SP3232EBEA-L [SIPEX]

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MO-153AC, SSOP-16;
SP3232EBEA-L
型号: SP3232EBEA-L
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MO-153AC, SSOP-16

文件: 总20页 (文件大小:202K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3222E/3232E  
True +3.0V to +5.5V RS-232Transceivers  
FEATURES  
EN  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
7
SHDN  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
Minimum 120Kbps Data Rate Under Full  
Load  
V
CC  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
SP3222E  
C2+  
C2-  
V-  
1µA Low-Power Shutdown with Receivers  
Active (SP3222E)  
R1OUT  
12  
11  
10  
T1IN  
Interoperable with RS-232 down to +2.7V  
power source  
T2OUT  
R2IN  
8
9
T2IN  
R2OUT  
Enhanced ESD Specifications:  
±15kV Human Body Model  
DIP/SO  
±15kV IEC1000-4-2 Air Discharge  
±8kV IEC1000-4-2 Contact Discharge  
Now Available in Lead Free Packaging  
Note: See page 6 for other pinouts  
DESCRIPTION  
The SP3222E/3232E series is an RS-232 transceiver solution intended for portable or hand-  
held applications such as notebook or palmtop computers. The SP3222E/3232E series has  
a high-efficiency, charge-pump power supply that requires only 0.1µF capacitors in 3.3V  
operation. This charge pump allows the SP3222E/3232E series to deliver true RS-232  
performance from a single power supply ranging from +3.3V to +5.0V. The SP3222E/3232E  
are2-driver/2-receiverdevices. Thisseriesisidealforportableorhand-heldapplicationssuch  
as notebook or palmtop computers. The ESD tolerance of the SP3222E/3232E devices are  
over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge test methods. The  
SP3222E device has a low-power shutdown mode where the devices' driver outputs and  
charge pumps are disabled. During shutdown, the supply current falls to less than 1µA.  
SELECTION TABLE  
RS-232  
Drivers  
RS-232  
External  
TTL  
No. of  
Pins  
MODEL Power Supplies  
Shutdown  
Receivers Components  
3-State  
+3.0V to +5.5V  
+3.0V to +5.5V  
2
2
2
2
4
4
Yes  
No  
Yes  
No  
18, 20  
16  
SP3222  
SP3232  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
1
Input Voltages  
TxIN, EN ................................................... -0.3V to +6.0V  
RxIN ..........................................................................±15V  
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation of the  
device at these ratings or any other above those indicated in  
the operation sections of the specifications below is not  
implied. Exposure to absolute maximum rating conditions  
for extended periods of time may affect reliability and cause  
permanent damage to the device.  
Output Voltages  
TxOUT ......................................................................±15V  
RxOUT ........................................... -0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT ............................................................ Continuous  
VCC................................................................-0.3V to +6.0V  
V+ (NOTE 1)................................................-0.3V to +7.0V  
V- (NOTE 1)................................................+0.3V to -7.0V  
V+ + |V-| (NOTE 1)....................................................+13V  
Storage Temperature .............................. -65°C to +150°C  
Power Dissipation Per Package  
20-pin SSOP (derate 9.25mW/oC above +70oC) ..... 750mW  
18-pin PDIP (derate 15.2mW/oC above +70oC) ....1220mW  
