STK16C68-S45I [SIMTEK]

Non-Volatile SRAM, 8KX8, 45ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28;
STK16C68-S45I
型号: STK16C68-S45I
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

Non-Volatile SRAM, 8KX8, 45ns, CMOS, PDSO28, 0.350 INCH, PLASTIC, SOIC-28

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 静态存储器 光电二极管 内存集成电路
文件: 总9页 (文件大小:93K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK16C68  
8K x 8 AutoStorePlus™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
FEATURES  
DESCRIPTION  
Transparent Data Save on Power Down  
Internal Capacitor Guarantees AutoStore™  
Regardless of Power-Down Slew Rate  
Nonvolatile Storage without Battery Problems  
Directly Replaces 8K x 8 Static RAM, Battery-  
Backed RAM or EEPROM  
20ns, 25ns, 35ns and 45ns Access Times  
STORE to EEPROM Initiated by Software or  
AutoStorePluson Power Down  
RECALL to SRAM Initiated by Software or  
Power Restore  
10mA Typical ICC at 200ns Cycle Time  
Unlimited READ, WRITE and RECALL Cycles  
1,000,000 STORE Cycles to EEPROM  
100-Year Data Retention over Full Industrial  
Temperature Range  
No Data Loss from Undershoot  
Commercial and Industrial Temperatures  
28-Pin 600 mil PDIP and 350 mil SOIC Packages  
The STK16C68 is a fast SRAM with a nonvolatile  
EEPROM element incorporated in each static memory  
cell. The SRAM can be read and written an unlimited  
number of times, while independent nonvolatile data  
resides in EEPROM. Data transfers from the SRAM to  
the EEPROM (the STORE operation) can take place  
automatically on power down. An internal capacitor  
guarantees the STORE operation regardless of power-  
down slew rate. Transfers from the EEPROM to the  
SRAM (the RECALL operation) take place automatically  
on restoration of power. Initiation of STORE and  
RECALL cycles can also be controlled by entering con-  
trol sequences on the SRAM inputs. The STK16C68 is  
pin-compatible with 8k x 8 SRAMs and battery-backed  
SRAMs, allowing direct substitution while enhancing  
performance. The STK12C68, which uses an external  
capacitor, and the STK15C68, which uses charge  
stored in system capacitance, are alternatives for sys-  
tems needing AutoStore™ operation.  
PIN CONFIGURATIONS  
BLOCK DIAGRAM  
NC  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
V
CC  
W
NC  
A
A
A
A
A
A
A
A
A
DQ  
DQ  
DQ  
2
12  
EEPROM ARRAY  
128 x 512  
3
7
6
5
4
3
2
VCC  
4
A
8
A
9
A5  
5
6
A
STORE  
11  
G
A6  
STORE/  
RECALL  
CONTROL  
7
POWER  
CONTROL  
A7  
8
A
E
10  
STATIC RAM  
ARRAY  
9
RECALL  
1
0
A8  
10  
11  
12  
13  
14  
DQ  
DQ  
7
6
5
128 x 512  
A9  
0
DQ  
1
2
INTERNAL  
CAPACITOR  
28 - 600 PDIP  
28 - 350 SOIC*  
A11  
A12  
DQ  
DQ  
4
3
V
SS  
*see order info  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
PIN NAMES  
COLUMN I/O  
SOFTWARE  
DETECT  
A0 - A12  
A
- A  
12  
Address Inputs  
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 5V)  
Ground  
COLUMN DEC  
0
W
DQ - DQ  
0
7
A0 A1 A2 A3 A4 A10  
G
E
G
E
V
W
CC  
V
SS  
July 1999  
4-73  
STK16C68  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . 0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . 55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
b
DC CHARACTERISTICS  
(V = 5.0V ± 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
c
I
Average V  
Current  
100  
90  
75  
N/A  
90  
75  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns  
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
AVAV  
1
65  
65  
d
c
I
I
Average V  
Average V  
Current during STORE  
3
3
mA  
mA  
All Inputs Dont Care, V = max  
CC  
CC  
CC  
CC  
CC  
2
3
Current at t  
AVAV  
= 200ns  
W (V  
0.2V)  
CC  
All Others Cycling, CMOS Levels  
10  
10  
5V, 25°C, Typical  
e
I
Average V Current  
32  
27  
23  
20  
N/A  
28  
24  
mA  
mA  
mA  
mA  
t
t
t
t
= 20ns, E V  
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
CC  
(Standby, Cycling TTL Input Levels)  
AVAV  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
IH  
1
21  
e
I
I
I
V
Standby Current  
E (V  
0.2V)  
CC  
SB  
CC  
2
1.5  
±1  
±5  
1.5  
±1  
±5  
mA  
µA  
µA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V  
0.2V)  
IN CC  
Input Leakage Current  
V = max  
CC  
ILK  
V
= V to V  
IN  
SS CC  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
V
= V to V , E or G V  
IN  
SS CC IH  
V
V
V
V
Input Logic 1Voltage  
Input Logic 0Voltage  
Output Logic 1Voltage  
Output Logic 0Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
.5  
0.8  
V
.5  
SS  
0.8  
IL  
SS  
2.4  
0
2.4  
V
I
I
=4mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
= 8mA  
T
40  
°C  
A
Note b: The STK16C68-20 requires VCC = 5.0V ± 5% supply to operate at specified speed.  
Note c: ICC and ICC are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note d: ICC1 and ICC3 are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note e: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
5.0V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
480 Ohms  
f
CAPACITANCE  
(TA = 25°C, f = 1.0MHz)  
OUTPUT  
30 pF  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
V = 0 to 3V  
V = 0 to 3V  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
C
pF  
OUT  
Note f: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
July 1999  
4-74  
STK16C68  
b
SRAM READ CYCLES #1 & #2  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK16C68-20 STK16C68-25 STK16C68-35 STK16C68-45  
PARAMETER  
UNITS  
NO.  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
Read Cycle Time  
20  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
g
20  
25  
35  
45  
AVAV  
RC  
AA  
h
3
Address Access Time  
22  
8
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
h
5
5
5
5
5
5
5
5
5
AXQX  
6
ELQX  
i
7
7
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
i
9
GHQZ  
f
10  
11  
ELICCH  
EHICCL  
e, f  
25  
PS  
Note g: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note h: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note i: Measured + 200mV from steady state output voltage.  
g, h  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DATA VALID  
DQ (DATA OUT)  
g
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
July 1999  
4-75  
STK16C68  
b
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK16C68-20  
STK16C68-25  
STK16C68-35  
STK16C68-45  
NO.  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
20  
15  
15  
8
MAX  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
t
t
t
Write Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
WC  
WP  
CW  
DW  
t
t
Write Pulse Width  
WLWH  
WLEH  
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
0
DH  
AW  
t
t
t
15  
0
20  
0
25  
0
30  
0
AVWH  
AVEH  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
0
WHAX  
EHAX  
WR  
i, j  
t
t
7
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
5
WHQX  
OW  
Note j: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note k: E or W must be VIH during address transitions.  
k
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
14  
ELWH  
t
WHAX  
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
WLWH  
t
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
k
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
19  
t
EHAX  
14  
ELEH  
t
t
E
17  
AVEH  
t
13  
WLEH  
t
W
16  
EHDX  
15  
DVEH  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
July 1999  
4-76  
STK16C68  
b
AutoStorePlus/POWER-UP RECALL  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK16C68  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
RESTORE  
FB  
MIN  
MAX  
550  
500  
4.5  
22  
23  
24  
25  
t
t
Power-up RECALL Duration  
µs  
ns  
V
l
Maximum V Slew Time to Ground  
CC  
f, h  
V
V
Low Voltage Trigger Level  
Low Voltage Reset Level  
4.0  
SWITCH  
RESET  
3.9  
V
f
Note l: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStorePlus/POWER-UP RECALL  
V
CC  
5V  
24  
V
SWITCH  
25  
RESET  
V
23  
t
FB  
AutoStore™  
OWER-UP RECALL  
22  
RESTORE  
t
W
DQ (DATA OUT)  
BROWN OUT  
BROWN OUT  
POWER-UP  
BROWN OUT  
AutoStorePlus™  
AutoStorePlus™  
RECALL  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
RECALL WHEN  
NO RECALL  
(VCC DID NOT GO  
V
RETURNS  
CC  
(VCC DID NOT GO  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
July 1999  
