Si8274GB1-IM [SILICON]

Single PWM or dual digital inputs;
Si8274GB1-IM
型号: Si8274GB1-IM
厂家: SILICON    SILICON
描述:

Single PWM or dual digital inputs

文件: 总43页 (文件大小:763K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si827x Data Sheet  
4 Amp ISOdriver with High Transient (dV/dt) Immunity  
KEY FEATURES  
The Si827x isolators are ideal for driving power switches used in a wide variety of power  
supply, inverter, and motor control applications. The Si827x isolated gate drivers utilize  
Silicon Laboratories' proprietary silicon isolation technology, supporting up to 2.5  
kVRMS withstand voltage per UL1577 and VDE0884. This technology enables industry  
leading common-mode transient immunity (CMTI), tight timing specifications, reduced  
variation with temperature and age, better part-to-part matching, and extremely high reli-  
ability. It also offers unique features such as separate pull-up/down outputs, driver shut-  
down on UVLO fault, and precise dead time programmability. The Si827x series offers  
longer service life and dramatically higher reliability compared to opto-coupled gate driv-  
ers.  
• Single, dual, or high-side/low-side drivers  
• Single PWM or dual digital inputs  
• High dV/dt immunity:  
• 200 kV/µs CMTI  
• 400 kV/µs Latch-up  
• Separate pull-up/down outputs for slew rate  
control  
• Wide supply range:  
• Input supply: 2.5–5.5 V  
• Driver supply: 4.2–30 V  
• Very low jitter of 200 ps p-p  
• 60 ns propagation delay (max)  
• Dedicated enable pin  
The Si827x drivers utilize Silicon Labs' proprietary silicon isolation technology, which  
provides up to 2.5 kVRMS withstand voltage per UL1577 and fast 60 ns propagation  
times. Driver outputs can be grounded to the same or separate grounds or connected to  
a positive or negative voltage. The TTL level compatible inputs with >400 mV hysteresis  
are available in individual control input (Si8271/2/3/5) or PWM input (Si8274) configura-  
tions. High integration, low propagation delay, small installed size, flexibility, and cost-  
effectiveness make the Si827x family ideal for a wide range of isolated MOSFET/IGBT  
and SiC or GaN FET gate drive applications.  
• Silicon Labs’ high performance isolation  
technology:  
• Industry leading noise immunity  
• High speed, low latency and skew  
• Best reliability available  
Applications:  
• Compact packages:  
• 8-pin SOIC  
• Switch-mode Power Supplies  
• Solar Power Inverters  
• 16-pin SOIC  
• 5 x 5 mm LGA-14  
• Motor control and drives  
• Uninterruptible Power Supplies  
• High-Power Class D Amplifiers  
• Industrial temperature range:  
• –40 to 125 °C  
• AEC-Q100 Qualified  
Safety Regulatory Approvals (Pending):  
• UL 1577 recognized  
• Up to 2500 Vrms for 1 minute  
• CSA component notice 5A approval  
• IEC 60950-1 (reinforced insulation)  
• VDE certification conformity  
• VDE 0884 Part 10  
• CQC certification approval  
• GB4943.1  
silabs.com | Smart. Connected. Energy-friendly.  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Preliminary Rev. 0.5  
Si827x Data Sheet  
Ordering Guide  
1. Ordering Guide  
Table 1.1. Si827x Ordering Guide  
Ordering  
Inputs  
Driver  
Output  
UVLO  
Integrated  
Deglitcher  
Dead Time  
Adjustable  
Range  
Low  
Jitter  
Package  
Isolation  
Rating  
Part Number  
Configuration  
Products Available Now  
Si8271AB-IS  
Si8271BB-IS  
Si8271DB-IS  
Si8271GB-IS  
Si8273AB-IS1  
Si8273ABD-IS1  
Si8273AB-IM  
VI  
Single  
Single  
Single  
Single  
HS/LS  
HS/LS  
HS/LS  
5
8
N
N
N
N
N
Y
N
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Y
Y
Y
Y
Y
N
Y
SOIC-8 NB  
SOIC-8 NB  
SOIC-8 NB  
SOIC-8 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
VI  
VI  
12  
3
VI  
VIA/VIB  
VIA/VIB  
VIA/VIB  
5
5
5
5x5mm  
LGA-14  
Si8273ABD-IM  
VIA/VIB  
HS/LS  
5
Y
N/A  
N
5x5mm  
LGA-14  
2.5 kVrms  
Si8273DB-IS1  
Si8273DBD-IS1  
Si8273GB-IS1  
Si8273GBD-IS1  
Si8273BB-IS1  
Si8273BBD-IS1  
Si8274AB1-IS1  
Si8274AB4D-IS1  
Si8274AB1-IM  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
PWM  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
12  
12  
3
N
Y
N
Y
N
Y
N
Y
N
N/A  
N/A  
Y
N
Y
N
Y
N
Y
N
Y
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
N/A  
3
N/A  
8
N/A  
8
N/A  
5
10-200  
20-700  
10-200  
PWM  
5
PWM  
5
5x5mm  
LGA-14  
Si8274AB4D-IM  
PWM  
HS/LS  
5
Y
20-700  
N
5x5mm  
LGA-14  
2.5 kVrms  
Si8274BB1-IS1  
Si8274DB1-IS1  
Si8274GB1-IS1  
Si8274GB4D-IS1  
Si8274GB1-IM  
PWM  
PWM  
PWM  
PWM  
PWM  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
8
12  
3
N
N
N
Y
N
10-200  
10-200  
10-200  
20-700  
10-200  
Y
Y
Y
N
Y
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
3
3
5x5mm  
LGA-14  
Si8274GB4D-IM  
PWM  
HS/LS  
3
Y
20-700  
N
5x5mm  
LGA-14  
2.5 kVrms  
Si8275GB-IS1  
Si8275GBD-IS1  
Si8275AB-IM  
VIA/VIB  
VIA/VIB  
VIA/VIB  
Dual  
Dual  
Dual  
3
3
5
N
Y
N
N/A  
N/A  
N/A  
Y
N
Y
SOIC-16 NB  
SOIC-16 NB  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
5x5mm  
LGA-14  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 1  
Si827x Data Sheet  
Ordering Guide  
Ordering  
Inputs  
Driver  
Output  
UVLO  
Integrated  
Deglitcher  
Dead Time  
Adjustable  
Range  
Low  
Jitter  
Package  
Isolation  
Rating  
Part Number  
Configuration  
Si8275ABD-IM  
VIA/VIB  
Dual  
5
Y
N/A  
N
5x5mm  
LGA-14  
2.5 kVrms  
Contact Silicon Labs Sales for These Options  
Si8271ABD-IS  
Si8271BBD-IS  
Si8271DBD-IS  
Si8271GBD-IS  
Si8273BB-IS1  
Si8273BBD-IS1  
Si8274BB4D-IS1  
Si8274DB4D-IS1  
Si8275AB-IS1  
Si8275ABD-IS1  
Si8275BB-IS1  
Si8275BBD-IS1  
Si8275DB-IS1  
Si8275DBD-IS1  
Si8275BB-IM  
VI  
Single  
Single  
Single  
Single  
HS/LS  
HS/LS  
HS/LS  
HS/LS  
Dual  
5
8
Y
Y
Y
Y
N
Y
Y
Y
N
Y
N
Y
N
Y
N
N/A  
N/A  
N
N
N
N
Y
N
N
N
Y
N
Y
N
Y
N
Y
SOIC-8 NB  
SOIC-8 NB  
SOIC-8 NB  
SOIC-8 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
SOIC-16 NB  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
VI  
VI  
12  
3
N/A  
VI  
N/A  
VIA/VIB  
VIA/VIB  
PWM  
8
N/A  
8
N/A  
8
20-700  
20-700  
N/A  
PWM  
12  
5
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
Dual  
5
N/A  
Dual  
8
N/A  
Dual  
8
N/A  
Dual  
12  
12  
8
N/A  
Dual  
N/A  
Dual  
N/A  
5x5mm  
LGA-14  
Si8275BBD-IM  
Si8275DB-IM  
Si8275DBD-IM  
Si8275GB-IM  
Si8275GBD-IM  
Si8275DA-IM  
Si8275DAD-IM  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
VIA/VIB  
Dual  
Dual  
Dual  
Dual  
Dual  
Dual  
Dual  
8
12  
12  
3
Y
N
Y
N
Y
N
Y
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N
Y
N
Y
N
Y
N
5x5mm  
LGA-14  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
2.5 kVrms  
1 kVrms  
5x5mm  
LGA-14  
5x5mm  
LGA-14  
5x5mm  
LGA-14  
3
5x5mm  
LGA-14  
12  
12  
5x5mm  
LGA-14  
5x5mm  
LGA-14  
1 kVrms  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 2  
Si827x Data Sheet  
System Overview  
2. System Overview  
VDD  
VI  
VDDI  
VDDI  
VO+  
VO-  
VDDI  
UVLO  
UVLO  
EN  
GNDI  
GNDA  
Si8271  
Figure 2.1. Si8271 Block Diagram  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
OVERLAP  
PROTECTION  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
EN  
GNDB  
VIB  
GNDI  
Si8273  
Figure 2.2. Si8273 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 3  
Si827x Data Sheet  
System Overview  
VDDI  
VDDA  
PWM  
LPWM  
VOA  
UVLO  
GNDA  
DT CONTROL  
&
OVERLAP  
PROTECTION  
DT  
VDDI  
VDDI  
VDDB  
VDDI  
UVLO  
VOB  
UVLO  
EN  
GNDB  
LPWM  
GNDI  
Si8274  
Figure 2.3. Si8274 Block Diagram  
VDDI  
VDDA  
VIA  
VOA  
UVLO  
GNDA  
VDDI  
VDDI  
UVLO  
VDDI  
VDDB  
EN  
VOB  
UVLO  
GNDB  
VIB  
GNDI  
Si8275  
Figure 2.4. Si8275 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 4  
Si827x Data Sheet  
System Overview  
The operation of an Si827x channel is analogous to that of an optocoupler and gate driver, except an RF carrier is modulated instead of  
light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A  
simplified block diagram for a single Si827x channel is shown in the figure below.  
Transmitter  
Receiver  
Driver  
VDD  
RF  
OSCILLATOR  
Semiconductor-  
Based Isolation  
Barrier  
Dead  
time  
control  
B
MODULATOR  
DEMODULATOR  
A
4 A peak  
Gnd  
Figure 2.5. Simplified Channel Diagram  
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the  
Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that  
decodes the input state according to its RF energy content and applies the result to output B via the output driver. This RF on/off keying  
scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to  
magnetic fields. See Figure 2.6 Modulation Scheme on page 5 for more details.  
Input Signal  
Modulation Signal  
Output Signal  
Figure 2.6. Modulation Scheme  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 5  
Si827x Data Sheet  
System Overview  
2.1 Typical Operating Characteristics  
The typical performance characteristics depicted in the figures below are for information purposes only. Refer to Table 4.1 Electrical  
Characteristics on page 16 for actual specification limits.  
Figure 2.7. Rise/Fall Time vs. Supply Voltage  
Figure 2.8. Propagation Delay vs. Supply Voltage  
Figure 2.9. Supply Current vs. Supply Voltage  
Figure 2.10. Supply Current vs. Supply Voltage  
Figure 2.11. Supply Current vs. Temperature  
Figure 2.12. Rise/Fall Time vs. Load  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 6  
Si827x Data Sheet  
System Overview  
Figure 2.13. Propagation Delay vs. Load  
Figure 2.14. Propagation Delay vs. Temperature  
Figure 2.15. Output Sink Current vs. Temperature  
Figure 2.16. Output Source Current vs. Temperature  
2.2 Family Overview and Logic Operation During Startup  
The Si827x family of isolated drivers consists of single, high-side/low-side, and dual driver configurations.  
2.2.1 Products  
The table below shows the configuration and functional overview for each product in this family.  
Table 2.1. Si827x Family Overview  
Part Number  
Configuration  
Overlap  
Programmable  
Inputs  
Peak Output  
Protection  
Dead Time  
Current (A)  
Si8271  
Si8273  
Si8274  
Si8275  
Single Driver  
High-Side/Low-Side  
PWM  
Y
Y
VI  
4.0  
4.0  
4.0  
4.0  
VIA, VIB  
PWM  
Y
Dual Driver  
VIA, VIB  
2.2.2 Device Behavior  
The table below consists of truth tables for the Si8273, Si8274, and Si8275 families.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 7  
Si827x Data Sheet  
System Overview  
Table 2.2. Si827x Family Truth Table1  
Si8271 (Single Driver) Truth Table  
Inputs  
VDDI State  
Enable  
Output  
Notes  
VI  
L
VO+  
Hi–Z  
H
VO–  
L
Powered  
Powered  
H
H
X
H
Hi–Z  
L
X2  
X
Unpowered  
Hi–Z  
Powered  
L
Hi–Z  
L
Si8273 (High-Side/Low-Side) Truth Table  
Inputs  
VDDI State  
Enable  
Output  
Notes  
VIA  
L
VIB  
L
VOA  
VOB  
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
H
H
H
X
L
L
H
L
L
L
H
L
L
L
L
H
H
L
H
H
Invalid state.  
X2  
X2  
Output returns to input state within 7  
µs of VDDI power restoration.  
X
X
Powered  
L
L
L
Device is disabled.  
Si8274 (PWM Input High-Side/Low-Side) Truth Table  
PWM Input  
VDDI State  
Enable  
Output  
Notes  
VOA  
VOB  
H
L
Powered  
Powered  
H
H
X
H
L
L
L
H
L
X2  
Unpowered  
Output returns to input state within 7  
µs of VDDI power restoration.  
X
Powered  
L
L
L
Device is disabled.  
Si8275 (Dual Driver) Truth Table  
Enable Output  
Inputs  
VDDI State  
Notes  
VIA  
VIB  
VOA  
VOB  
L
L
Powered  
Powered  
Powered  
Powered  
Unpowered  
H
H
H
H
X
L
L
L
H
L
L
H
H
H
L
H
H
L
H
H
L
X2  
X2  
Output returns to input state within 7  
µs of VDDI power restoration.  
X
X
Powered  
L
L
L
Device is disabled.  
1. This truth table assumes VDDA and VDDB are powered. If VDDA and VDDB are below UVLO, see 2.6.2 Undervoltage Lockout  
for more information.  
2. An input can power the input die through an internal diode if its source has adequate current.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 8  
Si827x Data Sheet  
System Overview  
2.3 Power Supply Connections  
Isolation requirements mandate individual supplies for VDDI, VDDA, and VDDB. The decoupling caps for these supplies must be  
placed as close to the VDD and GND pins of the Si827x as possible. The optimum values for these capacitors depend on load current  
and the distance between the chip and the regulator that powers it. Low effective series resistance (ESR) capacitors, such as Tantalum,  
are recommended.  
2.4 Power Dissipation Considerations  
Proper system design must assure that the Si827x operates within safe thermal limits across the entire load range.The Si827x total  
power dissipation is the sum of the power dissipated by bias supply current, internal parasitic switching losses, and power dissipated by  
the series gate resistor and load. The equation below shows total Si827x power dissipation.  
R
R
n
p
2
P
= V  
I
+ 2 I  
V
+ ( f ) Q  
V
+ f  
Q
V
+ 2 fCintV  
DD2  
(
)(  
)
(
)(  
)
(
)
(
D
DDI DDI  
DD2  
DD2  
G
DD2  
G
DD2  
)
( )(  
)(  
)
R + R  
R + R  
p
g
n g  
where:  
PD is the total Si827x device power dissipation (W)  
IDDI is the input-side maximum bias current (10 mA)  
IDD2 is the driver die maximum bias current (4 mA)  
Cint is the internal parasitic capacitance (370 pF)  
VDDI is the input-side VDD supply voltage (2.5 to 5.5 V)  
VDD2 is the driver-side supply voltage (4.2 to 30 V)  
f is the switching frequency (Hz)  
QG is the gate charge of external FET  
RG is the external gate resistor  
RP is the RDS(ON) of the driver pull-up switch: 2.7 Ω  
Rn is the RDS(ON) of the driver pull-down switch: 1 Ω  
Equation 1  
Power dissipation example for driver using Equation 1 with the following givens:  
VDDI = 5.0 V  
VDD2 = 12 V  
f = 350 kHz  
RG = 22 Ω  
QG = 25 nC  
Pd = 199 mW  
From which the driver junction temperature is calculated using Equation 2, where:  
Pd is the total Si827x device power dissipation (W)  
θja is the thermal resistance from junction to air (105 °C/W in this example)  
TA is the ambient temperature  
T = P × θ + T = (0.199)(105) + 20 = 41.0 ° C  
j
d
ja  
A
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 9  
Si827x Data Sheet  
System Overview  
The maximum power dissipation allowable for the Si827x is a function of the package thermal resistance, ambient temperature, and  
maximum allowable junction temperature, as shown in Equation 2:  
T
T  
A
jmax  
P
Dmax  
θ
ja  
where:  
PDmax = Maximum Si827x power dissipation (W)  
Tjmax = Si827x maximum junction temperature (150 °C)  
TA = Ambient temperature (20 °C)  
θja = Si827x junction-to-air thermal resistance (105 °C/W)  
Equation 2  
Substituting values for PDmax Tjmax, TA, and θja into Equation 2 results in a maximum allowable total power dissipation of 1.19 W. Maxi-  
mum allowable load is found by substituting this limit and the appropriate data sheet values from Table 4.1 Electrical Characteristics on  
page 16 into Equation 1 and simplifying. The result is Equation 3, both of which assume VDDI = 5 V and VDDA = VDDB = 12 V.  
2  
1.24 × 10  
9  
C
=
1.21 × 10  
L (MAX )  
f
Equation 3  
Figure 2.17. Max Load vs. Switching Frequency  
2.5 Layout Considerations  
It is most important to minimize ringing in the drive path and noise on the Si827x VDD lines. Care must be taken to minimize parasitic  
inductance in these paths by locating the Si827x as close to the device it is driving as possible. In addition, the VDD supply and ground  
trace paths must be kept short. For this reason, the use of power and ground planes is highly recommended. A split ground plane sys-  
tem having separate ground and VDD planes for power devices and small signal components provides the best overall noise perform-  
ance.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 10  
Si827x Data Sheet  
System Overview  
2.6 Undervoltage Lockout Operation  
Device behavior during start-up, normal operation and shutdown is shown in the figure below, where UVLO+ and UVLO- are the posi-  
tive-going and negative-going thresholds respectively.  
Note: Outputs VOA and VOB default low when input side power supply (VDDI) is not present.  
2.6.1 Device Startup  
Outputs VOA and VOB are held low during power-up until VDD is above the UVLO threshold for time period tSTART. Following this,  
the outputs follow the states of inputs VIA and VIB.  
2.6.2 Undervoltage Lockout  
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when VDD is below its  
specified operating circuits range. The input (control) side, Driver A and Driver B, each have their own undervoltage lockout monitors.  
The Si827x input side enters UVLO when VDDI < VDDIUV–, and exits UVLO when VDDI > VDDIUV+. The driver outputs, VOA and VOB,  
remain low when the input side of the Si827x is in UVLO and their respective VDD supply (VDDA, VDDB) is within tolerance. Each  
driver output can enter or exit UVLO independently. For example, VOA unconditionally enters UVLO when VDDA falls below VDDAUV–  
and exits UVLO when VDDA rises above VDDAUV+  
.
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Upon power up, the Si827x is maintained in  
UVLO until VDD rises above VDDUV+. During power down, the Si827x enters UVLO when VDD falls below the UVLO threshold plus  
hysteresis (i.e., VDD < VDDUV+ – VDDHYS). Please refer to spec tables for UVLO values.  
UVLO+  
VDDHYS  
UVLO-  
VDDI  
UVLO+  
VDDHYS  
UVLO-  
VDDA  
VIA  
ENABLE  
tSD  
tRESTART  
tPHL  
tPLH  
tSD  
tSTART  
tSTART  
tSTART  
VOA  
Figure 2.18. Device Behavior during Normal Operation and Shutdown  
2.6.3 Control Inputs  
VIA, VIB, and PWM inputs are high-true, TTL level-compatible logic inputs. A logic high signal on VIA or VIB causes the corresponding  
output to go high. For PWM input versions (Si8274), VOA is high and VOB is low when the PWM input is high, and VOA is low and  
VOB is high when the PWM input is low.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 11  
Si827x Data Sheet  
System Overview  
2.6.4 Enable Input  
When brought low, the ENABLE input unconditionally drives VOA and VOB low regardless of the states of VIA and VIB. Device opera-  
tion terminates within tSD after ENABLE = VIL and resumes within tRESTART after ENABLE = VIH. The ENABLE input has no effect if  
VDDI is below its UVLO level (i.e., VOA, VOB remain low).  
2.7 Programmable Dead Time and Overlap Protection  
All PWM drivers (Si8274x) include programmable dead time, which adds a user-programmable delay between transitions of VOA and  
VOB. When enabled, dead time is present on all transitions. The amount of dead time delay (DT) is programmed by a single resistor  
(RDT) connected from the DT input to ground per the equation below.  
DT = 2.02 × RDT + 7.77 (for 10-200 ns range)  
DT = 6.06 × RDT + 3.84 (for 20-700 ns range)  
where:  
DT = dead time (ns)  
and  
RDT = dead time programming resistor (kΩ)  
Equation 4  
Input/output timing waveforms for the Si8273 two-input drivers are shown in the figure below, and dead time waveforms for the Si8274  
are shown in Figure 2.20 Dead Time Waveforms for Si8274 Drivers on page 13.  
VIA  
VIB  
VOA  
VOB  
A
B
C
D
E
F
G
H
I
Figure 2.19. Input / Output Waveforms for Si8273 Drivers  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 12  
Si827x Data Sheet  
System Overview  
Table 2.3. Input / Output Waveforms for High-Side / Low-Side Two-Input Drivers  
Ref  
A
B
C
D
E
Description  
Normal operation: VIA high, VIB low.  
Normal operation: VIB high, VIA low.  
Contention: VIA = VIB = high.  
Recovery from contention: VIA transitions low.  
Normal operation: VIA = VIB = low.  
F
Normal operation: VIA high, VIB low.  
Contention: VIA = VIB = high.  
G
H
I
Recovery from contention: VIB transitions low.  
Normal operation: VIB transitions high.  
VOB  
PWM  
50%  
LPWM  
(internal)  
DT  
90%  
VOA  
10%  
DT  
90%  
VOB  
10%  
Typical Dead Time Operation  
Figure 2.20. Dead Time Waveforms for Si8274 Drivers  
2.8 De-glitch Feature  
A de-glitch feature is provided on some options, as defined in the 1. Ordering Guide. The internal de-glitch circuit provides an internal  
time delay of 15 ns typical, during which any noise is ignored and will not pass through the IC. For these product options, the propaga-  
tion delay will be extended by 15 ns, as specified in the spec table.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 13  
Si827x Data Sheet  
Applications  
3. Applications  
The following examples illustrate typical circuit configurations using the Si827x.  
3.1 High-Side/Low-Side Driver  
In the figure below, side A shows the Si8273 controlled using the VIA and VIB input signals, and side B shows the Si8274 controlled by  
a single PWM signal.  
VDD2  
C3  
VDD2  
C3  
D1  
D1  
VDDI  
VDDI  
1 µF  
1 µF  
VDDI  
GNDI  
VDDI  
C2  
0.1 µF  
C2  
0.1 µF  
C1  
C1  
1500 V max  
1500 V max  
1 µF  
1 µF  
VDDA  
VDDA  
GNDI  
PWM  
CB  
CB  
Q1  
Q1  
OUT1  
OUT2  
VIA  
VIB  
PWMOUT  
CONTROLLER  
I/O  
VOA  
VOA  
GNDA  
GNDA  
DT  
RDT  
VDD2  
C4  
VDD2  
C4  
CONTROLLER  
Si8273  
Si8274  
VDDB  
VDDB  
C5  
10 µF  
C5  
0.1 µF  
0.1 µF  
10 µF  
I/O  
ENABLE  
ENABLE  
GNDB  
VOB  
GNDB  
VOB  
Q2  
Q2  
A
B
Figure 3.1. Si827x in Half-Bridge Application  
For both cases, D1 and CB form a conventional bootstrap circuit that allows VOA to operate as a high-side driver for Q1, which has a  
maximum drain voltage of 1500 V. VOB is connected as a conventional low-side driver. Note that the input side of the Si827x requires  
VDD in the range of 2.5 to 5.5 V, while the VDDA and VDDB output side supplies must be between 4.2 and 30 V with respect to their  
respective grounds. The boot-strap start up time will depend on the CB cap chosen. VDD2 is usually the same as VDDB. Also note that  
the bypass capacitors on the Si827x should be located as close to the chip as possible. Moreover, it is recommended that bypass ca-  
pacitors be used (as shown in the figures above for input and driver side) to reduce high frequency noise and maximize performance.  
The outputs VOA and VOB can be used interchangeably as high side or low side drivers.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 14  
Si827x Data Sheet  
Applications  
3.2 Dual Driver  
The figure below shows the Si827x configured as a dual driver. Note that the drain voltages of Q1 and Q2 can be referenced to a com-  
mon ground or to different grounds with as much as 1500 V dc between them.  
VDDI  
VDDI  
Q1  
C2  
0.1 µF  
C1  
1 µF  
VOA  
GNDI  
VDDA  
C3  
VDDA  
GNDA  
VIA  
VIB  
OUT1  
OUT2  
C4  
10 µF  
0.1 µF  
CONTROLLER  
Si8275  
VDDB  
C5  
VDDB  
GNDB  
VOB  
C6  
10 µF  
I/O  
ENABLE  
0.1 µF  
Q2  
Figure 3.2. Si827x in a Dual Driver Application  
Because each output driver resides on its own die, the relative voltage polarities of VOA and VOB can reverse without damaging the  
driver. That is, the voltage at VOA can be higher or lower than that of VOB by VDD without damaging the driver. Therefore, a dual  
driver in a high-side/low-side drive application can use either VOA or VOB as the high side driver. Similarly, a dual driver can operate  
as a dual low-side or dual high-side driver and is unaffected by static or dynamic voltage polarity changes.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 15  
Si827x Data Sheet  
Electrical Specifications  
4. Electrical Specifications  
Table 4.1. Electrical Characteristics  
VDDI = 5 V, GNDI = 0 V, VDDA/B-GNDA/B = 30 V, TA = –40 to +125 °C; typical specs at 25 °C  
Parameter  
DC Parameters  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Input Supply Voltage  
VDDI  
(VDDA/B – GNDA/B)  
IDDI(Q)  
2.5  
4.2  
5.5  
30  
V
Driver Supply Voltage  
V
Input Supply Quiescent Current  
Input Supply Active Current  
Output Supply Quiescent Current  
Output Supply Active Current  
Gate Driver  
7.9  
8.0  
2.5  
10.0  
10.0  
10.0  
4.0  
mA  
mA  
mA  
mA  
IDDI  
f = 500 kHz  
f = 500 kHz  
IDDx(Q)  
IDDx  
11.0  
High Output Transistor RDS (ON)  
Low Output Transistor RDS (ΟΝ)  
High Level Peak Output Current  
ROH  
ROL  
IOH  
2.7  
1.0  
1.8  
Ω
Ω
A
VDDA/B = 15 V,  
See Figure 4.2 IOH  
Source Current Test  
Circuit on page 19  
for Si827xG,  
V
DD = 4.2 V,  
T < 250 ns  
Low Level Peak Output Current  
IOL  
VDDA/B = 15 V,  
4.0  
A
See Figure 4.1 IOL  
Sink Current Test Cir-  
cuit on page 19  
for Si827xG,  
VDD = 4.2 V,  
TPW_IOL < 250 ns  
UVLO  
VDDI UVLO Threshold +  
VDDI UVLO Threshold –  
VDDI Hysteresis  
VDDIUV+  
VDDIUV–  
VDDIHYS  
1.85  
1.75  
2.2  
2.1  
100  
2.45  
2.35  
V
V
mV  
UVLO Threshold + (Driver Side)  
3 V Threshold  
VDDXUV+  
2.7  
4.9  
7.2  
11  
3.5  
5.5  
4.0  
6.3  
V
V
V
V
5 V Threshold  
8 V Threshold  
8.3  
9.5  
12 V Threshold  
12.2  
13.5  
UVLO Threshold - (Driver Side)  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 16  
Si827x Data Sheet  
Electrical Specifications  
Parameter  
3 V Threshold  
Symbol  
Test Condition  
Min  
2.5  
4.6  
6.7  
9.6  
Typ  
3.2  
Max  
3.8  
Units  
VDDXUV-  
V
V
V
V
5 V Threshold  
5.2  
5.9  
8 V Threshold  
7.8  
8.9  
12 V Threshold  
10.8  
12.1  
UVLO Lockout Hysteresis  
3 V Threshold  
VDDHYS  
300  
300  
mV  
mV  
mV  
mV  
5 V Threshold  
8 V Threshold  
500  
12 V Threshold  
1400  
Digital  
Logic High Input Threshold  
Logic Low Input Threshold  
Input Hysteresis  
VIH  
VIL  
2.0  
0.8  
V
V
VIHYST  
VOH  
350  
400  
mV  
V
Logic High Output Voltage  
IO = –1 mA  
IO = 1 mA  
VDDA/B –  
0.04  
Logic Low Output Voltage  
AC Switching Parameters  
Propagation Delay  
VOL  
20  
30  
20  
30  
30  
65  
30  
45  
30  
45  
45  
85  
3.6  
14  
38  
200  
0.04  
60  
75  
60  
75  
75  
105  
8
V
tPLH, tPHL  
CL = 200 pF  
CL = 200 pF  
CL = 200 pF  
CL = 200 pF  
CL = 200 pF  
CL = 200 pF  
|tPLH – tPHL|  
|tPLH – tPHL|  
|tPLH – tPHL|  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
Si8271/3/5 with low jitter  
Propagation Delay  
tPLH, PHL  
t
Si8271/3/5 with de-glitch option  
Propagation Delay  
tPHL  
Si8274 with low jitter  
Propagation Delay  
tPHL  
Si8274 with de-glitch option  
Propagation Delay  
tPLH  
Si8274 with low jitter  
Propagation Delay  
tPLH  
Si8274 with de-glitch option  
Pulse Width Distortion  
Si8271/3/5 all options  
Pulse Width Distortion  
Si8274 with low jitter  
Pulse Width Distortion  
Si8274 with de-glitch option  
Peak to Peak Jitter  
PWD  
PWD  
PWD  
19  
47  
Si827x with low jitter  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 17  
Si827x Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
RDT = 6 kΩ  
Min  
10  
Typ  
20  
Max  
30  
Units  
Programmed dead-time (DT) for  
products with 10–200 ns DT range  
DT  
ns  
RDT = 15 kΩ  
RDT = 100 kΩ  
RDT = 6 kΩ  
26  
38  
50  
150  
23  
210  
40  
260  
57  
Programmed dead-time (DT) for  
products with 20–700 ns DT range  
DT  
ns  
RDT = 15 kΩ  
RDT = 100 kΩ  
CL = 200 pF  
CL = 200 pF  
60  
95  
130  
770  
16  
450  
4
610  
10.5  
13.3  
16  
Rise time  
tR  
tF  
ns  
ns  
Fall time  
5.5  
18  
Device Startup Time  
tSTART  
30  
µs  
Common Mode Transient  
Immunity  
See Figure 4.3 Com-  
mon Mode Transient  
Immunity Test Circuit  
on page 20.  
200  
350  
400  
kV/µs  
Si827x with de-glitch option  
VCM = 1500 V  
Common Mode Transient  
Immunity  
See Figure 4.3 Com-  
mon Mode Transient  
Immunity Test Circuit  
on page 20.  
150  
300  
400  
kV/µs  
Si827x with low jitter option  
VCM = 1500 V  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 18  
Si827x Data Sheet  
Electrical Specifications  
4.1 Test Circuits  
The figures below depict sink current, source current, and common-mode transient immunity test circuits.  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si827x  
INPUT  
SCHOTTKY  
+
_
8 V  
GND  
100 µF  
1 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
50 ns  
RSNS  
0.1  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 4.1. IOL Sink Current Test Circuit  
VDDA = VDDB = 15 V  
VDDI  
VDD  
10  
IN  
OUT  
Si827x  
INPUT  
SCHOTTKY  
1 µF  
+
_
5.5 V  
GND  
100 µF  
1 µF  
CER  
10 µF  
EL  
Measure  
RSNS  
0.1  
50 ns  
VDDI  
GND  
200 ns  
INPUT WAVEFORM  
Figure 4.2. IOH Source Current Test Circuit  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 19  
Si827x Data Sheet  
Electrical Specifications  
12 V  
Supply  
Si827x  
VDDI  
VDDA  
Input Signal  
Switch  
INPUT  
EN  
VOA  
GNDA  
VDDB  
VOB  
5V  
Isolated  
Supply  
DT  
Oscilloscope  
100k  
GNDI  
GNDB  
Isolated  
Ground  
High Voltage  
Differential  
Probe  
Output  
Input  
Vcm Surge  
Output  
High Voltage  
Surge Generator  
Figure 4.3. Common Mode Transient Immunity Test Circuit  
4.2 Regulatory Information (Pending)  
Table 4.2. Regulatory Information1,2  
CSA  
The Si827x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.  
60950-1: Up to 125 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.  
VDE  
The Si827x is certified according to VDE 0884-10. For more details, see File 5006301-4880-0001.  
VDE 0884-10: Up to 630 Vpeak for basic insulation working voltage.  
UL  
The Si827x is certified under UL1577 component recognition program. For more details, see File E257455.  
Rated up to 2500 VRMS isolation voltage for basic protection.  
CQC  
The Si827x is certified under GB4943.1-2011.  
Rated up to 125 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.  
1. Regulatory Certifications apply to 2.5 kVRMS rated devices which are production tested to 3.0 kVRMS for 1 sec.  
2. For more information, see 1. Ordering Guide.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 20  
Si827x Data Sheet  
Electrical Specifications  
Table 4.3. Insulation and Safety-Related Specifications  
Parameter  
Symbol  
L(1O1)  
L(1O2)  
Test Condition  
Value  
NB SOIC-16  
4.7  
Unit  
SOIC-8  
14 LD LGA  
Nominal Air Gap  
4.7  
3.5  
mm  
mm  
mm  
V
(Clearance)  
Nominal External Tracking  
(Creepage)  
3.9  
0.008  
600  
3.9  
0.008  
600  
3.5  
Minimum Internal Gap  
(Internal Clearance)  
Tracking Resistance  
(Proof Tracking Index)  
Erosion Depth  
0.008  
600  
PTI  
IEC60112  
ED  
0.019  
1012  
0.019  
1012  
0.021  
1012  
mm  
Ω
Resistance  
RIO  
(Input-Output)1  
Capacitance  
CIO  
f = 1 MHz  
0.5  
3.0  
0.5  
3.0  
0.5  
3.0  
pF  
pF  
(Input-Output)1  
Input Capacitance2  
CI  
Notes:  
1. To determine resistance and capacitance, the Si827x is converted into a 2-terminal device. All pins on side 1 are shorted to cre-  
ate terminal 1, and all pins on side 2 are shorted to create terminal 2. The parameters are then measured between these two  
terminals.  
2. Measured from input pin to ground.  
Table 4.4. IEC 60664-1 Ratings  
Parameter  
Test Condition  
Specification  
SOIC-8  
I
NB SOIC-16  
14 LD LGA  
Basic Isolation Group  
Material Group  
I
I
Installation Classification  
Rated Mains Voltages < 150 VRMS  
Rated Mains Voltages < 300 VRMS  
Rated Mains Voltages < 400 VRMS  
Rated Mains Voltages < 600 VRMS  
I-IV  
I-III  
I-II  
I-IV  
I-III  
I-II  
I-II  
I-IV  
I-III  
I-II  
I-II  
I-II  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 21  
Si827x Data Sheet  
Electrical Specifications  
Table 4.5. VDE 0884 Insulation Characteristics1  
Parameter  
Symbol  
VIORM  
VPR  
Test Condition  
Characteristic  
Unit  
Maximum Working Insulation Voltage  
Input to Output Test Voltage  
630  
V peak  
V peak  
Method b1  
1181  
(VIORM x 1.875 = VPR, 100%  
Production Test, tm = 1 sec,  
Partial Discharge < 5 pC)  
Transient Overvoltage  
Pollution Degree  
(DIN VDE 0110, Table 1)  
Insulation Resistance at  
TS, VIO = 500 V  
VIOTM  
t = 60 sec  
4000  
2
V peak  
>109  
RS  
Ω
Note:  
1. Maintenance of the safety data is ensured by protective circuits. The Si827x provides a climate classification of 40/125/21.  
Table 4.6. IEC Safety Limiting Values1  
Parameter  
Symbol  
Test Condition  
SOIC-8  
NB SOIC-16  
14 LD LGA  
Unit  
Case  
TS  
140  
150  
150  
°C  
Temperature  
Safety Input Current  
ΙS  
θ
JA = 110 °C/W  
35  
40  
40  
mA  
(SOIC-8),  
105 °C/W  
(NB SOIC-16, 14 LD  
LGA),  
VDDI = 5.5 V,  
VDDA = VDDB = 30 V,  
TJ = 150 °C,  
TA = 25 °C  
Device Power Dissipation  
PD  
1
1.2  
1.2  
Ω
Note:  
1. Maximum value allowed in the event of a failure. Refer to the thermal derating curve in the two figures below.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 22  
Si827x Data Sheet  
Electrical Specifications  
Table 4.7. Thermal Characteristics  
Parameter  
Symbol  
SOIC-8  
NB  
14 LD LGA  
Unit  
SOIC-16  
IC Junction-to-Air  
Thermal Resistance  
θJA  
110  
105  
105  
°C/W  
60  
50  
40  
30  
20  
10  
0
VDDI = 5.5 V  
VDDA, VDDB = 30 V  
0
50  
100  
150  
200  
Case Temperature (ºC)  
Figure 4.4. NB SOIC-16, LGA-14 Thermal Derating Curve, Dependence of Safety Limiting Values Limiting Values with Case  
Temperature per VDE 0884  
60  
50  
VDDI = 5.5 V  
VDDA, VDDB = 30 V  
40  
30  
20  
10  
0
0
60  
100  
140  
200  
Case Temperature (ºC)  
Figure 4.5. NB SOIC-8 Thermal Derating Curve, Dependence of Safety Limiting Values  
Limiting Values with Case Temperature per VDE 0884  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 23  
Si827x Data Sheet  
Electrical Specifications  
Table 4.8. Absolute Maximum Ratings1  
Parameter  
Symbol  
Min  
–65  
–40  
Max  
+150  
+125  
+150  
6.0  
Units  
°C  
°C  
°C  
V
Storage Temperature  
Operating Temperature  
Junction Temperature  
TSTG  
TA  
TJ  
Input-side supply voltage  
VDDI  
–0.6  
–0.6  
–0.5  
Driver-side supply voltage  
VDDA, VDDB  
VIO  
36  
V
Voltage on any pin with respect to ground  
VDD + 0.5  
4.0  
V
Peak Output Current (tPW = 10 µs, duty cycle = 0.2%)  
IOPK  
A
Lead Solder Temperature (10 s)  
260  
°C  
kV  
V
HBM Rating ESD  
3.5  
CDM  
2000  
3000  
Maximum Isolation Voltage (Input to Output) (1 sec)  
VRMS  
NB SOIC-16 and SOIC-8  
Maximum Isolation Voltage (Input to Output) (1 sec)  
3000  
1500  
650  
VRMS  
VRMS  
VRMS  
kV/μs  
5x5 LGA-14  
Maximum Isolation Voltage (Output to Output) (1 sec)  
NB SOIC-16  
Maximum Isolation Voltage (Output to Output) (1 sec)  
5x5 LGA-14  
Latch-up Immunity  
Note:  
400  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions specified in the operational sections of this data sheet.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 24  
Si827x Data Sheet  
Pin Descriptions  
5. Pin Descriptions  
5.1 Si8271 Pin Descriptions  
VDD  
VO+  
VO-  
VI  
1
2
3
4
8
7
6
5
VDDI  
Si8271  
GNDI  
EN  
GND  
Figure 5.1. Pin Assignments Si8271  
Table 5.1. Si8271 Pin Descriptions  
Pin  
1
Name  
VI  
Description  
Digital driver control signal  
Input side power supply  
Input side ground  
2
VDDI  
GNDI  
EN  
3
4
Enable  
5
GND  
VO–  
VO+  
VDD  
Driver side ground  
Gate drive pull low  
Gate drive pull high  
Driver side power supply  
6
7
8
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 25  
Si827x Data Sheet  
Pin Descriptions  
5.2 Si8273/75 Pin Descriptions  
VDDA  
VOA  
GNDA  
NC  
VIA  
1
2
3
4
5
16  
15  
14  
13  
12  
VIB  
VDDA  
VOA  
GNDA  
NC  
1
2
3
4
5
14  
13  
12  
VDDI  
VIA  
VIB  
GNDI  
EN  
Si8273  
Si8275  
Si8273  
Si8275  
11 NC  
GNDI  
EN  
10 VDDB  
NC  
NC  
6
7
9
8
VOB  
GNDB  
NC  
NC  
6
7
8
11  
10  
9
VDDB  
VOB  
VDDI  
GNDB  
VDDI  
Figure 5.2. Pin Assignments Si8273/5  
Table 5.2. Si8273/5 Pin Descriptions  
NB SOIC-16 Pin #  
5x5 mm LGA-14 Pin #  
Name  
VIA  
Description  
1
2
Digital driver control signal for “A” driver  
Digital driver control signal for “B” driver  
Input side power supply  
2
3
VIB  
3,8  
7
VDDI  
GNDI  
EN  
4
4
Input side ground  
5
5
1, 6, 11  
8
Enable  
6, 7, 12, 13  
NC  
No Connect  
9
GNDB  
VOB  
VDDB  
GNDA  
VOA  
VDDA  
Driver side power supply for “B” driver  
Gate drive output for “B” driver  
Driver side power supply for “B” driver  
Driver side power supply for “A” driver  
Gate drive output for “A” driver  
Driver side power supply for “A” driver  
10  
11  
14  
15  
16  
9
10  
12  
13  
14  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 26  
Si827x Data Sheet  
Pin Descriptions  
5.3 Si8274 Pin Descriptions  
VDDA  
VOA  
GNDA  
NC  
PWM  
1
2
3
4
5
16  
15  
14  
13  
12  
NC  
VDDA  
VOA  
GNDA  
NC  
1
2
3
4
5
14  
13  
12  
VDDI  
PWM  
NC  
GNDI  
EN  
11 NC  
GNDI  
EN  
Si8274  
Si8274  
10 VDDB  
NC  
DT  
6
7
9
8
VOB  
GNDB  
DT  
NC  
6
7
8
11  
10  
9
VDDB  
VOB  
VDDI  
GNDB  
VDDI  
Figure 5.3. Pin Assignments Si8274  
Table 5.3. Si8274 Pin Descriptions  
NB SOIC-16 Pin #  
5x5 mm LGA-14 Pin #  
Name  
PWM  
NC  
Description  
1
2
Pulse width modulated driver control signal  
No Connect  
2, 7, 12, 13  
1, 3, 11  
3, 8  
4
7
4
VDDI  
GNDI  
EN  
Input side power supply  
Input side ground  
5
5
Enable  
6
6
DT  
Dead time control  
9
8
GNDB  
VOB  
VDDB  
GNDA  
VOA  
VDDA  
Driver side power supply for “B” driver  
Gate drive output for “B” driver  
Driver side power supply for “B” driver  
Driver side power supply for “A” driver  
Gate drive output for “A” driver  
Driver side power supply for “A” driver  
10  
11  
14  
15  
16  
9
10  
12  
13  
14  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 27  
Si827x Data Sheet  
Package Outlines  
6. Package Outlines  
6.1 Package Outline: 16-Pin Narrow-Body SOIC  
The figure below illustrates the package details for the Si827x in a 16-pin narrow-body SOIC (SO-16). The table below lists the values  
for the dimensions shown in the illustration.  
Figure 6.1. 16-pin Small Outline Integrated Circuit (SOIC) Package  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 28  
Si827x Data Sheet  
Package Outlines  
Table 6.1. Package Diagram Dimensions  
Dimension  
Min  
Max  
1.75  
0.25  
Dimension  
Min  
Max  
A
A1  
A2  
b
L
0.40  
1.27  
0.10  
1.25  
0.31  
0.17  
L2  
0.25 BSC  
h
0.25  
0°  
0.50  
8°  
0.51  
0.25  
θ
c
aaa  
bbb  
ccc  
ddd  
0.10  
0.20  
0.10  
0.25  
D
9.90 BSC  
6.00 BSC  
3.90 BSC  
1.27 BSC  
E
E1  
e
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation AC.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 29  
Si827x Data Sheet  
Package Outlines  
6.2 Package Outline: 8-Pin Narrow Body SOIC  
The figure below illustrates the package details for the Si827x in an 8-pin narrow-body SOIC package. The table below lists the values  
for the dimensions shown in the illustration.  
Figure 6.2. 8-Pin Narrow Body SOIC Package  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 30  
Si827x Data Sheet  
Package Outlines  
Table 6.2. 8-Pin Narrow Body SOIC Package Diagram Dimensions  
Symbol  
Millimeters  
Min  
1.35  
Max  
1.75  
0.25  
A
A1  
A2  
B
0.10  
1.40 REF  
0.33  
1.55 REF  
0.51  
C
D
E
0.19  
0.25  
4.80  
5.00  
3.80  
4.00  
e
1.27 BSC  
H
h
5.80  
6.20  
0.50  
1.27  
8°  
0.25  
L
0.40  
0°  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 31  
Si827x Data Sheet  
Package Outlines  
6.3 Package Outline: 14 LD LGA (5 x 5 mm)  
The figure below illustrates the package details for the Si827x in an LGA outline. The table below lists the values for the dimensions  
shown in the illustration.  
Figure 6.3. Si827x LGA Outline  
Table 6.3. Package Diagram Dimensions  
Dimension  
MIN  
0.74  
0.25  
NOM  
0.84  
MAX  
0.94  
0.35  
A
b
0.30  
D
5.00 BSC  
4.15 BSC  
0.65 BSC  
5.00 BSC  
3.90 BSC  
0.75  
D1  
e
E
E1  
L
0.70  
0.05  
0.80  
0.15  
0.10  
0.10  
0.08  
0.15  
0.08  
L1  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 32  
Si827x Data Sheet  
Land Patterns  
7. Land Patterns  
7.1 Land Pattern: 16-Pin Narrow Body SOIC  
The figure below illustrates the recommended land pattern details for the Si827x in a 16-pin narrow-body SOIC. The table below lists  
the values for the dimensions shown in the illustration.  
Figure 7.1. 16-Pin Narrow Body SOIC PCB Land Pattern  
Table 7.1. 16-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 33  
Si827x Data Sheet  
Land Patterns  
7.2 Land Pattern: 8-Pin Narrow Body SOIC  
The figure below illustrates the recommended land pattern details for the Si827x in an 8-pin narrow-body SOIC. The table below lists  
the values for the dimensions shown in the illustration.  
Figure 7.2. 8-Pin Narrow Body SOIC Land Pattern  
Table 7.2. 8-Pin Narrow Body SOIC Land Pattern Dimensions  
Dimension  
Feature  
(mm)  
5.40  
1.27  
0.60  
1.55  
C1  
Pad Column Spacing  
Pad Row Pitch  
Pad Width  
E
X1  
Y1  
Pad Length  
Notes:  
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for Density Level B (Median Land Protrusion).  
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card fabrication tolerance of 0.05 mm is assumed.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 34  
Si827x Data Sheet  
Land Patterns  
7.3 Land Pattern: 14 LD LGA  
The figure below illustrates the recommended land pattern details for the Si827x in a 14-pin LGA. The table below lists the values for  
the dimensions shown in the illustration.  
Figure 7.3. 14-Pin LGA Land Pattern  
Table 7.3. 14-Pin LGA Land Pattern Dimensions  
Dimension  
(mm)  
4.20  
0.65  
0.80  
0.40  
C1  
E
X1  
Y1  
Notes:  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri-  
cation Allowance of 0.05 mm.  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm  
minimum, all the way around the pad.  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1.  
8. A No-Clean, Type-3 solder paste is recommended.  
9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 35  
Si827x Data Sheet  
Top Markings  
8. Top Markings  
8.1 Si827x Top Marking (16-Pin Narrow Body SOIC)  
Table 8.1. Top Marking Explanation (16-Pin Narrow Body SOIC)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si827 = ISOdriver product series  
Y = Configuration  
3 = High-side/Low-side (HS/LS)  
4 = PWM HS/LS  
5 = Dual driver  
See 1. Ordering Guide for  
more information.  
U = UVLO level  
G = 3 V  
A = 5 V  
B = 8 V  
D = 12 V  
V = Isolation rating  
B = 2.5 kV  
W = Dead-time setting range  
1= 10-200 ns  
4 = 20-700 ns  
X = Integrated de-glitch circuit  
D = integrated  
none = not included  
Line 2 Marking:  
YY = Year  
Assigned by the Assembly House. Corresponds to the year and workweek  
of the mold date.  
WW = Workweek  
TTTTTT = Mfg Code  
Manufacturing Code from Assembly Purchase Order form.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 36  
Si827x Data Sheet  
Top Markings  
8.2 Si8271 Top Marking (8-Pin Narrow Body SOIC)  
Table 8.2. Top Marking Explanation (Narrow Body SOIC)  
Line 1 Marking:  
Customer Part Number  
Si827 = ISOdriver product series  
Y = Configuration  
1 = Single driver  
U = UVLO level  
G = 3 V  
A = 5 V  
B = 8 V  
D = 12 V  
V = Isolation rating  
B = 2.5 kV  
Line 2 Marking:  
WX = Ordering options  
W = Dead-time setting range  
1= 10-200 ns  
4 = 20-700 ns  
X = Integrated de-glitch circuit  
D = integrated  
none = not included  
YY = Year  
Assigned by the Assembly House. Corresponds to the year and workweek  
of the mold date.  
WW = Work week  
TTTTTT = Mfg code  
Line 3 Marking:  
Manufacturing Code from Assembly Purchase Order form.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 37  
Si827x Data Sheet  
Top Markings  
8.3 Si827x Top Marking (14 LD LGA)  
Table 8.3. Top Marking Explanation (14 LD LGA)  
Line 1 Marking:  
Base Part Number  
Ordering Options  
Si827 = ISOdriver product series  
Y = configuration  
1 = single driver  
3 = High-side/Low-side (HS/LS)  
4 = PWM HS/LS  
5 = Dual driver  
See 1. Ordering Guide for  
more information.  
Line 2 Marking:  
Ordering Options  
U = UVLO level  
G = 3 V  
A = 5 V  
B = 8 V  
D = 12 V  
V = Isolation rating  
B = 2.5 kV  
W = Dead-time setting range  
1= 10-200 ns  
4 = 20-700 ns  
X = Integrated de-glitch circuit  
D = integrated  
none = not included  
Manufacturing Code from Assembly.  
Pin 1 identifier.  
Line 3 Marking:  
Line 4 Marking:  
TTTTTT = Mfg code  
Circle = 1.5 mm diameter  
YYWW  
Manufacturing date code.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 38  
Si827x Data Sheet  
Revision History  
9. Revision History  
9.1 Revision 0.1  
February 26, 2016  
• Initial release.  
silabs.com | Smart. Connected. Energy-friendly.  
Preliminary Rev. 0.5 | 39  
Table of Contents  
1. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2.1 Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . 6  
2.2 Family Overview and Logic Operation During Startup . . . . . . . . . . . . . . . . 7  
2.2.1 Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.2.2 Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2.3 Power Supply Connections . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.4 Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5 Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.6 Undervoltage Lockout Operation . . . . . . . . . . . . . . . . . . . . . . .11  
2.6.1 Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.6.2 Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.6.3 Control Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
2.6.4 Enable Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
2.7 Programmable Dead Time and Overlap Protection . . . . . . . . . . . . . . . . .12  
2.8 De-glitch Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1 High-Side/Low-Side Driver . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.2 Dual Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1 Test Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.2 Regulatory Information (Pending) . . . . . . . . . . . . . . . . . . . . . . .20  
5. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
5.1 Si8271 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .25  
5.2 Si8273/75 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . .26  
5.3 Si8274 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.1 Package Outline: 16-Pin Narrow-Body SOIC . . . . . . . . . . . . . . . . . . .28  
6.2 Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . .30  
6.3 Package Outline: 14 LD LGA (5 x 5 mm) . . . . . . . . . . . . . . . . . . . . .32  
7. Land Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.1 Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . .33  
7.2 Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . .34  
7.3 Land Pattern: 14 LD LGA . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1 Si827x Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . .36  
8.2 Si8271 Top Marking (8-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . .37  
Table of Contents 40  
8.3 Si827x Top Marking (14 LD LGA) . . . . . . . . . . . . . . . . . . . . . . .38  
9. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
9.1 Revision 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Table of Contents 41  
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY