SP6660EP-L/TR [SIPEX]

Analog Circuit,;
SP6660EP-L/TR
型号: SP6660EP-L/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

Analog Circuit,

光电二极管
文件: 总22页 (文件大小:265K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP6660  
200mA Charge Pump Inverter or Doubler  
Inverts or Doubles Input Supply Voltage  
93% Power Efficiency at 3.6V  
10kHz/80kHz Selectable Oscillator  
External Oscillator up to 700KHz  
5Output Resistance at 3.6V  
Low Voltage Battery Operation  
Ideal for 3.6V Lithium Ion Battery  
High Output Current – 200mA  
Pin-Compatible High-Current Upgrade of  
the ICL7660 and 660 Industry Standard  
Smallest Package Available for the 660  
Industry Standard – 8pin µSOIC  
Now available in Lead Free  
DESCRIPTION  
The SP6660 is a CMOS DC-DC Monolithic Voltage Converter that can be implemented as a  
Voltage Inverter or a Positive Voltage Doubler. As a Voltage Inverter, a -1.5V to -4.25V output  
canbeconvertedfroma+1.5Vto+4.25Vinput. AsaVoltageDoubler,theSP6660canprovide  
a +8.0V output at 100mA from a +4.25V input. The SP6660 is ideal for both battery-powered  
and board level voltage conversion applications with a typical operating current of 400µA and  
a high efficiency (>90%) over most of its load-current range. Typical end products for this  
deviceareoperationalamplifierandinterfacepowersupplies,medicalinstruments,andhand-  
held and laptop computers. The SP6660 is available in 8-pin DIP, SOIC, and µSOIC  
packages.  
+VIN  
+1.5V to +4.25V  
TYPICAL CIRCUIT: VOLTAGE INVERTER  
TYPICAL CIRCUIT: VOLTAGE DOUBLER  
+V  
+VIN  
FC  
1
8
7
6
+1.5V to +4.25V  
DOUBLE  
VOLTAGE  
OUTPUT  
+V  
FC  
1
8
7
CAP+  
GND  
SP6660  
OSC  
2
3
CAP+  
GND  
LV  
SP6660  
OSC  
2
3
C2  
1µF to 150µF  
C1  
LV  
1µF to 150µF  
6
5
C1  
1µF to 150µF  
OUT  
CAP-  
NEGATIVE  
VOLTAGE  
OUTPUT  
5
4
OUT  
CAP-  
4
C2  
1µF to 150µF  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional operation of the  
deviceattheseratingsoranyotherabovethoseindicatedinthe  
operation sections of the specifications below is not implied.  
Exposure to absolute maximum rating conditions for extended  
periods of time may affect reliability.  
OUT and V+ Continuous Output Current.....................250mA  
Output Short-Circuit Duration to GND.................................1s  
Operating Temperature Ranges  
SP6660C_........................................0˚C to +70˚C  
SP6660E_.....................................-40˚C to +85˚C  
Continuous Power Dissipation (TAMB = 70˚C)  
Power Supply Voltage  
PDIP (derate 9.09mW/˚C above +70˚C)..................727mW  
NSOIC (derate 5.88mW/˚C above +70˚C)...............471mW  
µSOIC (derate 4.10mW/˚C above +70˚C)................330mW  
Operating Temperature...................................-40˚C to +85˚C  
Storage Temperature....................................-65˚C to +150˚C  
(V+ to GND or GND to OUT).........................................+4.5V  
LV Input Voltages........................(OUT - 0.3V) to (V+ + 0.3V)  
FC and OSC Input Voltages..................The least negative of  
(OUT - 0.3V) or (V+ - 4.5V) to (V+ + 0.3V)  
Lead Temperature (soldering 10s)..............................+300˚C  
SPECIFICATIONS  
PARAMETER  
Inverter Circuit at Low Frequency with 150µF Capacitors  
V+ = 3.6V, C1 = C2 = 150µF, FC = open, TAMB = TMIN to TMAX; refer to Figure 1 test circuit. Note 2  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
Supply Voltage  
1.5  
200  
5
0.93  
0.4  
4.25  
0.8  
V
mA  
mA  
µA  
kHz  
RL = 500, Note 4  
Supply Current  
No Load  
Output Current  
Oscillator Input Current  
Oscillator Frequency  
Output Resistance  
Voltage Conversion Efficiency  
Power Efficiency  
±1  
10  
20  
10  
5.2  
IL = 100mA, Note 3  
No Load  
99.00  
99.96  
%
88  
80  
63  
94  
85  
70  
RL = 500Ω  
IL = 100mA  
IL = 200mA  
%
Doubler Circuit at Low Frequency with 150µF Capacitors  
V+ = 3.6V, C1 = C2 = 150µF, FC = open, TAMB = TMIN to TMAX; refer to Figure 2 test circuit. Note 2  
Supply Voltage  
2.5  
200  
5
1.5  
0.4  
4.25  
0.8  
V
RL = 1k, Note 4  
Supply Current  
mA  
mA  
µA  
kHz  
No Load  
Output Current  
Oscillator Input Current  
Oscillator Frequency  
Output Resistance  
Voltage Conversion Efficiency  
Power Efficiency  
±1  
10  
20  
10  
5.2  
IL = 100mA, Note 3  
No Load  
99.00  
99.96  
%
91  
89  
79  
96  
93  
85  
RL = 1KΩ  
IL = 100mA  
IL = 200mA  
%
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
2
SPECIFICATIONS (continued)  
PARAMETER  
Inverter Circuit at High Frequency with 22µF Capacitors  
V+ = 3.6V, C1 = C2 = 22µF, FC = V+, TAMB = TMIN to TMAX; refer to Figure 1 test circuit. Note 2  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
Supply Voltage  
1.5  
200  
40  
0.97  
0.6  
4.25  
1.5  
V
mA  
mA  
µA  
kHz  
RL = 500, Note 4  
Supply Current  
No Load  
Output Current  
Oscillator Input Current  
Oscillator Frequency  
Output Resistance  
Voltage Conversion Efficiency  
Power Efficiency  
±8  
80  
160  
10  
5.0  
IL = 100mA, Note 3  
No Load  
99.00  
99.96  
%
86  
80  
63  
92  
86  
71  
RL = 500Ω  
IL = 100mA  
IL = 200mA  
%
Doubler Circuit at HIgh Frequency with 22µF Capacitors  
V+ = 3.6V, C1 = C2 = 22µF, FC = V+, TAMB = TMIN to TMAX; refer to Figure 2 test circuit. Note 2  
Supply Voltage  
2.5  
200  
40  
1.6  
0.6  
4.25  
1.5  
V
mA  
mA  
µA  
kHz  
RL = 1k, Note 4  
Supply Current  
No Load  
Output Current  
Oscillator Input Current  
Oscillator Frequency  
Output Resistance  
Voltage Conversion Efficiency  
Power Efficiency  
±8  
80  
160  
10  
5.0  
IL = 100mA, Note 3  
No Load  
99.00  
99.96  
%
90  
89  
79  
94  
93  
85  
RL = 1KΩ  
IL = 100mA  
IL = 200mA  
%
NOTE 1: Specified output resistance is a combination of internal switch resistance and capacitor ESR.  
NOTE 2: In the test circuit capacitors C1 and C2 are 150µF, 0.2 maximum ESR, tantalum or 22µF, 0.2  
maximum ESR, tantalum. Capacitors with higher ESR may reduce output voltage and efficiency.  
Refer to Capacitor Selection section.  
NOTE 3: Specified output resistance is a combination of internal switch resistance and capacitor ESR.  
Refer to Capacitor Selection section.  
NOTE 4: Typical value indicates start-up voltage.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
3
PINOUT  
1
2
3
4
8
V+  
FC  
CAP+  
GND  
7
6
5
OSC  
LV  
SP6660  
OUT  
CAP-  
PIN ASSIGNMENTS  
Pin 1— FC — Frequency Control for the  
internal oscillator. FC = open,fOS C = 10KHz  
typical; FC = V+, fOSC = 80KHz typical  
Pin 5 — OUT — (Voltage Inverter Circuit)  
Negative voltage output pin.  
Pin 5 — OUT — (Positive Voltage Doubler  
Circuit) Ground pin for power supply.  
Pin 2 — CAP+ — Connect to the positive  
terminal of the charge pump capacitor.  
Pin 6 — LV  
Low-voltage operation input pin in 660  
circuits.InSP6660circuitscanbeconnected  
to GND, OUT or left open as desired with no  
effect.  
Pin 3 — GND — (Voltage Inverter Circuit)  
Ground.  
Pin 3 — GND — (Positive Voltage Doubler  
Circuit) Positive supply voltage input.  
Pin 7 — OSC — Control pin for the oscillator.  
Internally connected to 15pf capacitor.  
An external capacitor can be added to slow  
the oscillator. Be careful to minimize stray  
capitance. An external oscillator can be  
connected to overdrive the OSC pin.  
Pin 4 — CAP- — Connect to the negative  
terminal of the charge pump capacitor.  
Pin 8 — V+ — (Voltage Inverter Circuit)  
Positive voltage input pin for the power  
supply.  
Pin 8 — V+ — (Positive Voltage Doubler  
Circuit) Positive voltage output.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
4
DESCRIPTION  
Typical performance curves in Figures 3 to 20  
are generated using the test circuits found in  
Figure 1 and Figure 2. Four operating modes  
are shown in the curves: Voltage inverter in low  
and high frequency modes and voltage doubler  
in low and high frequency modes.  
The SP6660 Charge Pump DC-DC Voltage  
Converter either inverts or doubles the input  
voltage. Asanegativevoltageinverter,asshown  
in Figure 1, a +1.5V to +4.25V input can be  
converted to a -1.5V to -4.25V output. Figure 2,  
as a positive voltage doubler, a +2.5V to +4.25V  
inputcanbeconvertedtoa+5.0Vto+8.5Voutput.  
TEST CIRCUIT: VOLTAGE INVERTER  
IS  
FC  
1
V+  
+VIN  
8
7
6
CAP+  
OSC  
LV  
SP6660  
2
C1  
GND  
3
OUT  
CAP-  
5
4
VOUT  
IL  
RL  
C2  
Figure 1. SP6660 Test Circuit for the Voltage Inverter  
+VIN  
TEST CIRCUIT: VOLTAGE DOUBLER  
IS  
FC  
+V  
1
VOUT  
8
7
CAP+  
GND  
SP6660  
OSC  
2
3
RL  
C2  
LV  
6
5
C1  
OUT  
CAP-  
4
Figure 2. Test Circuit for the Positive Voltage Doubler  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3A: Doubler  
HF  
LF  
1.5  
2
2.5  
3
3.5  
4
4.5  
Supply Voltage (V)  
3B: Inverter  
0.8  
0.6  
0.4  
0.2  
0
HF  
LF  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Supply Voltage (V)  
Figure 3A and 3B Supply Current vs. Supply Voltage  
4
3
2
1
0
Inverter  
Doubler  
1
10  
Oscillator Frequency (kHz)  
Figure 4. Supply Current vs. Oscillator Frequency  
100  
1000  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
6
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V+ = 3.6V  
V+ = 2.5V  
V+ = 1.5V  
0
50  
100  
150  
200  
250  
Load Current (mA)  
Figure 5. Output Voltage Drop vs. Load Current – Inverter LF  
100  
95  
90  
85  
80  
75  
70  
65  
60  
V+ = 3.6V  
V+ = 2.5V  
V+ = 1.5V  
0
50  
100  
150  
200  
250  
Load Current (mA)  
Figure 6. Power Efficiency vs. Load Current – Inverter LF  
-4  
-3  
-2  
-1  
Inverter IL = 10mA  
0
1
2
3
4
5
6
7
8
Inverter IL = 100mA  
Inverter IL = 200mA  
Doubler IL = 10mA  
Doubler IL = 100mA  
Doubler IL = 200mA  
1
10  
Oscillator Frequency (kHz)  
Figure 7. Output Voltage vs. Oscillator Frequency  
100  
1000  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
7
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
100  
90  
Inverter IL = 10mA  
Inverter IL = 100mA  
Inverter IL = 200mA  
80  
Doubler IL = 10mA  
Doubler IL = 100mA  
70  
60  
1
10  
100  
1000  
Oscillator Frequency (kHz)  
Figure 8. Power Efficiency vs. Oscillator Frequency  
60  
50  
40  
30  
20  
10  
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Supply Voltage (V)  
Figure 9. Oscillator Frequency vs. Supply Voltage – HF  
8
6
4
2
0
1
1.5  
2
2.5  
3
3.5  
4
4.5  
Supply Voltage (V)  
Figure 10. Oscillator Frequency vs. Supply Voltage – LF  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
8
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
100  
LF  
10  
1
HF  
0.1  
0.01  
1
10  
100  
1000  
10000  
Capacitance (pF)  
Figure 11. Oscillator Frequency vs. External Capacitance  
60  
40  
20  
0
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Figure 12. Oscillator Frequency vs. Temperature where FC=V+  
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Figure 13. Oscillator Frequency vs. Temperature where FC=open  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
9
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
16.0  
LF  
HF  
12.0  
8.0  
4.0  
0.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
Supply Voltage (V)  
Figure 14. Output Source Resistance vs. Supply Voltage  
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Figure 15. Output Source Resistance vs. Temperature Inverter LF  
7
6
5
4
3
2
1
0
-50  
-25  
0
25  
50  
75  
100  
Temperature (C)  
Figure 16. Output Source Resistance vs. Temperature where Inverter HF  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
10  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN = +3.6V, TAMB = 25oC unless otherwise noted. LF = Low Frequency, FC = Open, C1 = C2 = 150µF.  
HF = High Frequency, FC = V+, C1 = C2 = 22µF. Inverter Circuit use Figure 1. Doubler Circuit use Figure 2.  
VIN = 3.6V  
VOUT = 6.66V  
IL = 100mA  
VIN = 3.6V  
VOUT = -3.06V  
IL = 100mA  
Figure 18. Output Noise and Ripple - Inverter LF  
Figure 17. Output Noise and Ripple - Doubler LF  
VIN = 3.6V  
VIN = 3.6V  
VOUT = 6.66V  
IL = 100mA  
VOUT = -3.06V  
IL = 100mA  
Figure 19. Output Noise and Ripple - Doubler HF  
Figure 20. Output Noise and Ripple - Inverter HF  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
11  
THEORY OF OPERATION  
Negative Voltage Inverter  
The SP6660 is insensitive to load current  
changes. Output Source Resistance vs. Supply  
Voltage and Temperature curves are shown in  
Figures 14 to 16. A typical output source  
resistance of 5.2allows an output voltage of  
-4.25Vunderlightloadwithaninputof+4.25V.  
This output voltage decreases to only -4.0V  
with a load current draw of 100mA.  
This is the most common application of the  
SP6660 where a +1.5V to +4.25V input is  
converted to a -1.5V to -4.25V output. In the  
invertingmode,theSP6660istypicallyoperated  
with LV connected to GND. Since the LV may  
be left open, the substitution of the SP6660 for  
the ICL7660 industry standard is simplified.  
The circuit for the voltage inverter mode can be  
found in Figure 21. This operating circuit uses  
only two external capacitors, C1 and C2, for  
the internal charge pump. This allows designers  
to avoid any EMI concerns with the costly,  
space-consuming inductors typically used with  
switching regulators.  
The peak-to-peak output ripple voltage is  
calculated as follows:  
IOUT  
2(fPUMP)(C2)  
VRIPPLE  
=
+ IOUT(ESRC2)  
TYPICAL CIRCUIT: VOLTAGE INVERTER  
+V  
+VIN  
1
FC  
8
7
6
+1.5V to +4.25V  
CAP+  
GND  
SP6660  
OSC  
2
3
LV  
C1  
1µF to 150µF  
OUT  
CAP-  
NEGATIVE  
VOLTAGE  
OUTPUT  
5
4
C2  
1µF to 150µF  
Figure 21. Typical Operating Circuit for the Voltage Inverter  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
12  
Positive Voltage Doubler  
ForanominalfPUMP of5kHz(wherefOSC=10kHz)  
and C2=150µF with an ESR of 0.2, the ripple  
is approximately 90mV with a 100mA load  
current. IfC2israisedto390µF, therippledrops  
to45mV. The output ripple voltage iscalculated  
by noting that capacitor C2 supplies the output  
current during one-half of the charge pump cycle.  
The SP6660 can double the output voltage of an  
input power supply or battery. From a +4.25V  
input,thecircuitinFigure22canprovide100mA  
with +8.0V at V+. The no-load voltage output at  
V+ is 2(VINL).  
LV may be tied to OUT pin for all input voltages  
in the positive voltage doubler mode. Connect  
thepower-supplypositivevoltageinputtoGND  
pin. Connect the power-supply ground input to  
OUT pin. V+ is the positive voltage output in  
this mode.  
OSCisinternallyconnectedtoa15pFcapacitor.  
An external capacitor can be added to slow the  
oscillator. Designers should take care to  
minimize stray capacitance. An external  
oscillator may also be connected to overdrive  
OSC. Refer to the Oscillator Control section  
for further details.  
Designers may overdrive OSC in the positive  
voltage doubler mode. Refer to the Oscillator  
Control section for further details.  
+VIN  
+1.5V to +4.25V  
TYPICAL CIRCUIT: VOLTAGE DOUBLER  
DOUBLE  
VOLTAGE  
OUTPUT  
+V  
1
FC  
8
7
CAP+  
GND  
SP6660  
OSC  
2
3
C2  
1µF to 150µF  
LV  
6
5
C1  
1µF to 150µF  
OUT  
CAP-  
4
Figure 22. Typical Operating Circuit for the Positive Voltage Doubler  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
13  
Optimizing Loss Conditions  
LossesinSP6660applicationscanbeanticipated  
from the following:  
Oscillator  
Frequency  
FC  
OSC  
open  
V+  
open  
open  
10kHz typical  
80kHz typical  
1. Output Resistance:  
VLOSS= ILOAD x ROUT  
external  
capacitor  
open or V+  
open  
refer to Figure 11  
where VLOSSis the voltage drop due to the  
external  
clock  
external clock  
frequency  
SP6660 output resistance, I  
is the load  
current,andROUT istheSP6660LoOuAtDputresistance.  
Figure 23. Four control modes for the SP6660  
Oscillator Frequency  
2. Charge Pump Capacitor ESR:  
V
LOSSC1 4 x ESRC1 x ILOAD  
Oscillator Control  
Refer to Figure 23 for a table of the four control  
modes of the SP6660 internal oscillator  
frequencies. In the first mode, FC and OSC are  
open (unconnected) and the internal oscillator  
typically runs at 10kHz. OSC is internally  
connected to a 15pF capacitor.  
where VLOSSC1 is the voltage drop due to the  
charge pump capacitor, C1, ESR is the ESR of  
C1, and ILOAD is the load current.CT1 he loss in C1  
is larger than the loss in the reservoir capacitor,  
C2, because it handles a current almost four  
times larger than the load current during charge-  
pump operation. As a result of this, a change in  
the capacitor ESR has a much greater impact on  
theperformanceoftheSP6660forC1thanforC2.  
In the second mode, FC is connected to V+. The  
charge and discharge current at OSC changes  
from 1.0µA to 8.0µA, increasing the oscillator  
frequency eight times to 80kHz.  
3. Reservoir Capacitor ESR:  
In the third mode, the oscillator frequency is  
loweredbyconnectingacapacitorbetweenOSC  
and GND. FC can still multiply the frequency  
byeighttimesinthismode, butforalowerrange  
offrequencies.RefertoFigure11fortheseranges.  
VLOSSC2 = ESRC2 x ILOAD  
where V  
is the voltage drop due to the  
reservoirLcOaSpSCa2citor C2, ESRC2 is the ESR of C2,  
and I  
is the load current. Increasing the  
capacLiOtaAnDce of C2 and/or reducing its ESR  
can reduce the output ripple that may be  
caused by the charge pump. A designer can  
filter high-frequency noise at the output  
by implementing a low ESR capacitor at C2.  
Generally, capacitors with larger capacitance  
values and higher voltage ratings tend to  
reduce ESR.  
In the fourth mode, any standard CMOS logic  
output can be used to drive OSC. OSC may be  
overdriven by an external oscillator that swings  
betweenV andGND.WhenOSCisoverdriven,  
FC has noINeffect.  
Unlike the 7660 and 660 industry standards,  
designers may overdrive the oscillator of the  
SP6660 in both the inverting and the Voltage  
Doubling Mode.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
14  
Optimizing Capacitor Selection  
Designing a Multiple of the SP6660  
Negative Inverted Output Voltage  
Referto Figure24 forthetotaloutputresistance  
for various capacitance values and oscillator  
frequencies. The reservoir and charge pump  
capacitor values are equal. The capacitance  
values required to maintain comparable ripple  
and output resistance typically diminish  
proportionately as the pump frequency of the  
SP6660 increases.  
The SP6660 can be cascaded to allow a designer  
to provide a multiple of the negative inverted  
output voltage of a single SP6660 device. The  
approximate total output resistance, RTOT,of the  
cascaded SP6660 devices is equal to the sum of  
the individual SP6660 output resistance values,  
R
. The output voltage, VTOT, is a multiple of  
thOeUnTumber of cascaded SP6660 devices and the  
output voltage of an individual SP6660 device,  
VOUT. RefertoFigure25forthecircuitcascading  
SP6660devices.Notethatthecapacitancevalue  
of C1 for the charge pump and C2 at VOUT is  
multipliedrespectivelytothenumberofcascaded  
SP6660 devices.  
The test conditions for the curves of Figure 24  
arethesameasforFigures2to20forthecircuits  
in Figures 1 and 2; additional conditions are as  
follows:  
C1 = C2 = 0.2ESR capacitors  
R
OUT = 4.2Ω  
The flat portion of the curves shown at a 5.2Ω  
effective output resistance is a result of the  
SP6660's 5.25output resistance where  
Connecting the SP6660 in Parallel  
SP6660 devices can be connected in parallel  
to reduce the total output resistance. The  
approximate total output resistance, R , of the  
multiple devices connected in paralleTlOiTs equal  
to the output resistance of an individual SP6660  
device divided by the total number of devices  
connected. Refer to Figure 26 for the circuit  
connecting multiple SP6660devices in parallel.  
Note that only the charge pump capacitor value  
of C1 is multiplied respectively by the number  
of SP6660 connected in parallel. A single  
capacitor C2 at the output voltage VOUT of the  
"nth" device connected in parallel serves all  
devices connected.  
5.2= ROUT(SP6660) + (4 x ESRC1) + ESRC2.  
Instead of the typical 5.2, ROUT = 4.2is used  
because the typical specification includes the  
effect of the ESRs of the capacitors used in the  
test circuit in Figures 1 and 2.  
Refer to Figures 17, 18, 19 and 20 for the output  
currents using 0.33µF to 220µF capacitors.  
Output currents are plotted for 3.0V and 4.5V  
inputs taking into consideration a 10% to 20%  
loss in the input voltage. The SP6660 5.2Ω  
seriesresistancelimitsincreasesinoutputcurrent  
vs. capacitance for values much higher than  
47µF.Largervaluesmaystillbeusefultoreduce  
ripple.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
15  
+VIN  
+VIN  
+VIN  
1
FC  
1
FC  
1
FC  
8
7
6
8
7
6
8
7
6
CAP+  
GND  
CAP+  
GND  
CAP+  
GND  
SP6660  
OSC  
OSC  
2
3
SP6660  
OSC  
2
3
SP6660  
2
3
LV  
LV  
LV  
C1 x n  
C1 x 2  
C1  
“1”  
“2”  
“n”  
OUT  
OUT  
OUT  
CAP-  
CAP-  
CAP-  
5
5
5
4
4
4
VOUT  
C2 _ 2  
C2 _ n  
C2  
VOUT = -n x VIN  
where VOUT = output voltage,  
VIN = input voltage, and  
n = the total number of SP6660 devices connected.  
Figure 25. SP6660 Devices Cascaded to Provide a Multiple of a Negative Inverted Output Voltage  
+VIN  
+VIN  
+VIN  
1
FC  
1
FC  
1
FC  
8
7
6
8
7
6
8
7
6
RTOT  
CAP+  
GND  
CAP+  
GND  
CAP+  
GND  
OSC  
LV  
OSC  
2
3
SP6660  
OSC  
2
3
SP6660  
SP6660  
2
3
LV  
LV  
C1 _ n  
C1  
C1 _ 2  
“1”  
“2”  
“n”  
OUT  
OUT  
OUT  
CAP-  
CAP-  
CAP-  
5
5
5
4
4
4
ROUT  
RTOT  
=
n
where RTOT = total resistance of the SP6660 devices connected in parallel,  
ROUT = the output resistance of a single SP6660 device, and  
n = the total number of SP6660 devices connected in parallel.  
C2  
Figure 26. SP6660 Devices Connected in Parallel to Reduce Output Resistance  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
16  
C3  
+VIN  
D1  
D2  
V+  
LV  
1
FC  
CAP+  
VOUT1  
8
7
6
SP6660  
OSC  
2
3
C4  
GND  
C1  
OUT  
CAP-  
5
4
VOUT2  
C2  
VOUT1 = (2 x VIN) - VFD1 - VFD2  
VOUT2 = -VIN  
where VOUT1 = positive doubled output voltage,  
VIN = input voltage,  
VFD1 = forward bias voltage across D1,  
VFD2 = forward bias voltage across D2, and  
VOUT2 = inverted output voltage.  
Figure 27. The SP6660 Connected for Negative Voltage Conversion with Positive Supply Multiplication  
Circuit for Negative Voltage Conversion  
with Positive Supply Multiplication  
generate the inverted output voltage at VOUT2  
CapacitorC3isforthechargepumpandcapacitor  
.
A designer can use the circuit in Figure 27 to  
provide both an inverted output voltage at V  
and a positive multiple of V at VOUT1  
(subtracting the forward biased voIlNtages ofODUT12  
and D2). Capacitor C1 is for the charge pump  
and capacitor C2 is for the reservoir function to  
C4 is for the reservoir function to generate the  
multiplied positive output voltage at VOUT1  
.
Designers should pay special attention to the  
possibility of higher source impedances at the  
generated supplies due to the finite impedance  
of the common charge pump driver.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
17  
DOUBLER  
+5  
VOUT  
D1  
VIN  
C4  
4.7µF  
Cer.  
+
5
C3  
1V  
2GND  
LP2985  
VOUT  
C2  
IN  
150µF  
Tant.  
150µF  
1
2
3
4
SP6660  
8
7
6
5
FC  
GND  
V+  
OSC  
LV  
GND  
GND  
CAP+  
+ Tant.  
BYPASS 4  
3ON/OFF_N  
CAP+  
GND  
CAP-  
+
C5  
10nF  
Cer.  
C1  
OUT  
150µF  
FC  
Tant.  
Figure 28. The SP6660 and a LDO Regulator Connected as a 3V Input to Regulated 5V Output Converter.  
APPLICATIONS  
The SP6660 Evaluation Board provides a 3V to  
5V 160mA DC to DC Converter using the  
SP6660 Doubler Circuit and a 5V LDO  
Regulator.  
100  
SP6660 Ripple  
90  
IL = 150mA  
V
= 3.2V  
80  
70  
60  
VIN 6660 = 5.53V  
V
OUT LDO = 4.95V  
ILOOAUDT = 150mA  
5VLDO Ripple  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
4.0  
4.2  
Input Voltage (V)  
Figure 30. Power Efficiency vs Input Voltage - SP6660  
Doubler with 5V LDO  
Figure 29. Ripple and Noise output of the SP6660 and a  
LDO Regulator with ILOAD = 150mA  
200  
100  
Vin = 3.0V  
Vin = 3.3V  
Vin = 3.6V  
150  
100  
50  
6660 Ripple  
IL = 150mA  
90  
LDO Ripple  
IL = 150mA  
80  
70  
60  
0
1
10  
100  
1000  
2.8 3.0  
3.2 3.4  
3.6 3.8  
4.0 4.2  
Load Current (mA)  
Input Voltage (V)  
Figure 32. Ripple Voltage vs Input Voltage -  
SP6660 Doubler with 5V LDO  
Figure 31. Power Efficiency vs Load Current - SP6660  
Doubler with 5V LDO  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
18  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
14–PIN  
16–PIN  
18–PIN  
20–PIN  
22–PIN  
0.115/0.195  
0.115/0.195  
0.115/0.195  
0.115/0.195  
(2.921/4.953)  
0.115/0.195  
(2.921/4.953)  
0.115/0.195  
(2.921/4.953)  
A2  
(2.921/4.953) (2.921/4.953) (2.921/4.953)  
0.014/0.022  
0.014/0.022  
0.014/0.022  
0.014/0.022  
(0.356/0.559)  
0.014/0.022  
(0.356/0.559)  
0.014/0.022  
(0.356/0.559)  
B
(0.356/0.559) (0.356/0.559) (0.356/0.559)  
0.045/0.070 0.045/0.070 0.045/0.070  
0.045/0.070  
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778) (1.143/1.778) (1.143/1.778)  
(1.143/1.778)  
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014 0.008/0.014 0.008/0.014  
0.008/0.014  
(0.203/0.356)  
0.008/0.014  
(0.203/0.356)  
0.008/0.014  
(0.203/0.356)  
(0.203/0.356) (0.203/0.356) (0.203/0.356)  
0.355/0.400 0.735/0.775 0.780/0.800  
0.880/0.920  
0.980/1.060  
1.145/1.155  
D
(9.017/10.160) (18.669/19.685) (19.812/20.320) (22.352/23.368) (24.892/26.924) (29.083/29.337)  
0.300/0.325  
0.300/0.325  
0.300/0.325  
0.300/0.325  
(7.620/8.255)  
0.300/0.325  
(7.620/8.255)  
0.300/0.325  
(7.620/8.255)  
E
(7.620/8.255) (7.620/8.255) (7.620/8.255)  
0.240/0.280 0.240/0.280 0.240/0.280  
0.240/0.280  
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112) (6.096/7.112) (6.096/7.112)  
(6.096/7.112)  
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150 0.115/0.150 0.115/0.150  
(2.921/3.810) (2.921/3.810) (2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0.115/0.150  
(2.921/3.810)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
0°/ 15°  
(0°/15°)  
Ø
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
19  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(NARROW)  
E
H
h x 45°  
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
8–PIN  
14–PIN  
0.053/0.069  
16–PIN  
A
A1  
B
D
E
0.053/0.069  
(1.346/1.748) (1.346/1.748) (1.346/1.748)  
0.053/0.069  
0.004/0.010  
(0.102/0.249  
0.004/0.010  
(0.102/0.249) (0.102/0.249)  
0.004/0.010  
0.014/0.019  
(0.35/0.49)  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.013/0.020  
0.189/0.197  
(4.80/5.00)  
0.337/0.344 0.386/0.394  
(8.552/8.748) (9.802/10.000)  
0.150/0.157 0.150/0.157  
0.150/0.157  
(3.802/3.988) (3.802/3.988) (3.802/3.988)  
e
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
0.050 BSC  
(1.270 BSC)  
H
h
0.228/0.244  
0.228/0.244  
0.228/0.244  
(5.801/6.198) (5.801/6.198) (5.801/6.198)  
0.010/0.020  
(0.254/0.498) (0.254/0.498) (0.254/0.498)  
0.010/0.020  
0.010/0.020  
L
0.016/0.050 0.016/0.050 0.016/0.050  
(0.406/1.270) (0.406/1.270) (0.406/1.270)  
Ø
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
0°/8°  
(0°/8°)  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
20  
PACKAGE: PLASTIC  
MICRO SMALL  
OUTLINE (µSOIC)  
0.0256  
BSC  
12.0˚  
±4˚  
0.012  
±0.003  
0.008  
0˚ - 6˚  
0.0965  
±0.003  
0.006  
±0.006  
R .003  
0.006  
±0.006  
0.118  
±0.004  
0.16  
±0.003  
3.0˚  
±3˚  
12.0˚  
±4˚  
0.0215  
1  
±0.006  
0.020  
0.020  
0.037  
Ref  
1
2
0.116  
±0.004  
0.034  
±0.004  
0.116  
±0.004  
0.040  
±0.003  
0.013  
±0.005  
0.118  
±0.004  
0.004  
±0.002  
0.118  
±0.004  
All package dimensions in inches  
50  
µSOIC devices per tube  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
21  
ORDERING INFORMATION  
Temperature Range  
Model  
Package Type  
SP6660CP . ............................................. 0˚C to +70˚C .............................................. 8-Pin PDIP  
SP6660EP . ............................................ -40˚C to +85˚C ............................................ 8-Pin PDIP  
SP6660CN . ............................................. 0˚C to +70˚C ........................................... 8-Pin NSOIC  
SP6660EN . ............................................ -40˚C to +85˚C ......................................... 8-Pin NSOIC  
SP6660CU . ............................................. 0˚C to +70˚C ........................................... 8-Pin µSOIC  
SP6660EU . ............................................ -40˚C to +85˚C ......................................... 8-Pin µSOIC  
SP6660EB .......................................................................................................... Evaluation Board  
Please consult the factory for pricing and availability on a Tape-On-Reel option.  
Available in lead free packaging. To order, add "-L" suffix to the part number.  
Example: SP6660EU/TR=Tape & Reel. SP6660EU-L/TR = lead free.  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
SP6660DS/11  
SP6660 200mA Charge Pump Inverter or Doubler  
© Copyright 2000 Sipex Corporation  
22  

相关型号:

SP6660EP/TR

Analog Circuit, CMOS, PDIP8,
SIPEX

SP6660EU

200mA Charge Pump Inverter or Doubler
SIPEX

SP6660EU-L

Switched Capacitor Converter, 160kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, PLASTIC, MICRO, SOIC-8
SIPEX

SP6660EU-L/TR

Switched Capacitor Converter, 160kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, PLASTIC, MICRO, SOIC-8
SIPEX

SP6660EU/TR

Switched Capacitor Converter, 0.2A, 160kHz Switching Freq-Max, CMOS, PDSO8, PLASTIC, MICRO, SOIC-8
SIPEX

SP6661

High Frequency 200mA Charge Pump Inverter or Doubler
SIPEX

SP6661EB

Evaluation Board Manual
SIPEX

SP6661EN

High Frequency 200mA Charge Pump Inverter or Doubler
SIPEX

SP6661EN-L

Switched Capacitor Converter, 1250kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, MO-012AA, NSOIC-8
SIPEX

SP6661EN-L/TR

Switched Capacitor Converter, 1250kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, MO-012AA, NSOIC-8
SIPEX

SP6661EN/TR

High Frequency 200mA Charge Pump Inverter or Doubler
SIPEX

SP6661ENTR

High Frequency 200mA Charge Pump Inverter or Doubler
SIPEX