4-77  
STK16C68  
SOFTWARE STORE/RECALL MODE SELECTION  
E
W
G
A
- A (hex)  
MODE  
I/O with G Low  
I/O with G High  
NOTES  
12  
0
0000  
1555  
0AAA  
1FFF  
10F0  
0F0F  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
L
H
X
m
Nonvolatile STORE  
0000  
1555  
0AAA  
1FFF  
10F0  
0F0E  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Read SRAM  
Output Data  
Output Data  
Output Data  
Output Data  
Output Data  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
Output High Z  
L
H
X
m
Nonvolatile RECALL  
Note m: The six consecutive addresses must be in the order listed. W must be high during all six consecutive cycles to enable a nonvolatile cycle.  
n, o  
b
SOFTWARE STORE/RECALL CYCLE  
(V = 5.0V ± 10%)  
CC  
STK16C68-20  
STK16C68-25  
STK16C68-35  
STK16C68-45  
NO.  
SYMBOLS  
PARAMETER  
UNITS  
MIN  
20  
0
MAX  
MIN  
25  
0
MAX  
MIN  
35  
0
MAX  
MIN  
45  
0
MAX  
26  
27  
28  
29  
30  
31  
t
t
t
t
t
t
STORE/RECALL Initiation Cycle Time  
Address Set-up Time  
ns  
ns  
ns  
ns  
µs  
ms  
AVAV  
n
AVEL  
n
Clock Pulse Width  
15  
15  
20  
20  
25  
20  
30  
20  
ELEH  
ELAX  
h, n  
Address Hold Time  
RECALL Cycle Duration  
STORE Cycle Duration  
20  
10  
20  
10  
20  
10  
20  
10  
RECALL  
STORE  
Note n: The software sequence is clocked with E controlled READs.  
Note o: The six consecutive addresses must be in the order listed in the Software STORE/RECALL Mode Selection Table: (0000, 1555, 0AAA, 1FFF,  
10F0, 0F0F) for a STORE cycle or (0000, 1555, 0AAA, 1FFF, 10F0, 0F0E) for a RECALL cycle. W must be high during all six consecutive  
cycles.  
o
SOFTWARE STORE/RECALL CYCLE: E Controlled  
26  
AVAV  
26  
t
AVAV  
t
ADDRESS #1  
ADDRESS #6  
ADDRESS  
27  
AVEL  
28  
t
ELEH  
t
E
29  
ELAX  
t
31  
30  
RECALL  
t
STORE / t  
HIGH IMPEDANCE  
DATA VALID  
DATA VALID  
Q (DATA OUT)  
July 1999  
4-78  
STK16C68  
DEVICE OPERATION  
The AutoStorePlusSTK16C68 is a fast 8K x 8  
AutoStorePlusOPERATION  
SRAM that does not lose its data on power-down.  
The data is preserved in integral QuantumTrap™  
EEPROM while power is unavailable. The nonvolatil-  
ity of the STK16C68 does not require any system  
intervention or support: AutoStorePluson power-  
down and automatic RECALL on power-up guaran-  
tee data integrity without the use of batteries.  
The STK16C68s automatic STORE on power-down  
is completely transparent to the system. The  
AutoStoreinitiation takes less than 500ns when  
power is lost (VCC < VSWITCH) at which point the part  
depends only on its internal capacitor for STORE  
completion. This safe transfer of data from SRAM to  
EEPROM takes place regardless of power supply  
slew rate.  
NOISE CONSIDERATIONS  
In order to prevent unneeded STORE operations, the  
automatic STORE will be ignored unless at least one  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle. Software-initiated  
STORE cycles are performed regardless of whether  
or not a WRITE operation has taken place.  
Note that the STK16C68 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1µF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
SRAM READ  
The STK16C68 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-12 determines which of the 8,192 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high or W is brought low.  
If the STK16C68 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10kresistor should  
be connected either between W and system VCC or  
between E and system VCC.  
SOFTWARE NONVOLATILE STORE  
The STK16C68 software STORE cycle is initiated by  
executing sequential READ cycles from six specific  
address locations. During the STORE cycle an erase  
of the previous nonvolatile data is first performed,  
followed by a program of the nonvolatile elements.  
The program operation copies the SRAM data into  
nonvolatile memory. Once a STORE cycle is initi-  
ated, further input and output are disabled until the  
cycle is completed.  
SRAM WRITE  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
Because a sequence of READs from specific  
addresses is used for STORE initiation, it is impor-  
tant that no other READ or WRITE accesses inter-  
vene in the sequence or the sequence will be  
aborted and no STORE or RECALL will take place.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
To initiate the software STORE cycle, the following  
READ sequence must be performed:  
July 1999  
4-79  
STK16C68  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0F (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate STORE cycle  
tile information is transferred into the SRAM cells.  
After the tRECALL cycle time the SRAM will once again  
be ready for READ and WRITE operations. The  
RECALL operation in no way alters the data in the  
EEPROM cells. The nonvolatile data can be recalled  
an unlimited number of times.  
The software sequence must be clocked with E  
controlled READs.  
HARDWARE PROTECT  
Once the sixth address in the sequence has been  
entered, the STORE cycle will commence and the  
chip will be disabled. It is important that READ  
cycles and not WRITE cycles be used in the  
sequence, although it is not necessary that G be  
low for the sequence to be valid. After the tSTORE  
cycle time has been fulfilled, the SRAM will again be  
activated for READ and WRITE operation.  
The STK16C68 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs  
during low-voltage conditions. When VCC < VSWITCH  
,
software STORE operations and SRAM WRITEs are  
inhibited.  
LOW AVERAGE ACTIVE POWER  
The STK16C68 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on  
chip enable). Figure 3 shows the same relationship  
for WRITE cycles. If the chip enable duty cycle is  
less than 100%, only standby current is drawn  
when the chip is disabled. The overall average cur-  
rent drawn by the STK16C68 depends on the fol-  
lowing items: 1) CMOS vs. TTL input levels; 2) the  
duty cycle of chip enable; 3) the overall cycle rate  
for accesses; 4) the ratio of READs to WRITEs; 5)  
the operating temperature; 6) the VCC level; and 7) I/  
O loading.  
SOFTWARE NONVOLATILE RECALL  
A software RECALL cycle is initiated with a  
sequence of READ operations in a manner similar  
to the software STORE initiation. To initiate the  
RECALL cycle, the following sequence of READ  
operations must be performed:  
1. Read address  
2. Read address  
3. Read address  
4. Read address  
5. Read address  
6. Read address  
0000 (hex)  
1555 (hex)  
0AAA (hex)  
1FFF (hex)  
10F0 (hex)  
0F0E (hex)  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Valid READ  
Initiate RECALL cycle  
Internally, RECALL is a two-step procedure. First,  
the SRAM data is cleared, and second, the nonvola-  
100  
80  
100  
80  
60  
60  
TTL  
CMOS  
40  
40  
TTL  
20  
20  
CMOS  
150 200  
0
0
50  
100  
150  
200  
50  
100  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 3: I (max) Writes  
Figure 2: I (max) Reads  
CC  
CC  
July 1999  
4-80  
STK16C68  
ORDERING INFORMATION  
- W 25 I  
STK16C68  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (40 to 85°C)  
Access Time  
20 = 20ns (Commercial only)  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Package  
W = Plastic 28-pin 600 mil DIP  
*(call factory for availability of this package)  
S = Plastic 28-pin 350 mil SOIC*  
July 1999  
4-81  

相关型号:

STK16C68-W20

Non-Volatile SRAM, 8KX8, 22ns, CMOS, PDIP28, 0.600 INCH, PLASTIC, DIP-28
SIMTEK

STK16C68-W20I

8K x 8 AutoStorePlus? nvSRAM QuantumTrap? CMOS Nonvolatile Static RAM
ETC

STK16C68-W25

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W25

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W25I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W25I

8KX8 NON-VOLATILE SRAM, 25ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W35

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W35

8KX8 NON-VOLATILE SRAM, 35ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W35I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W45

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK

STK16C68-W45

8KX8 NON-VOLATILE SRAM, 45ns, PDIP28, 0.600 INCH, PLASTIC, DIP-28
CYPRESS

STK16C68-W45I

8K x 8 AutoStorePlus⑩ nvSRAM QuantumTrap⑩ CMOS Nonvolatile Static RAM
SIMTEK