SP3223E [SIPEX]

Intelligent +3.0V to +5.5V RS-232 Transceivers; 智能+ 3.0V至+ 5.5V的RS - 232收发器
SP3223E
型号: SP3223E
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Intelligent +3.0V to +5.5V RS-232 Transceivers
智能+ 3.0V至+ 5.5V的RS - 232收发器

文件: 总14页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3249E  
Intelligent +3.0V to +5.5V RS-232 Transceivers  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
Interoperable with EIA/TIA-232 and  
adheres to EIA/TIA-562 down to a +2.7V  
power source  
Minimum 250Kbps data rate under load  
Regulated Charge Pump Yields Stable  
RS-232 Outputs Regardless of VCC  
Variations  
Enhanced ESD Specifications:  
+15KV Human Body Model  
+15KV IEC1000-4-2 Air Discharge  
+8KV IEC1000-4-2 Contact Discharge  
DESCRIPTION  
The SP3249E device is an RS-232 transceiver solution intended for portable or hand-held  
applications such as notebook and palmtop computers. The SP3249E uses an internal  
high-efficiency, charge-pump power supply that requires only 0.1µF capacitors in 3.3V  
operation. This charge pump and Sipex's driver architecture allow the SP3249E device to  
deliver compliant RS-232 performance from a single power supply ranging from +3.0V to  
+5.0V. The SP3249E is a 5-driver/3-receiver device, ideal for laptop/notebook computer and  
PDA applications.  
SELECTION TABLE  
Part  
Power  
RS-232  
Drivers  
RS-232  
External  
AUTO ON-LINE™  
Circuitry  
TTL  
Number  
of Pins  
Number  
Supplies  
Receivers Components  
3-State  
SP3223E +3.0V to +5.5V  
SP3243E +3.0V to +5.5V  
SP3238E +3.0V to +5.5V  
SP3239E +3.0V to +5.5V  
SP3249E +3.0V to +5.5V  
2
3
5
5
5
2
5
3
3
3
4 capacitors  
4 capacitors  
4 capacitors  
4 capacitors  
4 capacitors  
YES  
YES  
YES  
NO  
YES  
YES  
YES  
YES  
NO  
20  
28  
28  
28  
24  
NO  
Applicable U.S. Patents - 5,306,954; and other patents pending.  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation  
of the device at these ratings or any other above those  
indicated in the operation sections of the specifications  
below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may  
affect reliability and cause permanent damage to the  
device.  
Input Voltages  
TxIN ...................................................-0.3V to +6.0V  
RxIN...................................................................+25V  
Output Voltages  
TxOUT.............................................................+13.2V  
RxOUT,......................................-0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT.....................................................Continuous  
Storage Temperature......................-65°C to +150°C  
V
CC.......................................................-0.3V to +6.0V  
V+ (NOTE 1).......................................-0.3V to +7.0V  
V- (NOTE 1)........................................+0.3V to -7.0V  
V+ + |V-| (NOTE 1)...........................................+13V  
I
CC (DC VCC or GND current).........................+100mA  
Note 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
SPECIFICATIONS  
VCC = +3.0 to +5.5, C1 -C4 = 0.1µF (tested at 3.3V + 5%), C1-C4 = 0.22µF (tested at 3.3V + 10%), C1 = 0.047µF, and C2-C4 = 0.33µF (tested at 5.0V  
+ 10%), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
Supply Current  
0.3  
1.0  
mA  
VCC, no load  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold  
LOW  
HIGH  
0.8  
V
V
VCC = +3.3V or +5.0V, TxIN  
VCC = +3.3V or +5.0V, TxIN  
2.4  
Input Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
±0.01  
VCC - 0.1  
±5.4  
±1.0  
µA  
V
TxIN, TA = 25°C  
IOUT = 1.6mA  
IOUT = -1.0mA  
0.4  
VCC - 0.6  
V
±5.0  
V
All driver outputs loaded with  
3Kto GND  
Output Resistance  
300  
VCC = V+ = V- = 0V, VOUT = ±2V  