18-pin SOIC (derate 15.7mW/oC above +70oC) ... 1260mW  
20-pin TSSOP (derate 11.1mW/oC above +70oC) .. 890mW  
16-pin SSOP (derate 9.69mW/oC above +70oC) ..... 775mW  
16-pin PDIP (derate 14.3mW/oC above +70oC) .... 1150mW  
16-pin Wide SOIC (derate 11.2mW/oC above +70oC) 900mW  
16-pin TSSOP (derate 10.5mW/oC above +70oC) .. 850mW  
16-pin nSOIC (derate 13.57mW/°C above +70°C) .. 1086mW  
ICC (DC VCC or GND current).................................±100mA  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.0V with TAMB = TMIN to TMAX  
PARAMETER  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
DC CHARACTERISTICS  
Supply Current  
0.3  
1.0  
1.0  
10  
mA  
no load, TAMB = +25oC, VCC = 3.3V  
SHDN = GND, TAMB = +25oC, VCC = +3.3V  
Shutdown Supply Current  
µA  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
0.8  
V
V
TxIN, EN, SHDN, Note 2  
Input Logic Threshold HIGH  
2.0  
2.4  
V
= 3.3V, Note 2  
VCCCC = 5.0V, Note 2  
TxIN, EN, SHDN, TAMB = +25oC  
receivers disabled  
IOUT = 1.6mA  
Input Leakage Current  
Output Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
±0.01  
±0.05  
±1.0  
±10  
0.4  
µA  
µA  
V
V
CC-0.6 VCC-0.1  
V
IOUT = -1.0mA  
±5.0  
±5.4  
V
3kload to ground at all driver outputs,  
T
AMB = +25oC  
Output Resistance  
300  
V
V
CC = V+ = V- = 0V, TOUT = +2V  
OUT = 0V  
Output Short-Circuit Current  
±35  
±70  
±60  
mA  
mA  
±100  
VOUT = +15V  
Output Leakage Current  
±25  
µA  
V
OUT = +12V,VCC= 0V to 5.5V,drivers disabled  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.0V with TAMB = TMIN to TMAX  
Typical Values apply at VCC = +3.3V or +5.0V and TAMB = 25oC.  
.
PARAMETER  
MIN.  
TYP.  
MAX. UNITS CONDITIONS  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
-15  
+15  
V
V
0.6  
0.8  
1.2  
1.5  
V =3.3V  
VCCCC=5.0V  
Input Threshold HIGH  
1.5  
1.8  
2.4  
2.4  
V
V
CC=3.3V  
VCC=5.0V  
Input Hysteresis  
0.3  
5
V
Input Resistance  
3
7
k  
TIMING CHARACTERISTICS  
Maximum Data Rate  
Driver Propagation Delay  
120  
235  
kbps  
RL=3k, CL=1000pF, one driver switching  
1.0  
1.0  
µs  
µs  
t
, R = 3K, C = 1000pF  
tPPLHHL, RLL = 3K, CLL = 1000pF  
Receiver Propagation Delay  
0.3  
0.3  
µs  
t
, RxIN to RxOUT, C =150pF  
tPPLHHL, RxIN to RxOUT, CLL=150pF  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
200  
ns  
ns  
500  
1000  
30  
ns  
| tPHL - tPLH |, TAMB = 25oC  
| tPHL - tPLH  
Receiver Skew  
ns  
|
Transition-Region Slew Rate  
V/µs  
V
CC = 3.3V, R = 3K, T  
= 25oC,  
measurementLs taken froAmMB-3.0V to +3.0V  
or +3.0V to -3.0V  
NOTE 2: Driver input hysteresis is typically 250mV.  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 120kbps data rates, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
14  
12  
6
4
10  
Vout+  
Vout-  
2
0
8
6
4
2
0
0
500  
1000  
1500  
2000  
-2  
-4  
-6  
+Slew  
-Slew  
Load Capacitance [pF]  
0
500  
1000  
1500  
2000  
2330  
Load Capacitance [pF]  
Figure 1. Transmitter Output Voltage VS. Load  
Capacitance for the SP3222 and the SP3232  
Figure 2. Slew Rate VS. Load Capacitance for the  
SP3222 and the SP3232  
50  
118KHz  
45  
60KHz  
10KHz  
40  
35  
30  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2330  
Load Capacitance [pF]  
Figure 3. Supply Current VS. Load Capacitance when  
Transmitting Data for the SP3222 and the SP3232  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
4
PIN NUMBER  
SP3222E  
NAME  
FUNCTION  
SP3232E  
SSOP/-  
TSSOP  
DIP/SO  
Receiver Enable. Apply logic LOW for normal operation.  
EN  
1
1
-
Apply logic HIGH to disable the receiver outputs (high-Z state).  
C1+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor.  
+5.5V generated by the charge pump.  
2
3
2
3
1
2
C1-  
C2+  
C2-  
V-  
Negative terminal of the voltage doubler charge-pump capacitor.  
Positive terminal of the inverting charge-pump capacitor.  
Negative terminal of the inverting charge-pump capacitor.  
-5.5V generated by the charge pump.  
4
4
3
5
5
4
6
6
5
7
7
6
T1OUT RS-232 driver output.  
T2OUT RS-232 driver output.  
15  
8
17  
8
14  
7
R1IN  
R2IN  
RS-232 receiver input.  
RS-232 receiver input.  
14  
9
16  
9
13  
8
R1OUT TTL/CMOS reciever output.  
R2OUT TTL/CMOS reciever output.  
13  
10  
12  
11  
16  
17  
15  
10  
13  
12  
18  
19  
12  
9
T1IN  
T2IN  
GND  
VCC  
TTL/CMOS driver input.  
11  
10  
15  
16  
TTL/CMOS driver input.  
Ground.  
+3.0V to +5.5V supply voltage  
Shutdown Control Input. Drive HIGH for normal device operation.  
SHDN Drive LOW to shutdown the drivers (high-Z output) and the on-  
board power supply.  
18  
-
20  
-
-
N.C.  
No Connect.  
11, 14  
Table 1. Device Pin Description  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
5
EN  
1
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
EN  
1
2
3
4
5
6
7
18  
17  
16  
15  
14  
13  
SHDN  
SHDN  
V
CC  
C1+  
V+  
VCC  
C1+  
V+  
GND  
GND  
C1-  
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
SP3222E  
SP3222E  
DIP/SO  
C2+  
C2-  
V-  
C2+  
C2-  
V-  
R1OUT  
R1OUT  
14  
13  
N.C.  
12  
11  
10  
T1IN  
T2OUT  
R2IN  
8
9
T1IN  
T2OUT  
R2IN  
8
9
T2IN  
12 T2IN  
N.C.  
R2OUT  
10  
R2OUT  
11  
SSOP/TSSOP  
Figure 4. Pinout Configurations for the SP3222E  
V
CC  
1
2
3
4
5
6
7
16  
15  
14  
C1+  
V+  
GND  
C1-  
T1OUT  
R1IN  
SP3232E  
C2+  
C2-  
13  
12  
11  
R1OUT  
T1IN  
V-  
10  
9
T2OUT  
R2IN  
T2IN  
8
R2OUT  
Figure 5. Pinout Configuration for the SP3232E  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
6
V
CC  
VCC  
+
+
+
+
19  
17  
0.1µF  
0.1µF  
C5  
C1  
0.1µF  
0.1µF  
C5  
C1  
V
CC  
VCC  
2
3
2
3
C1+  
C1+  
V+  
V-  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
0.1µF  
0.1µF  
*C3  
C4  
*C3  
C4  
4
5
4
5
C1-  
C1-  
7
C2+  
7
C2+  
SP3222E  
DIP/SO  
SP3222E  
+
+
SSOP  
C2  
0.1µF  
C2  
0.1µF  
6
6
TSSOP  
C2-  
C2-  
T1OUT  
T2OUT  
15  
8
T1OUT  
T2OUT  
12 T1IN  
11 T2IN  
17  
8
13 T1IN  
12 T2IN  
LOGIC  
RS-232  
LOGIC  
RS-232  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
14  
13  
10  
R1IN  
R1OUT  
R2OUT  
16  
15  
10  
R1IN  
R1OUT  
R2OUT  
5k  
5k  
RS-232  
INPUTS  
LOGIC  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
OUTPUTS  
R2IN  
9
R2IN  
9
5kΩ  
5kΩ  
1 EN  
18  
1 EN  
20  
SHDN  
SHDN  
GND  
16  
GND  
18  
*can be returned to  
either VCC or GND  
*can be returned to  
either VCC or GND  
Figure 6. SP3222E Typical Operating Circuits  
V
CC  
+
16  
0.1µF  
0.1µF  
C5  
C1  
VCC  
2
1
C1+  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
*C3  
C4  
3
4
C1-  
6
C2+  
SP3232E  
C2  
0.1µF  
5
C2-  
T1OUT  
T2OUT  
14  
11 T1IN  
LOGIC  
RS-232  
7
10  
12  
9
INPUTS  
T2IN  
OUTPUTS  
R1IN 13  
R1OUT  
R2OUT  
5k  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
8
5kΩ  
GND  
15  
*can be returned to  
either VCC or GND  
Figure 7. SP3232E Typical Operating Circuit  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
7
DESCRIPTION  
The slew rate of the driver output is internally  
limitedtoamaximumof30V/µsinordertomeet  
the EIA standards (EIA RS-232D 2.1.7, Para-  
graph 5). The transition of the loaded output  
from HIGH to LOW also meets the monotonic-  
ity requirements of the standard.  
TheSP3222E/3232EtransceiversmeettheEIA/  
TIA-232 and V.28/V.24 communication proto-  
cols and can be implemented in battery-pow-  
ered, portable, orhand-heldapplicationssuchas  
notebook or palmtop computers. The SP3222E/  
3232E devices all feature Sipex's proprietary  
on-board charge pump circuitry that generates 2  
x VCC for RS-232 voltage levels from a single  
+3.0V to +5.5V power supply. This series is  
ideal for +3.3V-only systems, mixed +3.3V to  
+5.5V systems, or +5.0V-only systems that re-  
quire true RS-232 performance. The SP3222E/  
3232E series have drivers that operate at a typi-  
cal data rate of 235Kbps fully loaded.  
The SP3222E/3232E drivers can maintain high  
data rates up to 235Kbps fully loaded. Figure 8  
shows a loopback test circuit used to test the  
RS-232 drivers. Figure 9 shows the test results  
of the loopback circuit with all drivers active at  
120Kbps with RS-232 loads in parallel with  
1000pF capacitors. Figure 10 shows the test  
results where one driver was active at 235Kbps  
and all drivers loaded with an RS-232 receiver  
in parallel with a 1000pF capacitor. A solid  
RS-232 data transmission rate of 120Kbps  
provides compatibility with many designs  
in personal computer peripherals and LAN  
applications.  
The SP3222E and SP3232E are 2-driver/2-re-  
ceiver devices ideal for portable or hand-held  
applications. The SP3222E features a 1µA  
shutdown mode that reduces power consump-  
tion and extends battery life in portable systems.  
Its receivers remain active in shutdown mode,  
allowing external devices such as modems to be  
monitored using only 1µA supply current.  
The SP3222E driver's output stages are turned  
off (tri-state) when the device is in shutdown  
mode. When the power is off, the SP3222E  
device permits the outputs to be driven up to  
±12V. The driver's inputs do not have pull-up  
resistors. Designers should connect unused  
inputs to VCC or GND.  
THEORY OF OPERATION  
TheSP3222E/3232Eseriesaremadeupofthree  
basic circuit blocks: 1. Drivers, 2. Receivers,  
and 3. the Sipex proprietary charge pump.  
In the shutdown mode, the supply current falls to  
less than 1µA, where SHDN = LOW. When the  
SP3222E device is shut down, the device's  
driver outputs are disabled (tri-stated) and the  
charge pumps are turned off with V+ pulled  
down to VCC and V- pulled to GND. The time  
required to exit shutdown is typically 100µs.  
Connect SHDN to VCC if the shutdown mode is  
not used. SHDN has no effect on RxOUT or  
RxOUTB. Astheybecomeactive, thetwodriver  
outputs go to opposite RS-232 levels where one  
driver input is HIGH and the other LOW. Note  
that the drivers are enabled only when the  
magnitude of V- exceeds approximately 3V.  
Drivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to ±5.0V  
EIA/TIA-232 levels inverted relative to the in-  
put logic levels. Typically, the RS-232 output  
voltage swing is ±5.5V with no load and at least  
±5V minimum fully loaded. The driver outputs  
are protected against infinite short-circuits to  
groundwithoutdegradationinreliability. Driver  
outputs will meet EIA/TIA-562 levels of ±3.7V  
with supply voltages as low as 2.7V.  
The drivers typically can operate at a data rate  
of 235Kbps. The drivers can guarantee a data  
rate of 120Kbps fully loaded with 3Kin  
parallel with 1000pF, ensuring compatibility  
with PC-to-PC communication software.  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
8
V
CC  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
SP3222E  
SP3232E  
C2+  
+
C2  
0.1µF  
C2-  
TxOUT  
RxIN  
TxIN  
LOGIC  
INPUTS  
RxOUT  
EN  
LOGIC  
OUTPUTS  
5k  
V
CC  
*SHDN  
GND  
1000pF  
* SP3222 only  
Figure 8. SP3222E/3232E Driver Loopback Test Circuit  
[
T
T
]
[
T
T
]
T1 IN  
T1 IN  
1
1
T1 OUT 2  
T1 OUT 2  
T
T
T
T
R1 OUT  
3
R1 OUT  
3
Ch2  
Ch2  
5.00V M 2.50µs Ch1  
5.00V  
Ch3 5.00V  
5.00V M 5.00µs Ch1  
0V  
5.00V  
5.00V  
0V  
Ch1  
Ch1  
Ch3  
Figure 9. Driver Loopback Test Results at 120kbps  
Figure 10. Driver Loopback Test Results at 235kbps  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
9
Receivers  
In most circumstances, decoupling the power  
supplycanbeachievedadequatelyusinga0.1µF  
bypasscapacitoratC5(refertoFigures6and7).  
In applications that are sensitive to power-sup-  
ply noise, decouple VCC to ground with a capaci-  
tor of the same value as charge-pump capacitor  
C1. Physically connect bypass capacitors as  
close to the IC as possible.  
The receivers convert EIA/TIA-232 levels to  
TTL or CMOS logic output levels. All receivers  
haveaninvertingtri-stateoutput. Thesereceiver  
outputs (RxOUT) are tri-stated when the enable  
control EN = HIGH. In the shutdown mode, the  
receivers can be active or inactive. EN has no  
effect on TxOUT. The truth table logic of the  
SP3222E/3232Edriverandreceiveroutputscan  
be found in Table 2.  
The charge pumps operate in a discontinuous  
mode using an internal oscillator. If the output  
voltages are less than a magnitude of 5.5V, the  
charge pumps are enabled. If the output voltage  
exceed a magnitude of 5.5V, the charge pumps  
are disabled. This oscillator controls the four  
phases of the voltage shifting. A description of  
each phase follows.  
Since receiver input is usually from a transmis-  
sion line where long cable lengths and system  
interference can degrade the signal, the inputs  
haveatypicalhysteresismarginof300mV. This  
ensures that the receiver is virtually immune to  
noisy transmission lines. Should an input be left  
unconnected, a 5kpulldown resistor to ground  
will commit the output of the receiver to a HIGH  
state.  
Phase 1  
— VSS charge storage — During this phase of  
theclockcycle,thepositivesideofcapacitorsC1  
and C2 are initially charged to VCC. Cl+ is then  
switched to GND and the charge in C1is trans-  
ferred to C2. Since C2+ is connected to VCC, the  
voltage potential across capacitor C2 is now 2  
times VCC.  
Charge Pump  
The charge pump is a Sipex–patented design  
(5,306,954) and uses a unique approach com-  
paredtoolderless–efficientdesigns. Thecharge  
pump still requires four external capacitors, but  
uses a four–phase voltage shifting technique to  
attain symmetrical 5.5V power supplies. The  
internal power supply consists of a regulated  
dual charge pump that provides output voltages  
5.5V regardless of the input voltage (VCC) over  
the +3.0V to +5.5V range.  
Phase 2  
— VSS transfer — Phase two of the clock con-  
nects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of C2  
to GND. This transfers a negative generated  
voltage to C3. This generated voltage is regu-  
lated to a minimum voltage of -5.5V. Simulta-  
neous with the transfer of the voltage to C3, the  
positive side of capacitor C1 is switched to VCC  
and the negative side is connected to GND.  
SHDN  
EN  
0
TxOUT  
Tri-state  
Tri-state  
Active  
RxOUT  
Active  
Phase 3  
0
0
1
1
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –VCC in the negative  
terminal of C1, which is applied to the negative  
side of capacitor C2. Since C2+ is at VCC, the  
voltage potential across C2 is 2 times VCC.  
1
Tri-state  
Active  
0
1
Active  
Tri-state  
Table 2. Truth Table Logic for Shutdown and Enable  
Control  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
10  
Phase 4  
potential to store electro-static energy and  
discharge it to an integrated circuit. The  
simulation is performed by using a test model as  
shown in Figure 17. This method will test the  
IC’s capability to withstand an ESD transient  
during normal handling such as in manufacturing  
areas where the ICs tend to be handled  
frequently.  
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to GND,  
and transfers this positive generated voltage  
across C2 to C4, the VDD storage capacitor. This  
voltage is regulated to +5.5V. At this voltage,  
the internal oscillator is disabled. Simultaneous  
withthetransferofthevoltagetoC4, thepositive  
side of capacitor C1 is switched to VCC and the  
negative side is connected to GND, allowing the  
charge pump cycle to begin again. The charge  
pump cycle will continue as long as the opera-  
tional conditions for the internal oscillator are  
present.  
The IEC-1000-4-2, formerly IEC801-2, is  
generally used for testing ESD on equipment  
and systems. For system manufacturers, they  
must guarantee a certain amount of ESD  
protection since the system itself is exposed to  
the outside environment and human presence.  
The premise with IEC1000-4-2 is that the  
system is required to withstand an amount of  
static electricity when ESD is applied to points  
and surfaces of the equipment that are  
accessible to personnel during normal usage.  
The transceiver IC receives most of the ESD  
current when the ESD source is applied to the  
connector pins. The test circuit for IEC1000-4-2  
is shown on Figure 18. There are two methods  
within IEC1000-4-2, the Air Discharge method  
and the Contact Discharge method.  
Since both V+ and Vare separately generated  
from VCC; in a no–load condition V+ and Vwill  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
The clock rate for the charge pump typically  
operatesat250kHz. Theexternalcapacitorscan  
be as low as 0.1µF with a 16V breakdown  
voltage rating.  
ESD Tolerance  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electrically charged person ready to connect a  
cable onto the rear of the system only to find  
an unpleasant zap just before the person  
touches the back panel. The high energy  
potential on the person discharges through  
an arcing path to the rear panel of the system  
before he or she even touches the system. This  
energy, whether discharged directly or through  
air, is predominantly a function of the discharge  
current rather than the discharge voltage.  
Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend to  
change the discharge current. For example, the  
rise time of the discharge current varies with  
the approach speed.  
The SP3222E/3232E series incorporates  
ruggedized ESD cells on all driver output and  
receiver input pins. The ESD structure is  
improved over our previous family for more  
rugged applications and environments sensitive  
to electro-static discharges and associated  
transients. The improved ESD tolerance is at  
least ±15kV without damage nor latch-up.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
accepted ESD testing method for semiconduc-  
tors. ThismethodisalsospecifiedinMIL-STD-  
883,Method3015.7forESDtesting.Thepremise  
of this ESD test is to simulate the human body’s  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
11  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 12. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–10V  
3
Figure 13. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
GND  
1
2
GND  
b) C -  
2
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 5.48V  
Figure 14. Charge Pump Waveforms  
V
= +5V  
CC  
C
+
+5V  
4
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 15. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+
+10V  
+
4
+
V
Storage Capacitor  
Storage Capacitor  
DD  
+
C
C
2
1
V
SS  
C
3
Figure 16. Charge Pump — Phase 4  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
12  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 17. ESD Test Circuit for Human Body Model  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
hand held systems, the ESD charge can be  
directly discharged to the equipment from a  
person already holding the equipment. The  
current is transferred on to the keypad or the  
serial port of the equipment directly and then  
travels through the PCB and finally to the IC.  
The circuit models in Figures 17 and 18  
represent the typical ESD testing circuits used  
forallthreemethods. TheCS isinitiallycharged  
with the DC power supply when the first  
switch (SW1) is on. Now that the capacitor is  
charged, the second switch (SW2) is on while  
SW1 switches off. The voltage stored in the  
capacitor is then applied through RS, the current  
limiting resistor, onto the device under test  
(DUT). In ESD tests, the SW2 switch is pulsed  
so that the device under test receives a duration  
of voltage.  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 18. ESD Test Circuit for IEC1000-4-2  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
13  
For the Human Body Model, the current  
limiting resistor (RS) and the source capacitor  
(CS) are 1.5kan 100pF, respectively. For  
IEC-1000-4-2, the current limiting resistor (RS)  
andthesourcecapacitor(CS)are330an150pF,  
respectively.  
30A  
15A  
0A  
The higher CS value and lower RS value in the  
IEC1000-4-2 model are more stringent than the  
Human Body Model. The larger storage  
capacitor injects a higher voltage to the test  
point when SW2 is switched on. The lower  
current limiting resistor increases the current  
t=0ns  
t=30ns  
t  
charge onto the test point.  
Figure 19. ESD Test Waveform for IEC1000-4-2  
Device Pin  
Tested  
Human Body  
Model  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
14  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
20–PIN  
0.068/0.078  
(1.73/1.99)  
A
A1  
B
D
E
0.068/0.078  
(1.73/1.99)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.239/0.249  
(6.07/6.33)  
0.278/0.289  
(7.07/7.33)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.0256 BSC  
(0.65 BSC)  
e
0.0256 BSC  
(0.65 BSC)  
0.301/0.311  
(7.65/7.90)  
H
L
0.301/0.311  
(7.65/7.90)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0°/8°  
Ø
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
15  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
0.115/0.195  
0.115/0.195  
A2  
(2.921/4.953)  
(2.921/4.953)  
0.014/0.022  
0.014/0.022  
B
(0.356/0.559)  
(0.356/0.559)  
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014  
0.008/0.014  
(0.203/0.356)  
(0.203/0.356)  
0.780/0.800  
0.880/0.920  
D
(19.812/20.320) (22.352/23.368)  
0.300/0.325  
0.300/0.325  
E
(7.620/8.255)  
(7.620/8.255)  
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150  
0.115/0.150  
(2.921/3.810)  
(2.921/3.810)  
0°/ 15°  
0°/ 15°  
Ø
(0°/15°)  
(0°/15°)  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
16  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(WIDE)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
A
A1  
B
D
E
0.090/0.104  
(2.29/2.649)  
0.090/0.104  
(2.29/2.649))  
0.004/0.012  
0.004/0.012  
(0.102/0.300) (0.102/0.300)  
0.013/0.020  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.398/0.413  
0.447/0.463  
(10.10/10.49) (11.35/11.74)  
0.291/0.299 0.291/0.299  
(7.402/7.600) (7.402/7.600)  
e
0.050 BSC  
0.050 BSC  
(1.270 BSC)  
(1.270 BSC)  
H
L
0.394/0.419  
0.394/0.419  
(10.00/10.64) (10.00/10.64)  
0.016/0.050  
0.016/0.050  
(0.406/1.270) (0.406/1.270)  
Ø
0°/8°  
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
17  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
A
A1  
B
D
E
0.053/0.069  
(1.346/1.748)  
0.004/0.010  
(0.102/0.249)  
0.013/0.020  
(0.330/0.508)  
0.386/0.394  
(9.802/10.000)  
0.150/0.157  
(3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
(5.801/6.198)  
