ZM5202 [SILICON]

FULLY INTEGRATED Z-WAVE® WIRELESS MODULE;
ZM5202
型号: ZM5202
厂家: SILICON    SILICON
描述:

FULLY INTEGRATED Z-WAVE® WIRELESS MODULE

文件: 总42页 (文件大小:1495K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATASHEET: ZM5202  
Features  
FULLY INTEGRATED Z-WAVE® WIRELESS MODULE  
Pad and pin compatible with the ZM3102  
and ZM4102  
ITU G.9959 compliant  
Module  
Optimized 8051 CPU Core  
128kB Flash  
16kB SRAM  
UART with speed up to 230.4kbps  
SPI with speed up to 8MHz  
2 Interrupt Inputs  
4-channel 12/8-bit rail-to-rail ADC with  
VDD/internal/external voltage reference  
PWM Output  
10 General Purpose IOs  
Hardware AES-128 security engine  
1000 step dimmer (TRIAC/FET)  
Power-On-Reset/Brown-out Detection  
Supply voltage range from 2.3V to 3.6V for  
optional battery operation  
The Silicon Labs ZM5202 module is a low-cost fully integrated Z-Wave  
module in a small 12.5mm x 13.6mm x 1.9mm form factor. It is an ideal  
solution for home control applications such as access control, appliance  
control, AV control, building automation, energy management, lighting,  
security, and sensor networks in the “Internet of Things”.  
TX mode current typ. 36mA@0dBm  
RX mode current typ. 32mA  
Normal mode current typ. 15mA  
Sleep mode current typ. 1µA  
Wake-up timer current typ. 700nA  
Less than 1ms cold start-up time  
It contains all the required passive components, including the crystal and a  
SAW filter to provide a complete Z-Wave system. The ZM5202 module  
remains pad and pin compatible with the ZM3102 and the ZM4102  
Z-Wave modules.  
Radio Transceiver  
The ZM5202 module is based on an 8-bit 8051 CPU core, which is  
optimized to handle the data and link management requirements of a  
Z-Wave node. The patented Z-Wave protocol supports automatic  
Receiver sensitivity with SAW filter down  
to -103dBm @ 9.6kbps  
Transmit power with SAW filter up to  
+4dBm  
Z-Wave 9.6/40/100kbps data rates  
Supports all Z-Wave sub-1 GHz frequency  
bands (865.2 MHz to 926.3 MHz)  
Supports multi-channel frequency agility  
and listen before talk  
retransmissions,  
collision  
avoidance  
mechanisms,  
frame  
acknowledgements, frame CRCs, frequency agility, and full mesh routing to  
ensure a highly reliable and robust wireless communication solution.  
An integrated baseband controller, sub-1 GHz radio transceiver, a  
comprehensive set of hardware peripherals, 16kB of SRAM, and 128kB of  
Flash memory is available for OEM applications and the Z-Wave protocol  
stack.  
Regulatory Compliance  
ACMA: AS/NZS 4268  
CE: EN 300 220/489  
FCC: CFR 47 Part 15  
IC: RSS-GEN/210  
MIC: ARIB STD-T108  
DSH12435-15 | 3/2018  
1
Datasheet: ZM5202  
1
2
CONTENT  
OVERVIEW.......................................................................................................................................................................... 4  
2.1  
2.2  
2.2.1  
CPU...................................................................................................................................................................................... 5  
PERIPHERALS........................................................................................................................................................................... 5  
Advanced Encryption Standard Security Processor..................................................................................................... 5  
Analog-to-Digital Converter ........................................................................................................................................ 5  
Brown-Out Detector / Power-On-Reset....................................................................................................................... 6  
Crystal Driver and System Clock.................................................................................................................................. 6  
Dimmer........................................................................................................................................................................ 6  
General Purpose Input/Output.................................................................................................................................... 7  
General Purpose Timer / Pulse Width Modulator ....................................................................................................... 7  
Interrupt Controller ..................................................................................................................................................... 8  
Light-Emitting Diode Contoller.................................................................................................................................... 8  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
2.2.10 Reset Controller........................................................................................................................................................... 8  
2.2.11 Serial Peripheral Interface........................................................................................................................................... 9  
2.2.12 Timers........................................................................................................................................................................ 10  
2.2.13 Universal Asynchronous Receiver / Transmitter ....................................................................................................... 10  
2.2.14 Wake-Up Timer ......................................................................................................................................................... 10  
2.2.15 Watchdog.................................................................................................................................................................. 10  
2.2.16 Wireless Transceiver.................................................................................................................................................. 11  
2.3  
2.4  
2.4.1  
2.5  
MEMORY MAP...................................................................................................................................................................... 11  
MODULE PROGRAMMING........................................................................................................................................................ 12  
Entering In-System Programming Mode................................................................................................................... 12  
POWER SUPPLY REGULATOR .................................................................................................................................................... 12  
3
4
TYPICAL APPLICATION ...................................................................................................................................................... 13  
PIN CONFIGURATION........................................................................................................................................................ 14  
4.1  
PIN FUNCTIONALITY................................................................................................................................................................ 15  
5
ELECTRICAL CHARACTERISTICS.......................................................................................................................................... 18  
5.1  
TEST CONDITIONS .................................................................................................................................................................. 18  
Typical Values............................................................................................................................................................ 18  
Minimum and Maximum Values............................................................................................................................... 18  
ABSOLUTE MAXIMUM RATINGS................................................................................................................................................ 19  
GENERAL OPERATING RATINGS................................................................................................................................................. 19  
CURRENT CONSUMPTION ........................................................................................................................................................ 19  
SYSTEM TIMING..................................................................................................................................................................... 20  
NON-VOLATILE MEMORY........................................................................................................................................................ 21  
ANALOG-TO-DIGITAL CONVERTER ............................................................................................................................................. 22  
GENERAL PURPOSE INPUT OUTPUT ........................................................................................................................................... 22  
RF CHARACTERISTICS.............................................................................................................................................................. 24  
Transmitter................................................................................................................................................................ 24  
Receiver..................................................................................................................................................................... 25  
Regulatory Compliance ............................................................................................................................................. 27  
5.1.1  
5.1.2  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
5.9  
5.9.1  
5.9.2  
5.9.3  
6
7
Z-WAVE FREQUENCIES...................................................................................................................................................... 28  
MODULE INFORMATION................................................................................................................................................... 29  
2
DSH12435-15 | 3/2018  
Datasheet: ZM5202  
7.1  
7.2  
MODULE MARKING................................................................................................................................................................ 29  
MODULE DIMENSIONS............................................................................................................................................................ 29  
8
9
PROCESS SPECIFICATION................................................................................................................................................... 29  
PCB MOUNTING AND SOLDERING..................................................................................................................................... 30  
9.1  
RECOMMENDED PCB MOUNTING PATTERN................................................................................................................................ 30  
SOLDERING INFORMATION................................................................................................................................................................... 30  
10  
ORDERING INFORMATION ............................................................................................................................................ 32  
10.1 TAPE AND REEL INFORMATION ................................................................................................................................................. 32  
10.1.1 Tape dimensions........................................................................................................................................................ 33  
10.1.2 Reel Supplier A .......................................................................................................................................................... 35  
10.1.3 Reel Supplier B........................................................................................................................................................... 36  
11  
12  
13  
ABBREVIATIONS............................................................................................................................................................ 37  
REVISION HISTORY........................................................................................................................................................ 39  
REFERENCES.................................................................................................................................................................. 41  
DSH12435-15 | 3/2018  
3
Datasheet: ZM5202  
2
OVERVIEW  
The ZM5202 module is a fully integrated module containing all the hardware and firmware required to add Z-Wave functionality  
to OEM products. The ZM5202 module contains the SD3502 chip along with all the required passives for supply decoupling,  
matching, crystal and a SAW filter as illustrated in Figure 2.1. The module only requires a stable DC supply and an antenna  
matched to 50Ω for operation.  
ZM5202  
SD3502  
Voltage  
Regulator  
GP Timer /  
PWM  
Wake-Up  
Timer  
Decoupling  
Sub-1 GHz  
Wireless  
Transceiver  
Transceiver  
Matching /  
SAW Filter  
128kB Flash  
Memory  
POR / BOD  
8051 Timers  
Watchdog  
Dimmer  
Power  
Manager  
ADC  
GPIO  
SPI  
Modem  
12kB XRAM  
4kB XRAM  
256B IRAM  
Special  
Function  
Register  
LED  
Controller  
Baseband  
Controller  
UART  
AES  
Clock  
Control  
8051W CPU  
128B Critical  
Memory  
RAM  
Interrupt  
Controller  
32MHz  
XTAL  
XTAL Driver  
Figure 2.1: Functional block diagram  
The module is verified to pass regulatory requirements and qualified to meet Z-Wave specifications. The crystal and the SAW  
filter are key elements that provide frequency stability of the RF output signal, and excellent RF immunity to interfering signals  
in the receiver path. The ZM5202 module is fully backwards compatible with the ZM4102 and ZM3102 modules in terms of the  
available GPIOs, hardware peripherals, and footprint. Unlike the ZM4102, it does not require a higher voltage during  
programming.  
4
DSH12435-15 | 3/2018  
 
 
Datasheet: ZM5202  
2.1 CPU  
The CPU is binary compatible with the industry standard 803x/805x CPU and is operated at 32MHz. Its cycle performance is  
improved by six times relative to the standard 8051 implementation.  
The CPU can be placed in 4 main modes as described in Table 2.1.  
Table 2.1: CPU modes  
Mode  
ACTIVE  
Description  
Code is executed  
Peripherals are available  
All I/O’s are resistively pulled high  
Use a short ( up to 4ms) reset-low pulse to enter the reset of active state  
SLEEP  
Wake-up timer available  
Critical memory retention available  
I/O’s states according to user configuration  
Use API call to enter from ACTIVE mode  
Used to program the internal FLASH via SPI1  
Code is not executed  
All I/O’s are resistively pulled high  
PROGRAMMING  
DURING  
SUSTAINED  
RESET  
Programming requires external control of the reset pin plus the SPI port  
Used to program an external NVM (FLASH/EPROM) (optionally) wired to the SPI port  
Code is not executed  
EXTERNAL NVM  
PROGRAMMING  
All I/O’s are resistively pulled high  
External NVM programming requires external control of the RESET pin (plus the NVM-SPI port)  
2.2 PERIPHERALS  
2.2.1 ADVANCED ENCRYPTION STANDARD SECURITY PROCESSOR  
The Z-Wave protocol specifies the use of Advanced Encryption Standard (AES) 128-bit block encryption for secure applications.  
The built-in Security Processor is a hardware accelerator that encrypts and decrypts data at a rate of 1 byte per 1.5µs. It encodes  
the frame payload and the message authentication code to ensure privacy and authenticity of messages. The processor supports  
Output FeedBack (OFB), Cipher-Block Chaining (CBC), and Electronic CodeBook (ECB) modes to target variable length messages.  
Payload data is streamed in OFB mode, and authentication data is processed in CBC mode as required by the Z-Wave protocol.  
The processor implements two efficient access methods: Direct Memory Access (DMA) and streaming through Special Function  
Register (SFR) ports. The processor functionality is exposed via the Z-Wave API for application use.  
2.2.2 ANALOG-TO-DIGITAL CONVERTER  
The Analog-to-Digital Converter (ADC) is capable of sampling one of the five available input voltage sources and returns an 8 or  
12-bit unsigned representation of the selected input scaled relative to the selected reference voltage, as described by the  
formula below.  
ꢇꢈ  
ꢀꢁꢂꢃꢄꢅ  
=
,
ꢉꢊꢋꢌ ≤ ꢆ ꢉꢊꢋ+  
ꢇꢈ  
ꢉꢊꢋ+ ꢉꢊꢋꢌ  
The ADC is capable of operating rail to rail, while the following input configurations apply (VBG = built-in Band-gap 1.25V,  
VDD = supply voltage, VIN = pin 10 and pin 13 to pin 15):  
DSH12435-15 | 3/2018  
5
 
 
 
 
 
Datasheet: ZM5202  
Table 2.2: ADC voltage source configuration options  
Source  
VIN  
VREF+  
VREF-  
Description  
The sampling input voltage  
The positive node of the reference voltage  
The negative node of the reference voltage  
Pin  
Pin 10, pin 13, pin 14, pin15, VBG  
Pin 14, VBG, VDD  
Pin 13, GND  
If the sampling input voltage crosses a predefined lower or upper voltage threshold, an interrupt is triggered. Setting VIN = VBG  
and VRFE+ = VDD implements a battery monitor. All inputs (VIN, VREF+, VREF-) must be driven by low impedance (Rsource) voltage  
sources, to suppress offsets caused by GPIO input leakage of up to 10µA.  
ꢉꢊꢋ+ ꢉꢊꢋꢌ  
ꢎꢏꢐꢑꢒꢓ  
ꢈꢏ. ꢏꢘ ꢙꢚꢛꢎ , ꢜℎꢝꢞꢝ ꢔꢇꢈꢕꢖꢗ = ±10µꢀ  
|
|
2 ∗ ꢔꢇꢈꢕꢖꢗ 2  
If the output impedance of the signal source is larger than Rsource, an external buffer must be used.  
2.2.3 BROWN-OUT DETECTOR / POWER-ON-RESET  
When a cold start-up occurs, an internal Power-On-Reset (POR) circuit ensures that code execution does not begin unless the  
supply voltage is sufficient. After which, an internal Brown-Out Detector (BOD) circuit guarantees that faulty code execution  
does not occur by entering the reset state, if the supply voltage drops below the minimum operating level. These guarantees  
apply equally in both the active and sleep modes.  
2.2.4 CRYSTAL DRIVER AND SYSTEM CLOCK  
The system clock and RF frequencies are derived from the module mounted 32MHz crystal (XTAL), which internal system  
performance is factory trimmed to guarantee initial RF frequency precision. The temperature and 5 years aging margin for the  
internal 32MHz XTAL is 15 ppm.  
2.2.5 DIMMER  
The Dimmer allows you to build leading edge or trailing edge dimmers to cover dimming applications with electronic  
transformers, halogen or incandescent lamps, wire-wound transformers, etc. The classic leading edge method requires an  
external TRIAC while the more versatile and electronic transformer friendly trailing edge method requires external Field Effect  
Transistors (FET) or Insulated-Gate Bipolar Transistors (IGBT). The Dimmer regulates the power-on duration with a precision of  
1000 steps in each 50 Hz or 60 Hz half-period. Once the Dimmer has been initialized, it will run at the requested power setting  
without any assistance from the MCU.  
2.2.5.1 LEADING EDGE MODE  
This is the classic TRIAC mode. Based on the dim-level requested, the Dimmer determines when and how the power is switched  
on. To ensure reliable handling in presence of inductive loads, multiple trigger pulses are automatically appended when needed.  
6
DSH12435-15 | 3/2018  
 
 
 
 
Datasheet: ZM5202  
Mains voltage  
TRIAC firing pulses  
Current through  
Figure 2.2: Leading edge mode (TRIAC)  
2.2.5.2 TRAILING EDGE MODE  
When FET/IGBT Mode is enabled, the Dimmer allows power to grow softly after each voltage zero crossing event. The Dimmer  
controls the turn-off time (or angle) by switching off the FET/IGBT.  
Mains voltage  
FET/IGBT firing pulses  
Current through load  
Figure 2.3: Trailing edge mode (FET/IGBT)  
2.2.5.3 ZERO CROSSING SYNCHRONIZATION  
The Dimmer detects and synchronizes to the AC voltage via a zero-crossing acquisition signal provided by the dimming  
application. This signal must be connected to pin 14 and GPIO input level compliant. Multiple single and dual event-per-cycle  
formats are supported. Fixed phase delays are accepted and easily compensated for through the Z-Wave API.  
2.2.6 GENERAL PURPOSE INPUT/OUTPUT  
There are 10 General Purpose Input/Output (GPIO) pins. These pins can be configured individually as Schmitt triggered inputs  
with/without internal pull-up or open-drain/push-pull outputs. The GPIO pins can be overridden by peripheral functions and  
each pin is able to drive loads with a minimum of 8mA.  
2.2.7 GENERAL PURPOSE TIMER / PULSE WIDTH MODULATOR  
A 16-bit General Purpose (GP) auto-reload timer could be provided with either an accurate 4MHz clock or an approximate 32kHz  
clock. It can be configured to auto-reload a predefined value and may be polled or programmed to generate an interrupt when  
DSH12435-15 | 3/2018  
7
 
 
Datasheet: ZM5202  
the register wraps around. It also serves as a Pulse Width Modulated (PWM) signal generator on pin 4. A simple low frequency  
Digital-to-Analog Converter (DAC) could be designed using a few external passive components.  
2.2.8 INTERRUPT CONTROLLER  
Fifteen interrupt sources are supported, including external interrupt sources on the pin 3 and pin 4. The interrupts are shared  
between the user application and the Z-Wave protocol. Priorities for the interrupts are pre-assigned by the Z-Wave protocol  
implementation. Therefore, constraints for the user application apply.  
Table 2.3: Interrupt vector table  
Vector  
Interrupt Name  
Priority  
Resources served  
External interrupt 0 via pin 4  
External interrupt 1 either via pin 3, or pin 3 and pin 4  
00  
02  
04  
05  
06  
07  
08  
09  
14  
INT0  
INT1  
01  
03  
05  
06  
07  
08  
09  
10  
00  
UART0  
UART0 end of RX or TX  
Multi  
AES, SPI, and many more reserved resources  
External interrupt via ZEROX pin 14. Supported by the Dimmer API  
General Purpose Timer overflow  
Battery monitor, ADC low and high monitor  
RF DMA  
Dimmer  
General Purpose Timer  
ADC  
RF  
NMI  
Non Maskable Interrupt for debugger and more  
2.2.9 LIGHT-EMITTING DIODE CONTOLLER  
The Light-Emitting Diode (LED) controller provides a single channel PWM generator on pin 5, that can be used to control the  
current drawn through an LED.  
Table 2.4: Properties of the LED controller  
Property  
Pulse width resolution  
Frequency  
Description  
16-bit  
488 Hz  
1
No. of channels  
Placement of the pulse within a single period Normal mode (Pulses of all channels are synchronized to the beginning of a  
period)  
Skewed mode (In each consecutive channel, pulses are shifted 25% of the  
period relative to the previous channel)  
Drive strength  
8mA  
2.2.10 RESET CONTROLLER  
After a reset event, the MCU is reinitialized in less than 1ms. This delay is mostly due to the charge time of the internal and  
external supply capacitances, and bringing the XTAL clock into a stable oscillation. Multiple events may cause a reset. Therefore,  
the actual cause is latched by hardware and may be retrieved via software when the system resumes operation. Some reset  
methods deliberately leave the state of GPIO pins unchanged, while other GPIO pins are set to high impedance with an internal  
pull-up.  
8
DSH12435-15 | 3/2018  
 
 
 
 
Datasheet: ZM5202  
Table 2.5: Supported reset methods  
Reset Cause  
BOR  
Description  
Reset request generated by Brown-Out-  
Reset hardware  
GPIO state  
High impedance with  
pull-up  
Maskable  
No  
INT1  
Reset request generated when a signal is  
received on pin INT1, when the chip is in  
power down mode  
Unchanged  
Yes  
POR  
Reset request generated by Power-On-  
Reset hardware  
Reset request generated by the RESET_N  
High impedance with  
pull-up  
High impedance with  
No  
No  
RESET_N  
pin being de-asserted  
pull-up  
Software  
WATCHDOG  
Reset request generated in software.  
Reset request generated by the  
WATCHDOG Timer timing out  
Reset request generated by the Wake-  
Up-Timer timing out  
Unchanged  
High impedance with  
pull-up  
Yes  
Yes  
WUT  
Unchanged  
Yes  
2.2.11 SERIAL PERIPHERAL INTERFACE  
SPI1 Serial Peripheral Interface enables synchronous data transfers between devices.  
Table 2.6: SPI1 signal modes  
SPI1 Signal  
SPI1 Function, master  
MOSI  
MISO  
SCK  
Data output  
Data input  
Clock output  
During data transmission, SCK acts as a clock, while 8 bits of data are exchanged between the two devices within 8 cycles of SCK.  
MASTER  
SPI CLOCK  
GENERATOR  
SLAVE  
SCK  
MISO  
MOSI  
0
0 1 0 0 0 1 0  
0
0 1 0 0 0 1 0  
Figure 2.4: Flow of data between SPI master and slave  
The module acts as a SPI master when controlling an external Non-Volatile Memory (NVM). The slave select (or chip select) of  
the external NVM could be driven by an available GPIO. SPI1 slave mode is reserved for In-System Programming (ISP). Therefore,  
SPI1 can only be used as a master.  
DSH12435-15 | 3/2018  
9
 
Datasheet: ZM5202  
ZM5202  
External NVM  
PX.Y  
CS_N  
SPI SCK  
SPI MOSI  
SPI MISO  
SPI SCK  
SPI MOSI  
SPI MISO  
Figure 2.5: Typical interface to slave device  
2.2.12 TIMERS  
Timer 0 and Timer 1 are 16-bit counters that can be clocked from a fixed internal source or an external source. Except for the  
use of external gating signals, the complete set of classic 8051 T0/T1 features is available.  
Table 2.7: Timer sources  
Timer  
Fixed Internal Source  
External Source  
Timer 0  
Timer 1  
16 MHz  
16 MHz  
Pin 10  
Pin 15  
2.2.13 UNIVERSAL ASYNCHRONOUS RECEIVER / TRANSMITTER  
The Universal Asynchronous Receiver / Transmitter (UART) is a hardware block operating independently of the 8051 CPU. It  
offers full-duplex data exchange, up to 230.4kbps, with an external host microcontroller requiring an industry standard NRZ  
asynchronous serial data format. The UART0 interface is available over pin 10 and pin15. A data byte is shifted as a start bit, 8  
data bits (lsb first), and a stop bit, respectively, with no parity and hardware handshaking. Figure 2.6 shows the waveform of a  
single serial byte. The UART is compliant with RS-232 when an external level converter is used.  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Figure 2.6: UART waveform  
2.2.14 WAKE-UP TIMER  
The Wake-Up Timer (WUT) plays an important role in maximizing battery life of applications like Frequently Listening Routing  
Slave (FLiRS) Z-Wave nodes. It is available to customer applications via the Z-Wave API, and can be configured to wake a sleeping  
node after 1 to 256 seconds. The programming resolution equals 8-bit fractions of 2 seconds, alternatively 8-bit fractions of 256  
seconds. The WUT is automatically calibrated to the system clock when it is operational, maintaining an accuracy of <2%.  
2.2.15 WATCHDOG  
The watchdog helps prevents the CPU from entering a deadlock state. A timer that is enabled by default achieves this by  
triggering a reset event in case it overflows. The timer overflows in 1 second, therefore it is essential that the software clear the  
timer periodically. The watchdog is disabled when the chip is in power down mode, and automatically restarts with a cleared  
timer when waking up to the active mode.  
10  
DSH12435-15 | 3/2018  
 
 
 
 
 
 
Datasheet: ZM5202  
2.2.16 WIRELESS TRANSCEIVER  
The wireless transceiver is a sub-1 GHz ISM narrowband FSK radio, a modem, and a baseband controller. This architecture  
provides an all-digital direct synthesis transmitter and a low IF digital receiver. The Z-Wave protocol currently utilizes 2-key  
FSK/GFSK modulation schemes at 9.6/40/100 kbps data rates throughout a span of carrier frequencies from 865.2 to 926.3MHz.  
The output power of the transmitter is configurable in the range -26dBm to +4dBm (VDD = 2.3V to 3.6V, TA = -10°C to +85°C). An  
external front-end could be used to further increase the link budget if necessary.  
2.3 MEMORY MAP  
Figure 2.7 shows an illustration of the byte wise addressable memories that are shared between the user application and the  
Z-Wave protocol stack. Additional ROM and NVR areas are used for boot code, calibration data, production data, and lock bytes.  
Table 2.8: Description of memory blocks  
ID  
M1-M4  
Memory  
128kB Flash  
Address Method Exposed during Programming  
Description  
Flash memory, mapped in 3 banks of 32kB  
slices over a 32kB common block, one read  
access per 2 clock cycles.  
Program  
Memory  
Yes  
M5-M6  
16kB RAM  
XRAM  
Yes  
SRAM’s split into 4kB and 12kB contiguous  
blocks  
M7  
M8  
256B RAM  
128B RAM  
IRAM  
XRAM  
No  
No  
Bit addressable SRAM  
Critical SRAM for data persistency during  
sleep mode  
M9  
256B NVM  
256B NVR  
(API)  
(API)  
No  
Cached high endurance non-volatile data  
registers  
Flash area reserved for the Z-Wave  
protocol, calibration data, production data,  
and lock bytes  
M10  
Yes  
DSH12435-15 | 3/2018  
11  
 
 
Datasheet: ZM5202  
C O D E S P A C E ( F L A S H )  
I R A M  
F
256  
12k  
M8: RAM  
FFFF  
0
X R A M  
M3  
Bank 2  
M4  
Bank 3  
M2  
Bank 1  
32k  
4FFF  
8000  
7FFF  
M6  
RAM  
2000  
M1  
M1  
M1  
32k  
Common  
Common  
1080  
1000  
Common  
128  
4k  
M7: RAM  
M5: RAM  
0FFF  
0000  
0000  
Figure 2.7: Non-API addressable memory blocks  
2.4 MODULE PROGRAMMING  
The code space and the NVR of the flash can be programmed and/or read through the SPI1 interface. [1]  
2.4.1 ENTERING IN-SYSTEM PROGRAMMING MODE  
The module can be placed into the In-System Programming (ISP) mode by asserting the active low RESET_N signal for 5.2ms. The  
programming unit of the module then waits for the “Interface Enable” serial command before activating the ISP mode over the  
SPI1.  
2.5 POWER SUPPLY REGULATOR  
While the supply to the digital I/O circuits is unregulated, on-chip low-dropout regulators derive all the 1.5 V and 2.5 V internal  
supplies required by the Micro-Controller Unit (MCU) core logic, non-volatile data registers, flash, and the analogue circuitry.  
12  
DSH12435-15 | 3/2018  
 
 
 
 
Datasheet: ZM5202  
3
TYPICAL APPLICATION  
An illustration of an application example using the ZM5202 module implementation follows. It is strongly recommended that the  
power supply is decoupled sufficiently, and a pull-up resistor placed on the RESET_N signal if the host GPIO is unable to drive it.  
3V3  
3V3  
RESET_N  
INT1  
VDD  
3V3  
3V3  
RF  
Matching  
ZM5202  
VDD  
WP_N  
HOLD_N  
CS_N  
SCK  
PX.Y  
SCK  
NVM  
SI  
MOSI  
MISO  
SO  
GND  
GND  
Figure 3.1: Example of a standalone application with an external antenna  
DSH12435-15 | 3/2018  
13  
 
Datasheet: ZM5202  
4
PIN CONFIGURATION  
The layout of the pins on the ZM5202 module is shown in Figure 4.1.  
12.50mm  
12.25mm  
5
4
3
2
6
1
9.25mm  
7.75mm  
6.25mm  
4.75mm  
3.25mm  
7
8
18  
7.75mm  
6.00mm  
9
Top View  
17  
10  
11  
12  
16  
13  
14  
15  
0.25mm  
0.00mm  
0.00mm  
1.00mm  
0.50mm  
1.30mm  
0.65mm  
Signal  
Pin  
Ground  
Pin  
Figure 4.1: Pin layout (top view)  
14  
DSH12435-15 | 3/2018  
 
 
Datasheet: ZM5202  
4.1 PIN FUNCTIONALITY  
Table 4.1: Power and ground signals  
Pin Name  
VDD  
GND  
Pin Location  
Type1  
S
S
Function  
Module power supply.  
Ground. Must be connected to the  
ground plane.  
11  
1, 6, 12, 16, 17  
Table 4.2: Module control signal  
Pin Name  
Pin Location  
Type  
Function  
RESET_N  
2
I
Active low signal that places the module  
in a reset/programmable state.  
Table 4.3: SPI1 interface signals  
Pin Name  
SPI1 SCK  
SPI1 MISO  
Pin Location  
Type  
O
I
Function in Reset State  
SPI1 Clock input with internal pull-up.  
Serial data transmit when in SPI1 ISP  
mode, high impedance otherwise with  
internal pull-up.  
Function in Active State  
SPI1 Clock. Output in master mode.  
Master-In-Slave-Out serial data. Input in  
master mode.  
8
7
SPI1 MOSI  
9
O
Waits for the ”Interface Enable” serial  
command after 5.2ms. Enters SPI1 ISP  
mode after command is received from the  
host.  
Master-Out-Slave-In serial data. Output in  
master mode.  
Table 4.4: UART0 interface signals  
Pin Name  
UART0 RX  
UART0 TX  
Pin Location  
10  
15  
Type  
I
O
Function in Reset State  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
Function in Active State  
Receive data from host serial port.  
Transmit data to host serial port.  
Table 4.5: ADC interface signals  
Pin Name  
ADC0  
ADC1  
Pin Location  
Type  
Function in Reset State  
Function in Active State  
Analog-to-Digital converter input.  
Analog-to-Digital converter input.  
Analog-to-Digital converter input or  
lower reference voltage.  
10  
15  
13  
I
I
I
High impedance with internal pull-up.  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
ADC2  
ADC3  
14  
I
High impedance with internal pull-up.  
Analog-to-Digital converter input or  
higher reference voltage.  
1 I = Input, O = Output, D+ = Differential Plus, D- = Differential Minus, S = Supply  
DSH12435-15 | 3/2018  
15  
 
 
 
Datasheet: ZM5202  
Table 4.6: External interrupt interface signals  
Pin Name  
INT0  
INT1  
Pin Location  
Type  
I
I
Function in Reset State  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
Function in Active State  
External interrupt 0 input. High priority.  
External interrupt 1 input. Low priority.  
4
3, 4  
Table 4.7: PWM signal  
Pin Name  
Pin Location  
Type  
Function in Reset State  
Function in Active State  
PWM  
4
5
O
High impedance with internal pull-up.  
Pulse width modulator output.  
Table 4.8: LED controller interface signal  
Pin Name  
PWM LED0  
Pin Location  
Type  
O
Function in Reset State  
High impedance with internal pull-up.  
Function in Active State  
LED controller output.  
Table 4.9: Dimmer interface signals  
Pin Name  
TRIAC  
Pin Location  
Type  
O
Function in Reset State  
High impedance with internal pull-up.  
Function in Active State  
Dimmer output. Firing pulse to  
TRIAC/FET/IGBT.  
13  
14  
ZEROX  
I
High impedance with internal pull-up.  
Zero-cross detection input.  
Table 4.10: Timer interface signals  
Pin Name  
T0 EXT CLK  
T1 EXT CLK  
Pin Location  
10  
15  
Type  
I
I
Function in Reset State  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
Function in Active State  
Timer 0 external clock input.  
Timer 1 external clock input.  
Table 4.11: RF interface signal  
Pin Name  
RF2  
Pin Location  
18  
Type  
I/O  
Function in Reset State  
High impedance with internal pull-up.  
Function in Active State  
RF input and output.  
2 Caution: pin is sensitive to electro-static discharge  
16  
DSH12435-15 | 3/2018  
 
 
 
Datasheet: ZM5202  
Table 4.12: GPIO signals  
Pin Name  
P0.4  
P1.0  
P1.1  
P2.2  
Pin Location  
Type  
I/O  
I/O  
I/O  
I/O  
Function in Reset State  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
Waits for the ”Interface Enable” serial  
command after 5.2ms. Enters SPI1 ISP  
mode after command is received from the  
host.  
Function in Active State  
General purpose input and output.  
General purpose input and output.  
General purpose input and output.  
General purpose input and output.  
5
4
3
9
P2.3  
P2.4  
7
8
I/O  
I/O  
Serial data transmit when in SPI1 ISP  
mode, high impedance with internal  
pull-up otherwise.  
General purpose input and output.  
General purpose input and output.  
Programmer clock input with internal  
pull-up.  
P3.4  
P3.5  
P3.6  
P3.7  
10  
15  
13  
14  
I/O  
I/O  
I/O  
I/O  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
High impedance with internal pull-up.  
General purpose input and output.  
General purpose input and output.  
General purpose input and output.  
General purpose input and output.  
DSH12435-15 | 3/2018  
17  
Datasheet: ZM5202  
5
ELECTRICAL CHARACTERISTICS  
This section describes the electrical parameters of the ZM5202 module.  
5.1 TEST CONDITIONS  
Characterization in Lab  
(TA=-10°C to +85°C, VDD=+2.3V to +3.6V)  
Sorting criterion  
specified with Min and  
Max values  
Statistics with Min,  
Typ, and Max values  
Manufactured  
Modules  
Tested  
Modules  
Final Test in Production  
(TA=+25°C, VDD=+3.3V)  
Figure 5.1: Testing flow  
The following conditions apply for characterization in the lab, unless otherwise noted.  
1. Ambient temperature TA = -10°C to +85°C  
2. Supply voltage VDD = +2.3V to +3.6V  
3. All tests are carried out on the ZDB5202 Z-Wave Development Board. [2]  
4. Conducted transmission power is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω  
5. Conducted receiver sensitivity is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω  
The following conditions apply for the final test in production, unless otherwise noted.  
1. Ambient temperature TA = +25°C  
2. Supply voltage VDD = +3.3V  
3. Conducted transmission power is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω  
4. Conducted receiver sensitivity is measured with the SAW filter for 868.4, 908.4, 919.8, and 921.4MHz at 50Ω  
5.1.1 TYPICAL VALUES  
Unless otherwise specified, typical data refer to the mean of a data set measured at an ambient temperature of TA=25°C and  
supply voltage of VDD=+3.3V.  
5.1.2 MINIMUM AND MAXIMUM VALUES  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature,  
supply voltage and frequencies by a final test in production on 100% of the devices at an ambient temperature of TA=25°C and  
supply voltage of VDD=+3.3V.  
For data based on measurements, the minimum and maximum values represent the mean value plus or minus three times the  
standard deviation (µ±3σ).  
18  
DSH12435-15 | 3/2018  
 
 
 
 
Datasheet: ZM5202  
5.2 ABSOLUTE MAXIMUM RATINGS  
The absolute ratings specify the limits beyond which the module may not be functional. Exposure to absolute maximum  
conditions for extended periods may cause permanent damage to the module.  
Table 5.1: Voltage characteristics  
Symbol  
VDD-GND  
VIN-GND  
IIN  
Description  
Min  
Max  
+3.6  
Unit  
V
V
Main supply voltage  
Voltage applied on any I/O pin  
-0.3  
-0.3  
+3.6  
+20.0  
+10.0 dBm  
Current limit when over driving the input (VIN-GND > VDD-GND  
)
-
-
-
-
-
mA  
PRF-IN  
Radio receiver input power  
ESDHBM  
ESDMM  
ESDCDM  
JEDEC JESD22-A114F Human Body Model  
JEDEC JESD22-A115C Machine Model  
JEDEC JESD22-C101E Field-Induced Charged-Device Model  
+2000.0  
+200.0  
+500.0  
V
V
V
Table 5.2: Current characteristics  
Symbol  
IVDD  
IGND  
Description  
Current into VDD power supply pin  
Sum of the current out of all GND ground pins  
Min  
Max  
Unit  
mA  
mA  
-
+120  
-
-120  
Table 5.3: Thermal characteristics  
Symbol  
Description  
Min  
Max  
+125  
Unit  
°C  
TJ  
Junction temperature  
-55  
5.3 GENERAL OPERATING RATINGS  
The operating ratings indicate the conditions where the module is guaranteed to be functional.  
Table 5.4: Recommended operating conditions  
Symbol  
VDD  
fSYS  
TA  
Description  
Standard operating supply voltage  
Internal clock frequency  
Min  
+2.3  
Typ  
+3.3  
32.0  
+25.0  
Max  
+3.6  
Unit  
V
MHz  
°C  
-
-
Ambient operating temperature  
-10.0  
+85.0  
5.4 CURRENT CONSUMPTION  
Measured at an ambient temperature of TA=-10°C to +85°C and a supply voltage of VDD=+2.3V to +3.6V.  
DSH12435-15 | 3/2018  
19  
 
 
 
 
Datasheet: ZM5202  
Table 5.5: Current consumption in active modes  
Symbol  
Description  
MCU running at 32MHz  
MCU and radio receiver active  
MCU and radio transmitter active, -26dBm  
MCU and radio transmitter active, +4dBm  
Min  
Typ  
14.9  
32.4  
27.5  
42.1  
Max  
15.9  
Unit  
mA  
mA  
mA  
mA  
IDD_ACTIVE  
IDD_RX  
IDD_TX_-26  
IDD_TX_4  
-
-
-
-
35.1  
-
-
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
-27  
-24  
-21  
-18  
-15  
-12  
-9  
-6  
-3  
0
3
Transmit Power (dBm)  
Figure 5.2: Typical current consumption vs. transmit power  
Table 5.6: Current consumption in power saving modes  
Symbol  
IDD_SLEEP  
IDD_WUT  
Description  
Min  
Typ  
Max  
Unit  
µA  
µA  
Module in sleep state  
-
-
-
1.0  
2.0  
2.1  
-
-
-
Module in sleep state with wake-up timer active  
Module in sleep state with wake-up timer and 128 bytes of  
critical RAM active  
IDD_WUT_RAM  
µA  
Table 5.7: Current consumption during programming  
Description Min  
Symbol  
IDD_PGM_SPI  
Typ  
Max  
Unit  
mA  
Programming via SPI1  
-
15  
-
5.5 SYSTEM TIMING  
Measured at an ambient temperature of TA=-10°C to +85°C and a supply voltage of VDD=+2.3V to +3.6V.  
20  
DSH12435-15 | 3/2018  
 
 
 
Datasheet: ZM5202  
Table 5.8: Transition between operating modes  
Description Min  
Transition time from the active state to the sleep state  
Transition time from the sleep state to the active state ready  
to execute code  
Symbol  
tACTIVE_SLEEP  
tSLEEP_ACTIVE  
Typ  
Typ  
Max  
125  
160  
Unit  
ns  
µs  
-
-
-
-
Table 5.9: System start-up time  
Symbol  
Description  
Min  
Max  
Unit  
VPOR  
Power-on-Reset (POR) threshold on rising supply voltage at  
which the reset signal is deasserted  
Transition time from the reset state to the active state ready  
to execute code with a power rise time not exceeding 10µs  
-
-
-
-
+2.3  
V
tRESET_ACTIVE  
1.0  
ms  
Table 5.10: Wake-up timer accuracy  
Symbol  
tWUT_OFFSET  
Description  
Wake-up timer offset, Y-axis intercept of time vs. setting  
curve  
Min  
Typ  
Max  
Unit  
ms  
-
-
-
-
40  
tWUT_SCALE  
Wake-up timer absolute error  
2
%
Table 5.11: Reset timing requirements  
Symbol  
tRST_PULSE  
Description  
Min  
Min  
Typ  
Typ  
Max  
Unit  
ns  
Duration to assert RESET_N to guarantee a full system reset  
20  
-
-
Table 5.12: Programming time  
Symbol  
tERASE_FULL  
tPGM_FULL  
Description  
Max  
44.1  
1.4  
Unit  
ms  
s
Time taken to erase the entire flash memory  
Time taken to program the entire flash memory over SPI1 at  
4MHz including a full erase  
-
-
-
-
5.6 NON-VOLATILE MEMORY  
Qualified for an ambient temperature of TA=+25°C and a supply voltage of VDD=+3.3V. The on-chip memory is based on  
SuperFlash® technology.  
DSH12435-15 | 3/2018  
21  
 
 
 
Datasheet: ZM5202  
Table 5.13: On-chip flash  
Description  
Endurance, erase cycles before failure  
Data retention  
Symbol  
ENDFLASH  
RETFLASH-LT  
RETFLASH-HT  
Min  
10000  
100  
Typ  
Max  
Unit  
cycles  
years  
years  
-
-
-
-
-
-
Data retention (Qualified for a junction temperature of  
TJ=-10°C to +85°C)  
10  
Table 5.14: On-chip M9 high endurance NVM  
Symbol  
ENDNVM  
RETNVM-LT  
RETNVM-HT  
Description  
Endurance, erase cycles before failure  
Data retention  
Data retention (Qualified for a junction temperature of  
TJ=-10°C to +85°C)  
Min  
100000  
100  
Typ  
Max  
Unit  
cycles  
years  
years  
-
-
-
-
-
-
10  
5.7 ANALOG-TO-DIGITAL CONVERTER  
Measured at an ambient temperature of TA=-10°C to +85°C and a supply voltage of VDD=+2.3V to +3.6V.  
Table 5.15: 12 bit ADC characteristics  
Symbol  
VBG  
VREF+  
Description  
Min  
Max  
Unit  
V
V
V
µA  
Internal reference voltage  
Upper reference input voltage  
Lower reference input voltage  
Input current (0 ≤ VIN ≤ VDD)  
Differential non-linearity  
+1.20  
VDD - 0.90  
0.00  
+1.30  
VDD  
+1.20  
VREF-  
IADCIN  
DNLADC  
ACC8b  
ACC12b  
fS-8b  
-10.00  
-1.00  
-2.00  
-5.00  
-
+10.00  
+1.00 LSB  
+2.00 LSB  
+5.00 LSB  
0.02 Msps  
0.01 Msps  
Accuracy when sampling 20ksps with 8 bit resolution  
Accuracy when sampling 10ksps with 12 bit resolution  
8 bit sampling rate  
fS-12b  
12 bit sampling rate  
-
5.8 GENERAL PURPOSE INPUT OUTPUT  
Measured at an ambient temperature of TA=-10°C to +85°C.  
22  
DSH12435-15 | 3/2018  
 
 
 
Datasheet: ZM5202  
Table 5.16: Digital input characteristics, supply voltage of VDD=+2.3V to +3.0V  
Symbol  
Description  
Logical 1 input voltage high level  
Min  
+1.85  
Max  
Unit  
V
VIH  
VIL  
VIF  
VIR  
VHYS  
IIH  
IIL-NPU  
IIL-PU  
PUIN  
CIN  
-
Logical 0 input voltage low level  
Falling input trigger threshold  
Rising edge trigger threshold  
Schmitt trigger voltage hysteresis  
Logical 1 input high level current leakage  
Logical 0 input low level current leakage (no internal pull-up resistor)  
Logical 0 input low level current leakage (with internal pull-up resistor)  
Internal pull-up resistance (TA=+25°C)  
Pin input capacitance  
-
+0.75  
+1.35  
+0.55  
-
-7.00  
+35.00  
20.00  
-
+0.75  
+1.05  
+1.85  
+0.85  
+7.00  
-
+90.00  
30.00  
15.00  
V
V
V
V
µA  
µA  
µA  
kΩ  
pF  
Table 5.17: Digital output characteristics, supply voltage of VDD=+2.3V to +3.0V  
Symbol  
VOH  
VOL  
IOH-LP  
IOL-LP  
IOH-HP  
IOL-HP  
Description  
Logical 1 output voltage high level  
Logical 0 output voltage low level  
Logical 1 output high level current sourcing  
Logical 0 output low level current sinking  
Logical 1 output high level current sourcing (pin 10 and pin 13 to pin 15)  
Logical 0 output low level current sinking (pin 10 and pin 13 to pin 15)  
Min  
Max  
Unit  
V
V
mA  
mA  
mA  
mA  
+1.9  
-
+0.4  
+6.0  
-
+12.0  
-
-
-
-6.0  
-
-12.0  
Table 5.18: Digital input characteristics, supply voltage of VDD=+3.0V to +3.6V  
Symbol  
Description  
Logical 1 input voltage high level  
Logical 0 input voltage low level  
Falling input trigger threshold  
Rising edge trigger threshold  
Min  
+2.10  
Max  
Unit  
V
V
V
V
VIH  
VIL  
VIF  
VIR  
-
+0.90  
+1.30  
+2.10  
+0.95  
+10.00  
-
+120.00  
20.00  
15.00  
-
+0.90  
+1.60  
+0.65  
-
-10.00  
+40.00  
15.00  
-
VHYS  
IIH  
IIL-NPU  
IIL-PU  
PUIN  
CIN  
Schmitt trigger voltage hysteresis  
V
Logical 1 input high level current leakage  
Logical 0 input low level current leakage (no internal pull-up resistor)  
Logical 0 input low level current leakage (with internal pull-up resistor)  
Internal pull-up resistance (TA=+25°C)  
Pin input capacitance  
µA  
µA  
µA  
kΩ  
pF  
Table 5.19: Digital output characteristics, supply voltage of VDD=+3.0V to +3.6V  
Symbol  
VOH  
VOL  
IOH-LP  
IOL-LP  
IOH-HP  
IOL-HP  
Description  
Logical 1 output voltage high level  
Logical 0 output voltage low level  
Logical 1 output high level current sourcing  
Logical 0 output low level current sinking  
Min  
Max  
Unit  
V
V
mA  
mA  
mA  
mA  
+2.4  
-
+0.4  
+8.0  
-
+16.0  
-
-
-
-8.0  
-
Logical 1 output high level current sourcing (pin 10 and pin 13 to pin 15)  
Logical 0 output low level current sinking (pin 10 and pin 13 to pin 15)  
-16.0  
DSH12435-15 | 3/2018  
23  
 
 
Datasheet: ZM5202  
5.9 RF CHARACTERISTICS  
5.9.1 TRANSMITTER  
Measured at an ambient temperature of TA=-10°C to +85°C and a supply voltage of VDD=+2.3V to +3.6V. The transmission power  
is adjusted by setting the value of the RFPOW register.  
Table 5.20: Transmitter performance  
Symbol  
Description  
RF output power delivered to the antenna, RFPOW=63  
RF output power delivered to the antenna, RFPOW=01  
2nd harmonic, RFPOW=63  
Min  
+2.9  
-29.0  
Typ  
+4.0  
Max  
Unit  
dBm  
dBm  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
kHz  
P63  
P01  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-26.1  
-57.3  
-60.2  
-61.9  
-59.6  
-51.3  
-45.4  
-45.8  
-45.6  
-47.6  
-46.6  
-88.1  
-95.2  
-107.3  
-113.1  
-113.8  
90.0  
PH2-63  
PH2-48  
PH2-32  
PH2-20  
PH2-8  
PH3-63  
PH3-48  
PH3-32  
PH3-20  
PH3-8  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2nd harmonic, RFPOW=48  
2nd harmonic, RFPOW=32  
2nd harmonic, RFPOW=20  
2nd harmonic, RFPOW=8  
3rd harmonic, RFPOW=63  
3rd harmonic, RFPOW=48  
3rd harmonic, RFPOW=32  
3rd harmonic, RFPOW=20  
3rd harmonic, RFPOW=8  
PN30kHz  
PN100kHz  
PN1MHz  
PN10MHz  
PN20MHz  
BW9.6  
Phase noise at 30kHz  
Phase noise at 100kHz  
Phase noise at 1MHz  
Phase noise at 10MHz  
Phase noise at 100MHz  
Channel bandwidth, 9.6kbps  
Channel bandwidth, 40kbps  
Channel bandwidth, 100kbps  
BW40  
90.0  
110.0  
kHz  
kHz  
BW100  
6
3
0
-3  
-6  
-9  
-12  
-15  
-18  
-21  
-24  
-27  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
55  
60  
RFPOW Setting  
Figure 5.3: Typical transmit power vs. RFPOW setting  
The transmitter is calibrated from factory. Refer to [3] for more information.  
24  
DSH12435-15 | 3/2018  
 
 
 
 
Datasheet: ZM5202  
5.9.2 RECEIVER  
Measured over an ambient temperature of TA=+25°C and a supply voltage of VDD=+2.3V to +3.6V.  
Table 5.21: Receiver sensitivity  
Symbol  
Description  
Sensitivity at 9.6kbps, FER < 1%  
Sensitivity at 40kbps, FER < 1%  
Sensitivity at 100kbps, FER < 1%  
Min  
Typ  
Max  
Unit  
dBm  
dBm  
dBm  
P9.6  
P40  
P100  
-
-
-
-102.7  
-99.0  
-93.0  
-101.0  
-97.2  
-91.8  
-91  
-94  
-97  
9.6 kbps  
40 kbps  
-100  
-103  
-106  
100 kbps  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Figure 5.4: Typical sensitivity vs. temperature  
DSH12435-15 | 3/2018  
25  
 
 
 
Datasheet: ZM5202  
Table 5.22: Receiver performance  
Description  
Symbol  
CCR9.6  
Min  
Typ  
-3.9  
Max  
Unit  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dB  
Co-channel rejection, 9.6kbps  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
BI1MHZ-9.6  
BI2MHZ-9.6  
BI5MHZ-9.6  
BI10MHZ-9.6  
BI100MHZ-9.6  
CCR40  
BI1MHZ-40  
BI2MHZ-40  
BI5MHZ-40  
BI10MHZ-40  
BI100MHZ-40  
CCR100  
BI1MHZ-100  
BI2MHZ-100  
BI5MHZ-100  
BI10MHZ-100  
BI100MHZ-100  
RSSIRANGE  
RSSILSB  
Blocking immunity3 at Δf=1MHz, 9.6kbps  
43.5  
52.6  
70.6  
73.9  
85.7  
-9.1  
40.2  
48.0  
65.2  
67.7  
82.0  
-8.1  
30.2  
35.2  
59.0  
62.6  
76.0  
70.0  
1.5  
-84.4  
-12.0  
300.0  
300.0  
600.0  
Blocking immunity at Δf=2MHz, 9.6kbps  
Blocking immunity at Δf=5MHz, 9.6kbps  
Blocking immunity at Δf=10MHz, 9.6kbps  
Blocking immunity at Δf=100MHz, 9.6kbps  
Co-channel rejection, 40kbps  
Blocking immunity at Δf=1MHz, 40kbps  
Blocking immunity at Δf=2MHz, 40kbps  
Blocking immunity at Δf=5MHz, 40kbps  
Blocking immunity at Δf=10MHz, 40kbps  
Blocking immunity at Δf=100MHz, 40kbps  
Co-channel rejection, 100kbps  
Blocking immunity at Δf=1MHz, 100kbps  
Blocking immunity at Δf=2MHz, 100kbps  
Blocking immunity at Δf=5MHz, 100kbps  
Blocking immunity at Δf=10MHz, 100kbps  
Blocking immunity at Δf=100MHz, 100kbps  
Dynamic range of the RSSI measurement  
Resolution of the RSSI measurement  
dB  
PLO  
IIP3  
LO leakage at Δf=200kHz and Δf=325kHz  
-80.0  
dBm  
dBm  
kHz  
kHz  
kHz  
Input 3rd order intercept point  
-
-
-
-
BW9.6  
Intermediate frequency filter bandwidth, 9.6kbps  
Intermediate frequency filter bandwidth, 40kbps  
Intermediate frequency filter bandwidth, 100kbps  
BW40  
BW100  
3 Blocker level is defined relative to the wanted receiving signal and measured with the wanted receiving signal 3dB above the  
sensitivity level  
26  
DSH12435-15 | 3/2018  
 
 
Datasheet: ZM5202  
-30  
-36  
-42  
-48  
-54  
-60  
-66  
-72  
-78  
-84  
-90  
-96  
-102  
-108  
-114  
-120  
33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83  
Received Signal Strength Indicator Value (RSSI)  
Figure 5.5: Typical input power vs. RSSI value  
First-order approximation:  
ꢍꢝꢟꢝꢠꢡꢝꢢ ꢣꢤꢜꢝꢞ ꢢꢥꢦ ≈ 1.56 × ꢍꢧꢧꢔ − 161.45,  
[
]
ꢜℎꢝꢞꢝ ꢍꢧꢧꢔ ∈ [40,80]  
5.9.3 REGULATORY COMPLIANCE  
The ZM5202 has been tested on the ZDP03A Z-Wave Development Platform to be compliant with the following regulatory  
standards. [4]  
ACMA COMPLIANCE  
o
o
AS/NZS 4268  
CISPR 22  
CE COMPLIANCE  
o
o
o
o
o
o
EN 300 220-1/2  
EN 301 489-1/3  
EN 55022  
EN 60950-1  
EN 61000-4-2/3  
EN 62479  
FCC COMPLIANCE  
o
FCC CFR 47 Part 15 Subpart C §15.249  
IC COMPLIANCE  
o
o
o
RSS-GEN  
RSS-210  
ANSI C63.10  
MIC COMPLIANCE  
ARIB STD-T108  
O
DSH12435-15 | 3/2018  
27  
 
 
Datasheet: ZM5202  
6
Z-WAVE FREQUENCIES  
Table 6.1: Z-Wave RF specification  
Data rate  
9.6kbps  
40kbps  
100kbps  
Modulation  
Frequency Shift Keying (FSK)  
FSK  
Gaussian Frequency Shift Keying (GFSK)  
Frequency deviation  
Frequency accuracy  
fC±20kHz  
fC±13ppm  
fC±20kHz  
fC±13ppm  
fC±29.3kHz  
fC±13ppm  
Coding  
Manchester encoded  
Non-return to Zero (NRZ)  
NRZ  
E
H
H
U
U
E
United Arab Emirates  
Australia  
Brazil  
868.42 MHz  
868.40 MHz  
869.85 MHz  
919.80 MHz  
919.80 MHz  
916.00 MHz  
916.00 MHz  
869.85 MHz  
869.85 MHz  
919.80 MHz  
-
921.42 MHz  
921.40 MHz  
921.42 MHz  
921.40 MHz  
Canada  
908.42 MHz  
908.40 MHz  
Chile  
908.42 MHz  
908.40 MHz  
China  
868.42 MHz  
868.40 MHz  
E
European Union  
Hong Kong  
Israel  
868.42 MHz  
868.40 MHz  
H
U
E
919.82 MHz  
919.80 MHz  
916.02 MHz  
916.00 MHz  
India  
865.20 MHz  
865.20 MHz  
865.20 MHz  
922.50 MHz  
923.90 MHz  
926.30 MHz  
920.90 MHz  
921.70 MHz  
923.10 MHz  
916.00 MHz  
868.10 MHz  
919.80 MHz  
-
H
H
H
H
H
H
U
E
Japan  
-
-
-
-
-
-
Korea  
-
-
-
-
-
-
Mexico  
908.42 MHz  
868.12 MHz  
921.42 MHz  
869.02 MHz  
868.42 MHz  
-
908.40 MHz  
868.10 MHz  
921.40 MHz  
869.00 MHz  
868.40 MHz  
-
Malaysia  
New Zealand  
Russia  
H
E
E
Singapore  
Taiwan  
869.85 MHz  
922.50 MHz  
923.90 MHz  
926.30 MHz  
916.00 MHz  
869.85 MHz  
H
H
H
U
E
-
-
-
-
United States  
South Africa  
908.42 MHz  
868.42 MHz  
908.40 MHz  
868.40 MHz  
28  
DSH12435-15 | 3/2018  
 
Datasheet: ZM5202  
7
MODULE INFORMATION  
7.1 MODULE MARKING  
Table 7.1: Marking description  
Regional information REGION:  
E
U
H
Figure 7.1: Marking placement  
7.2 MODULE DIMENSIONS  
Table 7.2: Dimensions  
13.6mm +/- 0.3 mm  
Length  
Width  
Height  
12.5mm +/- 0.3 mm  
1.9mm +/- 0.3 mm  
8
PROCESS SPECIFICATION  
Specification  
Description  
MSL 3  
Moisture Sensitivity Level designed and manufactured according to JEDEC J-STD-020C  
REACH  
REACH is a European Community Regulation on chemicals and their safe use (EC 1907/2006).  
It deals with the Registration, Evaluation, Authorisation and Restriction of Chemical  
substances  
RoHS  
Designed in compliance with The Restriction of Hazardous Substances Directive (RoHS)  
DSH12435-15 | 3/2018  
29  
 
 
 
 
 
 
Datasheet: ZM5202  
9
PCB MOUNTING AND SOLDERING  
9.1 RECOMMENDED PCB MOUNTING PATTERN  
12.91mm  
12.50mm  
5
4
3
2
6
1
9.25mm  
7.75mm  
6.25mm  
4.75mm  
3.25mm  
7
8
18  
7.75mm  
6.00mm  
9
Top View  
17  
10  
11  
12  
16  
13  
14  
15  
0.00mm  
-0.41mm  
0.00mm  
1.10mm  
0.55mm  
1.40mm  
0.70mm  
Signal  
Pattern  
Ground  
Pattern  
Figure 9.1: Top view of land pattern  
SOLDERING INFORMATION  
The soldering details to properly solder the ZM5202 module on standard PCBs are described below. The information provided is  
intended only as a guideline and Silicon Labs is not liable if a selected profile does not work.  
See IPC/JEDEC J-STD-020D.1 for more information.  
30  
DSH12435-15 | 3/2018  
 
 
 
Datasheet: ZM5202  
Table 9.1: Soldering details  
PCB solder mask expansion from landing pad edge  
PCB paste mask expansion from landing pad edge  
PCB process  
PCB finish  
Stencil aperture  
Stencil thickness  
Solder paste used  
Flux cleaning process  
0.1 mm  
0.0 mm  
4
Pb-free (Lead free for RoHS compliance)  
Defined by the manufacturing facility (EMS) or customer  
Defined by the manufacturing facility (EMS) or customer  
Defined by the manufacturing facility (EMS) or customer  
Defined by the manufacturing facility (EMS) or customer  
Defined by the manufacturing facility (EMS) or customer  
Figure 9.2: Typical reflow profile  
4 RoHS = Restriction of Hazardous Substances Directive, EU  
DSH12435-15 | 3/2018  
31  
 
Datasheet: ZM5202  
10 ORDERING INFORMATION  
Table 10.1: Ordering codes  
Minimum Order  
Package  
Type  
Orderable Device  
Status  
Pins  
Description  
Quantity  
ZM5202AE-CME3R ACTIVE  
ZM5202AU-CME3R ACTIVE  
ZM5202AH-CME3R ACTIVE  
SOM  
18  
18  
18  
1000 pcs.  
ZM5202 module, RevA, 868MHz Band, Tape  
and Reel  
ZM5202 module, RevA, 908MHz Band, Tape  
and Reel  
ZM5202 module, RevA, 921MHz Band, Tape  
and Reel  
SOM  
SOM  
1000 pcs.  
1000 pcs.  
10.1 TAPE AND REEL INFORMATION  
Shipment will be provided in tape with dimensions according to specifications in the following sections. Reel can be from two  
alternative sources A or B with following dimensions and design. Main difference between alternatives is design and visual look.  
Dimensions has been kept as equal as possible.  
32  
DSH12435-15 | 3/2018  
 
 
Datasheet: ZM5202  
10.1.1 TAPE DIMENSIONS  
Figure 10.1: Tape information  
DSH12435-15 | 3/2018  
33  
 
Datasheet: ZM5202  
Parameter  
Value  
Pin 1 Quadrant  
Pocket Quadrant Q3  
34  
DSH12435-15 | 3/2018  
Datasheet: ZM5202  
10.1.2 REEL SUPPLIER A  
Figure 10.2: Reel information  
DSH12435-15 | 3/2018  
35  
 
Datasheet: ZM5202  
10.1.3 REEL SUPPLIER B  
A
N
36  
DSH12435-15 | 3/2018  
 
Datasheet: ZM5202  
11 ABBREVIATIONS  
Abbreviation  
2FSK  
2GFSK  
ACM  
ACMA  
ADC  
AES  
API  
Description  
2-key Frequency Shift Keying  
2-key Gaussian Frequency Shift Keying  
Abstract Control Model  
Australian Communications and Media Authority  
Analog-to-Digital Converter  
Advanced Encryption Standard  
Application Programming Interface  
Auto Programming Mode  
Audio Video  
APM  
AV  
BOD  
CBC  
CDC  
CE  
COM  
CPU  
CRC  
D
Brown-Out Detector  
Cipher-Block Chaining  
Communications Device Class  
Conformité Européenne  
Communication  
Central Processing Unit  
Cyclic Redundancy Check  
Differential  
D-  
Differential Minus  
D+  
Differential Plus  
DAC  
DC  
Digital-to-Analog Converter  
Direct Current  
DMA  
ECB  
EMS  
ESD  
FCC  
Direct Memory Access  
Electronic CodeBook  
Electronic Manufacturing Services  
Electro-Static Discharge  
Federal Communications Commission  
Frame Error Rate  
FER  
FET  
FLiRS  
Field Effect Transistor  
Frequently Listening Routing Slave  
FSK  
Frequency Shift Keying  
GFSK  
GP  
Gaussian Frequency Shift Keying  
General Purpose  
GPIO  
I
General Purpose Input Output  
Input  
I/O  
IC  
Input / Output  
Integrated Circuit  
IF  
IGBT  
INT  
Intermediate Frequency  
Insulated-Gate Bipolar Transistor  
Interrupt  
IPC  
Interconnecting and Packaging Circuits  
IR  
Infrared  
IRAM  
ISM  
ISP  
Indirectly addressable Random Access Memory  
Industrial, Scientific, and Medical  
In-System Programming  
International Telecommunications Union  
Joint Electron Device Engineering Council  
Light-Emitting Diode  
ITU  
JEDEC  
LED  
lsb  
Least Significant Bit  
LSB  
Least Significant Byte  
MCU  
MIC  
Micro-Controller Unit  
Ministry of Internal affairs and Communications, Japan  
DSH12435-15 | 3/2018  
37  
 
Datasheet: ZM5202  
Abbreviation  
MISO  
MOSI  
msb  
MSB  
NMI  
NRZ  
NVM  
NVR  
O
Description  
Master In, Slave Out  
Master Out, Slave In  
Most Significant Bit  
Most Significant Byte  
Non-Maskable Interrupt  
Non-Return-to-Zero  
Non-Volatile Memory  
Non-Volatile Registers  
Output  
OEM  
OFB  
Original Equipment Manufacturer  
Output FeedBack  
Pb  
PCB  
Lead  
Printed Circuit Board  
POR  
PWM  
RAM  
RF  
Power-On Reset  
Pulse Width Modulator  
Random Access Memory  
Radio Frequency  
RoHS  
ROM  
RS-232  
RX  
Restriction of Hazardous Substances  
Read Only Memory  
Recommended Standard 232  
Receive  
S
Supply  
SAW  
SCK  
Surface Acoustic Wave  
Serial Clock  
SFR  
SiP  
SOM  
SPI  
SRAM  
T0  
Special Function Register  
System-in-Package  
System-On-Module  
Serial Peripheral Interface  
Static Random Access Memory  
Timer 0  
T1  
Timer 1  
TX  
Transmit  
UART  
Universal Asynchronous Receiver Transmitter  
USB  
Universal Serial Bus  
Wake-Up Timer  
External Random Access Memory  
Crystal  
Zero Crossing  
WUT  
XRAM  
XTAL  
ZEROX  
38  
DSH12435-15 | 3/2018  
Datasheet: ZM5202  
12 REVISION HISTORY  
Date  
Version  
15  
Affected  
§6, Table 6.1  
§ 5.9.1  
Revision  
2018/02/19  
2017/06/27  
2017/04/11  
Updated Korea frequency  
14  
13  
Clarified transmitter is calibrated from factory  
Figure 4.1 updated with to scale drawing, and placement of  
pads, some notations changed from diameter to radius.  
Figure 9.1 updated dimensions and placement of land  
patterns to fit module pads.  
Figure 4.1  
Figure 9.1  
§ 10.1.1  
Table 5.5  
§ 10  
Table 6.1  
$2.2.4  
2017/02/09  
2016/12/20  
2016/11/24  
2016/10/26  
2016/4/29  
12  
11  
10  
9
Pin 1 Quadrant corrected to “Q3”  
Cleaned up “TDB”  
Add Reel information from source B  
Corrected frequency accuracy to worst case figure  
Updated wording in section 2.2.4 Crystal driver and system  
clock  
8
2015/4/28  
7
Figure 9.1  
Table 9.2  
§8  
Updated to align with SD3502 recommendation.  
Removed – information included in updated Figure 9.1  
Added section Process Specification  
Added orientation of component in tape  
Corrected length of Signal Pin and Ground Pin  
Added tolerances to module dimensions  
Added frequency accuracy  
Entries in table of CPU modes rephrased  
Reduced the RESET_N high time  
Increased the RESET_N low time  
Updated performance values  
§10.1  
Figure 4.1  
§7.2, Table 7.2  
Table 6.1  
Table 2.1  
Table 2.1,  
§2.4.1  
§Cover,  
2015/1/30  
2013/12/13  
2013/12/12  
6B  
5
4A  
2013/10/31  
3B  
Figure 2.1,  
Table 2.3,  
Figure 2.7,  
Table 4.3,  
§5.1,  
Table 5.5, Figure 5.2,  
Table 5.20, Figure 5.3,  
Table 5.22,  
§5.9.2  
Added LED controller  
Updated INT1 pins  
Updated caption  
Changed to master I/O mode  
Updated final test description  
Updated TX current consumption  
Updated TX power and performance  
Updated LO leakage  
Updated equation for 1st-order approximation  
Updated performance values  
2013/10/29  
3A  
§Cover,  
Figure 2.1,  
Updated matching description  
§2.1,  
Added CPU modes  
Updated pin numbers  
Added source impedance formula  
Added LED controller  
Table 2.2, Table 2.3,  
§2.2.2,  
§2.2.9,  
Figure 2.5,  
§2.2.12,  
Updated SPI slave connection  
Added Timers  
§4.1,  
Removed ‘weak’ from pull-up description  
Table 4.3,  
Table 4.8,  
Table 4.10,  
Table 5.1,  
Table 5.5,  
Figure 5.2,  
Table 5.12,  
Table 5.16, Table 5.18,  
Table 5.20, Figure 5.3,  
§5.9.1,  
Updated pin names  
Added LED interface pin  
Added Timer interface pins  
Added maximum RF input  
Updated current consumption values  
Updated transmit current consumption  
Updated programming time  
Added pull-up resistor value  
Updated TX power and harmonics  
Added mandatory TX calibration  
DSH12435-15 | 3/2018  
39  
 
Datasheet: ZM5202  
Date  
Version  
Affected  
Table 5.21, Figure 5.4,  
Table 5.22,  
Figure 5.5,  
Revision  
Updated sensitivity values  
Updated blocking and LO leakage  
Updated RSSI values  
Figure 7.1  
Updated module marking  
2013/09/12  
2A  
§Cover,  
§2.2.5,  
Updated the features and module items  
Added GPIO description  
§2.2.10, §2.2.11,  
Figure 4.1,  
Added peripheral designators  
Added pin dimensions  
§5.9,  
Removed impedance plots  
Table 5.15, Table 5.18,  
§6,  
Changed the supply voltage range and clock speed of external  
NVM  
Table 7.2  
Corrected Korean frequency  
Added module dimensions  
2013/06/03  
1G  
Table 2.3,  
Table 5.8  
§All  
§All  
§All  
Removed empty line from interrupt table  
Added state transition times  
Updated IO characteristics  
Updated layout, and data from the latest corner tests  
Preliminary draft released  
2013/05/31  
2013/05/20  
2013/02/22  
2013/02/18  
1E  
1C  
1A  
1A  
§All  
Initial draft  
40  
DSH12435-15 | 3/2018  
DATASHEET: ZM5202  
13 REFERENCES  
[1]  
[2]  
[3]  
[4]  
INS11681, Instruction, “500 Series Z-Wave Chip Programming Mode”  
DSH12436, Datasheet, “ZDB5202 Z-Wave Development Board”  
INS12213, Instruction, “500 Series Hardware Integration Guide”  
DSH11243, Datasheet, “ZDP03A, Z-Wave Development Platform”  
DSH12435-15 | 3/2018  
41  
 
 
 
 
 
Smart.  
Connected.  
Energy-Friendly.  
Products  
www.silabs.com/products  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave and others are trademarks or  
registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited.  
All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

ZM5202AE-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODULE
SILICON

ZM5202AH-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODULE
SILICON

ZM5202AU-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODULE
SILICON

ZM5304

FULLY INTEGRATED Z-WAVE® WIRELESS MODEM WITH ON-BOARD ANTENNA
SILICON

ZM5304AE-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODEM WITH ON-BOARD ANTENNA
SILICON

ZM5304AH-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODEM WITH ON-BOARD ANTENNA
SILICON

ZM5304AU-CME3R

FULLY INTEGRATED Z-WAVE® WIRELESS MODEM WITH ON-BOARD ANTENNA
SILICON

ZM56B

500 mW LL-34 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN

ZM5V1B

500 mW LL-34 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN

ZM5V6B

500 mW LL-34 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN

ZM62B

500 mW LL-34 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN

ZM68B

500 mW LL-34 Hermetically Sealed Glass Zener Voltage Regulators
YEASHIN