters are not included for standard, factory default configured devices.  
See 2. Ordering Guide for more information.  
-GM = Package (QFN) and temperature range (–40 to +85 °C)  
YYWW = Characters correspond to the year (YY) and work week (WW) of  
package assembly.  
YYWWTTTTTT  
TTTTTT = Manufacturing trace code.  
Pin 1 indicator; left-justified  
Circle w/ 1.6 mm (64-QFN) or 1.4  
mm (44-QFN) diameter  
4
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 54  
Si5345/44/42 Rev D Data Sheet  
Device Errata  
13. Device Errata  
Log in or register at www.silabs.com to access the device errata document.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 55  
Si5345/44/42 Rev D Data Sheet  
Document Change List  
14. Document Change List  
14.1 Revision 1.0  
July 15, 2016  
• Initial release.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 56  
Table of Contents  
1. Features List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.3 Fastlock Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.4.1 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.4.2 Freerun Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.4.3 Lock Acquisition Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.4.4 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.4.5 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.5 External Reference (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.6 Digitally Controlled Oscillator (DCO) Mode . . . . . . . . . . . . . . . . . . . . 7  
3.7 Inputs (IN0, IN1, IN2, IN3). . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.7.1 Manual Input Switching (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . . 8  
3.7.2 Automatic Input Selection (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . . 8  
3.7.3 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.7.4 Ramped Input Switching. . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.7.5 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.7.6 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . . . 9  
3.7.7 Synchronizing to Gapped Input Clocks . . . . . . . . . . . . . . . . . . . . .10  
3.8 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.8.1 Input LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.2 XA/XB LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.8.3.1 Precision OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8.3.2 Fast OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8.4 LOL Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.8.5 Interrupt Pin (INTRb) . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.9.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.2 Output Signal Format. . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.9.3 Differential Output Terminations . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.4 LVCMOS Output Terminations . . . . . . . . . . . . . . . . . . . . . . .15  
3.9.5 Programmable Common Mode Voltage For Differential Outputs . . . . . . . . . . . .15  
3.9.6 LVCMOS Output Impedance Selection . . . . . . . . . . . . . . . . . . . . .16  
3.9.7 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .16  
3.9.8 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.9.9 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.9.10 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .16  
3.9.11 Synchronous Output Disable Feature . . . . . . . . . . . . . . . . . . . . .16  
3.9.12 Output Skew Control (Δt – Δt ). . . . . . . . . . . . . . . . . . . . . . .17  
0
4
Table of Contents 57  
3.9.13 Zero Delay Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.9.14 Output Divider (R) Synchronization. . . . . . . . . . . . . . . . . . . . . .18  
3.10 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.11 In-Circuit Programming . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.12 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.13 Custom Factory Preprogrammed Parts . . . . . . . . . . . . . . . . . . . . .19  
3.14 Enabling Features and/or Configuration Settings Unavailable in ClockBuilder Pro for Factory Pre-  
programmed Devices  
. . . . . . . . . . . . . . . . . . . . . . . . . . 19.  
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
4.1 Addressing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.2 High-Level Register Map . . . . . . . . . . . . . . . . . . . . . . . . . .21  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . 38  
7. Detailed Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
8. Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . 42  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10. Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
10.1 Si5345 9x9 mm 64-QFN Package Diagram . . . . . . . . . . . . . . . . . . .50  
10.2 Si5344 and Si5342 7x7 mm 44-QFN Package Diagram . . . . . . . . . . . . . . .51  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
14. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
14.1 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Table of Contents 58  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY