SP6691_07 [SIPEX]

SOT23Micro Power Boost Regulator Series White LED Driver; SOT23Micro功率升压型稳压器系列白光LED驱动器
SP6691_07
型号: SP6691_07
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

SOT23Micro Power Boost Regulator Series White LED Driver
SOT23Micro功率升压型稳压器系列白光LED驱动器

驱动器 稳压器
文件: 总15页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Solved by  
SP6691  
TM  
Micro Power Boost Regulator Series White LED Driver  
FEATURES  
NC  
FB  
NC  
8
7
6
5
1
2
3
4
Drives up to 6 LEDs @ 25mA  
Drives up to 8 LEDs @ 20mA  
High Output Voltage: Up to 30V  
SP6691  
8 Pin DFN  
SHDN  
VIN  
NC  
SW  
Optimized for Single Supply,  
GND  
2.7V - 4.2V Applications  
Operates Down to 1V  
High Efficiency: Greater Than 75%  
Low Quiescent Current: 20µA  
Ultra Low Shutdown Current: 10nA  
Single Battery Cell Operation  
Programmable Output Voltage  
11 switch (350mV at 350mA)  
APPLICATIONS  
White LED Driver  
High Voltage Bias  
Digital Cameras  
Cell Phone  
Battery Backup  
Handheld Computers  
Lead Free, RoHS Compliant Packages:  
8 Pin DFN, 5 Pin TSOT or 5 Pin SOT23  
DESCRIPTION  
The SP6691 is a micro power boost regulator that is specifically designed for powering series  
configuration white LED. The part utilizes fixed off time architecture and consumes only 10nA  
quiescent current in shutdown. Low voltage operation, down to 1V, fully utilizes maximal battery  
life. The SP6691 is offered in a 8 Pin DFN, 5-pin SOT-23 or 5 Pin TSOT package and enables  
the construction of a complete regulator occupying < 0.2 in2 board space.  
TYPICAL APPLICATION CIRCUIT  
10µH  
L1  
2.7 to 4.2V  
D1  
SW  
VIN  
®
2.2 µF  
C2  
SP6691  
SHDN  
FB  
GND  
4.7µF  
Rb  
C1  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ABSOLUTE MAXIMUM RATINGS  
VIN ....................................................................... 15V  
SW Voltage .............................................. -0.4 to 30V  
FB Voltage......................................................... 2.5V  
All other pins ................................... -0.3 to VIN + 0.3V  
Current into FB ................................................. ±1mA  
TJ Max ............................................................. 125°C  
Operating Temperature Range ............ -40°C to 85°C  
Peak Output Current < 10us SW .................... 500mA  
Storage Temperature ...................... -65°C to +150°C  
Power Dissipation. ......................................... 200mW  
ESD Rating................................................. 2kV HBM  
These are stress ratings only and functional operation of the device at  
these ratings or any other above those indicated in the operation sections  
of the specifications below is not implied. Exposure to absolute maximum  
rating conditions for extended periods of time may affect reliability.  
ELECTRICAL CHARACTERISTICS  
SpecificationsareatTA=25°C,VIN =3.3,VSHDN =V , denotesthespecificationswhichapplyoverthefulloperating  
temperature range, unless otherwise specified.  
z
IN  
z
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX UNITS  
CONDITIONS  
Input Voltage  
VIN  
IQ  
1.0  
13.5  
30  
V
µA  
µA  
V
z
z
z
Supply Current  
20  
0.01  
1.22  
8
No Switching  
1
SHDN = 0V (off)  
Reference Voltage  
VFB  
HYST  
IFB  
1.17  
1.27  
FB Hysteresis  
mV  
nA  
%/V  
nS  
mV  
mA  
µA  
V
z
VFB Input Bias Current  
Line Regulation  
15  
80  
VFB = 1.22V  
6Vo/6VI  
TOFF  
VCESAT  
ILIM  
0.1  
250  
170  
450  
5
0.3  
1.2 ) VIN ) 13.5V  
Switch Off Time  
z
z
z
Switch Saturation Voltage  
Switch Current Limit  
SHDN Bias Current  
SHDN High Threshold (on)  
SHDN Low Threshold (off)  
Switch Leakage Current  
450  
575  
12  
ISW = 325mA  