0.010/0.020  
(0.254/0.498)  
L
0.016/0.050  
(0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
18  
PACKAGE: PLASTIC THIN  
SMALL OUTLINE  
(TSSOP)  
DIMENSIONS  
in inches (mm) Minimum/Maximum  
Symbol  
16 Lead  
0.193/0.201 0.252/0.260  
(4.90/5.10) (6.40/6.60)  
20 Lead  
D
e
0.026 BSC 0.026 BSC  
(0.65 BSC) (0.65 BSC)  
e
0.126 BSC (3.2 BSC)  
0.252 BSC (6.4 BSC)  
1.0 OIA  
0.169 (4.30)  
0.177 (4.50)  
0.039 (1.0)  
0’-8’ 12’REF  
e/2  
0.039 (1.0)  
0.043 (1.10) Max  
D
0.033 (0.85)  
0.037 (0.95)  
0.007 (0.19)  
0.012 (0.30)  
0.002 (0.05)  
0.006 (0.15)  
(θ2)  
0.008 (0.20)  
0.004 (0.09) Min  
0.004 (0.09) Min  
Gage  
Plane  
(θ3)  
0.020 (0.50)  
0.026 (0.75)  
(θ1)  
0.010 (0.25)  
1.0 REF  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
19  
ORDERING INFORMATION  
Temperature Range  
Model  
Package Type  
SP3222ECA ............................................. 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222ECA/TR ....................................... 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222ECP ............................................. 0˚C to +70˚C ............................................ 18-Pin PDIP  
SP3222ECT ............................................. 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222ECT/TR ....................................... 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222ECY ............................................. 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222ECY/TR ....................................... 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222EEA ............................................ -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EEA/TR ...................................... -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EEP ............................................ -40˚C to +85˚C .......................................... 18-Pin PDIP  
SP3222EET ............................................ -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EET/TR ...................................... -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EEY ............................................ -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3222EEY/TR ...................................... -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3232ECA ............................................. 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232ECA/TR ....................................... 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232ECP ............................................. 0˚C to +70˚C ............................................ 16-Pin PDIP  
SP3232ECT ............................................. 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232ECT/TR ....................................... 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232ECN............................................. 0˚C to +70˚C ......................................... 16-Pin nSOIC  
SP3232ECN/TR ....................................... 0˚C to +70˚C ......................................... 16-Pin nSOIC  
SP3232ECY ............................................. 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232ECY/TR ....................................... 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232EEA ............................................ -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EEA/TR ...................................... -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EEP ............................................ -40˚C to +85˚C .......................................... 16-Pin PDIP  
SP3232EET ............................................ -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EET/TR ...................................... -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EEN ............................................ -40˚C to +85˚C ....................................... 16-Pin nSOIC  
SP3232EEN/TR ...................................... -40˚C to +85˚C ....................................... 16-Pin nSOIC  
SP3232EEY ............................................ -40˚C to +85˚C ...................................... 16-Pin TSSOP  
SP3232EEY/TR ...................................... -40˚C to +85˚C ...................................... 16-Pin TSSOP  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP3232EEN/TR = standard; SP3232EEN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for SSOP, TSSOP or WSOIC and 2,500 for NSOIC.  
CLICK HERE TO ORDER SAMPLES  
Corporation  
ANALOG EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
Date: 02/24/05  
SP3222E, SP3232E True +3.0 to +5.0V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
20  

相关型号:

SP3232EBEA-L/TR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEP

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEP-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDIP16, LEAD FREE, PLASTIC, MS-001BB, PDIP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBER-L

Line Transceiver,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBET

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX