SP6652EU-L [SIPEX]

1A, High Efficiency, Fixed 1.4 MHz Current Mode PWM Buck Regulator; 1A ,高效率,固定1.4 MHz的电流模式PWM降压稳压器
SP6652EU-L
型号: SP6652EU-L
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

1A, High Efficiency, Fixed 1.4 MHz Current Mode PWM Buck Regulator
1A ,高效率,固定1.4 MHz的电流模式PWM降压稳压器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总16页 (文件大小:1049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Solved by  
sp6652  
TM  
1A, High Efficiency, Fixed 1.4 MHz  
Current Mode PWM Buck Regulator  
Features  
■ꢀ1A Output Current  
■ꢀ1.4MHz Constant Frequency Operation  
■ꢀ97% Efficiency Possible  
■ꢀ0.5µA (Max.) Shutdown Current  
■ꢀAdjustable Output Voltage  
10  
1
2
3
4
5
PGND  
SGND  
FB  
LX  
9
8
7
6
P
VIN  
SP6652  
SVIN  
10 Pin DFN  
SYNC  
MODE  
COMP  
SD  
■ꢀNo External FETs or Schottky Diode Required  
Uses Small Value Inductors and Ceramic  
Output Capacitors  
Low Dropout Operation: 100% Duty Cycle  
■ꢀSoft Start and Thermal Shutdown Protection  
Easy Frequency Synchonization  
■ꢀLead Free, RoHS Compliant package: l  
Small (3mm X 3mm) 10 Pin DFN or MSOP  
applications  
Mobile Phones  
PDAs  
DSCs  
MP3 Players  
USB Devices  
■ꢀ Point of Use Power  
Description  
The SP6652 is a high efficiency, synchronous buck regulator ideal for portable applications  
using one Li-Ion cell, with up to 1A of output current. The 1.4MHz switching frequency and  
PWM control loop are optimized for a small value inductor and ceramic output capacitor,  
for space constrained portable designs. In addition, the input voltage range of 2.7V to 5.5V;  
excellent transient response, output accuracy, and ability to transition into 100% duty cycle  
operation -- further extending useful battery life -- make the SP6652 a superior choice for  
a wide range of portable power applications. A logic level shutdown control, external clock  
synchronization, and forced-PWM or automatic control inputs are provided. Other features  
include soft-start, over current protection and 140ºC over-temperature shutdown.  
typical application circuit  
V
OUT  
4.7µH  
3.3V at 1A  
1
LX  
10  
P
GND  
2 S  
3.6V - 5.5V  
340kΩ  
100kΩ  
P
S
GND  
VIN 9  
8
V
IN  
3 FB  
SP6652  
10Ω  
VIN  
10µF  
COMP  
4
SYNC  
7
4kΩ  
10µF  
1µF  
5 SD  
MODE 6  
10nF  
ENABLE  
SHUTDOWN  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ABSOLUTE MAXIMUM RATINGS  
PVIN,SVIN ...........................................................................-0.3V to 6.0V  
PGND to SGND .....................................................................-0.3V to 0.3V  
LX to PGND ..............................................................- 0.3V to PVIN+0.3V  
Storage Temperature....................................................-65 °C to 150 °C  
Operating Temperature.................................................. -40°C to +85°C  
These are stress ratings only and functional operation of the device at  
these ratings or any other above those indicated in the operation sec-  
tions of the specifications below is not implied. Exposure to absolute  
maximum rating conditions for extended periods of time may affect  
reliability.  
electrical cHaracteristics  
VIN = UVIN = VSDN = 3.6V, IO = 0mA, TAMB = -40°C to +85°C, typical values at 27°C unless otherwise noted.  
The denotes the specifications which apply over the full temperature range, unless otherwise specified.  
PARAMETER  
Input Operating Voltage  
MIN typ MAX units  
conDitions  
Result of IQ measurement at VIN = PVIN  
2.85  
5.5  
V
V
= 5.5V  
FB Set Voltage  
0.784  
0.8 0.816  
FB Set Current  
-ꢀ  
-4  
0.0ꢀ  
4
VFB = 0.8V  
µA  
%
Overall FB Accuracy  
Switching Frequency  
FB = COMP  
ꢀ.ꢁ  
ꢀ.4  
ꢀ.6  
MHz  
Mode = SD = VIN  
Minimum On-Time-Duration  
SYNC Tracking Frequency  
ꢀ00  
ꢁ00  
ꢁ.0  
ns  
VFB = 1.0V, VCOMP = 0.2V  
ꢀ.0  
-ꢀ  
MHz  
Mode = SD = VIN, VFB =1.0V  
SYNC Input Current  
0.0ꢀ  
µA  
SYNC Logic Threshold Low  
0.3  
0.6  
V
High to Low Transition  
Low to High Transition  
IPMOS = 200mA  
SYNC Logic Threshold High  
PMOS Switch Resistance  
ꢀ.7  
V
0.4  
0.4  
ꢀ.5  
0.ꢀ  
0.6  
0.6  
ꢀ.7  
3
NMOS Switch Resistance  
Inductor Current Limit  
LX Leakage Current  
INMOS = 200mA  
1.3  
-3  
A
VFB = 0.4V, Mode = SD = VIN  
SD = ZeroV  
µA  
mA  
mA  
VIN = 3.6V, Mode = SD = VIN  
VIN = 5.5V, Mode = SD = VIN  
5
VIN Quiecent Current  
3
ꢀ0  
UVLO Undervoltage Lockout Threshold,  
VIN falling  
ꢁ.55  
ꢁ.7  
2.85  
V
SD = VIN  
6
%
UVLO hysteresis  
Soft Start Current  
4
SD = VIN, VCOMP = 1V  
µA  
-ꢀ  
0.0ꢀ  
SD MODE Input Current  
µA  
0.9  
V
V
High to Low Transition  
Low to High Transition  
0.6  
SD MODE Input Threshold Voltage  
Slope Compensation  
ꢀ.ꢁ5  
1.8  
700  
ꢀ40  
mA/µS  
°C  
Rising Over-Temperature Trip Point  
ꢀ4  
Over-Temperature Hysteresis  
°C  
mA/V  
Error Amplifier Transconductance  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
pin Description  
Pin  
pin  
Description  
Number NAME  
Power Ground Pin. Synchronous rectifier current returns through  
this pin.  
PGND  
SGND  
Internal Ground Pin. Control circuitry returns current to this pin.  
External feedback network input connection. Connect a resistor from  
FB to ground and from FB to VOUT to control the output voltage.  
Regulation point at FB = 0.8V Typical.  
3
FB  
Compensation pin for error loop. Connect an R and C in series to  
ground to control open loop pole and zero.  
4
COMP  
SD  
Shutdown control input. Tie pin to VIN for normal operation, tie to  
ground for shutdown. TTL input threshold.  
5
6
7
MODE Connect this pin to VIN.  
An external clock signal can be connected to this pin to synchronize  
the switching frequency.  
SYNC  
SVIN  
PVIN  
LX  
Internal supply voltage. Control circuitry is powered from from this  
pin. Use an RC filter close to the pin to cut down supply noise.  
8
9
Supply voltage for the output driver stage. Inductor charging current  
passes through this pin.  
Inductor switching node. Inductor tied between this pin and the  
output capacitor to create regulated output voltage.  
ꢀ0  
PGND  
SGND  
FB  
10  
1
2
3
4
5
LX  
10  
9
1
2
3
4
5
PGND  
SGND  
FB  
LX  
P
9
8
7
6
PVIN  
VIN  
SP6652  
SP6652  
8
SVIN  
SVIN  
10 Pin DFN  
7
SYNC  
MODE  
COMP  
SD  
10 Pin MSOP  
COMP  
SD  
SYNC  
MODE  
6
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
3
FUNCTIONAL DIAGRAM  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
4
DetaileD Description  
rent ramp times the resistance of the PMOS  
chargingswitch.Tokeeptheeffectivecurrent  
slopecompensationconstant(remembering  
current is being compensated, not voltage)  
the voltage slope must be proportional to  
RPMOS. To account for this, the slope com-  
pensation voltage is internally generated  
with a bias current that is also proportional  
Current Mode Control and Slope  
Compensation  
The SP6652 is designed to use low value  
ceramic capacitors and low value inductors  
to reduce the converter’s volume and cost  
in portable devices. Current mode PWM  
control was, therefore, chosen for the ease  
ofcompensationwhenusingceramicoutput  
capacitors and better transient line rejec-  
tion, which is important in battery powered  
applications. Current mode control spreads  
the two poles of the output power train filter  
far apart so that the modulator gain crosses  
over at -20dB/decade instead of the usual  
-40dB/decade. The external compensation  
network is, simply, a series RC circuit con-  
nectedbetweengroundandtheoutputofthe  
internal transconductance error amplifier.  
to RPMOS  
.
Over Current Protection  
In steady state closed loop operation the  
voltage at the COMP pin controls the duty  
cycle.Duetothecurrentmodecontrolandthe  
slope compensation, this voltage will be:  
V(COMP)•  
{
ILPK  
RPMOS + MCV  
TON + VBE(Q1)  
}
It is well known that an unconditional insta-  
bility exists for any fixed frequency current-  
mode converter operating above 50% duty  
cycle. A simple, constant-slope compensa-  
tionischosentoachievestabilityunderthese  
conditions. The most common high duty  
cycle application is a Li-Ion battery powered  
regulatorwitha3.3Voutput(D90%).Since  
thecurrentloopiscriticallydampedwhenthe  
compensation slope (denoted MCV) equals  
thenegativedischargeslope(denotedM2V),  
the amount of slope compensation chosen  
is, therefore:  
The COMP node will be clamped when its  
voltage tries to exceed V(BLIM) + VBE(Q1).  
The VBE(Q1) term is cancelled by VBE(Q2)  
at the output of the translator. The correct  
value of clamp voltage is, therefore:  
V(BLIM) = IL(MAX)• RPMOS + MCV •TON  
The IL(MAX) term is generated with a bias  
current that is proportional to RPMOS, to  
keepthevalueofcurrentlimitapproximately  
constant over process and temperature  
variations, while the MCV •TON is generated  
by a peak-holding circuit that senses the  
amplitude of the slope compensation ramp  
M2 = dIL/dTOFF =-VOUT/L = -3.3V/4.7µH =  
-702mA/µs  
at the end of TON  
.
MꢁV = Mꢁ•RPMOS  
There is minimum on-time (TON) generated  
even if the COMP node is at zeroV, since  
the peak current comparator is reset at the  
end of a charge cycle and is held low during  
a blanking time after the start of the next  
charge cycle. This is necessary to swamp  
the transients in the inductor current ramp  
around switching times. The minimum TON  
(100ns, nominally) is not sufficient for the  
COMP node to keep control of the current  
MCV = -MꢁV = 702mA/µs•0.2Ω = 140mV/µs,  
for RPMOS = 0.20Ω  
The inductor current is sensed as a voltage  
across the PMOS charging switch and the  
NMOS synchronous rectifier (see BLOCK  
DIAGRAM). Duringinductorcurrentcharge,  
V(PVIN)-V(LX) represents the charging cur-  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
5
DetaileD Description  
when the output voltage is low. The inductor  
current tends to rise until the energy loss  
from the discharge resistances are equal to  
the energy gained during the charge phase.  
For this reason, the clock frequency is cut in  
halfwhenthefeedbackpinisbelow0.3V, ef-  
fectively reducing the minimum duty cycle in  
half.Above V(FB) = 0.3V the clock frequency  
is normal (seeTypical Operating Character-  
Thetotalpowersupplyloopiscompensated  
with a series RC network connected from  
the COMP pin to ground. Compensation is  
simple due to current-mode control. The  
modulatorhastwodominantpoles: oneata  
lowfrequency,andoneabovethecrossover  
frequency of the loop, as seen in the graph  
below, Linearized Modulator Frequency  
Response vs. Inductor Value.  
istics: Inductor Current vs. VOUT  
)
The low frequency pole for L1= 5µH is  
4kHz, the second pole is 500kHz, and the  
gain-bandwidth is 20kHz. The total loop  
crossoverfrequencyischosentobe200kHz,  
Voltage Loop and Compensation  
in PWM Mode  
The voltage loop section of the circuit con-  
sists of the error amplifier and the translator  
circuits (see functional diagram). The input  
ofthevoltageloopisthe0.8Vreferencevolt-  
age minus the divided down output voltage  
at the feedback pin. The output of the error  
amplifieristranslatedfromagroundreferred  
signal (the COMP node) to a power input  
voltage referred signal. The output of the  
voltage loop is fed to the positive terminal  
of the Current Loop comparator, and repre-  
sents the peak inductor current necessary  
to close the loop.  
th  
which is 1/6 of the clock frequency. This  
sets the second modulator pole at 2.5 times  
thecrossoverfrequency.Thereforethegain  
of the error amplifier can be 200kHz/20kHz  
= 10 at the first modulator pole of 4kHz. The  
error amp transconductance is 1mA/V, so  
this sets the RZ resistor value in the com-  
pensation network at 10/1mA/V = 10kΩ.  
The zero frequency is placed at the first  
pole to provide at total system response of  
-20dB/decade (the zero from the error amp  
cancels the first modulator pole, leaving the  
20K 2.0M 50K  
1
2
3
16K 1.6M 40K  
12K 1.2M 30K  
8K 0.8M 20K  
4K 0.4M 10K  
>>  
0
0
0
3u  
Mod_pole1  
2u  
4u  
Mod_pole2 Gbw_modfb  
L1VAL  
5u  
6u  
7u  
8u  
9u  
10u  
1
3
2
Conditions: VIN=5V, VOUT=3.3V, fCLK=1.4MHz, COUT=10µF, and MCV=132mV/µs. The inductor is varied from  
2µH to 10µH  
Linearized Modulator Frequency Response vs. Inductor  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
6
DetaileD Description  
1 pole rolloff from the error amp pole). The  
compensation capacitor becomes:  
The switching frequency will be reduced to  
half the normal frequency as long as V(FB)  
isbelow0.3V, aspreviouslydiscussedinthe  
Over Current Protection section.  
=
=
Cc  
(2π•Rz•pole1) (6.2810kΩ4kHz)  
= 4nF  
100% Duty Cycle in Dropout  
Soft Start  
Soft-start is accomplished by disconnect-  
ing the error amp and inserting a constant  
2μA current to charge the compensation  
capacitor.  
To extend the battery life in portable applica-  
tions, the PWM control logic is set up such  
that if the output SR latch has not been reset  
by the Current Loop comparator at the end  
ofaclockcycle, thechargesignalcontinues  
to stay high into the beginning of the next  
cycle. This will happen naturally when the  
converterstartstogointodropout.Theslope  
compensation ramp is reset every cycle.  
Whenpowerisrstappliedandthereference  
establishes, the clamp circuit at the COMP  
node sets its voltage at one VBE, which is  
thebottomoftheinductorcurrentrange.The  
soft-start current continues to charge up the  
COMPnode, slowly raising the inductor cur-  
rent level. The inductor current will increase  
at approximately:  
External Clock Synchronization  
(IREFSS / CC)• RPMOS  
The SP6652 has an internal 1.4MHz clock  
that can be defeated by connecting an ex-  
ternalclockpulseontheSYNC.Thecapture  
range for clock synchronization is 1.0 to  
2.0MHz. When a clock pulse is present on  
the SYNC pin, the internal oscillator bias  
current is scaled back, handing control of  
the clock pulses to the faster external clock.  
Thepulsewidthoftheclockisapproximately  
50 ns, whether internally generated or ex-  
ternally applied.  
where:  
IREFSS = Soft start constant current  
= 2μA nominally  
CC  
= Compensation capacitor  
RPMOS = Charging PMOS resistance  
For typical circuit values of CC=6.8nF and  
RZ=8kΩ, the soft start period is TBD ms.  
Thermal Shutdown  
The inductor current will eventually rise  
above the required load current and the out-  
put voltage will charge up. During soft-start  
the error amp is disconnected and acts as  
a comparator. When V(FB) rises above the  
reference, the error amp switches to logic  
high and ends soft-start, at which point the  
error amp output is connected to the capaci-  
tated COMP node.  
Theinternaldietemperatureismonitoredby  
a comparator that issues a “TOO HOT” sig-  
nal when the junction temperature reaches  
140˚C, nominally. This signal that inhibits  
all internal circuits until the temperature  
has decreased to approximately 135˚C, at  
which point a normal soft start sequence is  
initiated.  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
7
APPLICATIONS INFORMATION  
L1  
VOUT  
4.7µH  
1
10  
9
PGND  
SGND  
FB  
LX  
PVIN  
RFBH  
2
3
4
5
VIN  
R1  
8
SVIN  
C3  
10µF  
10Ω  
7
COMP  
SD  
SYNC  
MODE  
RFBL  
Rz  
4kΩ  
6
C1  
10µF  
C2  
1µF  
SP6652  
Cc  
10nF  
SD  
V
IN  
Complete Application Circuit.  
SYNC  
COMPONENT SELECTION  
PVIN. This will keep the SP6652 internal  
reference and other sensitive circuits noise  
free and ensure better output regulation.  
The GND returns for the PVIN capacitor and  
the output capacitor should be connected  
directly to the PGND pin, which should con-  
nect to the thermal pad ground located un-  
der the SP6652. The GND return for the  
1µF SVIN capacitor should be connected to  
the SGND pin, which should be connected  
separately to the PGND pin to avoid adding  
PGND noise to the SP6652 SGND pin. See  
the Typical SP6652 Circuit Layout for de-  
tails on the recommended layout.  
The SP6652 PWM buck regulator circuit  
requires 3 capacitors: 10µF for the PVIN input,  
1µF input bypass for the SVIN and 10µF  
for the output are typically recommended.  
For the input capacitor, a value even larger  
than 10µF will help reduce input voltage  
ripple for applications sensitive to ripple on  
the battery voltage. See the Typical Per-  
formance Characteristics section for wave-  
forms on input and output ripple with 10µF  
capacitors. All the capacitors should be  
surface mount ceramic for low lead induc-  
tance necessary at the 1.4MHz switching  
frequency of the SP6652 and to obtain low  
ESR. This also helps improve bypassing  
on the input pin and ripple on the output.  
Ceramic capacitors with X5R or X7R tem-  
perature grade are recommended for most  
applications. A selection of recommended  
capacitors is included in Table 1. The 1µF  
SVIN input capacitor should have a series  
resistor of about 10Ω value connected  
from the input to the SVIN pin to form an RC  
low pass filter to remove high frequency  
spikes present on the input switching pin  
Output Voltage Selection  
T
o set the output voltage for the SP6652,  
a pair of resistors, RF and RI are used as a  
voltage divider between the output voltage  
at the output capacitor and the FB pin and  
GND, as shown in the typical application cir-  
cuit. The recommended value for the RI re-  
sistor is 100KΩ to 200KΩ to keep the quies-  
centcurrentlow, butnothavetheimpedance  
too high at the FB pin for good regulation.  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
8
APPLICATIONS INFORMATION  
Manufacturers/ Website  
Part Number  
Capacitance/  
Voltage  
Capacitor  
Size/Type/Thickness  
ESR at  
100KHz  
TDK/www.tdk.com  
TDK/www.tdk.com  
TDK/www.tdk.com  
C1005X5R0J105M  
C1608X5R0J475K  
C2012X5R0J106M  
1uF/6.3V  
4.7uF/6.3V  
10uF/6.3V  
1uF/6.3V  
4.7uF/6.3V  
10uF/6.3V  
0402/X5R/0.5mm  
0603/X5R/0.9mm  
0805/X5R/1.35mm  
0402/X5R/0.55mm  
0603/X5R/0.9mm  
0805/X5R/1.35mm  
0.03  
0.02  
0.02  
0.03  
0.02  
0.02  
Murata/www.murata.com  
Murata/www.murata.com  
Murata/www.murata.com  
GRM155R60J105KE19B  
GRM188R60J475KE19  
GRM21BR60J106KE19L  
Table 1. Capacitor Selection  
Note: Component highlighted in bold is used on the SP6652EB Evaluation Board.  
The range of typical inductor values and sizes are shown here in Table 2.  
Manufacturers/ Website  
Part Number  
Inductance/ Isat  
Rating  
Inductor  
Length/Width/Thickness  
DCR Max  
ohms  
Coilcraft/ www.coilcraft  
Coilcraft/ www.coilcraft  
Sumida/ www.sumida.com  
MSS5131-332MX  
MSS5131-332MX  
CDRH3D28-3R3  
CDRH3D28-4R7  
WE-TPC #744042003  
WE-TPC #744042004  
3.3uH/1.6A  
4.7uH/1.4A  
3.3uH/2.0A  
4.7uH/1.65A  
3.3uH/1.8A  
4.7uH/1.65A  
5.1x5.1x3.1mm  
5.1x5.1x3.1mm  
4.0x4.0x3.0mm  
4.0x4.0x3.0mm  
4.8/4.8/1.8mm  
4.8/4.8/1.8mm  
0.032  
0.045  
0.058  
0.071  
0.065  
0.082  
Sumida/ www.sumida.com  
Wurth Elektronik/ www.we-online.de  
Wurth Elektronik/ www.we-online.de  
Note: Component highlighted in bold is used on the SP6652EB Evaluation Board.  
Table 2. Inductor Selection  
SP6652 Bode Plot  
.
60  
50  
40  
180  
150  
120  
90  
The output voltage can be set using the  
formula:  
VOUT = VFB*(ꢀ + RF/RI)  
A
t 0dB Loop Gain  
Fo = 80kHz  
Loop Phase = 50deg  
30  
20  
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
60  
30  
0
-30  
-60  
-90  
-120  
-150  
-180  
pole1 -3dB  
at 4kHz  
Where VFB = 0.8V typically, and for no-load  
Ton is kept within 200nsec Minimum:  
Ton(min) = VOUT/(VIN *Freq).  
-20dB/dec  
3.3Vout  
Rz = 4K   
Cc = 10nF  
Compensation Component Selection  
For simplicity in compensation with ce-  
ramic output capacitors, the SP6652 uses  
current mode PWM control, so all that is  
needed for stability is a series RZ and CC  
at the COMP pin to compensate the error  
amplifier. To see the actual SP6652 re-  
sponse with frequency, in figure 3 we have  
taken a bode plot of gain and frequency re-  
sponse of the SP6652 circuit with 3.3Vout.  
Looking first at the SP6652 Modulator Gain  
at low frequency you see a constant gain  
of about 26dB and the first pole or -3dB  
point at about 4 kHz, where the slope of  
the gain curve becomes about -20dB/de-  
cade. At high frequency on the SP6652  
Modulator Gain curve one can see the  
modulator curve slope increase down-  
100  
1000  
10000  
100000  
1000000  
Log  
Frequency (Hz)  
SP6652 Loop Gain  
SP6652 Modulator Gain  
SP6652 Loop Phase  
SP6652 Modulator Phase  
Figure 3. SP6652 Gain and Frequency  
Response 3.3V output voltage  
ward for a high frequency pole at about  
150KHz, which is widely separated in  
frequency from the low frequency 4kHz  
pole, so that the SP6652 can be compen-  
sated by a zero at the low frequency pole  
where the gain slope is only -20dB/decade.  
The gain for the error amplifier is the cross-  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
9
APPLICATIONS INFORMATION  
The zero for loop compensation is placed  
at the first modulator pole of 4 kHz to pro-  
vide a loop response of -20/dB/decade at  
the crossover frequency. The compensa-  
tion capacitor Cc can be calculated from  
the crossover frequency pole1 and the RZ  
value:  
over frequency fzero = 80kHz (from the  
Bode plot) divided by the loop gain band-  
width, given as 20kHz, which is used in the  
following equation:  
Error Amp Gain  
= fzero / (loop gain bandwidth)  
= 80kHz / 20kHz  
= 4  
CC = 1/(2π• RZ pole1) = 1/(2π•4K•4kHz)  
= 10nF  
The error amp transconductance is about  
From the Typical Performance Charac-  
teristics load step curves, the 2.5V output  
and 3.3V output are stable with RZ = 4KΩ  
and CC = 10nF. For 1.8V to 0.85V output,  
the values RZ = 2KΩ and CC = 10nF are  
recommended.  
1mS, so this sets the RZ resistor to be:  
Rz = 4/1mS = 4KΩ  
We will use RZ = 4KΩ for the 3.3V output  
compensation.  
Figure 4. Typical SP6652 circuit layout.  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀ0  
TYPICAL PERFORMANCE CHARACTERISTICS  
SP6652 Efficiency vs Load Vout = 3.3V  
SP6652 Efficiency vs Load (Vout = 1.5V)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Vi=3.0V  
Vi=3.6V  
Vi=3.9V  
Vi=4.2V  
Vi=3.6V  
Vi=3.9V  
Vi=4.2V  
Vi=5.0V  
1
10  
100  
1000  
1
10  
100  
1000  
ILoad (mA)  
ILoad (mA)  
Figure 6. Efficiency vs. Load, Vout= 1.5V  
Figure 5. Efficiency vs. Load, Vout= 3.3V  
SP6652 Line/Load Rejection Vout = 3.3V  
OUT  
SP6652 Line/Load Rejection V  
= 1.5V  
3.40  
1.520  
1.510  
1.500  
1.490  
1.480  
3.35  
3.30  
Vi=3.6V  
Vi=4.2V  
Vi=3.9V  
Vi=3.6V  
Vi=3.0V  
Vi=3.9V  
3.25  
Vi=4.2V  
Vi=5.0V  
3.20  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
ILoad (mA)  
ILoad (mA)  
Figure 8: Line/Load Rejection , Vout = 1.5V  
Figure 7: Line/Load Rejection , Vout = 3.3V  
SP6652 Line/Load Regulation, Vout = 3.3V  
OUT  
SP6652 Line/Load Rejection V  
= 1.5V  
3.340  
1.520  
1.510  
1.500  
1.490  
1.480  
3.330  
3.320  
3.310  
Vi=4.2V  
Vi=3.9V  
Vi=3.6V  
Vi=3.0V  
Vi=3.6V  
3.300  
Vi=3.9V  
Vi=4.2V  
3.290  
Vi=5.0V  
3.280  
1
10  
100  
1000  
1
10  
100  
1000  
ILoad (mA)  
ILoad (mA)  
Figure 10: Line/Load Regulation , Log Scale,  
Vout = 1.5V  
Figure 9: Line/Load Regulation , Log Scale,  
Vout = 3.3V  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀꢀ  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 11. 0mA to 600mA  
Load Step Data  
Vin=4.2V, Vo=3.3V  
Rz=4kW, Cz=10nF, L1=4.7uH  
Figure 12. 0mA to 600mA  
Load Step Data  
Vo(AC)  
200mV/div  
Vin=4.2V, Vo=1.5V  
Rz=2kW, Cz=10nF,  
L1=4.7uH  
IL1  
(0.5A/div)  
Iout  
(1.0A/div)  
Vo(AC)  
200mV/div Figure 13. 0mA to 600mA  
Load Step Data  
IL1  
(0.5A/div)  
Vin=4.2V, Vo=2.5V  
Rz=4kW, Cz=10nF,  
L1=4.7uH  
Iout  
(0.5A/div)  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀꢁ  
TYPICAL PERFORMANCE CHARACTERISTICS  
EN  
Vout  
Figure 14. SP6652 600mA  
Start-up from Enable  
Vin=4.2V, Vo=3.3V, Iout =  
600mA, Rz=4kW, Cz=10nF,  
L1=4.7uH  
ILX  
0.5A/div  
EN  
Figure 15. SP6652 600mA  
Start-up from Enable  
Vin=4.2V, Vo=1.5V, Iout =  
600mA, Rz=2kW, Cz=10nF,  
L1=4.7uH  
Vout  
ILX  
0.5A/div  
Figure 16. SP6652 600mA  
Input/Output Ripple  
Vin=4.2V, Vo=3.3V, Iout =  
600mA, Rz=4kW, Cz=10nF,  
L1=4.7uH  
Vin  
(AC)  
Vout  
(AC)  
Vin  
Figure 17. SP6652 600mA  
Input/Output Ripple  
Vin=4.2V, Vo=1.5V, Iout =  
600mA, Rz=2kW, Cz=10nF,  
L1=4.7uH  
(AC)  
Vout  
(AC)  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
13  
PACKAGE: 10 PIN MSOP  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀ4  
PACKAGE: 3X3 10 PIN DFN  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀ5  
Ordering Information  
Min  
Temp  
-40  
0
Quantity  
Part Number  
SP6652ER-L  
MSL Level  
RoHS  
Max Temp Package  
Pack Type  
L1 @ 260ºC  
L1 @ 260ºC  
L1 @ 260ºC  
L1 @ 260ºC  
L1 @ 240ºC  
L1 @ 240ºC  
L1 @ 240ºC  
L1 @ 240ºC  
L1 @ 240ºC  
Yes  
Yes  
Yes  
Yes  
No  
85  
70  
70  
70  
85  
85  
70  
70  
70  
DFN10  
DFN10  
Canister  
Tape & Reel  
Tape & Reel  
TUBE  
Any  
3000  
2500  
50  
SP6652ER-L/TR  
SP6652EU-L/TR  
SP6652EU-L  
SP6652ER  
0
MSOP10  
MSOP10  
DFN10  
0
-40  
-40  
0
Canister  
Any  
3000  
50  
SP6652ER/TR  
SP6652EU  
No  
DFN10  
Tape & Reel  
TUBE  
No  
MSOP10  
MSOP10  
MSOP10  
SP6652EU-ES  
SP6652EU/TR  
No  
0
TUBE  
50  
No  
0
Tape & Reel  
2500  
Evaluation Boards  
Not Applicable to  
Board  
Not Available in  
Bulk  
SP6652EB  
No  
No  
0
0
70  
70  
Board  
Board  
Not Applicable to  
Board  
Not Available in  
Bulk  
SP6652LEDEB  
Note: The SP6652EB is for regular SP6652 users, the SP652LEDEB is for LED driver users.  
For latest information on ordering status, go to the Sipex Web Landing Page for this product  
http://www.sipex.com/productDetails.aspx?part=SP6652&keyword=sp6652  
For further assistance:  
Email:  
Sipexsupport@sipex.com  
WWW Support page:  
Sipex Application Notes:  
http://www.sipex.com/content.aspx?p=support  
http://www.sipex.com/applicationNotes.aspx  
Solved by  
Sipex Corporation  
Headquarters and  
Sales Office  
TM  
233 South Hillview Drive  
Milpitas, CA 95035  
tel: (408) 934-7500  
fax: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not  
assume any liability arising out of the application or use of any product or circuit described herein; neither  
does it convey any license under its patent rights nor the rights of others.  
May25-07 RevH  
SP6652 1A, High Efficiency, Current Mode PWM Buck Regulator  
© 2007 Sipex Corporation  
ꢀ6  

相关型号:

SP6652EU-L/TR

1A, High Efficiency, Fixed 1.4 MHz Current Mode PWM Buck Regulator
SIPEX

SP6652EU/TR

1A, High Efficiency, High Frequency Current Mode PWM Buck Regulator
SIPEX

SP6652LED

Evaluation Board Manual
SIPEX

SP6652LEDEB

Evaluation Board Manual
SIPEX

SP6652_07

1A, High Efficiency, Fixed 1.4 MHz Current Mode PWM Buck Regulator
SIPEX

SP6653CN

Switching Regulator, 1A, PDSO8, SOIC-8
SIPEX

SP6653CN/TR

Switching Regulator, 1A, PDSO8, PLASTIC, SOIC-8
SIPEX

SP6653CP

Switching Regulator, 1A, PDIP8, PLASTIC, DIP-8
EXAR

SP6654

High Efficiency 800mA Synchronous Buck Regulator Ideal for portable designs powered with Li Ion battery
SIPEX

SP6654EB

Evaluation Board Manual
SIPEX

SP6654ER

High Efficiency 800mA Synchronous Buck Regulator Ideal for portable designs powered with Li Ion battery
SIPEX

SP6654ER-L/TR

Switching Regulator, 2A, PDSO10, LEAD FREE, MO-229-VEED, DFN-10
SIPEX