WT41-A-AI4 [SILICON]

Telecom Circuit, 1-Func, MODULE-59;
WT41-A-AI4
型号: WT41-A-AI4
厂家: SILICON    SILICON
描述:

Telecom Circuit, 1-Func, MODULE-59

电信 电信集成电路
文件: 总49页 (文件大小:1339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
WT41-A / WT41-N  
DATA SHEET  
Wednesday, 22 January 2014  
Version 1.44  
Copyright © 2000-2014 Bluegiga Technologies  
All rights reserved.  
Bluegiga Technologies assumes no responsibility for any errors which may appear in this manual.  
Furthermore, Bluegiga Technologies reserves the right to alter the hardware, software, and/or specifications  
detailed here at any time without notice and does not make any commitment to update the information  
contained here. Bluegiga’s products are not authorized for use as critical components in life support devices  
or systems.  
The WRAP is a registered trademark of Bluegiga Technologies  
The Bluetooth trademark is owned by the Bluetooth SIG Inc., USA and is licensed to Bluegiga Technologies.  
All other trademarks listed herein are owned by their respective owners.  
Bluegiga Technologies Oy  
VERSION HISTORY  
Version  
0.1  
Comment  
First draft  
0.2  
Description and product codes added  
Dimensions updated, layout guide added, UART and USB chapters added  
Pin descriptions, PCM, USB, UART, SPI  
Physical dimensions corrected  
0.21  
0.22  
0.3  
0.31  
0.32  
Product codes corrected  
Recommendation for a power-up reset circuitry added to chapter 10  
Pins 1 and 52 (GND) removed. Dimensions updated, recommended land  
pattern added  
0.4  
0.5  
Certification information added  
0.6  
Physical dimensions and recommended PCB land pattern updated  
Figure 7 recommended land pattern corrected  
Radio and antenna characteristics, layout guide for WT41-N  
Japan certification info added  
0.7  
1.0  
1.1  
1.2  
FCC RF radiation exposure statement updated  
Layout guide updated  
1.3  
1.31  
1.32  
1.33  
1.34  
1.35  
1.36  
1.37  
VDD added to table 1  
FCC and IC statements updated  
PIO current drive capability added. List of approved antennas added.  
IC statements in French added  
Information about Japan compliance updated  
Absolute maximum supply voltage 3.7V  
MIC Japan information updated  
Bluegiga Technologies Oy  
1.4  
FCC C2PC to remove 20 cm restriction  
MIC Japan ID corrected  
1.41  
1.42  
1.43  
1.44  
MSL information updated  
TXP vs VDD_PA figure added  
Minor changes  
Bluegiga Technologies Oy  
TABLE OF CONTENTS  
1
2
3
Ordering Information......................................................................................................................................8  
Pinout and Terminal Description ...................................................................................................................9  
Electrical Characteristics ............................................................................................................................ 12  
3.1  
Absolute Maximum Ratings ................................................................................................................ 12  
Recommended Operating Conditions................................................................................................. 12  
PIO Current Sink and Source Capability............................................................................................. 12  
Transmitter Performance For BDR ..................................................................................................... 13  
Radiated Spurious Emissions ............................................................................................................. 14  
Receiver Performance ........................................................................................................................ 15  
Current Consumption .......................................................................................................................... 15  
Antenna Performance and Radiation Patterns ................................................................................... 16  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
4
5
Physical Dimensions .................................................................................................................................. 20  
Layout Guidelines....................................................................................................................................... 22  
5.1  
5.2  
5.2.1  
5.2.2  
WT41-A ............................................................................................................................................... 22  
WT41-N............................................................................................................................................... 23  
Layout for WT41-N with u.fl connector close to RF pin ............................................................... 23  
Layout for WT41-N with 50 ohm trace from RF pin to a SMA connector .................................... 23  
6
7
UART Interface........................................................................................................................................... 25  
6.1  
UART Bypass...................................................................................................................................... 27  
UART Configuration While Reset is Active ......................................................................................... 27  
UART Bypass Mode............................................................................................................................ 27  
6.2  
6.3  
USB Interface ............................................................................................................................................. 28  
7.1  
USB Data Connections ....................................................................................................................... 28  
USB Pull-Up resistor ........................................................................................................................... 28  
USB Power Supply.............................................................................................................................. 28  
Self-Powered Mode............................................................................................................................. 28  
Bus-Powered Mode............................................................................................................................. 29  
USB Suspend Current......................................................................................................................... 30  
USB Detach and Wake-Up Signaling.................................................................................................. 30  
USB Driver .......................................................................................................................................... 31  
USB v2.0 Compliance and Compatibility ............................................................................................ 31  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
8
9
Serial Peripheral Interface (SPI)................................................................................................................. 32  
PCM Codec Interface ................................................................................................................................. 33  
9.1  
PCM Interface Master/Slave ............................................................................................................... 33  
Long Frame Sync................................................................................................................................ 34  
Short Frame Sync ............................................................................................................................... 34  
Multi-slot Operation ............................................................................................................................. 35  
9.2  
9.3  
9.4  
Bluegiga Technologies Oy  
9.5  
9.6  
9.7  
9.8  
9.9  
GCI Interface....................................................................................................................................... 35  
Slots and Sample Formats.................................................................................................................. 36  
Additional Features ............................................................................................................................. 37  
PCM_CLK and PCM_SYNC Generation ............................................................................................ 37  
PCM Configuration.............................................................................................................................. 38  
I/O Parallel Ports..................................................................................................................................... 40  
PIO Defaults................................................................................................................................. 40  
Reset....................................................................................................................................................... 41  
Pin States on Reset ..................................................................................................................... 42  
Certifications ........................................................................................................................................... 43  
Bluetooth...................................................................................................................................... 43  
FCC.............................................................................................................................................. 43  
IC (Industry Canada).................................................................................................................... 44  
10  
10.1  
11  
11.1  
12  
12.1  
12.2  
12.3  
12.3.1 IC.................................................................................................................................................. 45  
12.4  
CE ................................................................................................................................................ 47  
Japan ........................................................................................................................................... 47  
Qualified Antenna Types for WT41-N.......................................................................................... 47  
Moisture Sensitivity Level (MSL).................................................................................................. 48  
Contact Information................................................................................................................................. 49  
12.5  
12.6  
12.7  
13  
Bluegiga Technologies Oy  
WT41 Bluetooth® Module  
DESCRIPTION  
FEATURES:  
WT41 is a long range class 1, Bluetooth® 2.1 +  
EDR module. WT41 is a highly integrated and  
sophisticated Bluetooth® module, containing all the  
necessary elements from Bluetooth® radio to  
antenna and a fully implemented protocol stack.  
Therefore WT41 provides an ideal solution for  
developers who want to integrate Bluetooth®  
wireless technology into their design with limited  
knowledge of Bluetooth® and RF technologies.  
WT41 is optimized for long range applications and  
since it contains a RF power amplifier, low noise  
amplifier and a highly efficient chip antenna. With  
115 dB radio budget WT41 can reach over 1 km  
range in line off sight.  
Fully Qualified Bluetooth v2.1 + EDR end  
product,  
CE, FCC, IC and MIC Japan  
TX power : 19 dBm  
RX sensitivity : -92 dBm  
Higly efficient chip antenna, U.FL connector or  
RF pin  
Class 1, range up to 800 meters  
Industrial temperature range from -40oC to  
+85oC  
RoHS Compliant  
USB interface (USB 2.0 compatible)  
UART with bypass mode  
6 x GPIO  
By default WT41 module is equipped with powerful  
and easy-to-use iWRAP firmware. iWRAP enables  
users to access Bluetooth® functionality with simple  
ASCII commands delivered to the module over  
serial interface - it's just like a Bluetooth® modem.  
1 x 8-bit AIO  
Support for 802.11 Coexistence  
Integrated iWRAPTM Bluetooth stack or HCI  
firmware  
APPLICATIONS:  
Hand held terminals  
Industrial devices  
Point-of-Sale systems  
PCs  
Personal Digital Assistants (PDAs)  
Computer Accessories  
Access Points  
Automotive Diagnostics Units  
Bluegiga Technologies Oy  
1 Ordering Information  
WT41-A-HCI  
Firmware  
HCI21= HCI firmware (Bluetooth 2.1 + EDR)  
HCI30= HCI firmware (Bluetooth 3.0)  
AI4  
AI5  
C
=
=
=
iWRAP 4.0.0  
iWRAP 5.0.2  
Custom*  
HW version  
A
N
=
=
Chip antenna  
RF pin  
Product series  
Bluegiga Technologies Oy  
Page 8 of 49  
2
Pinout and Terminal Description  
Pins 1 and 52 (GND)  
are not connected  
and have been  
removed  
51  
50  
RF  
RFGND  
2
3
4
5
6
7
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
49  
48  
GND  
GND  
GND  
GND  
GND  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
GND  
VDD_PA  
PIO2  
GND  
AIO  
UART_TX  
PIO3  
PIO5  
UART_RTS  
UART_RX  
GND  
USB+  
USB-  
UART_CTS  
PCM_IN  
PCM_CLK  
PCM_SYNC  
GND  
SPI_MOSI  
SPI_MISO  
SPI_CLK  
SPI_CSB  
GND  
PIO7  
PIO6  
RESET  
VDD  
GND  
Figure 1: WT41 pin out  
PIN  
NUMBER  
PAD TYPE  
Not connected  
DESCRIPTION  
Pins 1 and 52 (GND) have been removed  
from the module.  
NC  
1, 52  
Input, weak internal pull- Active low reset. Keep low for >5 ms  
RESET  
33  
up  
to cause a reset  
2-10, 16,  
23,24,26-  
28, 30,  
GND  
GND  
GND  
31,36,44-  
49, 53-59  
RF output for WT41-N. For WT41-A  
and WT41-E this pin is not connected  
RF  
51  
RF output  
RF ground. Connected to GND internally to  
the module.  
Supply voltage for the RF power amplifier  
and the low noise amplifier of the module  
Supply voltage for BC4 and the flash  
memory  
RFGND  
VDD_PA  
VDD  
50  
11  
32  
GND  
Supply voltage  
Supply voltage  
Table 1: Supply and RF Terminal Descriptions  
Bluegiga Technologies Oy  
Page 9 of 49  
PIN  
NUMBER  
PIO PORT  
PAD TYPE  
DESCRIPTION  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
PIO[2]  
PIO[3]  
PIO[4]  
PIO[5]  
PIO[6]  
12  
13  
29  
41  
34  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
Bi-directional, programmamble  
strength internal pull-down/pull-up line  
Programmamble input/output  
PIO[7]  
AIO[1]  
35  
43  
Programmamble analog  
input/output line  
Table 2: GPIO Terminal Descriptions  
Bi-directional  
SPI  
INTERFACE  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
CMOS output, tri-state,  
weak internal pull-down  
PCM_OUT  
25  
20  
22  
21  
Synchronous data output  
Synchronous data input  
Synchronous data sync  
Synchronous data clock  
CMOS input, weak  
internal pull-down  
PCM_IN  
Bi-directional, weak  
internal pull-down  
PCM_SYNC  
PCM_CLK  
Bi-directional, weak  
internal pull-down  
Table 3: PCM Terminal Descriptions  
UART  
Interfaces  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
CMOS output, tri-  
UART_TX  
42  
state, with weak UART data output, active high  
internal pull-up  
CMOS output, tri-  
UART_RTS#  
UART_RX  
14  
15  
19  
state, with weak UART request to send, active low  
internal pull-up  
CMOS input, tri-  
state, with weak UART data input, active high  
internal pull-down  
CMOS input, tri-  
state, with weak UART clear to send, active low  
internal pull-down  
UART_CTS#  
Table 4: UART Terminal Descriptions  
Bluegiga Technologies Oy  
Page 10 of 49  
PIN  
NUMBER  
USB Interfaces  
PAD TYPE  
DESCRIPTION  
USB data plus with selectable internal 1.5k  
pull-up resistor  
USB data minus  
USB+  
USB-  
17  
18  
Bidirectional  
Bidirectional  
Table 5: USB Terminal Descriptions  
SPI  
INTERFACE  
PIN  
NUMBER  
PAD TYPE  
DESCRIPTION  
SPI data input  
CMOS input with weak  
internal pull-down  
SPI_MOSI  
40  
CMOS input with weak Chip select for Serial Peripheral  
SPI_CS#  
37  
internal pull-up  
Interface, active low  
CMOS input with weak  
internal pull-down  
CMOS output, tristate,  
with weak internal pull SPI data output  
down  
SPI_CLK  
38  
39  
SPI clock  
SPI_MISO  
Table 6: Terminal Descriptions  
Bluegiga Technologies Oy  
Page 11 of 49  
3
Electrical Characteristics  
3.1 Absolute Maximum Ratings  
Rating  
Min  
Max  
Unit  
Storage Temperature  
-40  
85  
°C  
VDD_PA, VDD  
-0.4  
3.7  
V
V
Other Terminal Voltages  
VSS-0.4  
VDD+0.4  
Table 7: Absolute Maximum Ratings  
3.2 Recommended Operating Conditions  
Rating  
Min  
-40  
3.0  
Max  
85  
3.6  
Unit  
°C  
V
Operating Temperature Range  
VDD_PA, VDD *)  
*) VDD_PA has an effect on the RF output power.  
Table 8: Recommended Operating Conditions  
3.3 PIO Current Sink and Source Capability  
Figure 2: WT41 PIO Current Drive Capability  
Bluegiga Technologies Oy  
Page 12 of 49  
3.4 Transmitter Performance For BDR  
Antenna gain 2.3dBi taken into account  
RF Characetristics, VDD = 3.3V @ room  
Bluetooth  
Min  
Typ  
Max  
Unit  
dBm  
temperature unless otherwise specified  
Specification  
maximum RF Transmit Power  
17  
19  
20  
20  
RF power variation over temperature range  
RF power variation over supply voltage range (*  
4
-
-
-
dB  
dB  
dB  
1.5  
RF power variation over BT band  
RF power control range (*  
0.1  
-10  
1
2
19  
20dB band width for modulated carrier  
F = F0 ± 2MHz  
942  
1000  
-20  
kHz  
-20  
-40  
-40  
ACP (1  
F = F0 ± 3MHz  
F = F0 > 3MHz  
-40  
-40  
Drift rate  
ΔF1avg  
7
169  
+/-25  
140<175  
kHz  
kHz  
161  
1.1  
140<175  
>=0.8  
kHz  
ΔF1max  
ΔF2avg / ΔF1avg  
Table 9: Transmitter performance for BDR  
Figure 3: Typical TX power as a function of VDD_PA  
Bluegiga Technologies Oy  
Page 13 of 49  
3.5 Radiated Spurious Emissions  
Measured from WT41 evaluation board  
Min  
Typ  
Max  
Limit by the Standard  
(AVG / PEAK)  
Standard  
Band / Frequency  
Unit  
(AVG / (AVG / (AVG /  
PEAK) PEAK) PEAK)  
2nd harmonic  
3rd harmonic  
Band edge  
2390MHz  
Band edge  
52  
51  
54/58  
54/58  
54 / 74  
54 / 74  
dBuV/m  
dBuV/m  
50/60  
52/63  
54 / 74  
54 / 74  
dBuV/m  
dBuV/m  
FCC part 15  
transmitter  
spurious  
52/65  
54/67  
2483.5MHz  
Band edge  
2400MHz  
emissions  
-50  
-20  
dBc  
(conducted)  
Band edge  
2483.5MHz  
(conducted)  
Band edge  
2400MHz  
2nd harmonic  
3rd harmonic  
-58  
-39  
-20  
-30  
dBc  
ETSI EN 300 328  
transmitter  
spurious  
-36  
dBm  
-41  
-41  
-
-30  
-30  
-47  
-47  
dBm  
dBm  
dBm  
dBm  
emissions  
ETSI EN 300 328 (2400 - 2479) MHz  
receiver spurious  
(1600 - 1653) MHz  
-52  
Table 10:Radiated spurious emission for WT41-A  
Min  
(AVG /  
PEAK)  
Max  
(AVG /  
PEAK)  
50/56  
48/52  
Typ (AVG  
/ PEAK)  
Limit by the Standard  
(AVG / PEAK)  
Standard  
Unit  
2nd harmonic  
3rd harmonic  
Band edge  
2390MHz  
Band edge  
2483.5MHz  
Band edge 2400  
MHz (conducted)  
Band edge  
<48/55  
<48/51  
54 / 74  
54 / 74  
dBuV/m  
dBuV/m  
50/60  
52/65  
-50  
52/63  
54 / 74  
54 / 74  
-20  
dBuV/m  
dBuV/m  
dBc  
FCC part 15  
transmitter  
spurious emissions  
54/67  
3483.5MHz  
(conducted)  
Band edge  
2400MHz  
2nd harmonic  
3rd harmonic  
-58  
-39  
-20  
dBc  
-36  
-30  
ETSI EN 300 328  
transmitter  
spurious emissions  
dBm  
-30  
-30  
-47  
-47  
dBm  
dBm  
dBm  
dBm  
ETSI EN 300 328 (2400 - 2479) MHz  
receiver spurious  
(1600 - 1653) MHz  
Table 11: Radiated spurious emission for WT41-N  
Bluegiga Technologies Oy  
Page 14 of 49  
3.6 Receiver Performance  
Antenna gain not taken into account  
RF characteristis, VDD = 3.3V,  
Bluetooth  
Spefication  
Packet type Min  
Typ  
Max  
Unit  
room temperature (**  
DH1  
DH3  
DH5  
2-DH1  
2-DH3  
2-DH5  
3-DH1  
3-DH3  
3-DH5  
-92  
-92  
-91  
-94  
-93  
-93  
-88  
-85  
-84  
-70  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
Sensitivity for 0.1% BER  
Sensitivity variation over  
temperature range  
TBD  
Table 12: Receiver sensitivity  
3.7 Current Consumption  
Opearation mode  
Peak (mA)  
-
AVG (mA)  
2.1  
Stand-by, page mode 0  
TX 3DH5  
TX 2DH5  
TX 3DH3  
TX 2DH3  
TX 2DH1  
TX DH5  
100.5  
99.3  
98.1  
98.1  
98.7  
164  
77.6  
77.6  
71.1  
71.2  
51.6  
120  
TX DH1  
166  
56.8  
67.3  
52.6  
0.36  
58.7  
RX  
Deep sleep  
Inquiry  
169.3  
Table 13: Current consumption  
Bluegiga Technologies Oy  
Page 15 of 49  
3.8 Antenna Performance and Radiation Patterns  
Antenna performance measured from the module as a standalone and as mounted to the evaluation board.  
Table 14: Total efficiency of the chip antenna  
Table 15:Peak gain of the chip antenna  
Bluegiga Technologies Oy  
Page 16 of 49  
WT41 Evaluation Board  
WT41 stand alone  
Bluegiga Technologies Oy  
Page 17 of 49  
WT41 Evaluation Board  
WT41 stand alone  
Bluegiga Technologies Oy  
Page 18 of 49  
Back side of the  
evaluation kit  
Back side of  
WT41-A  
Bluegiga Technologies Oy  
Page 19 of 49  
4 Physical Dimensions  
Figure 4: Physical dimensions (top view)  
Figure 5: Dimensions for the RF pin (top view)  
Bluegiga Technologies Oy  
Page 20 of 49  
25.3 mm  
5.65 mm  
3.35 mm  
35.3 mm  
14.0 mm  
Figure 6: Dimensions of WT41  
Figure 7: Recommended land pattern  
Bluegiga Technologies Oy  
Page 21 of 49  
5 Layout Guidelines  
5.1 WT41-A  
WT41-A should be mounted directly over a solid GND plane. The best performance can be achieved when  
placing the module to the left corner or to a middle edge of the mother board, as shown in the figure below.  
Components can be mounted directly under the module and the antenna. The antenna is extremely robust for  
environment in close proximity to the antenna. Any dielectric material has minor effect on the resonant  
frequency of the antenna. Metal objects with physical height less than 2 mm can be placed freely anywhere  
around the module within the area of the mother board without significantly effecting on the radiation  
characteristics. It is important to place the module to the edge of the mother board and not to place metal  
objects in front of the antenna.  
Application  
Application  
board  
board  
Figure 8: Recommended positions for WT41-A  
Application  
board  
Figure 9: Do not place the module so that the GND plane reaches in front of the antenna  
Bluegiga Technologies Oy  
Page 22 of 49  
5.2 WT41-N  
5.2.1 Layout for WT41-N with u.fl connector close to RF pin  
If the trace from the RF pin to u.fl connector is very short there is no need to use impedance controlled trace.  
Figure 10 shows an example layout where the u.fl connector is placed right next to the RF pin.  
Figure 10: Layout of WT41-N with U.FL connector placed next to the RF pin  
5.2.2 Layout for WT41-N with 50 ohm trace from RF pin to a SMA connector  
Use 50 ohm transmission line to trace the signal from RF pin to an external RF connector. Figure 11 shows a  
layout example for WT41-N with an external SMA connector.  
50 ohm trace from RF pin  
to a SMA connector  
GND contact  
for the RF pin  
GND stitching vias separated  
by max 3 mm  
Figure 11: Example RF trace for WT41-N  
Bluegiga Technologies Oy  
Page 23 of 49  
 
 
A transmission line impedance calculator, such as TX-Line made by AWR, can be used to approximate the  
dimensions for the 50 ohm transmission line. Figure 12 shows an example for two different 50 ohm  
transmission lines.  
CPW Ground  
W = 0.15 mm  
G = 0.25 mm  
RF GROUND  
Prepreg, εr = 3.7  
RF GROUND  
h = 0.076 mm  
RF GROUND  
FR4, εr = 4.6  
GND stitching vias  
MICROSTRIP  
W = 1.8 mm  
FR4, εr = 4.6  
h = 1 mm  
RF GROUND  
Figure 12: Example cross section of two different 50 ohm transmission line  
Bluegiga Technologies Oy  
Page 24 of 49  
 
6 UART Interface  
This is a standard UART interface for communicating with other serial devices.WT41 UART interface provides  
a simple mechanism for communicating with other serial devices using the RS232 protocol.  
Four signals are used to implement the UART function. When WT41 is connected to another digital device,  
UART_RX and UART_TX transfer data between the two devices. The remaining two signals, UART_CTS and  
UART_RTS, can be used to implement RS232 hardware flow control where both are active low indicators. All  
UART connections are implemented using CMOS technology and have signalling levels of 0V and VDD.  
UART configuration parameters, such as data rate and packet format, are set using WT41 software.  
Note:  
In order to communicate with the UART at its maximum data rate using a standard PC, an accelerated serial  
port adapter card is required for the PC.  
Table 16: Possible UART Settings  
The UART interface is capable of resetting WT41 upon reception of a break signal. A break is identified by a  
continuous logic low (0V) on the UART_RX terminal, as shown in Figure 13. If tBRK is longer than the value,  
defined by PSKEY_HOST_IO_UART_RESET_TIMEOUT, (0x1a4), a reset will occur. This feature allows a  
host to initialise the system to a known state. Also, WT41 can emit a break character that may be used to  
wake the host.  
Figure 13: Break Signal  
Table 17 shows  
a
list of commonly used data rates and their associated values for  
PSKEY_UART_BAUD_RATE (0x204). There is no requirement to use these standard values. Any data rate  
within the supported range can be set in the PS Key according to the formula in Equation XXX  
Bluegiga Technologies Oy  
Page 25 of 49  
 
Equation 1: Data Rate  
Table 17: Standard Data Rates  
Bluegiga Technologies Oy  
Page 26 of 49  
6.1 UART Bypass  
Figure 14: UART Bypass Architecture  
6.2 UART Configuration While Reset is Active  
The UART interface for WT41 while the chip is being held in reset is tristate. This will allow the user to daisy  
chain devices onto the physical UART bus. The constraint on this method is that any devices connected to  
this bus must tristate when WT41 reset is de-asserted and the firmware begins to run.  
6.3 UART Bypass Mode  
Alternatively, for devices that do not tristate the UART bus, the UART bypass mode on BlueCore4-External  
can be used. The default state of BlueCore4-External after reset is de-asserted; this is for the host UART bus  
to be connected to the BlueCore4-External UART, thereby allowing communication to BlueCore4-External via  
the UART. All UART bypass mode connections are implemented using CMOS technology and have signalling  
levels of 0V and VDD.  
In order to apply the UART bypass mode, a BCCMD command will be issued to BlueCore4-External. Upon  
this issue, it will switch the bypass to PIO[7:4] as Figure 14 indicates. Once the bypass mode has been  
invoked, WT41 will enter the Deep Sleep state indefinitely.  
In order to re-establish communication with WT41, the chip must be reset so that the default configuration  
takes effect.  
It is important for the host to ensure a clean Bluetooth disconnection of any active links before the bypass  
mode is invoked. Therefore, it is not possible to have active Bluetooth links while operating the bypass mode.  
The current consumption for a device in UART bypass mode is equal to the values quoted for a device in  
standby mode.  
Bluegiga Technologies Oy  
Page 27 of 49  
 
7 USB Interface  
This is a full speed (12Mbits/s) USB interface for communicating with other compatible digital devices. WT41  
acts as a USB peripheral, responding to requests from a master host controller such as a PC.  
The USB interface is capable of driving a USB cable directly. No external USB transceiver is required. The  
device operates as a USB peripheral, responding to requests from a master host controller such as a PC.  
Both the OHCI and the UHCI standards are supported. The set of USB endpoints implemented can behave as  
specified in the USB section of the Bluetooth v2.1 + EDR specification or alternatively can appear as a set of  
endpoints appropriate to USB audio devices such as speakers.  
As USB is a master/slave oriented system (in common with other USB peripherals), WT41 only supports USB  
Slave operation.  
7.1 USB Data Connections  
The USB data lines emerge as pins USB_DP and USB_DN. These terminals are connected to the internal  
USB I/O buffers of the BlueCore4-External, therefore, have a low output impedance. To match the connection  
to the characteristic impedance of the USB cable, resistors must be placed in series with USB_DP/USB_DN  
and the cable.  
7.2 USB Pull-Up resistor  
WT41 features an internal USB pull-up resistor. This pulls the USB_DP pin weakly high when WT41 is ready  
to enumerate. It signals to the PC that it is a full speed (12Mbits/s) USB device.  
The USB internal pull-up is implemented as a current source, and is compliant with section 7.1.5 of the USB  
specification v1.2. The internal pull-up pulls USB_DP high to at least 2.8V when loaded with a 15k 5% pull-  
down resistor (in the hub/host) when VDD_PADS = 3.1V. This presents a Thevenin resistance to the host of  
at least 900. Alternatively, an external 1.5k pull-up resistor can be placed between a PIO line and D+ on the  
USB cable. The firmware must be alerted to which mode is used by setting PSKEY_USB_PIO_PULLUP  
appropriately. The default setting uses the internal pull-up resistor.  
7.3 USB Power Supply  
The USB specification dictates that the minimum output high voltage for USB data lines is 2.8V. To safely  
meet the USB specification, the voltage on the VDD supply terminal must be an absolute minimum of 3.1V.  
Bluegiga recommends 3.3V for optimal USB signal quality.  
7.4 Self-Powered Mode  
In self-powered mode, the circuit is powered from its own power supply and not from the VBUS (5V) line of the  
USB cable. It draws only a small leakage current (below 0.5mA) from VBUS on the USB cable. This is the  
easier mode for which to design, as the design is not limited by the power that can be drawn from the USB  
hub or root port. However, it requires that VBUS be connected to WT41 via a resistor network (Rvb1 and  
Rvb2), so WT41 can detect when VBUS is powered up. BlueCore4-External will not pull USB_DP high when  
VBUS is off.  
Self-powered USB designs (powered from a battery or PSU) must ensure that a PIO line is allocated for USB  
pullup purposes. A 1.5k 5% pull-up resistor between USB_DP and the selected PIO line should be fitted to the  
design. Failure to fit this resistor may result in the design failing to be USB compliant in self-powered mode.  
The internal pull-up in BlueCore is only suitable for bus-powered USB devices, e.g., dongles.  
Bluegiga Technologies Oy  
Page 28 of 49  
Figure 15: USB Connections for Self-Powered Mode  
The terminal marked USB_ON can be any free PIO pin. The PIO pin selected must be registered by setting  
PSKEY_USB_PIO_VBUS to the corresponding pin number.  
Figure 16: USB Interface Component Values  
7.5 Bus-Powered Mode  
In bus-powered mode, the application circuit draws its current from the 5V VBUS supply on the USB cable.  
WT41 negotiates with the PC during the USB enumeration stage about how much current it is allowed to  
consume. On power-up the device must not draw more than 100 mA but after being configured it can draw up  
to 500 mA.  
For WT41, the USB power descriptor should be altered to reflect the amount of power required. This is  
accomplished by setting PSKEY_USB_MAX_POWER (0x2c6). This is higher than for a Class 2 application  
due to the extra current drawn by the Transmit RF PA. By default for WT41 the setting is 300 mA.  
When selecting a regulator, be aware that VBUS may go as low as 4.4V. The inrush current (when charging  
reservoir and supply decoupling capacitors) is limited by the USB specification. See the USB Specification.  
Some applications may require soft start circuitry to limit inrush current if more than 10uF is present between  
VBUS and GND. The 5V VBUS line emerging from a PC is often electrically noisy. As well as regulation down  
to 3.3V and 1.8V, applications should include careful filtering of the 5V line to attenuate noise that is above the  
voltage regulator bandwidth. Excessive noise on WT41 supply pins will result in reduced receiver sensitivity  
and a distorted RF transmit signal.  
Bluegiga Technologies Oy  
Page 29 of 49  
Figure 17: USB Connections for Bus-Powered Mode  
7.6 USB Suspend Current  
All USB devices must permit the USB controller to place them in a USB suspend mode. While in USB  
Suspend, bus-powered devices must not draw more than 2.5mA from USB VBUS (self-powered devices may  
draw more than 2.5mA from their own supply). This current draw requirement prevents operation of the radio  
by bus-powered devices during USB Suspend.  
When computing suspend current, the current from VBUS through the bus pull-up and pull-down resistors  
must be included. The pull-up resistor at the device is 1.5 k. (nominal). The pull-down resistor at the hub is  
14.25k. to 24.80k. The pull-up voltage is nominally 3.3V, which means that holding one of the signal lines high  
takes approximately 200uA, leaving only 2.3mA available from a 2.5mA budget. Ensure that external LEDs  
and/or amplifiers can be turned off by BlueCore4-External. The entire circuit must be able to enter the  
suspend mode.  
7.7 USB Detach and Wake-Up Signaling  
WT41 can provide out-of-band signaling to a host controller by using the control lines called USB_DETACH  
and USB_WAKE_UP. These are outside the USB specification (no wires exist for them inside the USB cable),  
but can be useful when embedding WT41 into a circuit where no external USB is visible to the user. Both  
control lines are shared with PIO pins and can be assigned to any PIO pin by setting  
PSKEY_USB_PIO_DETACH and PSKEY_USB_PIO_WAKEUP to the selected PIO number.  
USB_DETACH is an input which, when asserted high, causes WT41 to put USB_DN and USB_DP in high  
impedance state and turns off the pull-up resistor on DP. This detaches the device from the bus and is  
logically equivalent to unplugging the device. When USB_DETACH is taken low, WT41 will connect back to  
USB and await enumeration by the USB host.  
USB_WAKE_UP is an active high output (used only when USB_DETACH is active) to wake up the host and  
allow USB communication to recommence. It replaces the function of the software USB WAKE_UP message  
(which runs over the USB cable) and cannot be sent while BlueCore4-External is effectively disconnected  
from the bus.  
Bluegiga Technologies Oy  
Page 30 of 49  
Figure 18: USB_Detach and USB_Wake_Up Signals  
7.8 USB Driver  
A USB Bluetooth device driver is required to provide a software interface between BlueCore4-External and  
Bluetooth software running on the host computer. Please, contact support@bluegiga.com for suitable drivers.  
7.9 USB v2.0 Compliance and Compatibility  
Although WT41 meets the USB specification, CSR cannot guarantee that an application circuit designed  
around the module is USB compliant. The choice of application circuit, component choice and PCB layout all  
affect USB signal quality and electrical characteristics. The information in this document is intended as a guide  
and should be read in association with the USB specification, with particular attention being given to Chapter  
7. Independent USB qualification must be sought before an application is deemed USB compliant and can  
bear the USB logo. Such qualification can be obtained from a USB plugfest or from an independent USB test  
house.  
Terminals USB_DP and USB_DN adhere to the USB Specification v2.0 (Chapter 7) electrical requirements.  
BlueCore4-External is compatible with USB v2.0 host controllers; under these circumstances the two ends  
agree the mutually acceptable rate of 12Mbits/s according to the USB v2.0 specification.  
Bluegiga Technologies Oy  
Page 31 of 49  
8 Serial Peripheral Interface (SPI)  
The SPI port can be used for system debugging. It can also be used for programming the Flash memory and  
setting the PSKEY configurations. WT41 uses 16-bit data and 16-bit address serial peripheral interface, where  
transactions may occur when the internal processor is running or is stopped. SPI interface is connected using  
the MOSI, MISO, CSB and CLK pins. Please, contact support@bluegiga.com for detailed information about  
the instruction cycle.  
Bluegiga Technologies Oy  
Page 32 of 49  
9 PCM Codec Interface  
PCM is a standard method used to digitize audio (particularly voice) for transmission over digital  
communication channels. Through its PCM interface, WT41 has hardware support for continual transmission  
and reception of PCM data, thus reducing processor overhead for wireless headset applications. WT41 offers  
a bidirectional digital audio interface that routes directly into the baseband layer of the on-chip firmware. It  
does not pass through the HCI protocol layer.  
Hardware on WT41 allows the data to be sent to and received from a SCO connection. Up to three SCO  
connections can be supported by the PCM interface at any one time.  
WT41 can operate as the PCM interface master generating an output clock of 128, 256 or 512kHz. When  
configured as PCM interface slave, it can operate with an input clock up to 2048kHz. WT41 is compatible with  
a variety of clock formats, including Long Frame Sync, Short Frame Sync and GCI timing environments.  
It supports 13-bit or 16-bit linear, 8-bit µ-law or A-law companded sample formats at 8ksamples/s and can  
receive and transmit on any selection of three of the first four slots following PCM_SYNC. The PCM  
configuration options are enabled by setting PSKEY_PCM_CONFIG32.  
WT41 interfaces directly to PCM audio devices.  
NOTE: Analog audio lines are very sensitive to RF disturbance. Use good layout practices to ensure noise  
less audio. Make sure that the return path for the audio signals follows the forward current all the way as close  
as possible and use fully differential signals when possible. Do not compromise audio routing.  
9.1 PCM Interface Master/Slave  
When configured as the master of the PCM interface, WT41 generates PCM_CLK and PCM_SYNC.  
Figure 19: PCM Interface Master  
When configured as the Slave of the PCM interface, WT41 accepts PCM_CLK rates up to 2048kHz.  
Bluegiga Technologies Oy  
Page 33 of 49  
Figure 20: PCM Interface Slave  
9.2 Long Frame Sync  
Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or  
samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When  
WT41 is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is 8-bits long.  
When WT41 is configured as PCM Slave, PCM_SYNC may be from two consecutive falling edges of  
PCM_CLK to half the PCM_SYNC rate, i.e., 62.5s long.  
Figure 21: Long Frame Sync (Shown with 8-bit Companded Sample)  
WT41 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge.  
PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in the LSB position or  
on the rising edge.  
9.3 Short Frame Sync  
In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is  
always one clock cycle long.  
Bluegiga Technologies Oy  
Page 34 of 49  
Figure 22: Short Frame Sync (Shown with 16-bit Sample)  
As with Long Frame Sync, WT41 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT  
on the rising edge. PCM_OUT may be configured to be high impedance on the falling edge of PCM_CLK in  
the LSB position or on the rising edge.  
9.4 Multi-slot Operation  
More than one SCO connection over the PCM interface is supported using multiple slots. Up to three SCO  
connections can be carried over any of the first four slots.  
Figure 23: Multi-slot Operation with Two Slots and 8-bit Companded Samples  
9.5 GCI Interface  
WT41 is compatible with the GCI, a standard synchronous 2B+D ISDN timing interface. The two 64kbits/s B  
channels can be accessed when this mode is configured.  
Bluegiga Technologies Oy  
Page 35 of 49  
Figure 24: GCI Interface  
The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8kHz. With WT41 in Slave mode,  
the frequency of PCM_CLK can be up to 4.096MHz.  
9.6 Slots and Sample Formats  
WT41 can receive and transmit on any selection of the first four slots following each sync pulse. Slot durations  
can be either 8 or 16 clock cycles. Durations of 8 clock cycles may only be used with 8-bit sample formats.  
Durations of 16 clocks may be used with 8-bit, 13-bit or 16-bit sample formats.  
WT41 supports 13-bit linear, 16-bit linear and 8-bit -law or A-law sample formats. The sample rate is  
8ksamples/s. The bit order may be little or big endian. When 16-bit slots are used, the 3 or 8 unused bits in  
each slot may be filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation  
compatible with some Motorola codecs.  
Bluegiga Technologies Oy  
Page 36 of 49  
Figure 25: 16-bit Slot Length and Sample Formats  
9.7 Additional Features  
WT41 has a mute facility that forces PCM_OUT to be 0. In master mode, PCM_SYNC may also be forced to 0  
while keeping PCM_CLK running which some codecs use to control power down.  
9.8 PCM_CLK and PCM_SYNC Generation  
WT41 has two methods of generating PCM_CLK and PCM_SYNC in master mode. The first is generating  
these signals by DDS from BlueCore4-External internal 4MHz clock. Using this mode limits PCM_CLK to 128,  
256 or 512kHz and PCM_SYNC to 8kHz. The second is generating PCM_CLK and PCM_SYNC by DDS from  
an internal 48MHz clock (which allows a greater range of frequencies to be generated with low jitter but  
consumes more power). This second method is selected by setting bit 48M_PCM_CLK_GEN_EN in  
PSKEY_PCM_CONFIG32. When in this mode and with long frame sync, the length of PCM_SYNC can be  
either 8 or 16 cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32.  
The Equation XXX describes PCM_CLK frequency when being generated using the internal 48MHz clock:  
Bluegiga Technologies Oy  
Page 37 of 49  
Equation 2: PCM_CLK Frequency When Being Generated Using the Internal 48MHz Clock  
The frequency of PCM_SYNC relative to PCM_CLK can be set using Equation XXX:  
Equation 3: PCM_SYNC Frequency Relative to PCM_CLK  
CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an  
example,  
to  
generate  
PCM_CLK  
at  
512kHz  
with  
PCM_SYNC  
at  
8kHz,  
set  
PSKEY_PCM_LOW_JITTER_CONFIG to 0x08080177.  
9.9 PCM Configuration  
The PCM configuration is set using two PS Keys, PSKEY_PCM_CONFIG32 detailed in Table 18 and  
PSKEY_PCM_LOW_JITTER_CONFIG in Table 19. The default for PSKEY_PCM_CONFIG32 is 0x00800000,  
i.e., first slot following sync is active, 13-bit linear voice format, long frame sync and interface master  
generating 256kHz PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT.  
Bluegiga Technologies Oy  
Page 38 of 49  
Name  
Bit position  
Description  
0
Set to 0  
-
0 selects Master mode with internal generation of PCM_CLK and  
PCM_SYNC. 1 selects Slave mode requiring externally generated  
PCM_CLK and PCM_SYNC. This should be set to 1 if  
48M_PCM_CLK_GEN_EN (bit 11) is set.  
SLAVE MODE EN  
1
0 selects long frame sync (rising edge indicates start of frame), 1  
selects short frame sync (falling edge indicates start of frame).  
SHORT SYNC EN  
-
2
3
Set to 0  
0 selects padding of 8 or 13-bit voice sample into a 16- bit slot by  
inserting extra LSBs, 1 selects sign extension. When padding is  
selected with 3-bit voice sample, the 3 padding bits are the audio gain  
setting; with 8-bit samples the 8 padding bits are zeroes.  
0 transmits and receives voice samples MSB first, 1 uses LSB first.  
SIGN EXTENDED  
EN  
4
LSB FIRST EN  
5
6
0 drives PCM_OUT continuously, 1 tri-states PCM_OUT immediately  
after the falling edge of PCM_CLK in the last bit of an active slot,  
assuming the next slot is not active.  
TX TRISTATE EN  
0 tristates PCM_OUT immediately after the falling edge of PCM_CLK  
in the last bit of an active slot, assuming the next slot is also not active.  
1 tristates PCM_OUT after the rising edge of PCM_CLK.  
TX TRISTATE  
RISING EDGE EN  
7
8
0 enables PCM_SYNC output when master, 1 suppresses PCM_SYNC  
whilst keeping PCM_CLK running. Some CODECS utilize this to enter  
a low power state.  
SYNC SUPPRESS  
EN  
GCI MODE EN  
MUTE EN  
9
10  
1 enables GCI mode.  
1 forces PCM_OUT to 0.  
0 sets PCM_CLK and PCM_SYNC generation via DDS from internal 4  
MHz clock, as for BlueCore4-External. 1 sets PCM_CLK and  
PCM_SYNC generation via DDS from internal 48 MHz clock.  
48M PCM CLK GEN  
EN  
11  
12  
0 sets PCM_SYNC length to 8 PCM_CLK cycles and 1 sets length to  
16 PCM_CLK cycles. Only applies for long frame sync and with  
48M_PCM_CLK_GEN_EN set to 1.  
LONG LENGTH  
SYNC EN  
-
[20:16]  
[22:21]  
Set to 0b00000.  
Selects 128 (0b01), 256 (0b00), 512 (0b10) kHz PCM_CLK frequency  
when master and 48M_PCM_CLK_GEN_EN (bit 11) is low.  
MASTER CLK RATE  
ACTIVE SLOT  
[26:23]  
[28:27]  
Default is 0001. Ignored by firmaware  
Selects between 13 (0b00), 16 (0b01), 8 (0b10) bit sample with 16  
cycle slot duration 8 (0b11) bit sample 8 cycle slot duration.  
SAMPLE_FORMAT  
Table 18: PSKEY_PCM_CONFIG32 description  
Name  
Bit position  
Description  
CNT LIMIT  
CNT RATE  
SYNC LIMIT  
[12:0]  
[23:16]  
[31:24]  
Sets PCM_CLK counter limit  
Sets PCM_CLK count rate.  
Sets PCM_SYNC division relative to PCM_CLK.  
Table 19: PSKEY_PCM_LOW_JITTER_CONFIG Description  
Bluegiga Technologies Oy  
Page 39 of 49  
10 I/O Parallel Ports  
Six lines of programmable bidirectional input/outputs (I/O) are provided. All the PIO lines are power from VDD.  
PIO lines can be configured through software to have either weak or strong pull-ups or pull-downs. All PIO  
lines are configured as inputs with weak pull-downs at reset. Any of the PIO lines can be configured as  
interrupt request lines or as wake-up lines from sleep modes.  
WT41 has a general purpose analogue interface pin AIO[1]. This is used to access internal circuitry and  
control signals. It may be configured to provide additional functionality.  
Auxiliary functions available via AIO[1] include an 8-bit ADC and an 8-bit DAC. Typically the ADC is used for  
battery voltage measurement. Signals selectable at this pin include the band gap reference voltage and a  
variety of clock signals: 48, 24, 16, 8MHz and the XTAL clock frequency. When used with analogue signals,  
the voltage range is constrained by the analogue supply voltage internally to the module (1.8V). When  
configured to drive out digital level signals (e.g., clocks), the output voltage level is determined by VDD.  
10.1PIO Defaults  
Bluegiga cannot guarantee that these terminal functions remain the same. Refer to the software release note  
for the implementation of these PIO lines, as they are firmware build-specific.  
Bluegiga Technologies Oy  
Page 40 of 49  
11 Reset  
WT41 may be reset from several sources: RESET pin, power on reset, a UART break character or via  
software configured watchdog timer. The RESET pin is an active low reset and is internally filtered using the  
internal low frequency clock oscillator. A reset will be performed between 1.5 and 4.0ms following RESETB  
being active. It is recommended that RESET be applied for a period greater than 5ms.  
The power on reset occurs when the VDD_CORE supply internally to the module falls below typically 1.5V  
and is released when VDD_CORE rises above typically 1.6V. At reset the digital I/O pins are set to inputs for  
bidirectional pins and outputs are tri-state.  
The reset should be held active at power up until all the supply voltages have stabilized to ensure correct  
operation of the internal flash memory. Following figure shows an example of a simple power up reset circuit.  
Time constant of the RC circuitry is set so that the supply voltage is safely stabilized before the reset  
deactivates.  
Figure 26: Example of a simple power on reset circuit.  
Bluegiga Technologies Oy  
Page 41 of 49  
11.1Pin States on Reset  
PIN NAME  
PIO[7:2]  
PCM_OUT  
PCM_IN  
PCM_SYNC  
PCM_CLK  
UART_TX  
UART_RX  
UART_RTS  
UART_CTS  
USB+  
STATE  
Input with weak pull-down  
Tri-staed with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Output tristated with weak pull-up  
Input with weak pull-down  
Output tristated with weak pull-up  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Input with weak pull-down  
Output tristated with weak pull-down  
Output, driving low  
USB-  
SPI_CSB  
SPI_CLK  
SPI_MOSI  
SPI_MISO  
AIO[1]  
Table 20: Pin States on Reset  
Bluegiga Technologies Oy  
Page 42 of 49  
12 Certifications  
WT41 is compliant to the following specifications.  
12.1Bluetooth  
WT41 module is Bluetooth qualified and listed as a controller subsystem and it is Bluetooth compliant to the  
following profiles of the core spec version 2.1/2.1+EDR.  
Baseband  
HCI  
Link Manager  
Radio  
12.2 FCC  
This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:  
(1) this device may not cause harmful interference, and  
(2) this device must accept any interference received, including interference that may  
cause undesired operation.  
FCC RF Radiation Exposure Statement:  
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End  
users must follow the specific operating instructions for satisfying RF exposure compliance. This transmitter  
meets both portable and mobile limits as demonstrated in the RF Exposure Analysis and should not be used  
closer than 22 mm from a human body in portable configuration. This transmitter must not be co-located or  
operating in conjunction with any other antenna or transmitter except in accordance with FCC multi-transmitter  
product procedures .  
OEM Responsibilities to comply with FCC Regulations  
The WT41-A/N Module has been certified for integration into products only by OEM integrators under the  
following conditions:  
The antenna(s) must be installed such that a minimum separation distance of 22 mm is maintained  
between the radiator (antenna) and all persons at all times.  
The transmitter module must not be co-located or operating in conjunction with any other antenna or  
transmitter except in accordance with FCC multi-transmitter product procedures.  
As long as the two conditions above are met, further transmitter testing will not be required. However, the  
OEM integrator is still responsible for testing their end-product for any additional compliance requirements  
required with this module installed (for example, digital device emissions, PC peripheral requirements, etc.).  
IMPORTANT NOTE: In the event that these conditions can not be met (for certain configurations or co-  
location with another transmitter), then the FCC and Industry Canada authorizations are no longer considered  
valid and the FCC ID can not be used on the final product. In these circumstances, the OEM integrator will be  
Bluegiga Technologies Oy  
Page 43 of 49  
responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC and  
Industry Canada authorization.  
End Product Labeling  
The WT41-A/N Module is labeled with its own FCC ID. If the IC Certification Number is not visible when the  
module is installed inside another device, then the outside of the device into which the module is installed  
must also display a label referring to the enclosed module. In that case, the final end product must be labeled  
in a visible area with the following:  
Contains Transmitter Module FCC ID: QOQWT41”  
or  
Contains FCC ID: QOQWT41”  
The OEM of the WT41-A/N Module must only use the approved antenna(s) listed in table 21, which have been  
certified with this module. The OEM integrator has to be aware not to provide information to the end user  
regarding how to install or remove this RF module or change RF related parameters in the user manual of the  
end product.  
12.3 IC (Industry Canada)  
IC Statements:  
This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the  
following two conditions: (1) this device may not cause interference, and (2) this device must accept any  
interference, including interference that may cause undesired operation of the device.  
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and  
maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio  
interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically  
radiated power (e.i.r.p.) is not more than that necessary for successful communication.  
If detachable antennas are used:  
This radio transmitter (identify the device by certification number, or model number ifCategory II) has been  
approved by Industry Canada to operate with the antenna types listed below with the maximum permissible  
gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list,  
having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this  
device. See table 21 for the approved antennas for WT41-N  
End Product Labeling  
The WT41-A/N Module is labeled with its own IC Certification Number. If the IC Certification Number is not  
visible when the module is installed inside another device, then the outside of the device into which the  
module is installed must also display a label referring to the enclosed module. In that case, the final end  
product must be labeled in a visible area with the following:  
Contains Transmitter Module IC: 5123A-BGTWT41”  
Bluegiga Technologies Oy  
Page 44 of 49  
or  
Contains IC: 5123A-BGTWT41”  
To comply with Industry Canada RF radiation exposure limits for general population, the antenna(s)  
used for this transmitter must be installed such that a minimum separation distance of 20 cm is  
maintained between the radiator (antenna) and all persons at all times and must not be co-located or  
operating in conjunction with any other antenna or transmitter.  
12.3.1 IC  
Déclaration de conformité IC :  
Ce matériel respecte les standards RSS exempt de licence d’Industrie Canada. Son utilisation est soumise  
aux deux conditions suivantes :  
(1) l’appareil ne doit causer aucune interférence, et  
(2) l’appareil doit accepter toute interférence, quelle qu’elle soit, y compris les interférences  
susceptibles d’entraîner un fonctionnement non requis de l’appareil.  
Selon la réglementation d’Industrie Canada, ce radio-transmetteur ne peut utiliser qu’un seul type d’antenne  
et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de  
réduire les interférences potentielles avec d’autres utilisateurs, le type d’antenne et son gain devront être  
définis de telle façon que la puissance isotrope rayonnante équivalente (EIRP) soit juste suffisante pour  
permettre une bonne communication.  
Lors de l’utilisation d’antennes amovibles :  
Ce radio-transmetteur (identifié par un numéro certifié ou un numéro de modèle dans le cas de la catégorie II)  
a été approuvé par Industrie Canada pour fonctionner avec les antennes référencées ci-dessous dans la  
limite de gain acceptable et l’impédance requise pour chaque type d’antenne cité. Les antennes non  
référencées possédant un gain supérieur au gain maximum autorisé pour le type d’antenne auquel elles  
appartiennent sont strictement interdites d’utilisation avec ce matériel. Veuillez vous référer au tableau 21  
concernant les antennes approuvées pour les WT41-N.  
Les responsabilités de l’intégrateur afin de satisfaire aux réglementations de la FCC et d’Industrie  
Canada :  
Les modules WT41-A/N ont été certifiés pour entrer dans la fabrication de produits exclusivement réalisés par  
des intégrateurs dans les conditions suivantes :  
L’antenne (ou les antennes) doit être installée de façon à maintenir à tout instant une distance  
minimum de 20cm entre la source de radiation (l’antenne) et toute personne physique.  
Bluegiga Technologies Oy  
Page 45 of 49  
Le module transmetteur ne doit pas être installé ou utilisé en concomitance avec une autre antenne  
ou un autre transmetteur.  
Tant que ces deux conditions sont réunies, il n’est pas nécessaire de procéder à des tests supplémentaires  
sur le transmetteur. Cependant, l’intégrateur est responsable des tests effectués sur le produit final afin de se  
mettre en conformité avec d’éventuelles exigences complémentaires lorsque le module est installé (exemple :  
émissions provenant d’appareils numériques, exigences vis-à-vis de périphériques informatiques, etc.) ;  
IMPORTANT : Dans le cas où ces conditions ne peuvent être satisfaites (pour certaines configurations ou  
installation avec un autre transmetteur), les autorisations fournies par la FCC et Industrie Canada ne sont plus  
valables et les numéros d’identification de la FCC et de certification d’Industrie Canada ne peuvent servir pour  
le produit final. Dans ces circonstances, il incombera à l’intégrateur de faire réévaluer le produit final  
(comprenant le transmetteur) et d’obtenir une autorisation séparée de la part de la FCC et d’Industrie Canada.  
Etiquetage du produit final  
Chaque module WT41-A/N possède sa propre identification FCC et son propre numéro de certification IC. Si  
l’identification FCC et le numéro de certification IC ne sont pas visibles lorsqu’un module est installé à  
l’intérieur d’un autre appareil, alors l’appareil en question devra lui aussi présenter une étiquette faisant  
référence au module inclus. Dans ce cas, le produit final doit comporter une étiquette placée de façon visible  
affichant les mentions suivantes :  
« Contient un module transmetteur certifié FCC QOQWT41 »  
« Contient un module transmetteur certifié IC 5123A-BGTWT41 »  
ou  
« Inclut la certification FCC QOQWT41 »  
« Inclut la certification IC 5123A-BGTWT41 »  
L’intégrateur du module WT41-A/N ne doit utiliser que les antennes répertoriées dans le tableau 21 certifiées  
pour ce module. L’intégrateur est tenu de ne fournir aucune information à l’utilisateur final autorisant ce  
dernier à installer ou retirer le module RF, ou bien changer les paramètres RF du module, dans le manuel  
d’utilisation du produit final.  
Afin de se conformer aux limites de radiation imposées par la FCC et Industry Canada, l’antenne (ou  
les antennes) utilisée pour ce transmetteur doit être installée de telle sorte à maintenir une distance  
Bluegiga Technologies Oy  
Page 46 of 49  
minimum de 20cm à tout instant entre la source de radiation (l’antenne) et les personnes physiques.  
En outre, cette antenne ne devra en aucun cas être installée ou utilisée en concomitance avec une  
autre antenne ou un autre transmetteur.  
12.4CE  
WT41 meets the requirements of the standards below and hence fulfills the requirements of EMC Directive  
89/336/EEC as amended by Directives 92/31/EEC and 93/68/EEC within CE marking requirement.  
EMC (immunity only) EN 301 489-17 V.1.3.3 in accordance with EN 301 489-1 V1.8.1  
Radiated emissions EN 300 328 V1.7.1  
12.5Japan  
WT41-E has modular certification with certification number R 209-J00047  
12.6Qualified Antenna Types for WT41-N  
This device has been designed to operate with the antennas listed below, and having a maximum gain of 2.3  
dBi. Antennas not included in this list or having a gain greater than 2.3 dBi are strictly prohibited for use with  
this device. The required antenna impedance is 50 ohms.  
Qualified Antenna Types for WT41-N  
Antenna Type  
Maximum Gain  
Dipole  
2.3 dBi  
Table 21: Qualified Antenna Types for WT41-N  
To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that  
the equivalent isotropically radiated power (e.i.r.p.) is not more than that permitted for successful  
communication. Using an antenna of a different type or gain more than 2.3 dBi will require additional testing  
for FCC, CE and IC. Please, contact support@bluegiga.com for more information.  
Any antenna of the same type and the same or less gain can be used without additional application to FCC.  
Table 22 lists approved antennas for WT41. Any approved antenna listed in table 22 can be used directly with  
WT41 without any additional approval. Any antenna not listed in table 22 can be used with WT41-N as long as  
detailed information from that particular antenna is provided to Bluegiga for approval. Specification of each  
antenna used with WT41-N will be filed by Bluegiga. Please, contact support@bluegiga.com for more  
information.  
Bluegiga Technologies Oy  
Page 47 of 49  
Approved antennas for WT41-N  
Specification given by the  
manufacturer  
Antenna  
manufacturer  
Pulse  
Antenna part  
number  
Performance measured by BGT  
Gain  
2
Efficiency  
NA  
Gain  
1
Efficiency  
70...80%  
W1030  
Linx  
Technologies  
Inc  
ANT-2.4-CW-  
CT-SMA  
CAR-ATR-187-  
001  
NA  
2
NA  
NA  
1.3  
0.8  
77 %  
Litecon  
60...70%  
Table 22: Approved Antennas For WT41-N  
12.7Moisture Sensitivity Level (MSL)  
Moisture sensitivity level (MSL) of this product is 3. For the handling instructions please refer to JEDEC J-  
STD-020 and JEDEC J-STD-033.  
If baking is required, devices may be baked for 12 hours at 125°C +/-5°C for high temperature device  
containers.  
Bluegiga Technologies Oy  
Page 48 of 49  
13 Contact Information  
Sales:  
sales@bluegiga.com  
Technical support:  
support@bluegiga.com  
http://www.bluegiga.com/support  
Orders:  
orders@bluegiga.com  
Head Office / Finland:  
Phone: +358-9-4355 060  
Fax: +358-9-4355 0660  
Street Address:  
Postal address:  
Sales Office / USA:  
Sinikalliontie 5A  
02630 ESPOO  
FINLAND  
P.O. BOX 120  
02631 ESPOO  
FINLAND  
Phone: (781) 556-1039  
Bluegiga Technologies, Inc.  
99 Derby Street, Suite 200 Hingham, MA 02043  
Bluegiga Technologies Oy  
Page 49 of 49  

相关型号:

WT41-A-AI5

Telecom Circuit, 1-Func, MODULE-59
SILICON

WT41-A-C

Telecom Circuit, 1-Func, MODULE-59
SILICON

WT41-A-HCI21

Telecom Circuit, 1-Func, MODULE-59
SILICON

WT41-E-AI3

Telecom Circuit, 1-Func, MODULE-59/57
SILICON

WT41-E-C

Telecom Circuit,
SILICON

WT41-E-HCI

Telecom Circuit, 1-Func, MODULE-59/57
SILICON

WT41-E-HCI21

Telecom Circuit, 1-Func, MODULE-59/57
SILICON

WT41-N-C

Telecom Circuit, 1-Func, MODULE-59
SILICON

WT431

Adjustable Accurate Reference Source
WEITRON

WT4311

TRANSISTOR | BJT | NPN | 40V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4312

TRANSISTOR | BJT | NPN | 60V V(BR)CEO | 275A I(C) | FBASE-F
ETC

WT4313

TRANSISTOR | BJT | NPN | 80V V(BR)CEO | 275A I(C) | FBASE-F
ETC