VSHDN = 3.3V  
325  
0.9  
ISHDN  
VIH  
VIL  
0.25  
5
V
z
ISWLK  
0.01  
µA  
Switch Off, VSW = 5V  
PIN DESCRIPTION  
PIN NUMBER  
PIN NAME  
NC  
8 PIN DFN DESCRIPTION  
No connect.  
1
2
3
3
5
6
FB  
NC  
Feedback.  
No connect.  
SW  
GND  
VIN  
Switch input to the internal power switch  
Ground  
Input Voltage. Bypass this pin with a capacitor as close to the device  
as possible.  
7
8
SHDN  
NC  
Shutdown. Pull high (on) to enable. Pull low (off) for shutdown.  
No connect.  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
2
PIN DESCRIPTION  
PIN NUMBER  
PIN NAME  
SW  
DESCRIPTION  
1
2
3
4
5
Switch input to the internal power switch.  
GND  
FB  
Ground  
Feedback  
SHDN  
VIN  
Shutdown. Pull high (on) to enable. Pull low (off) for shutdown.  
Input Voltage. Bypass this pin with a capacitor as close to the device  
as possible.  
FUNCTIONAL DIAGRAM  
SW  
1
VIN  
5
R1  
Q1  
R2  
X1  
DISABLE  
+
-
POWER  
TRANSISTOR  
SET  
250ns  
Q2  
FB  
3
ONE-SHOT  
DRIVER  
CLEAR  
X2  
R3  
R4  
+
-
GND  
Shutdown  
Logic  
2
SHDN  
4
THEORY OF OPERATION  
450mA, comparator X2 clears the latch, which  
turns off the driver transistor for a preset 250nS.  
At the instant of shutoff, inductor current is  
diverted to the output through diode D1. During  
this250nStimelimit,inductorcurrentdecreases  
while its energy charges C2.  
Operationcanbebestunderstoodbyreferringto  
the functional diagram above and the typical  
application circuit in the front page. Q1 and Q2  
along with R3 and R4 form a band gap refer-  
ence. The input to this circuit completes a feed-  
back path from the high voltage output through  
a voltage divider, and is used as the regulation  
control input. When the voltage at the FB pin is  
slightly above 1.22V, comparator X1 disables  
most of the internal circuitry. Current is then  
provided by capacitor C2, which slowly dis-  
charges until the voltage at the FB pin drops  
below the lower hysteresis point of X1, about  
6mV. X1 then enables the internal circuitry,  
turns on chip power, and the current in the  
inductor begins to ramp up. When the current  
through the driver transistor reaches about  
At the end of the 250ns time period, driver  
transistor is again allowed to turn on which  
ramps the current back up to the 450mA level.  
Comparator X2 clears the latch, it’s output turns  
off the driver transistor, and this allows delivery  
ofL1’sstoredkineticenergytoC2. Thisswitch-  
ing action continues until the output capacitor  
voltage is charged to the point where FB is at  
band gap (1.22V). When this condition is  
reached, X1 turns off the internal circuitry and  
the cycle repeats.  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
PERFORMANCE CHARACTERISTICS  
Refer to the typical application circuit, TAMB = 25°C, unless otherwise specified.  
V
o
ut=1  
2
VEfficie  
n
c
y
V
o
ut=1  
2
VLoadRe  
g
ulatio  
n
9
0
Vin =  
1
3.0  
Vin =  
5.0  
V
5.0  
V
Vin =  
Vin =  
80  
4.2  
V
12.5  
4.2  
V
Vin =  
Vin =  
3 3  
V
3 3  
V
70  
12.0  
60  
11.5  
50  
11.0  
0
20  
40  
60  
8
0
1
0
0
1
2
0
1
4
0
1
6
0
0
20  
40  
60  
8
0
1
0
0
1
2
0
1
4
0
1
6
0
Iout(mA)  
Iout(mA)  
Figure 1. 12V Output Efficiency  
Figure 2. 12V Output Load Regulation  
V
o
ut=1  
5
VEfficienc  
y
V
o
ut=1  
5
VLoadRe  
g
ulatio  
n
90  
80  
70  
60  
50  
16.0  
15.5  
15.0  
14.5  
14.0  
Vin=  
5.0V  
Vin=  
4.2V  
Vin=  
3.3V  
Vi  
Vin=5.0V  
Vin=4.2V  
Vin=3.3V  
Vin=2.7V  
Iout6(0mA)  
Iout(mA)  
0
20  
40  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Figure 3. 15V Output Efficiency  
Figure 4. 15V Output Load Regulation  
Vout=18VEfficiency  
Vout=18VLoadRegulation  
90  
80  
70  
60  
50  
19.0  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
18.5  
18.0  
17.5  
17.0  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Iout(mA)  
Iout(mA)  
Figure 5. 18V Output Efficiency  
Figure 6. 18V Output Load Regulation  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
PERFORMANCE CHARACTERISTICS  
Refer to the typical application circuit, TAMB = 25°C, unless otherwise specified.  
V
o
ut=2  
1
VEfficienc  
y
V
o
ut=2  
1
VLoadRe  
g
ulatio  
n
9
0
2
2.0  
Vin =  
Vin =  
5.0  
V
5.0  
V
Vin =  
Vin =  
80  
21.5  
4.2  
V
4.2  
V
Vin =  
Vin =  
3 3  
V
3 3  
V
70  
21.0  
60  
20.5  
50  
20.0  
0
10  
20  
3
0
4
0
50  
60  
70  
0
10  
20  
3
0
4
0
50  
60  
70  
Iout(mA)  
Iout(mA)  
Figure 7. 21V Output Efficiency  
Figure 8. 21V Output Load Regulation  
V
o
ut=2  
4
VEfficienc  
y
V
o
ut=2  
4
VLoadRe  
g
ulatio  
n
90  
80  
70  
60  
50  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
25.0  
24.5  
24.0  
23.5  
23.0  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
Iout(mA)  
Iout(mA)  
Figure 9. 24V Output Efficiency  
Figure 10. 24V Output Load Regulation  
Vout=30VEfficiency  
Vout=30VLoadRegulation  
90  
80  
70  
60  
50  
40  
31.0  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
Vin =  
5.0V  
Vin =  
4.2V  
Vin =  
3
3
V  
30.5  
30.0  
29.5  
29.0  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Iout(mA)  
Iout(mA)  
Figure 11. 30V Output Efficiency  
Figure 12. 30V Output Load Regulation  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
PERFORMANCE CHARACTERISTICS  
Refer to the typical application circuit, TAMB = 25°C, unless otherwise specified.  
10  
25  
8
6
4
2
0
2
0
15  
T
a
mb=-2  
5
C
T
a
mb  
=
2
5
C
10  
T
a
mb  
=
8
5
C
5
0
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
In  
p
utVolta  
g
e(V)  
In  
p
utVolta  
g
e(V)  
Figure 13. Quiescent Current IQ vs. VIN  
Figure 14. Shutdown Pin Current vs. VIN  
6
0
0
4
0
0
50  
0
0
3
5
0
3
0
0
40  
2
5
0
30  
0
2
0
0
1
5
0
20  
0
1
0
0
10  
0
5
0
0
0
-3  
0
-10  
10  
3
0
50  
70  
90  
1.2  
1.8  
2.4  
3
3.6  
4.2  
4.8  
5.4  
T
e
mperature(C)  
In  
p
utVolta  
g
e(V)  
Figure 15. IPK Current Limit vs. VIN  
Figure 16. Switch Saturation Voltage VCESAT vs.  
Temperature (ISW = 450mA)  
1.25  
20  
1.24  
16  
1.23  
12  
1.22  
8
1.2  
1
4
0
1.2  
0
-3  
0
-10  
10  
3
0
50  
70  
90  
0
20  
4
0
6
0
80  
1
0
0
T
e
mperature(C)  
P
W
M
D
utyCycle(%)  
Figure 18. Average IO vs. SHDN Duty Cycle (VIN=3.3V,  
Standard 4x20mA WLED Evaluation Board, PWM  
Frequency 100Hz  
Figure 17. Feedback Voltage vs. Temperature  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
6
PERFORMANCE CHARACTERISTICS  
Refer to the typical application circuit, TAMB = 25°C, unless otherwise specified.  
VSW  
EN  
VOUT  
VOUT (AC)  
IIN (0.5A/Div)  
IL (0.5A/Div)  
Figure 19. Startup Waveform (VIN=3.3V, VOUT=15V,  
IOUT=20mA)  
Figure 20. Typical Switching Waveforms (VIN=3V,  
VOUT=15V, IOUT=20mA)  
IOUT (100mA/Div)  
VOUT (AC)  
IL (0.5A/Div)  
Figure 21. Load Step Transient (VIN=3V, VOUT=21V,  
1¾15mA Load Step  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
7
APPLICATION INFORMATION  
Capacitor Selection  
Inductor Selection  
For SP6691, the internal switch will be turned  
off only after the inductor current reaches the  
typical dc current limit (ILIM=450mA). How-  
ever, there is typically propagation delay of  
200nS between the time when the current limit  
isreachedandwhentheswitchisactuallyturned  
off. During this 200nS delay, the peak inductor  
currentwillincrease,exceedingthecurrentlimit  
by a small amount. The peak inductor current  
can be estimated by:  
Ceramic capacitors are recommended for their  
inherently low ESR, which will help produce  
low peak to peak output ripple, and reduce high  
frequency spikes.  
For the typical application, 4.7µF input capaci-  
tor and 2.2µF output capacitor are sufficient.  
The input and output ripple could be further  
reduced by increasing the value of the input and  
output capacitors. Place all the capacitors as  
close to the SP6691 as possible for layout. For  
use as a voltage source, to reduce the output  
ripple, a small feedforward (47pF) across the  
top feedback resistor can be used to provide  
sufficient overdrive for the error comparator,  
thus reduce the output ripple.  
VIN(MAX)  
IPK = ILIM  
+
• 200nS  
L
The larger the input voltage and the lower the  
inductor value, the greater the peak current.  
In selecting an inductor, the saturation current  
specified for the inductor needs to be greater  
thantheSP6691peakcurrenttoavoidsaturating  
the inductor, which would result in a loss in  
efficiency and could damage the inductor.  
Refer to Table 2 for some suggested low ESR  
capacitors.  
Table 2. Suggested Low ESR Capacitor  
Choosing an inductor with low DCR decreases  
power losses and increase efficiency.  
MANUF.  
PART NUMBER  
CAP  
SIZE  
/VOLTAGE /TYPE  
Refer to Table 1 for some suggested low ESR  
inductors.  
GRM32RR71E  
225KC01B  
2.2µF  
/25V  
1210  
/X5R  
MURATA  
770-436-1300  
GRM31CR61A  
475KA01B  
4.7µF  
1206  
/X5R  
MURATA  
770-436-1300  
/10V  
Table 1. Suggested Low ESR inductor  
TDK  
C3225X7R1E  
225M  
2.2µF  
1210  
/X7R  
847-803-6100  
/25V  
MANUF.  
PART NUMBER  
DCR  
(1)  
Current  
Rating  
TDK  
847-803-6100  
C3216X5R1A  
475K  
4.7µF  
/10V  
1206  
/X5R  
(mA)  
MURATA  
LQH32CN100K11  
0.3  
450  
770-436-1300  
(10µH)  
LED Current Program  
TDK  
NLC453232T-100K  
0.55  
500  
847-803-6100  
(10µH)  
In the white LEDs application, the SP6691 is  
generally programmed as a current source. The  
bias resistor Rb, as shown in the typical applica-  
tion circuit is used to set the operating current of  
the white LED using the equation:  
Diode Selection  
A schottky diode with a low forward drop and  
fast switching speed is ideally used here to  
achieve high efficiency. In selecting a Schottky  
diode, the current rating of the schottky diode  
should be larger than the peak inductor current.  
Moreover, the reverse breakdown voltage of the  
schottky diode should be larger than the output  
voltage.  
VFB  
Rb =  
IF  
where VFB is the feedback pin voltage (1.22V),  
IF is the operating current of the White LEDs.  
In order to achieve accurate LED current, 1%  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
APPLICATION INFORMATION: Continued  
precision resistors are recommended. Table 3  
below shows the Rb selection for different white  
LED currents. For example, to set the operating  
current to be 20mA, Rb is selected as 60.4 1, as  
shown in the schematic.  
Table 4. Divider Resistor Selection  
VOUT (V)  
R1 (  
1)  
R2 (1)  
12  
15  
18  
21  
30  
1M  
113K  
88.7K  
73.2K  
61.9K  
42.2K  
1M  
1M  
1M  
1M  
Table 3. Bias Resistor Selection  
IF (mA)  
Rb (  
1)  
5
243  
10  
12  
15  
20  
121  
102  
Brightness Control  
Dimming control can be achieved by applying a  
PWM control signal to the SHDN pin. The  
brightness of the white LEDs is controlled by  
increasing and decreasing the duty cycle of the  
PWM signal. A 0% duty cycle corresponds to  
zero LED current and a 100% duty cycle corre-  
sponds to full load current. While the operating  
frequency range of the PWM control is from  
60Hz to 700Hz, the recommended maximum  
brightness frequency range of the PWM signal  
is from 60Hz to 200Hz. A repetition rate of at  
least 60Hz is required to prevent flicker. The  
magnitude of the PWM signal should be higher  
than the minimum SHDN voltage high.  
80.6  
60.4  
Output Voltage Program  
The SP6691 can be programmed as either a  
voltage source or a current source. To program  
the SP6691 as voltage source, the SP6691 re-  
quires 2 feedback resistors R1 & R2 to control  
the output voltage. As shown in Figure 22.  
VIN  
D1  
L1  
V
O
U
T
Open Circuit Protection  
C2  
R1  
R2  
When any white LED inside the white LED  
module fails or the LED module is disconnected  
from the circuit, the output and the feedback  
control will be open, thus resulting in a high  
output voltage, which may cause the SW pin  
voltage to exceed it maximum rating. In this  
case, a zener diode can be used at the output to  
limit the voltage on the SW pin and protect the  
part. The zener voltage should be larger than the  
maximum forward voltage of the White LED  
module.  
C1  
U1  
5
1
V
S
W
IN  
S
P
6
6
9
1
4
3
S
H
D
N
F
B
1.2  
2
V
G
N
D
2
Figure 22. Using SP6691 as Voltage Source  
The formula and table for the resistor selection  
are shown below:  
V
R1 =  
(
OUT - 1  
• R2  
)
1.22  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
APPLICATION INFORMATION  
Layout Consideration  
MurataL  
Q
H
3
2
C
N
1
0
0
K
1
1
VIN  
D
S
L
1 1  
0
u
H
0.4  
5
A
2.7-4.2V  
Boththeinputcapacitorandtheoutputcapacitor  
should be placed as close as possible to the IC.  
M
B
R
0
5
3
0
R
1
C
2
This can reduce the copper trace resistance  
which directly effects the input and output  
ripples. The feedback resistor network should  
be kept close to the FB pin to minimize copper  
trace connections that can inject noise into the  
system. Thegroundconnectionforthefeedback  
resistor network should connect directly to the  
GNDpinortoananaloggroundplanethatistied  
directly to the GND pin. The inductor and the  
schottky diode should be placed as close as  
possible to the switch pin to minimize the noise  
coupling to the other circuits, especially the  
feedback network.  
1
5
0
K
o
h
m
2.2  
u
F
C
1
4.7  
u
F
U
1
5
1
WLED MODULE  
S
W
V
I
N S  
P
6
6
9
1
D1  
4
3
1.2  
S
H
D
N
F
B
0.7V  
2
V
G
N
D
DI  
OD  
E
R
b
2
3
4.8  
o
h
m
Figure 23. Improve Efficiency with Diode in Feedback  
Loop  
Tofurtherimprovetheefficiencyandreducethe  
effects of the ambient temperature on the diode  
D1 used in method 1, an op amp circuit can be  
used as shown in Figure 24. The gain of the op  
amp circuit can be calculated by:  
Power Efficiency  
For the typical application circuit, the output  
efficiency of the circuit is expressed by  
R1 + R2  
Av =  
R1  
VOUT • IOUT  
d =  
VIN • IIN  
If the voltage across the bias resistor is set to be  
0.1V the current through R1 and R2 to be around  
100µA, R1 and R2 can be selected as 1K and  
11.2K respectively. LMV341 can be used be-  
cause of its small supply current, offset voltage  
and minimum supply voltage. By using this  
method, the efficiency can be increased around  
7%.  
Where VIN , IIN, VOUT, IOUT are the input and  
output voltage and current respectively.  
While the white LED efficiency is expressed by  
(VOUT - 1.22) • IOUT  
d =  
VIN • IIN  
This equation indicates that the white LED  
efficiency will be much smaller than the output  
efficiency of the circuit when VOUT is not very  
large,comparedtothefeedbackvoltage(1.22V).  
MurataL  
Q
H
3
2
C
N
1
0
0
K
1
1
V
b
at  
t
er  
y
D
S
L
1 1  
0
u
H
0.4  
5
A
2.7-4.2V  
M
B
R
0
5
3
0
V
b
at  
t
er  
y
C
1
C
2
4.7  
u
F
2.2  
u
F
WLED MODULE  
U
1
5
1
The other power is consumed by the bias resis-  
tor. To reduce this power loss, two circuits can  
be used, as shown in Figure 23 and Figure 24. In  
Figure 23, a general-purpose diode (for ex-  
ample, 1N4148) is used to bring the voltage  
across the bias resistor to be around 0.7V. R1 is  
usedtocreatealoopthatprovidesaround100µA  
operating current for the diode. 3% efficiency  
improvement can be achieved by using this  
method.  
V
S
W
6
IN S  
P
6
6
9
1
0.1V  
1
3
5
+
3
4
4
S
H
D
N
F
B
O
U
T
LM  
V
3
4
1
1.2  
2
V
-
G
N
D
2
R2  
2
R
b
1
1.  
2
K
R
1
1
K
5.  
1
Figure 24. Improve Efficiency with Op Amp in Feedback  
Loop  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀ0  
PACKAGE: PINOUTS  
V
IN  
V
SHDN  
IN  
SHDN  
5
4
5
4
SP6691  
5 Pin SOT-23  
SP6691  
5 Pin TSOT  
1
2
3
1
2
3
SW  
GND  
FB  
SW  
GND  
FB  
NC  
FB  
NC  
8
7
6
5
1
2
3
4
SP6691  
8 Pin DFN  
SHDN  
VIN  
NC  
SW  
GND  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀꢀ  
Package: 8 Pin DFn  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀ2  
Package: 5 Pin SOT-23  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀꢁ  
Package: 5 Pin TSOT  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀꢂ  
ORDERING INFORMATION  
Temperature Range Package Type  
Part Number  
SP6691EK1 .......................................................... -40˚C to +85˚C ............................. 5 Pin TSOT  
SP6691EK1/TR..................................................... -40˚C to +85˚C ............................ 5 Pin TSOT  
SP6691EK ............................................................ -40˚C to +85˚C .......................... 5 Pin SOT-23  
SP6691EK/TR....................................................... -40˚C to +85˚C ......................... 5 Pin SOT-23  
SP6691ER ............................................................ -40˚C to +85˚C ............................... 8 Pin DFN  
SP6691ER/TR ...................................................... -40˚C to +85˚C .............................. 8 Pin DFN  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP6691ER/TR = standard; SP6691ER-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 2,500 for TSOT or SOT-23 and 3,000 for DFN.  
For further assistance:  
Email:  
Sipexsupport@sipex.com  
WWW Support page:  
Sipex Application Notes:  
http://www.sipex.com/content.aspx?p=support  
http://www.sipex.com/applicationNotes.aspx  
Solved by  
Sꢀpꢁx corporꢂtꢀoꢃ  
Hꢁꢂdquꢂrtꢁrs ꢂꢃd  
Sales Office  
TM  
2ꢁꢁ South Hillview Drive  
Milpitas, CA ꢅꢃ0ꢁꢃ  
TEL: (ꢂ0ꢄ) ꢅꢁꢂ-7ꢃ00  
FAX: (ꢂ0ꢄ) ꢅꢁꢃ-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume  
any liability arising out of the application or use of any product or circuit described herein; neither does it convey  
any license under its patent rights nor the rights of others.  
Jun26-07 Rev D  
Micro Power Boost Regulator Series White LED Driver  
© 2007 Sipex Corporation  
ꢀꢃ  

相关型号:

SP6721

Wide Band Low Power Amplifier, 5MHz Min, 500MHz Max, FP4, 4 PIN
APITECH

SP674A

12-bit Sampling A/D Converters
SIPEX

SP674AA

12-Bit Sampling A/D Converters
SIPEX

SP674AA-1

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CDIP28,
SIPEX

SP674AA-2

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CDIP28,
SIPEX

SP674AA/LCC

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CQCC28, LCC-28
SIPEX

SP674AB

12-Bit Sampling A/D Converters
SIPEX

SP674AB-1

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CDIP28,
SIPEX

SP674AB-2

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CDIP28,
SIPEX

SP674AB/LCC

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CQCC28, LCC-28
SIPEX

SP674AC

12-Bit Sampling A/D Converters
SIPEX

SP674AC-1

ADC, Successive Approximation, 12-Bit, 1 Func, Parallel, Word Access, CDIP28,
SIPEX