Output Short-Circuit Current  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
Input Threshold LOW  
Input Threshold HIGH  
Input Threshold HIGH  
Input Hysteresis  
±35  
±60  
mA  
VOUT = GND  
-25  
0.6  
0.8  
25  
V
V
1.2  
1.5  
1.5  
1.8  
0.5  
5
VCC = 3.3V  
VCC = 5.0V  
VCC = 3.3V  
VCC = 5.0V  
V
2.4  
2.4  
V
V
V
Input Resistance  
3
7
kΩ  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
2
SPECIFICATIONS  
VCC = +3.0 to +5.5, C1 -C4 = 0.1µF (tested at 3.3V + 5%), C1-C4 = 0.22µF (tested at 3.3V + 10%), C1 = 0.047µF, and C2-C4 = 0.33µF (tested at 5.0V  
+ 10%), TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
TIMING CHARACTERISTICS  
Maximum Data Rate  
250  
kbps  
RL = 3k, CL = 1000pF, one  
driver switching  
Receiver Propagation Delay  
tPHL  
0.15  
0.15  
µs  
µs  
Receiver input to receiver  
output, CL = 150pF  
Receiver input to receiver  
output, CL = 150pF  
tPLH  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
50  
ns  
ns  
Normal operation  
Normal operation  
ns  
I tPLH - tPLH I,TA = 25°C  
Receiver Skew  
ns  
I tPLH - tPLH I  
Transition-Region Slew Rate  
30  
V/µs  
VCC = 3.3V, RL = 3k,  
TAMB =25°C, measurements  
taken from -3.0V to +3.0V or  
+3.0V to -3.0V  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 250kbps data rate, all drivers loaded with 3kΩ, 0.1µF charge  
pump capacitors, and TAMB = +25°C.  
SLEW RATE vs. LOAD CAPACITANCE  
TRANSMITTER OUTPUT vs. LOAD CAPACITANCE  
25  
20  
15  
10  
5
6
4
2
POS. SR  
NEG SR  
VOH  
VOL  
0
0
1000  
2000  
3000  
4000  
5000  
-2  
-4  
-6  
0
0
1000  
2000  
3000  
4000  
5000  
pF  
pF  
Figure 2. Slew Rate vs. Load Capacitance  
Figure 1. Transmitter Output vs. Load Capacitance  
SUPPLY CURRENT vs LOAD CAPACITANCE  
60  
50  
40  
250Kbps  
120Kbps  
20Kbps  
30  
20  
10  
0
0
1000  
2000  
3000  
4000  
5000  
pF  
Figure 3. Supply Current vs. Load Capacitance when  
Transmitting Data  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
3
PIN DESCRIPTION  
PIN  
NO.  
NAME  
FUNCTION  
C2+  
GND  
C2-  
Positive terminal of the inverting charge-pump capacitor.  
Ground.  
1
2
Negative terminal of the inverting charge-pump capacitor.  
Regulated -5.5V output generated by the charge pump.  
RS-232 driver output.  
3
V-  
4
T1OUT  
T2OUT  
T3OUT  
R1IN  
5
RS-232 driver output.  
6
RS-232 driver output.  
7
RS-232 receiver input.  
8
R2IN  
RS-232 receiver input.  
9
T4OUT  
R3IN  
RS-232 driver output.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
RS-232 receiver input.  
T5OUT  
T5IN  
RS-232 driver output.  
TTL/CMOS driver input.  
R3OUT  
T4IN  
TTL/CMOS receiver output.  
TTL/CMOS driver input.  
R2OUT  
R1OUT  
T3IN  
TTL/CMOS receiver output.  
TTL/CMOS receiver output.  
TTL/CMOS driver input.  
T2IN  
TTL/CMOS driver input.  
T1IN  
TTL/CMOS driver input.  
C1-  
Negative terminal of the voltage doubler charge-pump capacitor.  
+3.0V to +5.5V supply voltage.  
Regulated +5.5V output generated by the charge pump.  
Positive terminal of the voltage doubler charge-pump capacitor.  
VCC  
V+  
C1+  
Table 1. Device Pin Description  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
4
1
2
3
4
5
6
7
C2+  
GND  
C2-  
V-  
24 C1+  
V+  
23  
22  
21  
20  
19  
18  
V
CC  
C1-  
T IN  
1
T OUT  
1
SP3249E  
T IN  
2
T OUT  
2
T OUT  
3
T IN  
3
R IN  
1
R OUT  
1
8
9
17  
16  
15  
R IN  
2
R OUT  
2
10  
T OUT  
4
T IN  
4
R3IN 11  
14 R OUT  
3
T OUT  
5
T IN  
5
12  
13  
Figure 4. SP3249E Pinout Configuration  
VCC  
+
22  
CC  
0.1µF  
C5  
C1  
V
24  
23  
C1+  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
C3  
C4  
0.1µF  
0.1µF  
21  
1
C1-  
SP3249E  
4
C2+  
C2  
3
C2-  
T1IN  
T2IN  
T3IN  
T1OUT  
T2OUT  
T3OUT  
T4OUT  
T5OUT  
5
20  
19  
6
18  
15  
13  
7
RS-232  
OUTPUTS  
TTL/CMOS  
INPUTS  
T4IN  
T5IN  
10  
12  
R1IN  
R2IN  
R3IN  
R1OUT  
R2OUT  
R3OUT  
8
17  
16  
14  
5kΩ  
TTL/CMOS  
OUTPUTS  
9
RS-232  
INPUTS  
5kΩ  
5kΩ  
11  
GND  
2
Figure 5. SP3249E Typical Operating Circuit  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
5
DESCRIPTION  
output voltage swing is +5.4V with no load and  
+5V minimum fully loaded. The driver outputs  
are protected against infinite short-circuits to  
ground without degradation in reliability. These  
drivers comply with the EIA-TIA-232F and all  
previous RS-232 versions. Unused driver inputs  
should be connected to GND or VCC.  
TheSP3249EdevicemeetstheEIA/TIA-232and  
ITU-T V.28/V.24 communication protocols and  
can be implemented in battery-powered, por-  
table, or hand-held applications such as  
notebook or palmtop computers. The SP3249E  
device features Sipex's proprietary and patented  
(U.S. #5,306,954) on-board charge pump  
circuitry that generates ±5.5V RS-232 voltage  
levels from a single +3.0V to +5.5V power  
supply. The SP3249E device can operate at  
a data rate of 250kbps fully loaded.  
The drivers can guarantee a data rate of 250kbps  
fully loaded with 3kin parallel with 1000pF,  
ensuring compatibility with PC-to-PC commu-  
nication software.  
The SP3249E is a 5-driver/3-receiver device,  
ideal for portable or hand-held applications.  
The SP3249E device is an ideal choice for  
power sensitive designs.  
The slew rate of the driver output is internally  
limited to a maximum of 30V/µs in order to  
meet the EIA standards (EIA RS-232D 2.1.7,  
Paragraph 5). The transition of the loaded  
output from HIGH to LOW also meets the  
monotonicity requirements of the standard.  
THEORY OF OPERATION  
The SP3249E device is made up of three basic  
circuit blocks: 1. Drivers, 2. Receivers, and  
3. the Sipex proprietary charge pump.  
Figure7showsaloopbacktestcircuitusedtotest  
the RS-232 Drivers. Figure 8 shows the test  
results of the loopback circuit with all five driv-  
ers active at 120kbps with typical RS-232 loads  
in parallel with 1000pF capacitors. Figure 6 shows  
the test results where one driver was active at  
250kbps and all five drivers loaded with an RS-  
232 receiver in parallel with a 1000pF capacitor.  
AsolidRS-232datatransmissionrateof120kbps  
provides compatibility with many designs in  
personal computer peripherals and LAN appli-  
cations.  
Drivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to 5.0V EIA/  
TIA-232 levels with an inverted sense relative to  
the input logic levels. Typically, the RS-232  
VCC  
22  
VCC  
+
+
0.1µF  
0.1µF  
C5  
C1  
23  
4
24  
C1+  
V+  
+
+
C3  
C4  
0.1µF  
0.1µF  
21  
1
C1-  
C2+  
SP3249E  
Receivers  
V-  
+
C2  
0.1µF  
3
20  
19  
18  
C2-  
The receivers convert ±5.0V EIA/TIA-232  
levels to TTL or CMOS logic output levels.  
T1OUT  
T1IN  
5
RxD  
CTS  
DSR  
T
2OUT  
3OUT  
T2IN  
6
T
T
3IN  
7
RS-232  
OUTPUTS  
T4OUT  
15 T4IN  
10  
12  
DCD  
RI  
Sincereceiverinputisusuallyfromatransmission  
line where long cable lengths and system  
interference can degrade the signal, the inputs  
haveatypicalhysteresismarginof500mV. This  
ensures that the receiver is virtually immune to  
noisy transmission lines. Should an input be left  
unconnected, an internal 5kpulldown resistor  
to ground will commit the output of the receiver  
to a HIGH state.  
UART  
or  
13  
T5OUT  
T
5IN  
Serial µC  
R
1IN  
2IN  
17  
R
1OUT  
TxD  
RTS  
DTR  
8
5kΩ  
5kΩ  
5kΩ  
R
16  
14  
R2OUT  
9
RS-232  
INPUTS  
R3IN  
R
3OUT  
11  
GND  
2
Figure 6. Interface Circuitry Controlled by  
Microprocessor Supervisory Circuit  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
6
Charge Pump  
V
CC  
The charge pump is a Sipex–patented design  
(U.S. #5,306,954) and uses a unique approach  
compared to older less–efficient designs. The  
charge pump still requires four external  
capacitors, but uses a four–phase voltage  
shifting technique to attain symmetrical 5.5V  
power supplies. The internal power supply  
consists of a regulated dual charge pump that  
provides output voltages 5.5V regardless of the  
input voltage (VCC) over the +3.0V to +5.5V  
range. This is important to maintain compliant  
RS-232 levels regardless of power supply  
fluctuations.  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
C2+  
SP3249E  
+
C2  
0.1µF  
C2-  
TxOUT  
RxIN  
TxIN  
LOGIC  
INPUTS  
1000pF  
RxOUT  
LOGIC  
OUTPUTS  
5kΩ  
GND  
The charge pump operates in a discontinuous  
mode using an internal oscillator. If the output  
voltages are less than a magnitude of 5.5V, the  
charge pump is enabled. If the output voltages  
exceed a magnitude of 5.5V, the charge pump is  
disabled. Thisoscillatorcontrolsthefourphases  
of the voltage shifting (Figure 13). A descrip-  
tion of each phase follows.  
Figure 7. Loopback Test Circuit for RS-232 Driver Data  
Transmission Rates  
Phase 2 (Figure 12)  
— VSS transfer — Phase two of the clock  
connects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of C2  
to GND. This transfers a negative generated  
voltage to C3. This generated voltage is  
regulated to a minimum voltage of -5.5V.  
Simultaneous with the transfer of the voltage to  
C3, the positive side of capacitor C1 is switched  
to VCC and the negative side is connected to  
GND.  
Phase 1 (Figure 11)  
— VSS charge storage — During this phase of  
the clock cycle, the positive side of capacitors  
C1 and C2 are initially charged to VCC. Cl+ is  
then switched to GND and the charge in C1is  
+
transferred to C2 . Since C2 is connected to  
VCC, the voltage potential across capacitor C2 is  
now 2 times VCC  
.
Phase 3 (Figure 14)  
Figure 8. Loopback Test Circuit Result at 120kbps  
(All Drivers Fully Loaded)  
Figure 9. Loopback Test Circuit result at 250kbps  
(All Drivers Fully Loaded)  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
7
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –VCC in the negative  
terminal of C1, which is applied to the negative  
allowing the charge pump cycle to begin again.  
The charge pump cycle will continue as long as  
the operational conditions for the internal  
oscillator are present.  
+
side of capacitor C2. Since C2 is at VCC, the  
voltage potential across C2 is 2 times VCC  
.
Since both V+ and Vare separately generated  
from VCC, in a no–load condition V+ and Vwill  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
Phase 4 (Figure 15)  
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to GND,  
and transfers this positive generated voltage  
across C2 to C4, the VDD storage capacitor. This  
voltage is regulated to +5.5V. At this voltage,  
the internal oscillator is disabled. Simultaneous  
with the transfer of the voltage to C4, the  
positive side of capacitor C1 is switched to VCC  
and the negative side is connected to GND,  
The clock rate for the charge pump typically  
operatesat500kHz. Theexternalcapacitorscan  
be as low as 0.1µF with a 16V breakdown  
voltage rating.  
V
= +5V  
CC  
C
+5V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
+
SS  
C
5V  
5V  
3
Figure 10. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
+
SS  
C
10V  
3
Figure 11. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
0V  
0V  
1
2
2
b) C2-  
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 1.96V  
Figure 12. Charge Pump Waveforms  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
8
V
= +5V  
CC  
C
+5V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
+
SS  
C
5V  
5V  
3
Figure 13. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+10V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
+
SS  
C
3
Figure 14. Charge Pump — Phase 4  
VCC  
+
22  
0.1µF  
0.1µF  
C5  
C1  
V
CC  
24  
C1+  
+
+
21  
1
23  
4
C1-  
V+  
+
+
C3  
C4  
0.1µF  
0.1µF  
C2+  
SP3249E  
C2  
0.1µF  
3
V-  
R1IN  
R2IN  
R3IN  
C2-  
R1OUT  
R2OUT  
R3OUT  
17  
16  
8
5kΩ  
5kΩ  
5kΩ  
9
11  
14  
T1OUT  
T2OUT  
T3OUT  
T4OUT  
T5OUT  
20  
19  
18  
15  
13  
T1IN  
T2IN  
T3IN  
T4IN  
T5IN  
5
6
7
10  
12  
DB-9  
Connector  
1
2
3
4
5
6
7
8
9
2
DB-9 Connector Pins:  
1. Received Line Signal Detector 6. DCE Ready  
2. Received Data  
7. Request to Send  
8. Clear to Send  
9. Ring Indicator  
3. Transmitted Data  
4. Data Terminal Ready  
5. Signal Ground (Common)  
Figure 15. Circuit for the connectivity of the SP3249E with a DB-9 connector  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
9
normal usage. The transceiver IC receives most  
of the ESD current when the ESD source is  
applied to the connector pins. The test circuit for  
IEC1000-4-2 is shown on Figure 20. There are  
two methods within IEC1000-4-2, the Air  
Discharge method and the Contact Discharge  
method.  
ESD TOLERANCE  
The SP3249E device incorporates ruggedized  
ESD cells on all driver output and receiver input  
pins. The ESD structure is improved over our  
previous family for more rugged applications  
and environments sensitive to electrostatic  
discharges and associated transients. The  
improved ESD tolerance is at least +15kV  
without damage nor latch-up.  
With the Air Discharge Method, an ESD voltage  
is applied to the equipment under test (EUT)  
throughair. Thissimulatesanelectricallycharged  
person ready to connect a cable onto the rear of  
the system only to find an unpleasant zap just  
before the person touches the back panel. The  
high energy potential on the person discharges  
through an arcing path to the rear panel of the  
system before he or she even touches the system.  
This energy, whether discharged directly or  
through air, is predominantly a function of the  
discharge current rather than the discharge  
voltage. Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend to  
change the discharge current. For example, the  
rise time of the discharge current varies with the  
approach speed.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
acceptedESDtestingmethodforsemiconductors.  
This method is also specified in MIL-STD-883,  
Method 3015.7 for ESD testing. The premise of  
this ESD test is to simulate the human body’s  
potential to store electro-static energy and  
discharge it to an integrated circuit. The  
simulation is performed by using a test model as  
shown in Figure 16. This method will test the  
IC’s capability to withstand an ESD transient  
duringnormalhandlingsuchasinmanufacturing  
areaswheretheICstendtobehandledfrequently.  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
handheldsystems,theESDchargecanbedirectly  
dischargedtotheequipmentfromapersonalready  
holdingtheequipment. Thecurrentistransferred  
ontothekeypadortheserialportoftheequipment  
directly andthentravelsthroughthePCBandfinally  
to the IC.  
The IEC-1000-4-2, formerly IEC801-2, is  
generallyusedfortestingESDonequipmentand  
systems. For system manufacturers, they must  
guarantee a certain amount of ESD protection  
since the system itself is exposed to the outside  
environment and human presence. The premise  
with IEC1000-4-2 is that the system is required  
to withstand an amount of static electricity when  
ESD is applied to points and surfaces of the  
equipmentthatareaccessibletopersonnelduring  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 16. ESD Test Circuit for Human Body Model  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
10  
CCoonnttaacctt--DDiisscchhaarrggee MMoodduullee  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 17. ESD Test Circuit for IEC1000-4-2  
The circuit model in Figures 16 and 17 represent  
the typical ESD testing circuit used for all three  
methods. TheCS isinitiallychargedwiththeDC  
power supply when the first switch (SW1) is on.  
Now that the capacitor is charged, the second  
switch(SW2)isonwhileSW1switchesoff. The  
voltage stored in the capacitor is then applied  
throughRS, thecurrentlimitingresistor, ontothe  
device under test (DUT). In ESD tests, the SW2  
switch is pulsed so that the device under test  
receives a duration of voltage.  
30A  
15A  
0A  
FortheHumanBodyModel, thecurrentlimiting  
resistor (RS) and the source capacitor (C ) are  
1.5kWan100pF, respectively. ForIEC-10S00-4-  
2,thecurrentlimitingresistor(RS)andthesource  
capacitor (CS) are 330W an 150pF, respectively.  
t=0ns  
t=30ns  
t  
Figure 18. ESD Test Waveform for IEC1000-4-2  
The higher C value and lower RS value in the  
IEC1000-4-2Smodel are more stringent than the  
HumanBodyModel. Thelargerstoragecapacitor  
injects a higher voltage to the test point when  
SW2 is switched on. The lower current limiting  
resistor increases the current charge onto the test  
point.  
DEVICE PIN  
TESTED  
HUMAN BODY  
MODEL  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 2. Transceiver ESD Tolerance Levels  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
11  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
24–PIN  
Minimum/Maximum  
(mm)  
0.068/0.078  
(1.73/1.99)  
A
A1  
B
D
E
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.317/0.328  
(8.07/8.33)  
0.205/0.212  
(5.20/5.38)  
0.0256 BSC  
(0.65 BSC)  
e
0.301/0.311  
(7.65/7.90)  
H
L
0.022/0.037  
(0.55/0.95)  
0°/8°  
(0°/8°)  
Ø
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
12  
PACKAGE: PLASTIC THIN SMALL  
OUTLINE (TSSOP)  
e
DIMENSIONS  
in inches (mm)  
Minimum/Maximum  
0.126 BSC (3.2 BSC)  
0.252 BSC (6.4 BSC)  
Symbol  
24 Lead  
0.303/0.311  
(7.70/7.90)  
1.0 OIA  
0.169 (4.30)  
0.177 (4.50)  
D
e
0.026 BSC  
(0.65 BSC)  
0.039 (1.0)  
0-812REF  
e/2  
0.039 (1.0)  
0.043 (1.10) Max  
D
0.033 (0.85)  
0.037 (0.95)  
0.007 (0.19)  
0.012 (0.30)  
0.002 (0.05)  
0.006 (0.15)  
(θ2)  
0.008 (0.20)  
0.004 (0.09) Min  
0.004 (0.09) Min  
Gage  
Plane  
(θ3)  
0.020 (0.50)  
0.026 (0.75)  
(θ1)  
0.010 (0.25)  
1.0 REF  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
13  
ORDERING INFORMATION  
Model  
SP3249ECA  
SP3249ECY  
Temperature Range  
0°C to +70°C  
Package Types  
24-pin SSOP  
24-pin TSSOP  
0°C to +70°C  
SP3249EEA  
SP3249EEY  
-40°C to +85°C  
-40°C to +85°C  
24-pin SSOP  
24 -pin TSSOP  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Rev.4/08/02  
SP3249E Intelligent +3.0V to +5.5V RS-232 Transceivers  
© Copyright 2002 Sipex Corporation  
14  

相关型号:

SP3223EA

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EB

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EB

Intelligent 3.0V to 5.5V RS-232 Transceivers
EXAR

SP3223EBCA

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EBCA

DUAL LINE TRANSCEIVER, PDSO20, MO-153AE, SSOP-20
ROCHESTER

SP3223EBCA-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, MO-153AE, SSOP-20
EXAR

SP3223EBCA-L

Intelligent 3.0V to 5.5V RS-232 Transceivers
SIPEX

SP3223EBCA-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, CMOS, PDSO20, LEAD FREE, MO-153AE, SSOP-20
SIPEX

SP3223EBCA-L/TR

Intelligent 3.0V to 5.5V RS-232 Transceivers
EXAR

SP3223EBCA/TR

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EBCP

Intelligent +3.0V to +5.5V RS-232 Transceivers
SIPEX

SP3223EBCP-L

Intelligent 3.0V to 5.5V RS-232 Transceivers
SIPEX