STK14D88 [SIMTEK]

32Kx8 Autostore nvSRAM; 32Kx8自动存储的nvSRAM
STK14D88
型号: STK14D88
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

32Kx8 Autostore nvSRAM
32Kx8自动存储的nvSRAM

存储 静态存储器
文件: 总19页 (文件大小:398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK14D88  
32Kx8 Autostore nvSRAM  
DESCRIPTION  
FEATURES  
The Simtek STK14D88 is a 256Kb fast static RAM  
with a non-volatile Quantum Trap storage element  
included with each memory cell.  
• 25, 35, 45 ns Read Access & R/W Cycle Time  
• Unlimited Read/Write Endurance  
• Automatic Non-volatile STORE on Power Loss  
The SRAM provides the fast access & cycle times,  
ease of use and unlimited read & write endurance of  
a normal SRAM.  
• Non-Volatile STORE Under Hardware or Software  
Control  
• Automatic RECALL to SRAM on Power Up  
• Unlimited RECALL Cycles  
Data transfers automatically to the non-volatile stor-  
age cells when power loss is detected (the STORE  
operation). On power up, data is automatically  
restored to the SRAM (the RECALL operation). Both  
STORE and RECALL operations are also available  
under software control.  
• 200K STORE Cycles  
• 20-Year Non-volatile Data Retention  
• Single 3V +20%, -10% Power Supply  
• Commercial, Industrial Temperatures  
The Simtek nvSRAM is the first monolithic non-vola-  
tile memory to offer unlimited writes and reads. It is  
the highest performance, most reliable non-volatile  
memory available.  
• Small Footprint SOIC & SSOP Packages (RoHS-  
Compliant  
BLOCK DIAGRAM  
VCAP  
VCC  
Quatum Trap  
512 X 512  
A5  
A6  
A7  
POWER  
CONTROL  
STORE  
A8  
A9  
A11  
A12  
A13  
A14  
STORE/  
RECALL  
CONTROL  
STATIC RAM  
ARRAY  
512 X 512  
RECALL  
HSB  
SOFTWARE  
DETECT  
A13 – A0  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
COLUMN DEC  
A0 A1 A2 A3 A4 A10  
G
E
W
This product conforms to specifications per the  
terms of Simtek standard warranty. The product  
has completed Simtek internal qualification testing  
and has reached production status.  
Rev 1.7  
1
Document Control #ML0033  
February 2007  
STK14D88  
VCAP  
A14  
1
2
VCC  
48  
47  
VCAP  
A14  
1
2
3
4
5
6
VCC  
HSB  
W
A13  
A8  
32  
31  
HSB  
3
4
5
6
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
A12  
A7  
A6  
A5  
A4  
A3  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
A12  
A7  
A6  
W
A13  
A8  
A9  
A5  
7
8
9
10  
11  
12  
13  
14  
15  
16  
A9  
7
8
9
10  
11  
12  
13  
14  
15  
16  
A11  
G
A4  
A11  
A10  
E
DQ7  
DQ6  
DQ5  
DQ4  
DQ3  
A2  
A1  
A0  
DQ0  
DQ1  
DQ2  
VSS  
VSS  
VSS  
DQ0  
A3  
A2  
A1  
A0  
DQ6  
G
A10  
E
DQ7  
DQ5  
DQ4  
DQ3  
VCC  
17  
18  
32  
31  
30  
29  
28  
27  
26  
25  
32 Pin SOIC  
19  
20  
21  
22  
23  
24  
DQ1  
DQ2  
Relative PCB area usage.  
See website for detailed package  
size specifications.  
48 Pin SSOP  
PIN DESCRIPTIONS  
Pin Name  
I/O  
Description  
A
-A  
Input  
I/O  
Address: The 15 address inputs select one of 32,768 bytes in the nvSRAM array  
Data: Bi-directional 8-bit data bus for accessing the nvSRAM  
Chip Enable: The active low E input selects the device  
14  
0
DQ -DQ  
7
0
E
Input  
Input  
W
Write Enable: The active low W enables data on the DQ pins to be written to the address  
location latched by the falling edge of E  
G
Input  
Output Enable: The active low G input enables the data output buffers during read cycles.  
De-asserting G high caused the DQ pins to tri-state.  
V
Power Supply  
I/O  
Power: 3.0V, +20%, -10%  
CC  
HSB  
Hardware Store Busy: When low this output indicates a Store is in progress. When pulled  
low external to the chip, it will initiate a nonvolatile STORE operation. A weak pull up resistor  
keeps this pin high if not connected. (Connection Optional).  
V
V
Power Supply  
Autostore Capacitor: Supplies power to nvSRAM during power loss to store data from  
SRAM to nonvolatile storage elements.  
CAP  
Power Supply  
No Connect  
Ground  
SS  
(Blank)  
Unlabeled pins have no internal connections.  
Rev 1.7  
Document Control #ML0033  
February 2007  
2
STK14D88  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at con-  
ditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground . . . . . . . . . . . . . –0.5V to 4.1V  
Voltage on Input Relative to VSS . . . . . . . . . .–0.5V to (V + 0.5V)  
Voltage on DQ0-7 or HSB . . . . . . . . . . . . . . . .–0.5V to (V + 0.5V)  
Temperature under Bias. . . . . . . . . . . . . . . . . . . . . .–55°C to 125°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .–55°C to 140°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . .–65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration) . . . . . . . 15mA  
CC  
CC  
Package Thermal Characteristics - See Website: http://www.simtek.com  
DC CHARACTERISTICS  
(V = 2.7V-3.6V)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
Average V Current  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
I
CC  
CC  
1
65  
55  
50  
70  
60  
55  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
AVAV  
AVAV  
AVAV  
Dependent on output loading and cycle  
rate. Values obtained without output  
loads.  
I
I
Average V Current during STORE  
All Inputs Don’t Care, V = max  
CC  
Average current for duration of STORE  
CC  
CC  
CC  
2
3
3
3
mA  
mA  
cycle (t  
)
STORE  
Average V Current at t  
CC  
= 200ns  
W (V – 0.2V)  
AVAV  
CC  
3V, 25°C, Typical  
All Other Inputs Cycling at CMOS Levels  
Dependent on output loading and cycle  
rate. Values obtained without output  
loads.  
10  
10  
I
I
Average V  
AutoStore™ Cycle  
Current during  
CAP  
All Inputs Don’t Care  
Average current for duration of STORE  
CC  
SB  
4
3
3
3
3
mA  
mA  
cycle (t  
)
STORE  
V
Standby Current  
E ≥ (V -0.2V)  
CC  
CC  
(Standby, Stable CMOS Levels)  
All Others V 0.2V or (V -0.2V)  
IN  
CC  
Standby current level after nonvolatile  
cycle complete  
I
I
Input Leakage Current  
V
= max  
CC  
ILK  
1
1
1
1
μA  
μA  
V
= V to V  
CC  
IN  
SS  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
V
= V to V , E or G V  
IH  
IN  
SS  
CC  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
Operating Voltage  
2.0  
V
+ 0.3  
2.0  
–0.5  
V + 0.3  
CC  
V
V
All Inputs  
All Inputs  
IH  
CC  
V
–0.5  
0.8  
V
0.8  
IL  
SS  
SS  
2.4  
2.4  
V
I
I
=– 2mA  
= 4mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
2.7  
17  
°C  
V
A
V
2.7  
17  
3.6  
120  
3.6  
120  
3.3V + 0.3V  
Between V  
CC  
V
Storage Capacitance  
Nonvolatile STORE operations  
Data Retention  
μF  
K
pin and V , 5V rated.  
CAP SS  
CAP  
NV  
200  
20  
200  
20  
C
DATA  
Years  
@ 55 deg C  
R
Note: The HSB pin has I  
=-10 uA for V of 2.4 V, this parameter is characterized but not tested.  
OH  
OUT  
Rev 1.7  
Document Control #ML0033  
February 2007  
3
STK14D88  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1 and 2  
b
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
Output Capacitance  
7
7
pF  
IN  
C
pF  
OUT  
Note b: These parameters are guaranteed but not tested.  
3.0V  
577 Ohms  
OUTPUT  
30 pF  
789 Ohms  
INCLUDING  
SCOPE AND  
FIXTURE  
Figure 1: AC Output Loading  
3.0V  
577 Ohms  
OUTPUT  
5 pF  
789 Ohms  
INCLUDING  
SCOPE AND  
FIXTURE  
Figure 2: AC Output Loading for Tristate Specs (tHZ, tLZ, tWLQZ, tWHQZ, tGLQX, tGHQZ  
)
Rev 1.7  
Document Control #ML0033  
February 2007  
4
STK14D88  
SRAM READ CYCLES #1 & #2  
SYMBOLS  
NO.  
STK14D88-25  
STK14D88-35  
STK14D88-45  
UNITS  
PARAMETER  
#1  
#2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
RC  
AA  
c
c
t
t
25  
35  
45  
AVAV  
AVAV  
d
d
3
Address Access Time  
25  
12  
35  
15  
45  
20  
AVQV  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
AXQX  
ELQX  
EHQZ  
GLQX  
OE  
OH  
LZ  
d
d
e
e
5
t
3
3
3
3
3
3
AXQX  
6
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
HZ  
8
0
0
0
0
0
0
OLZ  
OHZ  
PA  
9
GHQZ  
b
b
10  
11  
ELICCH  
EHICCL  
PS  
Note c: W must be high during SRAM READ cycles.  
Note d: Device is continuously selected with E and G both low  
Note e: Measured 200mV from steady state output voltage.  
Note f: HSB must remain high during READ and WRITE cycles.  
c,d,f  
SRAM READ CYCLE #1: Address Controlled  
2
AVAV  
t
ADDRESS  
3
AVQV  
t
5
AXQX  
t
DQ (DATA OUT)  
DATA VALID  
c,f  
SRAM READ CYCLE #2: E Controlled  
2
AVAV  
t
ADDRESS  
1
ELQV  
11  
EHICCL  
t
t
6
ELQX  
E
t
7
EHQZ  
t
G
9
4
GLQV  
t
GHQZ  
t
8
GLQX  
t
DATA VALID  
DQ (DATA OUT)  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
Rev 1.7  
Document Control #ML0033  
February 2007  
5
                                 
