SP509CF-L [SIPEX]

Line Transceiver, 8 Func, 8 Driver, 8 Rcvr, BICMOS, PQFP100, LEAD FREE, MS-026BED, LQFP-100;
SP509CF-L
型号: SP509CF-L
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Line Transceiver, 8 Func, 8 Driver, 8 Rcvr, BICMOS, PQFP100, LEAD FREE, MS-026BED, LQFP-100

驱动 信息通信管理 接口集成电路 驱动器
文件: 总29页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP509  
Rugged 40Mbps, 8 Channel Multi-Protocol Transceiver  
with Programmable DCE/DTE and Termination Resistors  
FEATURES  
Ultra Fast 40Mbps Differential Transmission Rates Available  
Improved ESD Tolerance for Analog I/Os with 15kV HBM.  
Internal Transceiver Termination Resistors for V.11 and V.35  
Interface Modes:  
Now Available in Lead Free Packaging  
RS-232 (V.28)  
X.21 (V.11)  
RS-449/V.36  
(V.10 & V.11)  
EIA-530 (V.10 & V.11)  
EIA-530A (V.10 & V.11)  
V.35  
Refer to page 7 for pinout  
Protocols are Software Selectable with 3-Bit Word  
Eight (8) Drivers and Eight (8) Receivers  
APPLICATIONS  
V.35 and V.11 Receiver Termination Network Disable Option  
Internal Line or Digital Loopback for Diagnostic Testing  
Adheres to NET1/NET2 and TBR-2 Compliancy Requirements  
Easy Flow-Through Pinout  
Router  
Frame Relay  
CSU  
DSU  
+5V Only Operation  
PBX  
Individual Driver and Receiver Enable/Disable Controls  
Operates in either DTE or DCE Mode  
Secure Communication Terminals  
DESCRIPTION  
The SP509 is a monolithic device that supports eight (8) popular serial interface standards for  
Wide Area Network (WAN) connectivity. The SP509 is fabricated using a low power BiCMOS  
process technology, and incorporates a Sipex regulated charge pump allowing +5V only  
operation. Sipex's patented charge pump provides a regulated output of +5.8V, which will  
provide enough voltage for compliant operation in all modes. Eight (8) drivers and eight (8)  
receiverscanbeconfiguredviasoftwareforanyoftheaboveinterfacemodesatanytime. The  
SP509 requires no additional external components for compliant operation for all of the eight  
(8) modes of operation other than four capacitors used for the internal charge pump. All  
necessaryterminationisintegratedwithintheSP509andisswitchablewhenV.35driversand  
V.35 receivers, or when V.11 receivers are used. The SP509 provides the controls and  
transceiver availability for operating as either a DTE or DCE.  
Additional features with the SP509 include internal loopback that can be initiated in any of the  
operating modes by use of the LOOPBACK pin. While in loopback mode, receiver outputs are  
internally connected to driver inputs creating an internal signal path bypassing the serial  
communications controller for diagnostic testing. The SP509 also includes a latch enable pin  
with the driver and receiver address decoder. The internal V.11 or V.35 receiver termination  
can be switched off using a control pin (TERM_OFF) for monitoring applications. All eight (8)  
drivers and receivers in the SP509 include separate enable pins for added convenience. The  
SP509 is ideal for WAN serial ports in networking equipment such as routers, concentrators,  
network muxes, DSU/CSU's, networking test equipment, and other access devices.  
Applicable U.S. Patents-5,306,954; and others patents pending  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
ABSOLUTE MAXIMUM RATINGS  
STORAGE CONSIDERATIONS  
Duetotherelativelylargepackagesizeofthe100-pinquadflat-  
pack, storage in a low humidity environment is preferred. Large  
highdensityplasticpackagesaremoisturesensitiveandshould  
be stored in Dry Vapor Barrier Bags. Prior to usage, the parts  
should remain bagged and stored below 40°C and 60%RH. If  
the parts are removed from the bag, they should be used within  
48 hours or stored in an environment at or below 20%RH. If the  
above conditions cannot be followed, the parts should be  
bakedforfourhoursat125°Cinorderto remove moisture prior  
to soldering. Sipex ships the 100-pin LQFP in Dry Vapor  
Barrier Bags with a humidity indicator card and desiccant pack.  
The humidity indicator should be below 30%RH.  
These are stress ratings only and functional operation of the  
device at these ratings or any other above those indicated in the  
operation sections of the specifications below is not implied.  
Exposure to absolute maximum rating conditions for extended  
periods of time may affect reliability.  
VCC ................................................................................................ +7V  
Input Voltages:  
Logic ................................................ -0.3V to (VCC+0.5V)  
Drivers ............................................. -0.3V to (VCC+0.5V)  
Receivers ........................................................... ±15.5V  
Output Voltages:  
Logic ................................................ -0.3V to (VCC+0.5V)  
Drivers ................................................................... ±12V  
Receivers ........................................ -0.3V to (VCC+0.5V)  
Storage Temperature ................................................ -65°C to +150°C  
Power Dissipation ................................................................. 1520mW  
(derate 19.0mW/°C above +70°C)  
Package Derating:  
øJA ................................................................................................................. 52.7 °C/W  
øJC .................................................................................................................... 6.5 °C/W  
ELECTRICAL SPECIFICATIONS  
TA = +25°C and VCC = +4.75V to +5.25V unless otherwise noted.  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
LOGIC INPUTS  
VIL  
VIH  
0.8  
Volts  
Volts  
2.0  
LOGIC OUTPUTS  
VOL  
VOH  
0.4  
Volts  
Volts  
IOUT= –3.2mA  
IOUT= 1.0mA  
2.4  
V.28 DRIVER  
DC Parameters  
Outputs  
Open Circuit Voltage  
Loaded Voltage  
Short-Circuit Current  
Power-Off Impedance  
AC Parameters  
Outputs  
±15  
±15  
±100  
Volts  
Volts  
mA  
per Figure 1  
per Figure 2  
per Figure 4, VOUT=0V  
per Figure 5  
VCC = +5V for AC parameters  
±5.0  
300  
Transition Time  
Instantaneous Slew Rate  
Propagation Delay  
tPHL  
1.5  
30  
µs  
V/µs  
per Figure 6; +3V to -3V  
per Figure 3  
0.5  
0.5  
1
1
5
5
µs  
µs  
tPLH  
Max.Transmission Rate  
120  
230  
kbps  
V.28 RECEIVER  
DC Parameters  
Inputs  
Input Impedance  
Open-Circuit Bias  
HIGH Threshold  
LOW Threshold  
AC Parameters  
Propagation Delay  
tPHL  
3
7
+2.0  
3.0  
k  
per Figure 7  
per Figure 8  
Volts  
Volts  
Volts  
1.7  
1.2  
0.8  
VCC = +5V for AC parameters  
50  
50  
100  
100  
500  
500  
ns  
ns  
tPLH  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
2
ELECTRICAL SPECIFICATIONS  
TA = +25°C and VCC = +4.75V to +5.25V unless otherwise noted.  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
V.28 RECEIVER (continued)  
AC Parameters (cont.)  
Max.Transmission Rate  
120  
235  
kbps  
V.10 DRIVER  
DC Parameters  
Outputs  
Open Circuit Voltage  
±4.0  
±6.0  
Volts  
Volts  
mA  
per Figure 9  
per Figure 10  
per Figure 11  
per Figure 12  
Test-Terminated Voltage 0.9VOC  
Short-Circuit Current  
Power-Off Current  
AC Parameters  
±150  
±100  
µA  
VCC = +5V for AC parameters  
Outputs  
Transition Time  
200  
ns  
per Figure 13; 10% to 90%  
Propagation Delay  
tPHL  
tPLH  
30  
30  
100  
100  
500  
500  
ns  
ns  
Max.Transmission Rate  
120  
kbps  
V.10 RECEIVER  
DC Parameters  
Inputs  
Input Current  
Input Impedance  
Sensitivity  
–3.25  
4
+3.25  
mA  
kΩ  
Volts  
per Figures 14 and 15  
±0.3  
AC Parameters  
Propagation Delay  
tPHL  
VCC = +5V for AC parameters  
50  
50  
ns  
ns  
tPLH  
Max.Transmission Rate  
120  
kbps  
V.11 DRIVER  
DC Parameters  
Outputs  
Open Circuit Voltage  
Test Terminated Voltage  
±6.0  
Volts  
Volts  
Volts  
Volts  
Volts  
mA  
per Figure 16  
per Figure 17  
±2.0  
0.5VOC  
0.67VOC  
±0.4  
+3.0  
±150  
±100  
Balance  
Offset  
Short-Circuit Current  
Power-Off Current  
AC Parameters  
Outputs  
per Figure 17  
per Figure 17  
per Figure 18  
per Figure 19  
µA  
VCC = +5V for AC parameters  
Transition Time  
Propagation Delay  
tPHL  
10  
ns  
per Figures 21 and 36; 10% to 90%  
Using CL = 50pF;  
per Figures 33 and 36  
per Figures 33 and 36  
per Figures 33 and 36  
30  
30  
2
50  
50  
5
ns  
ns  
ns  
tPLH  
Differential Skew  
(|tPHL - tPLH|)  
Max.Transmission Rate  
Channel to Channel Skew  
40  
–7  
Mbps  
ns  
2
V.11 RECEIVER  
DC Parameters  
Inputs  
Common Mode Range  
Sensitivity  
+7  
±0.2  
Volts  
Volts  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
3
ELECTRICAL SPECIFICATIONS  
TA = +25°C and VCC = +4.75V to +5.25V unless otherwise noted.  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
V.11 RECEIVER (continued)  
DC Parameters (cont.)  
Input Current  
–3.25  
±3.25  
mA  
per Figure 20 and 22;  
power on or off  
Current w/100Termination  
Input Impedance  
AC Parameters  
Propagation Delay  
tPHL  
±60.75  
mA  
kΩ  
per Figure 23 and 24  
4
VCC = +5V for AC parameters  
Using CL = 50pF;  
per Figures 33 and 38  
per Figures 33 and 38  
per Figure 33  
30  
30  
2
50  
50  
5
ns  
ns  
ns  
Mbps  
ns  
tPLH  
Skew (|tPHL - tPLH|)  
Max.Transmission Rate  
Channel to Channel Skew  
40  
2
V.35 DRIVER  
DC Parameters  
Outputs  
Test Terminated Voltage  
Offset  
±0.44  
±0.66  
±0.6  
+0.2VST  
150  
165  
Volts  
Volts  
Volts  
per Figure 25  
per Figure 25  
per Figure 25; VST = Steady state value  
per Figure 27; ZS = V2/V1 x 50  
per Figure 28  
Output Overshoot  
Source Impedance  
Short-Circuit Impedance  
AC Parameters  
Outputs  
-0.2VST  
50  
135  
VCC = +5V for AC parameters  
Transition Time  
Propagation Delay  
tPHL  
7
20  
ns  
per Figure 29; 10% to 90%  
30  
30  
2
50  
50  
5
ns  
ns  
ns  
per Figures 33 and 36; CL = 20pF  
per Figures 33 and 36; CL = 20pF  
per Figures 33 and 36; CL = 20pF  
tPLH  
Differential Skew  
(|tPHL - tPLH|)  
Max.Transmission Rate  
Channel to Channel Skew  
40  
Mbps  
ns  
2
V.35 RECEIVER  
DC Parameters  
Inputs  
Sensitivity  
±50  
+100  
110  
165  
mV  
Source Impedance  
Short-Circuit Impedance  
AC Parameters  
Propagation Delay  
tPHL  
90  
135  
per Figure 30; ZS = V2/V1 x 50Ω  
per Figure 31  
VCC = +5V for AC parameters  
30  
30  
2
50  
50  
5
ns  
ns  
ns  
Mbps  
ns  
per Figures 33 and 38; CL = 20pF  
per Figures 33 and 38; CL = 20pF  
per Figure 33; CL = 20pF  
tPLH  
Skew (|tPHL - tPLH|)  
Max.Transmission Rate  
Channel to Channel Skew  
40  
2
TRANSCEIVER LEAKAGE CURRENT  
Driver Output 3-State Current  
Rcvr Output 3-State Current  
500  
1
µA  
µA  
per Figure 32; Drivers disabled  
TX & RX disabled, 0.4V - VO - 2.4V  
10  
POWER REQUIREMENTS  
VCC  
4.75  
5.00  
1
95  
230  
270  
170  
200  
5.25  
Volts  
µA  
mA  
mA  
mA  
mA  
mA  
ICC (Shutdown Mode)  
(V.28/RS-232)  
(V.11/RS-422)  
(EIA-530 & RS-449)  
(V.35)  
All ICC values are with VCC = +5V  
fIN = 120kbps; Drivers active & loaded  
fIN = 10Mbps; Drivers active & loaded  
fIN = 10Mbps; Drivers active & loaded  
V.35 @ fIN = 10Mbps, V.28 @ 20kbps  
fIN = 10Mbps; Drivers active & loaded  
(EIA-530A)  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
4
OTHER AC CHARACTERISTICS  
TA = +25°C and VCC = +5.0V unless otherwise noted.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
DRIVER DELAY TIME BETWEEN ACTIVE MODE AND TRI-STATE MODE  
RS-232/V.28  
tPZL; Tri-state to Output LOW  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
0.11  
0.11  
0.05  
0.05  
5.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
RS-423/V.10  
tPZL; Tri-state to Output LOW  
0.07  
0.05  
0.55  
0.12  
2.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
CL = 100pF, Fig. 34 & 40; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
RS-422/V.11  
tPZL; Tri-state to Output LOW  
0.04  
0.05  
0.03  
0.11  
10.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 34 & 37; S1  
closed  
CL = 100pF, Fig. 34 & 37; S2  
closed  
CL = 15pF, Fig. 34 & 37; S1  
closed  
CL = 15pF, Fig. 34 & 37; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
V.35  
tPZL; Tri-state to Output LOW  
0.85  
0.36  
0.06  
0.05  
10.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 34 & 37; S1  
closed  
CL = 100pF, Fig. 34 & 37; S2  
closed  
CL = 15pF, Fig. 34 & 37; S1  
closed  
CL = 15pF, Fig. 34 & 37; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
RECEIVER DELAY TIME BETWEEN ACTIVE MODE AND TRI-STATE MODE  
RS-232/V.28  
tPZL; Tri-state to Output LOW  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
0.05  
0.05  
0.65  
0.65  
2.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 35 & 40; S1  
closed  
CL = 100pF, Fig. 35 & 40; S2  
closed  
CL = 100pF, Fig. 35 & 40; S1  
closed  
CL = 100pF, Fig. 35 & 40; S2  
closed  
RS-423/V.10  
tPZL; Tri-state to Output LOW  
0.04  
0.03  
0.03  
0.03  
2.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 35 & 40; S1  
closed  
CL = 100pF, Fig. 35 & 40; S2  
closed  
CL = 100pF, Fig. 35 & 40; S1  
closed  
CL = 100pF, Fig. 35 & 40; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
5
OTHER AC CHARACTERISTICS (Continued)  
TA = +25°C and VCC = +5.0V unless otherwise noted.  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
RS-422/V.11  
tPZL; Tri-state to Output LOW  
0.04  
0.03  
0.03  
0.03  
2.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 35 & 39; S1  
closed  
CL = 100pF, Fig. 35 & 39; S2  
closed  
CL = 15pF, Fig. 35 & 39; S1  
closed  
CL = 15pF, Fig. 35 & 39; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
V.35  
tPZL; Tri-state to Output LOW  
0.04  
0.03  
0.03  
0.03  
2.0  
2.0  
2.0  
2.0  
µs  
µs  
µs  
µs  
CL = 100pF, Fig. 35 & 39; S1  
closed  
CL = 100pF, Fig. 35 & 39; S2  
closed  
CL = 15pF, Fig. 35 & 39; S1  
closed  
CL = 15pF, Fig. 35 & 39; S2  
closed  
tPZH; Tri-state to Output HIGH  
tPLZ; Output LOW to Tri-state  
tPHZ; Output HIGH to Tri-state  
TRANSCEIVER TO TRANSCEIVER SKEW  
(per Figures 32, 33, 36, 38)  
RS-232 Driver  
100  
100  
20  
20  
2
ns  
ns  
ns  
ns  
ns  
ns  
[ (tphl  
[ (tplh  
[ (tphl  
[ (tphl  
[ (tphl  
[ (tplh  
)
Tx1 – (tphl  
Tx1 – (tplh  
)
)
]
Txn  
Txn  
)
]
RS-232 Receiver  
RS-422 Driver  
)
Rx1 – (tphl  
Rx1 – (tphl  
Tx1 – (tphl  
Tx1 – (tplh  
)
)
]
]
Rxn  
)
Rxn  
)
)
)
]
Txn  
Txn  
2
)
]
RS-422 Receiver  
RS-423 Driver  
2
3
5
ns  
ns  
ns  
[ (tphl  
[ (tphl  
[ (tphl  
)
)
– (tphl  
)
)
]
]
Rxn  
RRxx11 – (tphl  
Rxn  
]
)
Tx2 – (tphl  
Tx2 – (tplh  
)
Txn  
Txn  
5
5
5
2
2
ns  
ns  
ns  
ns  
ns  
[ (tplh  
[ (tphl  
[ (tphl  
[ (tphl  
[ (tplh  
)
)
]
RS-423 Receiver  
V.35 Driver  
)
Rx2 – (tphl  
Rx2 – (tphl  
)
)
]
]
Rxn  
)
Rxn  
)
Tx1 – (tphl  
Tx1 – (tplh  
)
)
]
Txn  
Txn  
)
]
V.35 Receiver  
2
2
ns  
ns  
[ (tphl  
[ (tphl  
)
)
– (tphl  
)
)
]
]
Rxn  
Rxn  
RRxx11 – (tphl  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
6
PINOUT 100 PIN LQFP  
VCC  
GND  
1
2
3
4
5
6
7
8
9
75 TR(a)  
74 GND  
SDEN  
TTEN  
STEN  
RSEN  
TREN  
RRCEN  
RLEN  
73 VDD  
72 C1+  
71 VCC  
70 C2+  
®
69 C1-  
68 GND  
67 C2-  
LLEN 10  
RDEN 11  
RTEN 12  
TXCEN 13  
CSEN 14  
DMEN 15  
RRTEN 16  
ICEN 17  
66 VSS  
65 RL(a)  
64 VCC  
63 LL(a)  
62 TM(a)  
61 IC(a)  
60 RRT(a)  
59 RRT(b)  
58 V10GND  
57 DM(a)  
56 DM(b)  
55 CS(a)  
54 CS(b)  
53 TXC(a)  
52 GND  
51 TXC(b)  
SP509  
TMEN 18  
D0 19  
D1 20  
D2 21  
TERM_OFF 22  
D_LATCH 23  
N/C 24  
GND 25  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
7
PIN DESCRIPTION  
Pin Number Pin Name Description  
Pin Number Pin Name Description  
1
VCC  
GND  
5V Power Supply Input  
Signal Ground  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
TxC(b)  
GND  
TxC Non-Inverting Input  
Signal Ground  
2
3
SDEN  
TTEN  
STEN  
RSEN  
TREN  
RRCEN  
RLEN  
LLEN#  
RDEN#  
RTEN#  
TxCEN#  
CSEN#  
DMEN#  
RRTEN#  
ICEN#  
TMEN  
D0  
TxD Driver Enable Input  
TxCE Driver Enable Input  
ST Driver Enable Input  
RTS Driver Enable Input  
DTR Driver Enable Input  
DCD Driver Enable Input  
RL Driver Enable Input  
LL Driver Enable Input  
RxD Receiver Enable Input  
RxC Receiver Enable Input  
TxC Receiver Enable Input  
CTS Receiver Enable Input  
DSR Receiver Enable Input  
DCDDTE Receiver Enable Input  
RI Receiver Enable Input  
TM Receiver Enable Input  
Mode Select Input  
TxC(a)  
CS(b)  
CS(a)  
DM(b)  
DM(a)  
GNDV10  
RRT(b)  
RRT(a)  
IC  
TxC Inverting Input  
4
CTS Non-Inverting Input  
CTS Inverting Input  
DSR Non-Inverting Input  
DSR Inverting Input  
V.10 Rx Reference Node  
DCDDTE Non-Inverting Input  
DCDDTE Inverting Input  
RI Receiver Input  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
TM(a)  
LL(a)  
VCC  
TM Receiver Input  
LL Driver Output  
Power Supply Input  
RL Driver Output  
RL(a)  
VSS1  
C2N  
-2xVCC Charge Pump Output  
Charge Pump Capacitor  
Signal Ground  
GND  
C1N  
Charge Pump Capacitor  
Charge Pump Capacitor  
Power Supply Input  
Charge Pump Capacitor  
2xVCC Charge Pump Output  
Signal Ground  
D1  
Mode Select Input  
C2P  
D2  
Mode Select Input  
VCC  
TERM_OFF Termination Disable Input  
D_LATCH# Decoder Latch Input  
C1P  
VDD  
NC  
No Connect  
GND  
GND  
VCC  
Signal Ground  
TR(a)  
NC  
DTR Inverting Output  
No Connect  
5V Power Supply Input  
LOOPBACK# Loopback Mode Enable Input  
VCC  
Power Supply Input  
DTR Non-Inverting Output  
DCD Non-Inverting Output  
Power Supply Input  
DCD Inverting Output  
Signal Ground  
TxD  
TxCE  
ST  
TxD Driver TTL Input  
TxCE Driver TTL Input  
ST Driver TTL Input  
RTS Driver TTL Input  
DTR Driver TTL Input  
TR(b)  
RRC(b)  
VCC  
RTS  
DTR  
RRC(a)  
GND  
DCD_DCE DCDDCE Driver TTL Input  
RS(a)  
VCC  
RTS Inverting Output  
Power Supply Input  
RTS Non-Inverting Output  
Signal Ground  
RL  
LL  
RL Driver TTL Input  
LL Driver TTL Input  
RS(b)  
GND  
RxD  
RxC  
TxC  
CTS  
DSR  
RxD Receiver TTL Output  
RxC Receiver TTLOutput  
TxC Receiver TTL Output  
CTS Receiver TTL Output  
DSR Receiver TTL Output  
ST(a)  
VCC  
ST Inverting Output  
Power Supply Input  
V35TGND3 ST Termination Referance  
ST(b)  
GND  
TT(a)  
VCC  
ST Non-Inverting Output  
Signal Ground  
DCD_DTE DCDDTE Receiver TTL Output  
RI  
RI Receiver TTL Output  
TM Receiver TTL Output  
Signal Ground  
TxCE Inverting Output  
5V Power Supply Input  
TM  
GND  
VCC  
V35TGND2 ST Termination Referance  
Power Supply Input  
TT(b)  
GND  
SD(a)  
VCC  
TxCE Non-Inverting Output  
Signal Ground  
V35RGND Reciever Termination Refrence  
RD(b)  
RD(a)  
RT(b)  
RT(a)  
RXD Non-Inverting Input  
RXD Inverting Input  
TxD Inverting Output  
5V Power Supply Input  
RxC Non-Inverting Input  
RxC Inverting Input  
V35TGND1 ST Termination Referance  
SD(b)  
TxD Non-Inverting Output  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
8
SP509 Driver Table  
RS-232  
Mode  
(V.28)  
RS-449  
Mode  
(V.36)  
Driver Output  
Pin  
EIA-530  
Mode  
EIA-530A  
Mode  
X.21 Mode  
(V.11)  
Suggested  
Signal  
V.35 Mode  
Shutdown  
MODE (D0, D1, D2)  
T1OUT(a)  
T1OUT(b)  
T2OUT(a)  
T2OUT(b)  
T3OUT(a)  
T3OUT(b)  
T4OUT(a)  
T4OUT(b)  
T5OUT(a)  
T5OUT(b)  
T6OUT(a)  
T6OUT(b)  
T7OUT(a)  
T8OUT(a)  
001  
V.35  
010  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
V.10  
011  
V.28  
100  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
High-Z  
V.11  
V.11  
V.10  
V.10  
101  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
V.10  
110  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
High-Z  
High-Z  
111  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
TxD(a)  
TxD(b)  
V.35  
High-Z  
V.28  
V.35  
TxCE(a)  
TxCE(b)  
TxC_DCE(a)  
TxC_DCE(b)  
RTS(a)  
V.35  
High-Z  
V.28  
V.35  
V.35  
High-Z  
V.28  
V.28  
High-Z  
V.28  
High-Z  
V.28  
RTS(b)  
DTR(a)  
High-Z  
V.28  
High-Z  
V.28  
DTR(b)  
DCD_DCE(a)  
DCD_DCE(b)  
RL  
High-Z  
V.28  
High-Z  
V.28  
V.28  
V.28  
LL  
Table 1. Driver Mode Selection  
SP509 Receiver Table  
RS-232  
Mode  
(V.28)  
RS-449  
Mode  
(V.36)  
Receiver Input  
V.35 Mode  
Pin  
EIA-530  
Mode  
EIA-530A  
Mode  
X.21 Mode  
(V.11)  
Suggested  
Signal  
Shutdown  
MODE (D0, D1, D2)  
R1IN(a)  
R1IN(b)  
R2IN(a)  
R2IN(b)  
R3IN(a)  
R3IN(b)  
R4IN(a)  
R4IN(b)  
R5IN(a)  
R5IN(b)  
R6IN(a)  
R6IN(b)  
R7IN(a)  
R8IN(a)  
001  
V.35  
010  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
V.10  
011  
V.28  
100  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
High-Z  
V.11  
V.11  
V.10  
V.10  
101  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.10  
V.10  
110  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
High-Z  
High-Z  
111  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
RxD(a)  
RxD(b)  
V.35  
High-Z  
V.28  
V.35  
RxC(a)  
V.35  
High-Z  
V.28  
RxC(b)  
V.35  
TxC_DTE(a)  
TxC_DTE(b)  
CTS(a)  
V.35  
High-Z  
V.28  
V.28  
High-Z  
V.28  
High-Z  
V.28  
CTS(b)  
DSR(a)  
High-Z  
V.28  
High-Z  
V.28  
DSR(b)  
DCD_DTE(a)  
DCD_DTE(b)  
RI  
High-Z  
V.28  
High-Z  
V.28  
V.28  
V.28  
TM  
Table 2. Receiver Mode Selection  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
9
TEST CIRCUITS  
A
A
VOC  
VT  
3k  
C
C
Figure 1. V.28 Driver Output Open Circuit Voltage  
Figure 2. V.28 Driver Output Loaded Voltage  
A
A
Oscilloscope  
VT  
Isc  
7k  
C
C
Scope used for slew rate  
measurement.  
Figure 3. V.28 Driver Output Slew Rate  
Figure 4. V.28 Driver Output Short-Circuit Current  
V
= 0V  
CC  
A
A
Ix  
±2V  
Oscilloscope  
3k  
2500pF  
C
C
Figure 6. V.28 Driver Output Rise/Fall Times  
Figure 5. V.28 Driver Output Power-Off Impedance  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
10  
A
A
Iia  
±15V  
voc  
C
C
Figure 7. V.28 Receiver Input Impedance  
Figure 8. V.28 Receiver Input Open Circuit Bias  
A
A
VOC  
Vt  
3.9k  
450  
C
C
Figure 9. V.10 Driver Output Open-Circuit Voltage  
Figure 10. V.10 Driver Output Test Terminated Voltage  
V
= 0V  
CC  
A
A
Ix  
±0.25V  
Isc  
C
C
Figure 11. V.10 Driver Output Short-Circuit Current  
Figure 12. V.10 Driver Output Power-Off Current  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
11  
A
A
Iia  
±10V  
Oscilloscope  
450  
C
C
Figure 13. V.10 Driver Output Transition Time  
Figure 14. V.10 Receiver Input Current  
A
V.10 RECEIVER  
VOCA  
+3.25mA  
+10V  
VOC  
3.9k  
VOCB  
-10V  
-3V  
B
+3V  
Maximum Input Current  
vesus Voltage  
C
-3.25mA  
Figure 15. V.10 Receiver Input IV Graph  
Figure 16. V.11 Driver Output Open-Circuit Voltage  
A
A
Isa  
50  
50Ω  
VT  
Isb  
B
V
B
OS  
C
C
Figure 17. V.11 Driver Output Test Terminated Voltage  
Figure 18. V.11 Driver Output Short-Circuit Current  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
12  
V
= 0V  
CC  
A
Iia  
±10V  
A
Ixa  
±0.25V  
B
B
C
C
V
= 0V  
CC  
A
A
±10V  
±0.25V  
Iib  
Ixb  
B
B
C
C
Figure 19. V.11 Driver Output Power-Off Current  
Figure 20. V.11 Receiver Input Current  
A
V.11 RECEIVER  
+3.25mA  
+10V  
50  
Oscilloscope  
50Ω  
-10V  
-3V  
B
VE  
50Ω  
+3V  
C
Maximum Input Current  
vesus Voltage  
-3.25mA  
Figure 22. V.11 Receiver Input IV Graph  
Figure 21. V.11 Driver Output Rise/Fall Time  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
13  
V.11 RECEIVER  
w/ Optional Cable Termination  
(100to 150)  
A
Iia  
i [mA] = V [V] / 0.1  
±6V  
i [mA] = V [V] - 3) / 4.0  
100to  
150Ω  
-6V  
-3V  
+3V  
+6V  
B
i [mA] = V [V] - 3) / 4.0  
C
Maximum Input Current  
versus Voltage  
i [mA] = V [V] / 0.1  
Figure 24. V.11 Receiver Input Graph w/ Termination  
A
A
±6V  
50  
100to  
150Ω  
VT  
50Ω  
Iib  
VOS  
B
B
C
C
Figure 23. V.11 Receiver Input Current w/ Termination  
Figure 25. V.35 Driver Output Test Terminated Voltage  
V1  
A
A
50  
50  
VT  
24kHz, 550mV  
p-p  
Sine Wave  
V2  
50Ω  
VOS  
B
B
C
C
Figure 26. V.35 Driver Output Offset Voltage  
Figure 27. V.35 Driver Output Source Impedance  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
14  
A
A
50  
50Ω  
Oscilloscope  
ISC  
B
B
50Ω  
±2V  
C
C
Figure 29. V.35 Driver Output Rise/Fall Time  
Figure 28. V.35 Driver Output Short-Circuit Impedance  
V1  
A
A
50  
24kHz, 550mV  
p-p  
Sine Wave  
V2  
Isc  
B
B
±2V  
C
C
Figure 30. V.35 Receiver Input Source Impedance  
Figure 31. V.35 Receiver Input Short-Circuit Impedance  
Any one of the three conditions for disabling the driver.  
1
1
1
VCC = 0V  
D1  
D0  
D2  
C
C
L1  
A
VCC  
B
A
IZSC  
±12V  
B
A
TIN  
ROUT  
L2  
15pF  
Logic “1”  
B
fIN (50% Duty Cycle, 2.5V  
)
P-P  
Figure 33. Driver/Receiver Timing Test Circuit  
Figure 32. Driver Output Leakage Current Test  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
15  
1K  
Test Point  
Receiver  
Output  
V
CC  
V
CC  
S
S
1
S
S
1
500  
Output  
Under  
Test  
C
RL  
1KΩ  
C
L
2
2
Figure 35. Receiver Timing Test Load Circuit  
Figure 34. Driver Timing Test Load Circuit  
f > 10MHz; t < 10ns; t < 10ns  
R F  
+3V  
DRIVER  
INPUT  
1.5V  
1.5V  
0V  
t
t
PHL  
PLH  
A
1/2V  
1/2V  
O
O
DRIVER  
OUTPUT  
V
O
B
+
t
t
DPHL  
DPLH  
DIFFERENTIAL  
OUTPUT  
V
V
O
0V  
V – V  
O
B
A
t
R
t
F
t
t t  
| DPLH - DPHL |  
SKEW =  
Figure 36. Driver Propagation Delays  
Mx or Tx_Enable  
+3V  
0V  
1.5V  
1.5V  
tZL  
2.3V  
tLZ  
5V  
A, B  
A, B  
Output normally LOW  
Output normally HIGH  
0.5V  
0.5V  
VOL  
VOH  
2.3V  
tZH  
0V  
tHZ  
Figure 37. Driver Enable and Disable Times  
f > 10MHz; t < 10ns; t < 10ns  
R
F
+
V
V
0D2  
0V  
0V  
A – B  
INPUT  
OUTPUT  
0D2  
V
OH  
(VOH - VOL)/2  
(VOH - VOL)/2  
RECEIVER OUT  
V
OL  
t
t
PHL  
PLH  
tSKEW  
tPHL tPLH  
- |  
= |  
Figure 38. Receiver Propagation Delays  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
16  
f = 1MHz; tR < 10ns; tF < 10ns  
1.5V  
DECx +3V  
1.5V  
0V  
5V  
RCVRENABLE  
tZL  
1.5V  
tLZ  
RECEIVER OUT  
Output normally LOW  
Output normally HIGH  
0.5V  
0.5V  
VIL  
VIH  
RECEIVER OUT  
1.5V  
tZH  
0V  
tHZ  
Figure 39. Receiver Enable and Disable Times  
f = 60kHz; t < 10ns; t < 10ns  
R
F
+3V  
Tx_Enable  
0V  
1.5V  
1.5V  
t
LZ  
t
ZL  
0V  
T
OUT  
V
0.5V  
-
OL  
V
0.5V  
-
OL  
V
OL  
Output LOW  
f = 60kHz; t < 10ns; t < 10ns  
R
F
+3V  
1.5V  
1.5V  
t
Tx_Enable  
0V  
t
HZ  
ZH  
Output HIGH  
V
OH  
V
OH - 0.5V  
T
OUT  
0V  
Figure 40. V.28 (RS-232) and V.10 (RS-423) Driver Enable and Disable Times  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
17  
Figure 42. Typical V.10 Driver Output Waveform  
Figure 41. Typical V.28 Driver Output Waveform  
Figure 43. Typical V.11 Driver Output Waveform  
Figure 44. Typical V.35 Driver Output Waveform  
Figure 45. Typical V.11 Driver Output Waveform at 20MHz  
Figure 46. Typical V.35 Driver Output Waveform at 20 MHz  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
18  
+5V (decoupling capacitor not shown)  
1µF  
1µF  
1µF  
V
C1+  
C1-  
C2+  
C2-  
CC  
V
SS  
V
DD  
Regulated Charge Pump  
1µF  
V35RGND  
TxD  
RD(a)  
SD(a)  
V35TGND1  
SD(b)  
RxD  
RDEN  
SDEN  
RD(b)  
RT(a)  
TxCE  
TT(a)  
V35TGND2  
TT(b)  
RxC  
RTEN  
RT(b)  
TTEN  
TxC(a)  
ST  
ST(a)  
TxC  
TxCEN  
V35TGND3  
ST(b)  
TxC(b)  
CS(a)  
STEN  
RTS  
RS(a)  
CTS  
CSEN  
RS(b)  
RSEN  
CS(b)  
DM(a)  
DTR  
TR(a)  
DSR  
DMEN  
TR(b)  
TREN  
DM(b)  
RRT(a)  
DCD_DCE  
RRC(a)  
DCD_DTE  
RRTEN  
RRC(b)  
RRCEN  
RRT(b)  
IC  
RL  
RI  
ICEN  
RL(a)  
RLEN  
LL  
TM  
TM  
TMEN  
LL(a)  
LLEN  
D0  
D1  
D2  
SP509  
V.10-GND  
D-LATCH  
TERM-OFF  
LOOPBACK  
GND  
RECEIVER TERMINATION NETWORK  
V.35 DRIVER TERMINATION NETWORK  
51ohms  
V.35 MODE  
V.11 MODE  
51ohms  
124ohms  
124ohms  
V.35 MODE  
TX ENABLE  
RX ENABLE  
51ohms  
51ohms  
Figure 47. Functio nal Diagram  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
19  
FEATURES  
There are four basic types of driver circuits –  
ITU-T-V.28 (RS-232), ITU-T-V.10 (RS-423),  
ITU-T-V.11 (RS-422), and CCITT-V.35.  
The SP509 contains highly integrated serial  
transceivers that offer programmability between  
interface modes through software control. The  
SP509 offers the hardware interface modes for  
RS-232 (V.28), RS-449/V.36 (V.11 and V.10),  
EIA-530 (V.11 and V.10), EIA-530A (V.11 and  
V.10), V.35 (V.35 and V.28) and X.21(V.11). The  
interface mode selection is done via three control  
pins, which can be latched via microprocessor  
control.  
The V.28 (RS-232) drivers output single-ended  
signals with a minimum of +5V (with 3k&  
2500pF loading), and can operate over 120kbps.  
Since the SP509 uses a charge pump to generate  
the RS-232 output rails, the driver outputs will  
never exceed +10V. The V.28 driver architecture  
is similar to Sipex's standard line of RS-232  
transceivers.  
The SP509 has eight drivers, eight receivers, and  
Sipex'spatentedon-boardchargepump(5,306,954)  
that is ideally suited for wide area network  
connectivityandothermulti-protocolapplications.  
Other features include digital and line loopback  
modes, individual enable/disable control lines for  
each driver and receiver, fail-safe when inputs are  
either open or shorted, individual termination  
resistor ground paths, separate driver and receiver  
groundoutputs,enhancedESDprotectionondriver  
outputs and receiver inputs.  
The RS-423 (V.10) drivers are also single-ended  
signals which produce open circuit V and VOH  
measurementsof+4.0Vto+6.0V.WhenOtLerminated  
with a 450load to ground, the driver output will  
not deviate more than 10% of the open circuit  
value. This is in compliance of the ITU V.10  
specification. The V.10 (RS-423) drivers are used  
in RS-449/V.36, EIA-530, and EIA-530A modes  
as Category II signals from each of their  
corresponding specifications. The V.10 drivers  
are guaranteed to transmit over 120kbps, but can  
operate at over 1Mbps if necessary.  
THEORY OF OPERATION  
The SP509 device is made up of 1) the drivers, 2)  
the receivers, 3) a charge pump, 4) DTE/DCE  
switching algorithm, and 5) control logic.  
The third type of drivers are V.11 (RS-422)  
differentialdrivers.Duetothenatureofdifferential  
signaling, the drivers are more immune to noise as  
opposed to single-ended transmission methods.  
The advantage is evident over high speeds and  
long transmission lines. The strength of the driver  
outputs can produce differential signals that can  
maintain +2V differential output levels with a load  
of 100. The signal levels and drive capability of  
these drivers allow the drivers to also support  
RS-485 requirements of +1.5V differential output  
levels with a 54load. The strength allows the  
SP509 differential driver to drive over long cable  
lengthswithminimalsignaldegradation.TheV.11  
drivers are used in RS-449, EIA-530, EIA-530A  
and V.36 modes as Category I signals which are  
used for clock and data. Sipex's new driver design  
over its predecessors allow the SP509 to operate  
over 40Mbps for differential transmission.  
Drivers  
TheSP509haseightenhancedindependentdrivers.  
Control for the mode selection is done via a three-  
bit control word into D0, D1, and D2. The drivers  
are prearranged such that for each mode of  
operation, the relative position and functionality  
of the drivers are set up to accommodate the  
selectedinterfacemode.Asthemodeofthedrivers  
ischanged,theelectricalcharacteristicswillchange  
to support the required signal levels. The mode of  
each driver in the different interface modes that  
can be selected is shown in Table 1.  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
20  
The fourth type of drivers are V.35 differential  
drivers. There are only three available on the  
SP509 for data and clock (TxD, TxCE, and TxC  
in DCE mode). These drivers are current sources  
that drive loop current through a differential pair  
resulting in a 550mV differential voltage at the  
receiver. These drivers also incorporate fixed  
termination networks for each driver in order to  
settheV andVOL dependingonloadconditions.  
This terOmHination network is basically a “Y”  
configuration consisting of two 51resistors  
connectedinseriesanda124resistorconnected  
between the two 50resistors and a V35TGND  
output.Eachofthethreedriversanditsassociated  
termination will have its own V35TGND output  
forgroundingconvenience.Filteringcanbedone  
on these pins to reduce common mode noise  
transmitted over the transmission line by  
connecting a capacitor to ground.  
protocols of the receivers. Table 1 shows  
the mode of each receiver in the different  
interface modes that can be selected. There are  
twobasictypesofreceivercircuits—ITU-T-V.28  
(RS-232) and ITU-T-V.11, (RS-422).  
The RS-232 (V.28) receiver is single-ended and  
accepts RS-232 signals from the RS-232 driver.  
The RS-232 receiver has an operating input  
voltage range of +15V and can receive signals  
downs to +3V. The input sensitivity complies  
with RS-232 and V .28 at +3V. The input  
impedance is 3kto 7kin accordance to RS-  
232 and V .28. The receiver output produces a  
TTL/CMOS signal with a +2.4V minimum for  
alogic1anda+0.4Vmaximumforalogic0”.  
TheRS-232(V.28)protocolusesthesereceivers  
for all data, clock and control signals. They are  
also used in V.35 mode for control line signals:  
CTS, DSR, LL, and RL. The RS-232 receivers  
can operate over 120kbps.  
The drivers also have separate enable pins  
which simplifies half-duplex configurations for  
some applications, especially programmable  
DTE/DCE. The enable pins will either enable or  
disable the output of the drivers according to the  
appropriateactivelogicillustratedonFigure47.  
The enable pins have internal pull-up and pull-  
down devices, depending on the active polarity  
ofthereceiver,thatenablethedriveruponpower-  
on if the enable lines are left floating. During  
disabled conditions, the driver outputs will be at  
a high impedance 3-state.  
The second type of receiver is a differential type  
that can be configured internally to support  
ITU-T-V.10 and CCITT-V.35 depending on its  
input conditions. This receiver has a typical  
input impedance of 10kand a differential  
threshold of less than +200mV, which complies  
with the ITU-T-V.11 (RS-422) specifications.  
V.11 receivers are used in RS-449/V.36,  
EIA-530, EIA-530A and X.21 as Category I  
signalsforreceivingclock,data,andsomecontrol  
line signals not covered by Category II V.10  
circuits. The differential V.11 transceiver has  
improved architecture that allows over 40Mbps  
transmission rates.  
The driver inputs are both TTL or CMOS  
compatible. All driver inputs have an internal  
pull-up resistor so that the output will be at a  
defined state at logic LOW (“0”). Unused driver  
inputs can be left floating. The internal pull-up  
resistor value is approximately 500k.  
Receivers dedicated for data and clock (RxD,  
RxC, TxC) incorporate internal termination for  
V.11. The termination resistor is typically 120Ω  
connected between the A and B inputs. The  
termination is essential for minimizing crosstalk  
and signal reflection over the transmission line .  
The minimum value is guaranteed to exceed  
100,thuscomplyingwiththeV.11andRS-422  
specifications. This resistor is invoked when the  
receiverisoperatingasaV.11receiver,inmodes  
EIA-530, EIA-530A, RS-449/V.36, and X.21.  
Receivers  
The SP509 has eight enhanced independent  
receivers. Control for the mode selection is done  
viaathree-bitcontrolwordthatisthesameasthe  
driver control word. Therefore, the modes for  
the drivers and receivers are identical in the  
application.  
Like the drivers, the receivers are prearranged  
for the specific requirements of the synchronous  
serial interface. As the operating mode of the  
receiversischanged,theelectricalcharacteristics  
willchangetosupporttherequiredserialinterface  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
21  
Thesamereceiversalsoincorporateatermination  
network internally for V.35 applications. For  
V.35, the receiver input termination is a “Y”  
termination consisting of two 51resistors  
connectedinseriesanda124resistorconnected  
between the two 50resistors and V35RGND  
output.TheV35RGNDisusuallygrounded.The  
receiver itself is identical to the V.11 receiver.  
CHARGE PUMP  
The charge pump is a Sipex-patented design  
(5,306,954)andusesauniqueapproachcompared  
to older less-efficient designs. The charge pump  
still requires four external capacitors, but uses  
four-phase voltage shifting technique to attain  
symmetrical power supplies. The charge pump  
V
and VSS outputs are regulated to +5.8V and  
-5D.8DV, respectively. There is a free-running  
oscillator that controls the four phases of the  
voltage shifting. A description of each phase  
follows.  
The differential receivers can be configured to  
be ITU-T-V.10 single-ended receivers by  
internally connecting the non-inverting input to  
ground. This is internally done by default from  
the decoder. The non-inverting input is rerouted  
to V10GND and can be grounded separately.  
The ITU-T-V.10 receivers can operate over  
1Mbps and are used in RS-449/V.36, E1A-530,  
E1A-530AandX.21modesasCategoryIIsignals  
asindicatedbytheircorrespondingspecifications.  
All receivers include an enable/disable line for  
disablingthereceiveroutputallowingconvenient  
half-duplex configurations. The enable pins will  
eitherenableordisabletheoutputofthereceivers  
according to the appropriate active logic  
illustrated on Figure 47. The receiver’s enable  
lines include an internal pull-up or pull-down  
device, depending on the active polarity of the  
receiver,thatenablesthereceiveruponpowerup  
iftheenablelinesareleftfloating.Duringdisabled  
conditions, the receiver outputs will be at a high  
impedance state. If the receiver is disabled any  
associatedterminationisalsodisconnectedfrom  
the inputs.  
Phase 1  
__VSS charge storage ——During this phase of  
the clock cycle, the positive side of capacitors C1  
and C2 are initially charged to VCC. C+ is then  
switched to ground and the charge in C1- is  
transferred to C2-. Since C2+ is connected to VCC,  
the voltage potential across capacitor C2 is now  
2XVCC.  
Phase 2  
—VSS transferPhasetwooftheclockconnects  
the negative terminal of C2 to the V storage  
capacitor and the positive terminal SSof C2 to  
ground, and transfers the negative generated  
voltagetoC .Thisgeneratedvoltageisregulated  
to –5.8V. S3imultaneously, the positive side of  
the capacitor C1 is switched to VCC and the  
negative side is connected to ground.  
Phase 3  
—VDD charge storage —The third phase of the  
clock is identical to the first phase—the charge  
transferred in C1 produces –VCC in the negative  
terminal of C1 which is applied to the negative  
side of the capacitor C2 . Since C2+ is at VCC, the  
voltage potential across C2 is 2XVCC.  
All receivers include a fail-safe feature that  
outputs a logic high when the receiver inputs are  
open, terminated but open, or shorted together.  
For single-ended V.28 and V.10 receivers, there  
areinternal5kpull-downresistorsontheinputs  
which produces a logic high (“1”) at the receiver  
outputs. The differential receivers have a  
proprietary circuit that detect open or shorted  
inputs and if so, will produce a logic HIGH (“1”)  
at the receiver output.  
Phase 4  
—VDD transfer —The fourth phase of the clock  
connects the negative terminal of C2 to ground,  
and transfers the generated 5.8V across C2 to C4,  
the VDD storage capacitor. This voltage is  
regulated to +5.8V. At the regulated voltage, the  
internaloscillatorisdisabledandsimultaneously  
with this, the positive side of capacitor C1 is  
switchedtoVCC andthenegativesideisconnected  
toground,andthecyclebeginsagain.Thecharge  
pump cycle will continue as long as the  
operational conditions for the internal oscillator  
are present.  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
22  
Since both V+ and V- are separately generated  
from VCC; in a no-load condition V+ and V- will  
be symmetrical. Older charge pump approaches  
that generate V- from V+ will show a decrease in  
the magnitude of V- compared to V+ due to the  
inherent inefficiencies in the design.  
There are internal pull-up devices on D0, D1,  
and D2, which allow the device to be in  
SHUTDOWN mode (“111”) upon power up.  
However , if the device is powered -up with the  
D_LATCH at a logic HIGH, the decoder state of  
the SP509 will be undefined.  
The clock rate for the charge pump typically  
operates at 250kHz. The external capacitors can  
be as low as 1µF with a 16V breakdown voltage  
rating.  
ESD TOLERANCE  
TheSP509 deviceincorporatesruggedizedESD  
cells on all driver output and receiver input  
pins. The ESD structure is improved over our  
previous family for more rugged applications  
and environments sensitive to electrostatic  
discharges and associated transients.  
TERM_OFF FUNCTION  
The SP509 contains a TERM_OFF pin that  
disables all three receiver input termination  
networks regardless of mode. This allows the  
device to be used in monitor mode applications  
typically found in networking test equipment.  
The TERM_OFF pin internally contains a  
pull-down device with an impedance of over  
500k, which will default in a “ON” condition  
during power-up if V.35 receivers are used. The  
individual receiver enable line and  
the SHUTDOWN mode from the decoder  
will disable the termination regardless of  
TERM_OFF.  
CTR1/CTR2 EUROPEAN COMPLIANCY  
As with all of Sipex’s previous multi-protocol  
serial transceiver IC’s the drivers and receivers  
have been designed to meet all the requirements  
to NET1/NET2 and TBR2 in order to meet  
CTR1/CTR2 compliancy. The SP509 is also  
tested in-house at Sipex and adheres to all the  
NET1/2physicallayertestingandtheITUSeries  
V specifications before shipment. Please note  
thatalthoughtheSP509,aswithitspredecessors,  
adhere to CTR1/CTR2 compliancy testing,  
any complex or unusual configuration should  
be double-checked to ensure CTR1/CTR2  
compliance. Consult the factory for details.  
LOOPBACK FUNCTION  
The SP509 contains a LOOPBACK pin that  
invokes a loopback path. This loopback path is  
illustrated in Figure 48. LOOPBACK has an  
internal pull-up resistor that defaults to normal  
modeduringpoweruporifthepinisleftfloating.  
During loopback, the driver output and receiver  
input characteristics will still adhere to its  
appropriate specifications.  
DECODER AND D_LATCH FUNCTION  
TheSP509containsaD_LATCHpinthatlatches  
the data into the D0, D1, and D2 decoder inputs.  
If tied to a logic LOW (“0”), the latch is  
transparent, allowing the data at the decoder  
inputs to propagate through and program  
the SP509 accordingly. If tied to a logic  
HIGH(“1”), the latch locks out the data and  
prevents the mode from changing until this pin  
is brought to a logic LOW.  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
23  
SD(a)  
SD(b)  
RD(a)  
TxD  
RxD  
RD(b)  
TT(a)  
TxCE  
TT(b)  
RT(a)  
RxC  
ST  
RT(b)  
ST(a)  
ST(b)  
TxC(a)  
TxC(b)  
RS(a)  
TxC  
RTS  
CTS  
DTR  
RS(b)  
CS(a)  
CS(b)  
TR(a)  
TR(b)  
DM(a)  
DSR  
DM(b)  
RRC(a)  
DCD_DCE  
RRC(b)  
RRT(a)  
RRT(b)  
DCD_DTE  
RL  
RI  
RL(a)  
IC  
LL  
LL(a)  
TM  
TM(a)  
Figure 48. SP509 Loopback Path  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
24  
1µF  
1µF  
1µF  
Vcc  
+
10µF  
73  
VDD  
72  
C1+  
69  
70  
67  
1µF  
C1- C2+ C2-  
66  
VCC  
VSS  
CIRCUIT #  
Serial Port Connector Pins  
2
TxD_RXD_A  
28  
97 SD(a)  
100 S(b)  
92 TT(a)  
#103  
14  
TxD_RXD_B  
TxD  
24  
11  
TxCE_TXC_A  
TXCE_TXC_B  
29  
#113  
#113  
TxCE  
95 TT(b)  
87 ST(a)  
30  
ST  
90 ST(b)  
83 RS(a)  
85 RS(b)  
75 TR(a)  
78 TR(b)  
4
RTS_CTS_A  
RTS_CTS_B  
31  
#105  
#108  
19  
RTS  
20  
23  
DTR_DSR_A  
DTR_DSR_B  
32  
DTR  
33  
81 RRC(a)  
79 RRC(b)  
#109  
#140  
#141  
DCD_DCE  
34  
21  
18  
RL_RI  
LL_TM  
RL  
65 RL(a)  
35  
LL  
63 LL(a)  
SP509  
3
RXD_TXD_A  
RXD_TXD_B  
36  
48 RD(a)  
#105  
#115  
#114  
RxD  
16  
47 RD(b)  
17  
9
RXC_TXCE_A  
RXC_TXCE_B  
37  
50 RT(a)  
49 RT(b)  
RxC  
15  
12  
TXC_RXC_A  
TXC_RXC_B  
38  
53 TxC(a)  
51 TxC(b)  
55 CS(a)  
54 CS(b)  
TxC  
5
CTS_RTS_A  
CTS_RTS_B  
39  
#106)  
#107  
13  
CTS  
6
DSR_DTR_A  
DSR_DTR_B  
40  
57 DM(a)  
56 DM(b)  
22  
DSR  
8
DCD_DCD_A  
DCD-DCD-B  
41  
60 RRT(a)  
59 RRT(b)  
#109  
#125  
10  
DCD_DTE  
42  
22  
25  
RI_RL  
LL_TM  
RI  
61 IC  
43  
#142  
TM  
62 TM  
Logic Section  
D0 19  
3
4
5
SDEN  
Vcc  
TTEN  
STEN  
D1 20  
D2 21  
DCE/DTE  
6
7
8
9
RSEN  
TREN  
RRCEN  
RLEN  
LOOPBACK 27  
Vcc  
LATCH 23  
10 LLEN  
TERM_OFF 22  
11 RDEN  
12 RTEN  
13 TxCEN  
* - Driver applies for DCE only on pins 15 and 12.  
Receiver applies for DTE only on pins 15 and 12.  
Driver applies for DCE only on pins 8 and 10.  
Receiver applies for DTE only on pins 8 and 10.  
V35TGND1 99  
V35TGND2 94  
14 CSEN  
15 DMEN  
35TGND3 89  
V35RGND 46  
16 RRTEN  
17 ICEN  
18 TMEN  
Input Line  
Output Line  
Bi-directional Bus.  
V10_GND 58  
Figure 49. Configuring SP509 to Operate as either DCE or DTE  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
25  
PACKAGE: 100 Pin LQFP  
D
0.2 RAD MAX.  
D1  
c
0.08 RAD MIN.  
PIN 1  
11°-13°  
0°MIN  
E1  
C
L
E
0°–7°  
11°-13°  
L
L1  
C
L
A2  
A
Seating  
Plane  
A1  
b
e
DIMENSIONS  
Minimum/Maximum  
(mm)  
100–PIN LQFP  
JEDEC MS-026  
(BED) Variation  
COMMON DIMENSIONS  
SYMBL MIN NOM MAX  
c
L
0.09  
0.20  
SYMBOL  
MIN  
NOM MAX  
1.60  
0.45 0.60 0.75  
1.00 REF  
A
A1  
A2  
b
L1  
0.05  
1.35  
0.17  
0.15  
1.40  
0.22  
1.45  
0.27  
D
16.00 BSC  
14.00 BSC  
0.50 BSC  
16.00 BSC  
14.00 BSC  
100  
D1  
e
E
E1  
N
100 PIN LQFP  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
26  
DCE CONFIGURATION  
SP508 Multiprotocol Configured as DCE  
Interface to Port-  
Connector  
Recommended Signals and Port Pin Assignments  
Interface to System Logic  
Pin  
RS-232 or V.24  
EIA-530  
RS-449  
V.35  
X.21  
Pin  
Pin Mnemonic Number  
Signal Mnemo DB-25 Signal Mnemo DB-25 Signal Mnemo DB-37 Signal Mnemo M34 Signal Mnemo DB-15  
Number Pin Mnemonic  
Circuit  
Type  
V.28  
nic  
BB  
Pin(F) Type  
nic  
Pin(F) Type  
nic  
Pin(F) Type  
nic  
Pin(F) Type  
nic  
Pin(F)  
4
11  
7**  
14**  
6
13  
5
12  
28  
3
29  
4
30  
5
31  
6
32  
7
33  
8
34  
9
35  
10  
36  
11  
37  
12  
38  
13  
39  
14  
40  
15  
41  
16  
42  
17  
43  
18  
TxD  
SDEN  
TxCE  
TTEN  
ST  
STEN  
RTS  
RSEN  
DTR  
TREN  
DCD_DCE  
RRCEN  
RL  
Driver_1  
SD(A)  
SD(B)  
TT(A)  
97  
100  
92  
95  
87  
90  
83  
85  
75  
78  
81  
79  
65  
3
V.11 BB(A)  
V.11 BB(B)  
V.11 DD(A)  
V.11 DD(B)  
V.11 DB(A)  
V.11 DB(B)  
V.11 CB(A)  
V.11 CB(B)  
V.11 CC(A)  
V.11 CC(B)  
V.11 CF(A)  
V.11 CF(B)  
3
V.11 RD(A)  
V.11 RD(B)  
V.11 RT(A)  
V.11 RT(B)  
6
24  
8
26  
5
23  
9
V.35  
V.35  
V.35  
V.35  
V.35  
V.35  
V.28  
104  
104  
115  
115  
114  
114  
106  
R
T
V
X
Y
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
R(A)  
R(B)  
B(A)  
B(B)  
S(A)  
S(B)  
I(A)  
16  
17  
9
Driver_2  
Driver_3  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
DD  
DB  
CB  
CC  
CF  
CE  
TM  
BA  
DA  
17  
15  
5
TT(B)  
ST(A)  
ST(B)  
RS(A)  
RS(B)  
TR(A)  
TR(B)  
RRC(A)  
RRC(B)  
RL(A)  
15  
12  
5
13  
6
22  
8
10  
V.11  
V.11  
ST(A)  
ST(B)  
AA  
D
Driver_4  
V.11 CS(A)  
V.11 CS(B)  
V.11 DM(A)  
V.11 DM(B)  
V.11 RR(A)  
V.11 RR(B)  
27  
11  
29  
13  
31  
I(B)  
Driver_5  
6
V.28  
V.28  
V.28  
V.28  
107  
109  
125  
142  
E
F
Driver_6  
8
Driver_7  
22  
25  
2
J
RLEN  
LL  
Driver_8  
LL(A)  
63  
V.10  
TM  
25  
V.10  
TM  
18  
NN  
LLEN#  
RxD  
RDEN#  
RxC  
RTEN#  
TxC  
TxCEN#  
CTS  
CSEN#  
DSR  
DMEN#  
DCD_DTE  
RRTEN#  
RI  
Receiver_1  
Receiver_2  
Receiver_3  
Receiver_4  
Receiver_5  
Receiver_6  
Receiver_7  
Receiver_8  
RD(A)  
RD(B)  
RT(A)  
RT(B)  
TxC(A)  
TxC(B)  
CS(A)  
CS(B)  
DM(A)  
DM(B)  
RRT(A)  
RRT(B)  
IC  
48  
47  
50  
49  
53  
51  
55  
54  
57  
56  
60  
59  
61  
V.11 BA(A)  
V.11 BA(B)  
V.11 DA(A)  
V.11 DA(B)  
2
V.11 SD(A)  
V.11 SD(B)  
V.11  
V.11  
4
V.35  
V.35  
V.35  
V.35  
103  
103  
113  
113  
P
S
U
V.11  
V.11  
V.11  
V.11  
T(A)  
T(B)  
X(A)  
X(B)  
2
9
7**  
14**  
12  
24  
11  
22  
17  
35  
24  
TT(A)  
TT(B)  
W
V.28  
V.28  
CA  
CD  
4
V.11 CA(A)  
V.11 CA(B)  
V.11 CD(A)  
V.11 CD(B)  
4
V.11 RS(A)  
V.11 RS(B)  
V.11 TR(A)  
V.11 TR(B)  
7
V.28  
V.28  
105  
108  
C
H
V.11  
V.11  
C(A)  
C(B)  
3
10  
19  
20  
23  
25  
12  
30  
20  
V.28  
V.28  
RL  
LL  
21  
18  
V.10  
V.10  
RL  
LL  
21  
18  
V.10  
V.10  
RL  
LL  
14  
10  
V.28  
V.28  
140  
141  
N
L
ICEN#  
TM  
TM(A)  
62  
TMEN  
Spare drivers and receivers may be used for optional signals (Signal  
Quality, Rate Detect, Standby) or may be disabled using individual  
enable pins for each driver and receiver  
Pin assignments and signal functions are subject to national or regional variation and  
proprietary / non-standard implementations  
** X.21 use either B() or  
X(), not both  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
27  
DTE CONFIGURATION  
SP508 Multiprotocol Configured as DTE  
Interface to Port-  
Connector  
Recommended Signals and Port Pin Assignments  
Interface to System Logic  
RS-232 or V.24  
EIA-530  
RS-449  
V.35  
X.21  
AppleTalk™  
Pin  
Pin  
Pin Mnemonic Number  
Signal Mnemo DB-25 Signal Mnemo DB-25 Signal Mnemo DB-37 Signal Mnemo M34  
Signal Mnemo DB-15 Signal Mnemo DIN-8  
Number Pin Mnemonic  
28  
3
29  
4
30  
5
31  
6
32  
7
33  
8
34  
9
35  
10  
36  
11  
37  
12  
38  
13  
39  
14  
40  
15  
41  
16  
42  
17  
43  
18  
Circuit  
Driver_1  
Type  
V.28  
nic  
BA  
Pin(M) Type  
nic  
BA(A)  
BA(B)  
Pin(M)  
2
14  
24  
11  
Type  
V.11 SD(A)  
V.11 SD(B)  
V.11  
V.11  
nic  
Pin(M)  
4
22  
17  
35  
Type  
V.35  
V.35  
V.35  
V.35  
nic  
103  
103  
113  
113  
Pin(M) Type  
P
S
U
W
nic  
Pin(M)  
2
9
7**  
14**  
Type  
V.11  
V.11  
nic  
TxD -  
TxD +  
Pin(F)  
3
6
TxD  
SDEN  
TxCE  
TTEN  
ST  
STEN  
RTS  
RSEN  
DTR  
TREN  
DCD_DCE  
RRCEN  
RL  
RLEN  
LL  
LLEN#  
RxD  
RDEN#  
RxC  
RTEN#  
TxC  
TxCEN#  
CTS  
CSEN#  
DSR  
DMEN#  
DCD_DTE  
RRTEN#  
RI  
SD(A)  
SD(B)  
TT(A)  
97  
100  
92  
95  
87  
90  
83  
85  
75  
78  
81  
79  
65  
2
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
T(A)  
T(B)  
X(A)  
X(B)  
Driver_2  
Driver_3  
V.28  
DA  
24  
V.11 DA(A)  
V.11 DA(B)  
TT(A)  
TT(B)  
TT(B)  
ST(A)  
ST(B)  
RS(A)  
RS(B)  
TR(A)  
TR(B)  
RRC(A)  
RRC(B)  
RL(A)  
Driver_4  
V.28  
V.28  
CA  
CD  
4
V.11 CA(A)  
V.11 CA(B)  
4
V.11 RS(A)  
V.11 RS(B)  
V.11 TR(A)  
V.11 TR(B)  
7
V.28  
V.28  
105  
108  
C
H
V.11  
V.11  
C(A)  
C(B)  
3
10  
19  
20  
23  
25  
12  
30  
Driver_5  
20 V.11/10 CD(A)  
V.11/Z CD(B)  
V.10  
HSKo  
1
Driver_6  
Driver_7  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
V.28  
RL  
LL  
21  
18  
3
V.10  
V.10  
RL  
LL  
21  
18  
V.10  
V.10  
RL  
LL  
14  
10  
V.28  
V.28  
140  
141  
N
L
Driver_8  
LL(A)  
63  
Receiver_1  
Receiver_2  
Receiver_3  
Receiver_4  
Receiver_5  
Receiver_6  
Receiver_7  
Receiver_8  
RD(A)  
RD(B)  
RT(A)  
RT(B)  
TxC(A)  
TxC(B)  
CS(A)  
CS(B)  
DM(A)  
DM(B)  
RRT(A)  
RRT(B)  
IC  
48  
47  
50  
49  
53  
51  
55  
54  
57  
56  
60  
59  
61  
BB  
DD  
DB  
CB  
CC  
CF  
CE  
TM  
V.11  
V.11  
BB(A)  
BB(B)  
3
16  
17  
9
15  
12  
5
13  
6
22 ‡  
8
V.11 RD(A)  
V.11 RD(B)  
V.11 RT(A)  
V.11 RT(B)  
V.11 ST(A)  
V.11 ST(B)  
V.11 CS(A)  
V.11 CS(B)  
V.11 DM(A)  
V.11 DM(B)  
V.11 RR(A)  
V.11 RR(B)  
6
24  
8
26  
5
23  
9
27  
11  
29  
13  
31  
V.35  
V.35  
V.35  
V.35  
V.35  
V.35  
V.28  
104  
104  
115  
115  
114  
114  
106  
R
T
V
X
Y
V.11  
V.11  
R(A)  
R(B)  
4
11  
V.11  
V.11  
RxD-  
RxD+  
5
8
17  
15  
5
V.11 DD(A)  
V.11 DD(B)  
V.11 DB(A)  
V.11 DB(B)  
V.11 CB(A)  
V.11 CB(B)  
V.11/10 CC(A)  
V.11/Z CC(B)  
V.11  
V.11  
V.11  
V.11  
V.11  
V.11  
S(A)  
S(B)  
I(A)  
I(B)  
B(A)  
B(B)  
6
13  
5
12  
7**  
14**  
AA  
D
GND  
HSKi  
GPi  
V.10*  
V.10  
2
7
6
V.28  
V.28  
V.28  
V.28  
107  
109  
125  
142  
E
F
8
V.11  
V.11  
V.10  
CF(A)  
CF(B)  
RI  
10  
22 ‡  
22  
25  
J
ICEN#  
TM  
TMEN  
TM(A)  
62  
V.10  
TM  
25  
V.10  
TM  
18  
NN  
Spare drivers and receivers may be used for optional signals (Signal  
Quality, Rate Detect, Standby) or may be disabled using individual  
enable pins for each driver and receiver  
Pin assignments and signal functions are subject to national or regional variation and proprietary  
/ non-standard implementations  
** X.21 use either B() or  
X(), not both  
‡ EIA-530 uses V.11 (differential) for DSR (CC) and DTR (CD) signals; EIA-530-A uses single-  
ended V.10 for DSR and DTR and adds RI signal on pin 22  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
28  
ORDERING INFORMATION  
Model  
Temperature Range  
Package Types  
SP509CF ...............................................0°C to +70°C ............................................................ 100 Lead LQFP  
Available in lead free packaging. To order add “-L” suffix to part number.  
Example: SP509CF = standard; SP509CF-L = lead free  
REVISION HISTORY  
DATE  
3/31/04  
6/14/04  
8/19/04  
REVISION  
DESCRIPTION  
A
B
C
Implemented tracking revision.  
Added tables to pages 27 and 28.  
Corrected pin description table and figure 49. Updated DCE/DTE  
tables.  
8/19/04  
D
Corrected reference to figure 48.  
Corporation  
ANALOGEXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Date: 1/19/05  
SP509 Enhanced WAN Multi–Protocol Serial Transceiver  
© Copyright 2005 Sipex Corporation  
29  

相关型号:

SP509CF-L/TR

Line Driver/Receiver, 8 Driver, BICMOS, PQFP100,
SIPEX

SP509CM

Line Transceiver, 8 Func, 8 Driver, 8 Rcvr, BICMOS, PQFP100, MS-026BED, LQFP-100
SIPEX

SP509_05

Rugged 40Mbps, 8 Channel Multi-Protocol Transceiver with Programmable DCE/DTE and Termination Resistors
SIPEX

SP50F

High Voltage Rectifier Stacks
VMI

SP50S

5,000 V - 12,500 V Rectifier Stacks
ETC

SP50U

50 WATT, Uniiverrsall IInputt Fulllly Encllosed Swiittchiing Powerr Supplly
ETC

SP50U-03S

50 WATT,, Uniiverrsall IInputt Fulllly Encllosed Swiittchiing Powerr Supplly
VOLGEN

SP50U-0522T

50 AND 80 WATT TRIIPLE OUTPUT MODELS
VOLGEN

SP50U-0533T

50 AND 80 WATT TRIIPLE OUTPUT MODELS
VOLGEN

SP50U-05S

50 WATT,, Uniiverrsall IInputt Fulllly Encllosed Swiittchiing Powerr Supplly
VOLGEN

SP50U-12S

50 WATT,, Uniiverrsall IInputt Fulllly Encllosed Swiittchiing Powerr Supplly
VOLGEN

SP50U-15S

50 WATT,, Uniiverrsall IInputt Fulllly Encllosed Swiittchiing Powerr Supplly
VOLGEN