                                   
                                      
                                       
                                           
                                            
DATA VALID  
STK14D88  
SRAM WRITE CYCLES #1 & #2  
SYMBOLS  
NO.  
STK14D88-25  
STK14D88-35  
STK1D88-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WC  
WP  
CW  
DW  
t
t
Write Pulse Width  
WLWH  
WLEH  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
WHAX  
e, g  
EHAX  
WR  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
3
3
3
WHQX  
OW  
Note g: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note h: E or W must be VIH during address transitions.  
g,h  
SRAM WRITE CYCLE #1: W Controlled  
12  
t
AVAV  
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
DATA IN  
15  
DVWH  
16  
WHDX  
t
t
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
g,h  
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
14  
ELEH  
19  
t
t
t
EHAX  
E
17  
AVEH  
t
13  
WLEH  
t
W
15  
DVEH  
16  
EHDX  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
Rev 1.7  
Document Control #ML0033  
February 2007  
6
STK14D88  
AutoStore™/POWER-UP RECALL  
SYMBOLS  
NO.  
STK14D88  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
MAX  
20  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
ms  
ms  
V
i
HRECALL  
STORE  
t
12.5  
2.65  
j,k  
HLHZ  
V
V
Low Voltage Trigger Level  
SWITCH  
CCRISE  
V
Rise Time  
150  
μs  
CC  
Note i: tHRECALL starts from the time VCC rises above VSWITCH  
Note j: If an SRAM WRITE has not taken place since the last nonvolatile cycle, no STORE will take place  
Note k: Industrial Grade Devices require 15 ms MAX.  
AutoStore™/POWER-UP RECALL  
STORE occurs only if a  
SRAM write has  
happened.  
No STORE occurs  
without at least one  
SRAM write.  
VCC  
24  
VSWITCH  
25  
tVCCRISE  
AutoStore
23  
tSTORE  
23  
tSTORE  
POWER-UP RECALL  
22  
tHRECALL  
22  
tHRECALL  
Read & Write Inhibited  
POWER DOWN  
BROWN OUT  
POWER-UP  
RECALL  
POWER-UP  
RECALL  
AutoStore
AutoStoreT
Note: Read and Write cycles will be ignored during STORE, RECALL and while V is below V  
CC  
SWITCH  
Rev 1.7  
Document Control #ML0033  
February 2007  
7
STK14D88  
l,m  
SOFTWARE-CONTROLLED STORE/RECALL CYCLE  
Symbols  
STK14D88-35 STK14D88-35 STK14D88-45  
NO.  
PARAMETER  
UNITS NOTES  
E Cont Alternate  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
t
t
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
Clock Pulse Width  
ns  
ns  
ns  
ns  
μs  
m
AVAV  
RC  
AVEL  
AS  
20  
1
25  
1
30  
1
ELEH  
EHAX  
RECALL  
CW  
Address Hold Time  
RECALL Duration  
50  
50  
50  
Note l: The software sequence is clocked with E controlled READs  
Note m: The six consecutive addresses must be read in the order listed in the Mode Selection Table. W must be high during all six consecutive cycles.  
m
SOFTWARE STORE/RECALL CYCLE: E CONTROLLED  
26  
26  
tAVAV  
tAVAV  
ADDRESS #1  
ADDRESS #6  
ADDRESS  
E
27  
tAVEL  
28  
tELEH  
29  
tEHAX  
G
23  
30  
/
tSTORE tRECALL  
HIGH IMPEDENCE  
DATA VALID  
DQ (DATA)  
DATA VALID  
Rev 1.7  
Document Control #ML0033  
February 2007  
8
STK14D88  
HARDWARE STORE CYCLE  
SYMBOLS  
STK14D88  
PARAMETER  
UNITS NOTES  
Standard  
Alternate  
MIN  
1
MAX  
31  
32  
t
t
Hardware STORE to SRAM Disabled  
Hardware STORE Pulse Width  
70  
μs  
n
DELAY  
HLQZ  
t
15  
ns  
HLHX  
Note n: Read and Write cycles in Progress before HSB is asserted are given this amount of time to complete  
HARDWARE STORE CYCLE  
32  
tHLHX  
HSB (IN)  
23  
tSTORE  
HSB (OUT)  
31  
tDELAY  
DQ (DATA OUT)  
SRAM Enabled  
SRAM Enabled  
Soft Sequence Commands  
STK14  
D88  
NO.  
SYMBOLS  
Standard  
PARAMETER  
UNITS NOTES  
MIN  
MAX  
70  
34  
t
Soft Sequence Processing Time  
μs  
o,p  
SS  
Notes:  
o: This is the amount of time that it takes to take action on a soft sequence command. Vcc power must remain high to effectively register com-  
mand.  
p: Commands like Store and Recall lock out I/O until operation is complete which further increases this time. See specific command.  
34  
tSS  
34  
tSS  
Soft Sequence Command  
Soft Sequence Command  
ADDRESS #1  
ADDRESS #1  
ADDRESS #6  
ADDRESS #6  
ADDRESS  
Vcc  
Rev 1.7  
Document Control #ML0033  
February 2007  
9
STK14D88  
MODE SELECTION  
E
W
G
A -A  
Mode  
I/O  
Power  
Notes  
13  
0
H
L
L
X
H
L
X
L
X
X
X
Not Selected  
Read SRAM  
Write SRAM  
Output High Z  
Output Data  
Input Data  
Standby  
Active  
X
Active  
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x03F8  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
q,r,s  
q,r,s  
q,r,s  
q,r,s  
L
L
L
H
H
H
H
L
L
L
L
Active  
AutoStore Disable  
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x07F0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Active  
Active  
AutoStore Enable  
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0FC0  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Nonvolatile Store  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
I
CC2  
0x0E38  
0x31C7  
0x03E0  
0x3C1F  
0x303F  
0x0C63  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
L
Active  
Nonvolatile Recall  
Notes  
q: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
r: While there are 15 addresses on the STK14D88, only the lower 14 are used to control software modes  
s: I/O state depends on the state of G. The I/O table shown assumes G low  
Rev 1.7  
Document Control #ML0033  
February 2007  
10  
STK14D88  
nvSRAM OPERATION  
nvSRAM  
SRAM WRITE  
The STK14D88 nvSRAM is made up of two func-  
tional components paired in the same physical cell.  
These are the SRAM memory cell and a nonvolatile  
QuantumTrap cell. The SRAM memory cell operates  
like a standard fast static RAM. Data in the SRAM  
can be transferred to the nonvolatile cell (the  
STORE operation), or from the nonvolatile cell to  
SRAM (the RECALL operation). This unique archi-  
tecture allows all cells to be stored and recalled in  
parallel. During the STORE and RECALL operations  
SRAM READ and WRITE operations are inhibited.  
The STK14D88 supports unlimited read and writes  
like a typical SRAM. In addition, it provides unlimited  
RECALL operations from the nonvolatile cells and  
up to 200K STORE operations.  
A WRITE cycle is performed whenever E and W are  
low and HSB is high. The address inputs must be  
stable prior to entering the WRITE cycle and must  
remain stable until either E or W goes high at the  
end of the cycle. The data on the common I/O pins  
DQ0-7 will be written into memory if it is valid t  
DVWH  
before the end of a W controlled WRITE or t  
before the end of an E controlled WRITE.  
DVEH  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers t  
low.  
after W goes  
WLQZ  
AutoStore OPERATION  
The STK14D88 stores data to nvSRAM using one of  
three storage operations. These three operations  
are Hardware Store (activated by HSB), Software  
Store (activated by an address sequence), and  
AutoStore (on power down).  
SRAM READ  
The STK14D88 performs a READ cycle whenever E  
and G are low while W and HSB are high. The  
address specified on pins A  
the 32,768 data bytes will be accessed. When the  
READ is initiated by an address transition, the out-  
determine which of  
0-16  
AutoStore operation is a unique feature of Simtek  
QuanumTrap technology is enabled by default on  
the STK14D88.  
puts will be valid after a delay of t  
(READ cycle  
AVQV  
#1). If the READ is initiated by E and G, the outputs  
will be valid at t or at t , whichever is later  
ELQV  
GLQV  
During normal operation, the device will draw cur-  
(READ cycle #2). The data outputs will repeatedly  
respond to address changes within the t  
access time without the need for transitions on any  
control input pins, and will remain valid until another  
address change or until E or G is brought high, or W  
and HSB is brought low.  
rent from V  
to charge a capacitor connected to  
CC  
AVQV  
the V  
pin. This stored charge will be used by the  
CAP  
chip to perform a single STORE operation. If the  
voltage on the V pin drops below V , the  
CC  
SWITCH  
part will automatically disconnect the V  
pin from  
CAP  
V
. A STORE operation will be initiated with power  
CC  
provided by the V  
capacitor.  
CAP  
VCC  
Figure 3 shows the proper connection of the storage  
capacitor (V ) for automatic store operation.  
VCAP  
VCC  
CAP  
Refer to the DC CHARACTERISTICS table for the  
size of V . The voltage on the V pin is driven  
CAP  
CAP  
to 5V by a charge pump internal to the chip. A pull  
up should be placed on W to hold it inactive during  
power up.  
W
To reduce unneeded nonvolatile stores, AutoStore  
and Hardware Store operations will be ignored  
unless at least one WRITE operation has taken  
place since the most recent STORE or RECALL  
cycle. Software initiated STORE cycles are per-  
formed regardless of whether a WRITE operation  
Figure 3: AutoStore Mode  
Rev 1.7  
Document Control #ML0033  
February 2007  
11  
STK14D88  
has taken place. The HSB signal can be monitored  
by the system to detect an AutoStore cycle is in  
progress.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
1 Read Address 0x0E38 Valid READ  
2 Read Address 0x31C7 Valid READ  
3 Read Address 0x03E0 Valid READ  
4 Read Address 0x3C1F Valid READ  
5 Read Address 0x303F Valid READ  
6 Read Address 0x0FC0 Initiate STORE Cycle  
HARDWARE STORE (HSB) OPERATION  
The STK14D88 provides the HSB pin for controlling  
and acknowledging the STORE operations. The  
HSB pin can be used to request a hardware STORE  
cycle. When the HSB pin is driven low, the  
STK14D88 will conditionally initiate a STORE oper-  
ation after t  
. An actual STORE cycle will only  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
DELAY  
begin if a WRITE to the SRAM took place since the  
last STORE or RECALL cycle. The HSB pin also  
acts as an open drain driver that is internally driven  
low to indicate a busy condition while the STORE  
(initiated by any means) is in progress. This pin  
should be externally pulled up if it is used to drive  
other inputs.  
sequence. After the t  
cycle time has been ful-  
STORE  
filled, the SRAM will again be activated for READ  
and WRITE operation.  
SOFTWARE RECALL  
SRAM READ and WRITE operations that are in  
progress when HSB is driven low by any means are  
given time to complete before the STORE operation  
is initiated. After HSB goes low, the STK14D88 will  
Data can be transferred from the nonvolatile mem-  
ory to the SRAM by a software address sequence. A  
software RECALL cycle is initiated with a sequence  
of READ operations in a manner similar to the soft-  
ware STORE initiation. To initiate the RECALL  
cycle, the following sequence of E controlled READ  
operations must be performed:  
continue SRAM operations for t  
. During t  
,
DELAY  
DELAY  
multiple SRAM READ operations may take place. If  
a WRITE is in progress when HSB is pulled low, it  
will be allowed a time, t  
, to complete. However,  
DELAY  
any SRAM WRITE cycles requested after HSB goes  
low will be inhibited until HSB returns high.  
1 Read Address 0x0E38 Valid READ  
2 Read Address 0x31C7 Valid READ  
3 Read Address 0x03E0 Valid READ  
4 Read Address 0x3C1F Valid READ  
5 Read Address 0x303F Valid READ  
6 Read Address 0x0C63 Initiate RECALL Cycle  
If HSB is not used, it should be left unconnected.  
HARDWARE RECALL (POWER-UP)  
During power up or after any low-power condition  
(V <V  
), an internal RECALL request will be  
CC  
SWITCH  
latched. When V  
once again exceeds the sense  
, a RECALL cycle will automati-  
CC  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
tile information is transferred into the SRAM cells.  
voltage of V  
SWITCH  
cally be initiated and will take t  
to complete.  
HRECALL  
After the t  
cycle time, the SRAM will once  
RECALL  
SOFTWARE STORE  
again be ready for READ or WRITE operations. The  
RECALL operation in no way alters the data in the  
nonvolatile storage elements.  
Data can be transferred from the SRAM to the non-  
volatile memory by a software address sequence.  
The STK14D88 software STORE cycle is initiated  
by executing sequential E controlled READ cycles  
from six specific address locations in exact order.  
During the STORE cycle, previous data is erased  
and then the new data is programmed into the non-  
volatile elements. Once a STORE cycle is initiated,  
further memory inputs and outputs are disabled until  
the cycle is completed.  
Rev 1.7  
Document Control #ML0033  
February 2007  
12  
STK14D88  
NOISE CONSIDERATIONS  
DATA PROTECTION  
The STK14D88 is a high-speed memory and so  
must have a high-frequency bypass capacitor of  
The STK14D88 protects data from corruption during  
low-voltage conditions by inhibiting all externally  
initiated STORE and WRITE operations. The low-  
approximately 0.1 μF connected between V  
and  
CC  
V
, using leads and traces that are a short as pos-  
volage condition is detected when V <V  
.
SS  
CC  
SWITCH  
sible. As with all high-speed CMOS ICs, careful rout-  
ing of power, ground, and signals will reduce circuit  
noise.  
If the STK14D88 is in a WRITE mode (both E and W  
low) at power-up, after a RECALL, or after a  
STORE, the WRITE will be inhibited until a negative  
transition on E or W is detected. This protects  
against inadvertent writes during power up or brown  
out conditions.  
PREVENTING AUTOSTORE  
The AutoStore function can be disabled by initiating  
an AutoStore Disable sequence. A sequence of  
READ operations is performed in a manner similar  
to the software STORE initiation. To initiate the  
AutoStore Disable sequence, the following  
sequence of E controlled or G controlled READ  
operations must be performed:  
LOW AVERAGE ACTIVE POWER  
CMOS technology provides the STK14D88 with the  
benefit of power supply current that scales with  
cycle time. Less current will be drawn as the mem-  
ory cycle time becomes longer than 50 ns. Figure 4  
1 Read Address 0x0E38 Valid READ  
2 Read Address 0x31C7 Valid READ  
3 Read Address 0x03E0 Valid READ  
4 Read Address 0x3C1F Valid READ  
5 Read Address 0x303F Valid READ  
6 Read Address 0x03F8 AutoStore Disable  
shows the relationship between I  
WRITE cycle time. Worst-case current consumption  
is shown for commercial temperature range,  
and READ/  
CC  
V
=3.6V, and chip enable at maximum frequency.  
CC  
Only standby current is drawn when the chip is dis-  
abled. The overall average current drawn by the  
STK14D88 depends on the following items:  
The AutoStore can be re-enabled by initiating an  
AutoStore Enable sequence. A sequence of READ  
operations is performed in a manner similar to the  
software RECALL initiation. To initiate the AutoStore  
Enable sequence, the following sequence of E con-  
trolled or G controlled READ operations must be  
performed:  
1
2
3
4
5
6
The duty cycle of chip enable  
The overall cycle rate for operations  
The ratio of READs to WRITEs  
The operating temperature  
The VCC Level  
I/O Loading  
1 Read Address 0x0E38 Valid READ  
2 Read Address 0x31C7 Valid READ  
3 Read Address 0x03E0 Valid READ  
4 Read Address 0x3C1F Valid READ  
5 Read Address 0x303F Valid READ  
6 Read Address 0x07F0 AutoStore Enable  
50  
40  
30  
20  
10  
0
Writes  
Reads  
If the AutoStore function is disabled or re-enabled, a  
manual STORE operation (Hardware or Software)  
needs to be issued to save the AutoStore state  
through subsequent power down cycles. The part  
comes from the factory with AutoStore enabled.  
50 100 150 200 300  
Cycle Time (ns)  
Figure 4 - Current vs. Cycle Time  
Rev 1.7  
Document Control #ML0033  
February 2007  
13  
STK14D88  
ORDERING INFORMATION  
STK14D88-R F 45 I TR  
Temperature Range  
Blank= Tube  
TR= Tape & Reel  
Temperature Range  
Blank=Commercial (0 to +70 C)  
I= Industrial (-45 to +85 C)  
Access Time  
25=25 ns  
35=35 ns  
45=45 ns  
Lead Finish  
F=100% Sn (Matte Tin) RoHS Compliant  
Package  
N=Plastic 32-pin 300 mil SOIC (50 mil pitch)  
R=Plastic 48-pin 300 mil SSOP(25 mil pitch)  
Rev 1.7  
Document Control #ML0033  
February 2007  
14  
STK14D88  
Ordering Codes  
Part Number  
Description  
Temperature  
STK14D88-NF25  
STK14D88-NF35  
STK14D88-NF45  
STK14D88-NF25TR  
STK14D88-NF35TR  
STK14D88-NF45TR  
STK14D88-RF25  
STK14D88-RF35  
STK14D88-RF45  
STK14D88-RF25TR  
STK14D88-RF35TR  
STK14D88-RF45TR  
STK14D88-NF25I  
STK14D88-NF35I  
STK14D88-NF45I  
STK14D88-NF25ITR  
STK14D88-NF35ITR  
STK14D88-NF45ITR  
STK14D88-RF25I  
STK14D88-RF35I  
STK14D88-RF45I  
STK14D88-RF25ITR  
STK14D88-RF35ITR  
STK14D88-RF45ITR  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SOP32-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
3V 32Kx 8 AutoStore nvSRAM SSOP48-300  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Commercial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Industrial  
Rev 1.7  
Document Control #ML0033  
February 2007  
15  
STK14D88  
PACKAGE DRAWINGS  
32 Pin 300 mil SOIC  
0.292 7.42  
(
)
0.300 7.60  
0.405 10.29  
(
)
0.419 10.64  
Pin 1  
Index  
.050 (1.27)  
BSC  
0.810 20.57  
0.822 20.88  
)
(
0.026 0.66  
0.032 0.81  
(
)
0.090 2.29  
0.100(2.54)  
2.18  
0.086  
0.12  
0.22  
0.090 (2.29)  
0.004 0.10  
0.010(0.25 )  
0.014 0.36  
0.020 0.51  
)
(
MIN  
MAX  
DIM = INCHES  
MIN  
DIM = mm  
(MAX)  
0 o  
8o  
0.006 0.15  
( )  
0.013 0.32  
0.021 0.53  
0.041(1.04 )  
Rev 1.7  
Document Control #ML0033  
February 2007  
16  
STK14D88  
48 Pin 300 mil SSOP  
TOP VIEW  
0.620 15.75  
BOTTOM VIEW  
(
)
N
16.00  
0.630  
0.400  
0.410  
10.16  
10.41  
)
(
7.42  
7.59  
7.42  
7.59  
0.292  
0.299  
0.292  
0.299  
)
(
)
(
.045 11.43  
.055 (13.97)  
1
2
3
Pin 1 indicator  
.045 DIA.  
(11.43)  
.035  
8.89  
.045 (11.43)  
.020  
(5.1)  
SIDE VIEW  
0.25  
0.41  
0.010  
0.016  
( )  
0.203  
0.008  
0.025  
(0.635)  
END VIEW  
0.0135 (0.343)  
45°  
2.41  
2.79  
0.095  
0.110  
2.24  
2.34  
0.088  
0.092  
)
(
( )  
0.620 15.75  
( )  
SEATING  
PLANE  
16.00  
0.630  
SEE DETAIL  
A
0.20  
0.41  
0.008  
0.016  
)
(
MIN  
END VIEW  
PARTING  
LINE  
DIM = INCHES  
MAX  
GAUGE PLANE  
0.010  
(0.25)  
MIN  
SEATING PLANE  
DIM = mm  
)
(
MAX  
DETAIL A  
0.61  
1.02  
0.024  
0.040  
( )  
Rev 1.7  
Document Control #ML0033  
February 2007  
17  
STK14D88  
Document Revision History  
Rev  
1.0  
1.1  
Date  
Change  
December 2004  
February 2005  
Initial Revision  
Fixed Number of pins typographical error, “R” package on Order Infor-  
mation Page, Corrected to 48 pins from incorrect value of 40  
1.3  
August 2005  
Parameter  
ICC3 Max Com.  
ICC3 Max Ind.  
ISB Max Com.  
ISB Max Ind.  
Old Value  
5 mA  
New Value  
10 mA  
Notes  
5 mA  
2 mA  
2 mA  
10 mA  
3 mA  
3 mA  
1.4  
December 2005  
Parameter  
Old Value  
New Value  
Notes  
Typographical Error  
In Datasheet  
60 us  
50 us  
70 us  
tRECALL  
tSS  
Undefined  
New Nonvolatile  
Store Cycle Spec  
1 Million  
500K  
NVC  
100 Years at  
Unspecified  
Temperature  
20 Years @  
Max  
Temperature Specification  
New Data Retention  
DATAR  
1.5  
1.6  
February 2006  
March 2006  
Added back a missing Mode table.  
Removed “Leaded” Lead Finish package offering  
Rev 1.7  
Document Control #ML0033  
February 2007  
18  
STK14D88  
1.7  
February 2007  
Added tape and reel ordering option  
Added product order code listing  
Added package drawings  
Reformatted entire document  
Deleted G-Controlled Soft Sequence  
Parameter  
NVC  
Old Value  
New Value  
Notes  
New Nonvolatile  
Store Cycle Spec  
500K  
200K  
20 Years @  
85 C  
20 Years @ New Data Retention  
55 C  
Spec  
DATAR  
SWITCH Min.  
2.55 V  
20 ns  
No Min. Spec  
V
-10 uA  
Not Specified Before  
Removed  
I
t
OUT (HSB)  
ELAX, tGLAX  
1 ns  
New Spec  
tEHAX, tGHAX  
tDELAY Max.  
tHLBL  
70 us  
New Spec  
300ns  
Spec Not Required  
70 uS Min.  
70 uS Max. Typo  
tSS  
SIMTEK STK14D88 Datasheet, February 2007  
Copyright 2007, Simtek Corporation. All rights reserved.  
This datasheet may only be printed for the expressed use of Simtek Customers. No part of the datasheet may be reproduced in any other  
form or means without the express written permission from Simtek Corporation. The information contained in this publication is believed to be  
accurate, but changes may be made without notice. Simtek does not assume responsibility for, or grant or imply any warranty, including  
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE regarding this information, the product or its use. Nothing herein consti-  
tutes a license, grant or transfer of any rights to any Simtek patent, copyright, trademark, or other proprietary right.  
Rev 1.7  
Document Control #ML0033  
February 2007  
19  

相关型号:

STK14D88-3N25

Non-Volatile SRAM, 32KX8, 25ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N35

32KX8 NON-VOLATILE SRAM, 35ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N35I

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N45

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3N45I

32KX8 NON-VOLATILE SRAM, 45ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, PLASTIC, SOIC-32
SIMTEK

STK14D88-3NF25

32KX8 NON-VOLATILE SRAM, 25ns, PDSO32, 0.300 INCH, 0.50 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
SIMTEK

STK14D88-3NF35I

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
SIMTEK

STK14D88-3NF45I

Non-Volatile SRAM, 32KX8, 45ns, CMOS, PDSO32, 0.300 INCH, 0.50 MM PITCH, LEAD FREE, PLASTIC, SOIC-32
SIMTEK

STK14D88-3R25

32KX8 NON-VOLATILE SRAM, 25ns, PDSO48, 0.300 INCH, 0.25 MM PITCH, PLASTIC, SSOP-48
SIMTEK

STK14D88-3R25I

32KX8 NON-VOLATILE SRAM, 25ns, PDSO48, 0.300 INCH, 0.25 MM PITCH, PLASTIC, SSOP-48
CYPRESS

STK14D88-3R35

Non-Volatile SRAM, 32KX8, 35ns, CMOS, PDSO48, 0.300 INCH, 0.25 MM PITCH, PLASTIC, SSOP-48
SIMTEK

STK14D88-3R35I

32KX8 NON-VOLATILE SRAM, 35ns, PDSO48, 0.300 INCH, 0.25 MM PITCH, PLASTIC, SSOP-48
SIMTEK