SP7514KN [SIPEX]

14-Bit Multiplying DACs; 14位乘法DAC
SP7514KN
型号: SP7514KN
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

14-Bit Multiplying DACs
14位乘法DAC

转换器 数模转换器 光电二极管
文件: 总7页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
HS3140/SP7514  
14-Bit Multiplying DACs  
Monolithic Construction  
14–Bit Resolution  
0.003% Non-Linearity  
Four-Quadrant Multiplication  
Latch-up Protected  
Low Power - 30mW  
Single +15V Power Supply  
DESCRIPTION…  
The SP7514 and HS3140 are precision 14-bit multiplying DACs, that provide four-quadrant  
multiplication. Both parts accept both AC and DC reference voltages. The SP7514 is available  
for use in commercial and industrial temperature ranges, packaged in a 20-pin SOIC. The  
HS3140 is available in commercial and military temperature ranges, packaged in a 20-pin  
side-brazed DIP.  
SP7514, HS3140  
15 EQUAL  
SECTIONS  
48k  
19  
V
2
REF  
I
OUT  
2
96k  
96k  
96k  
96k  
3
GND  
I
OUT  
1
18  
1
V
DD  
6k  
4 to 16 DECODE  
SWITCHES ARE  
SHOWN IN THE  
HIGH STATE  
4
5
6
7
17  
20  
BIT 1 BIT 2 BIT 3 BIT 4  
(MSB)  
BIT 14  
LSB  
R
FEEDBACK  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
1
SPECIFICATIONS  
(Typical @ 25°C, nominal power supply, VREF = +10V, unipolar unless otherwise noted)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
DIGITAL INPUT  
Resolution  
14  
Bits  
2–Quad, Unipolar Coding  
4–Quad, Bipolar Coding  
Logic Compatibility  
Input Current  
Binary  
Offset Binary  
CMOS, TTL  
Note 1  
±1  
µA  
REFERENCE INPUT  
Voltage Range  
±25  
V
Note 2  
Input Impedance  
3.25  
75  
9.75  
KOhms  
ANALOG OUTPUT  
Scale Factor  
Scale Factor Accuracy  
Output Leakage  
225  
±1  
10  
µA/VREF  
%
Note 3  
Note 4  
nA  
Output Capacitance  
COUT 1, all inputs high  
COUT 1, all inputs low  
COUT 2, all inputs high  
COUT 2, all inputs low  
100  
50  
50  
pF  
pF  
pF  
pF  
100  
STATIC PERFORMANCE  
Integral Linearity  
SP7514KN/BN, HS3140–4  
SP7514JN/AN, HS3140–3  
Differential Linearity  
Note 5  
Note 6  
±0.003  
±0.006  
±0.006  
±0.012  
% FSR  
% FSR  
SP7514KN/BN, HS3140–4  
SP7514JN/AN, HS3140–3  
Monotonicity  
±0.003  
±0.006  
±0.006  
±0.012  
%FSR  
% FSR  
SP7514KN/BN, HS3140–4  
SP7514JN/AN, HS3140–3  
Guaranteed to 14 bits  
Guaranteed to 13 bits  
STABILITY  
(TMIN to TMAX  
)
Scale Factor  
4
0.5  
0.5  
ppm FSR/°C  
ppm FSR/°C  
ppm FSR/°C  
Note 7 and 8  
Integral Linearity  
Differential Linearity  
Monotonicity Temp. Range  
SP7514JN/KN, HS3140C  
SP7514AN/BN  
1.0  
1.0  
0
–40  
–55  
+70  
+85  
+125  
°C  
°C  
°C  
HS3140B  
DYNAMIC PERFORMANCE  
Digital Small Signal Settling  
Digital Full Scale Settling  
Reference Feedthrough Error  
@ 1kHz  
1.0  
2.0  
µS  
µS  
(VREF = 20Vpp)  
200  
2
µV  
mV  
@ 10kHz  
Reference Input Bandwidth  
1
MHz  
POWER SUPPLY (VDD  
)
Operating Voltage  
Voltage Range  
Current  
+15 ±5%  
V
V
mA  
%/%  
+8  
+18  
2.0  
Note 9  
Rejection Ratio  
0.005  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
2
SPECIFICATIONS (continued)  
(Typical @ 25°C, nominal power supply, VREF = +10V, unipolar unless otherwise noted)  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS  
CONDITIONS  
ENVIRONMENTAL AND MECHANICAL  
Operating Temperature  
SP7514JN/KN  
SP7514AN/BN  
HS3140–C  
0
–40  
0
–55  
–55  
–65  
+70  
+85  
+70  
+125  
+125  
+150  
°C  
°C  
°C  
°C  
°C  
°C  
HS3140–B  
HS3140–B/883  
Storage Temperature  
Package  
SP7514_N  
20-pin SOIC  
HS3140  
20–pin Side–Brazed DIP  
Notes:  
1.  
2.  
3.  
Digital input voltage must not exceed supply voltage or go below –0.5V ; “0” <0.8V; 2.4V < “1” VDD.  
AC or DC; use R6758–1 for fixed reference applications  
Using the internal feedback resistor and an external op amp. The Scale Factor can be adjusted externally by variable resistors in series with the  
reference input and/or in series to the internal feedback resistor. Please refer to the Applications Information section.  
At 25°C; the output leakage current will create an offset voltage at the external op amps output. It doubles every 10°C temperature increase.  
Integral Linearity is measured as the arithmetic mean value of the magnitudes of the greatest positive deviation and the greatest negative deviation from  
the theoretical value for any given input combination.  
4.  
5.  
6.  
7.  
8.  
9.  
Differential Linearity is the deviation of an output step form the theoretical value of 1LSB for any two adjacent digital input codes.  
At 25°C, the output leakage current will create an offset voltage output. It doubles every 10°C temperature increase.  
Using the internal feedback resistor and an external op amp.  
Use series 470ohm resistor to limit start-up current.  
CHARACTERISTIC CURVES  
(Typical @ + 25°C, VDD = + 15VDC, VREF = + 10VDC, unless otherwise noted)  
50  
40  
30  
20  
10  
0
0.048  
2 LSB  
0.024  
0.012  
1 LSB  
0.006  
0.003  
1/2 LSB @ 16 BITS  
0.01  
0.1  
1
10  
V
-VOLTS  
REF  
Integral Linearity Error vs. Reference Voltage  
0
10  
20  
30  
-mV  
40  
50  
V
OS  
0.048%  
Additional Linearity Error vs. Output-Amplifier  
Offset-Voltage (VREF = + 10V)  
0.024%  
0.012%  
0.01  
0.006%  
0.003%  
0.008  
4
6
8
10  
V
12  
14  
16  
18  
0.006  
-VOLTS  
DD  
Linearity vs. Supply Voltage  
0.004  
0.002  
0
2.5  
2.0  
1.5  
1.0  
4
6
8
10  
V
12  
14  
16  
18  
-VOLTS  
DD  
Gain Change vs. Supply Voltage  
4
6
8
10  
V
12  
14  
16  
18  
10  
-VOLTS  
DD  
Power Supply Current vs. Voltage  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
3
PIN ASSIGNMENTS…  
PRINCIPLES OF OPERATION  
TheSP7514/HS3140achievehighaccuracybyusing  
a decoded or segmented DAC scheme to implement  
this function. The following is a brief description of  
this approach.  
Pin 1 – IO1 – Current Output 1.  
Pin 2 – IO2 – Current Output 2.  
Pin 3 – GND – Ground.  
Pin 4 – DB13 – MSB, Data Bit 1.  
Pin 5 – DB12 – Data Bit 2.  
The most common technique for building a D/A  
converterofnbitsistousenswitchestoturnncurrent  
or voltage sources on or off. The n switches and n  
sourcesaredesignedsothateachswitchorbitcontrib-  
utestwiceasmuchtotheD/Aconverter’soutputasthe  
preceding bit. This technique is commonly known as  
binary weighting and allows an n-bit converter to  
generate 2n output levels by turning on the proper  
combination of bits.  
Pin 6 – DB11 – Data Bit 3.  
Pin 7 – DB10 – Data Bit 4.  
Pin 8 – DB9 – Data Bit 5.  
Pin 9 – DB8 – Data Bit 6.  
Pin 10 – DB7 – Data Bit 7.  
Pin 11 – DB6 – Data Bit 8.  
Pin 12 – DB5 – Data Bit 9.  
In such binary-weighted converter, the switch  
with the smallest contribution (the LSB) accounts  
for only 2-n of the converter’s full-scale value.  
Similarly, the switch with the largest contribution  
(theMSB)accountsfor2-1orhalfoftheconverter’s  
full-scale output. Thus it is easy to see that a given  
percent change in the MSB will have a greater  
effect on the converter’s output than would a  
similar percent change in the LSB. For example, a  
1% change in the LSB of a 10 bit converter would  
only affect the output by 0.001% of full-scale. A  
1% change in the MSB of the same converter  
would affect the output by 0.5% of FSR.  
Pin 13 – DB4 – Data Bit 10.  
Pin 14 – DB3 – Data Bit 11.  
Pin 15 – DB2 – Data Bit 12.  
Pin 16 – DB1 – Data Bit 13.  
Pin 17 – DB0 – LSB, Data Bit 14.  
Pin 18 – VDD – Positive Supply Voltage.  
Pin 19 – VREF – Reference Voltage Input.  
Pin 20 – RFB – Feedback Resistor.  
In order to overcome the problem which results from  
the large weighting of the MSB, the two MSB’s can  
be decoded to three equally weighted sources. Table  
1 shows that all combinations of the two MSB’s of a  
converter result in four output levels. So by replacing  
the two MSB’s with three bits equally weighted at 1/  
4 full-scale and decoding the two MSB digital inputs  
into three lines which drive the equally weighted bits,  
the same functional performance can be obtained.  
ThusbyreplacingthetwoMSBswitchesofaconven-  
tional converter with three switches properly de-  
coded, the contribution ofanyswitchisreducedfrom  
1/2to1/4.Thisreductioninsensitivityalsoreducesthe  
FEATURES…  
The SP7514 and HS3140 are precision 14-bit multi-  
plying DACs. The DACs are implemented as a one-  
chip CMOS circuit with a resistor ladder network.  
ThreeoutputlinesareprovidedontheDACstoallow  
unipolar and bipolar output connection with a mini-  
mum of external components. The feedback resistor  
is internal. The resistor ladder network termination is  
externally available, thus eliminating an external re-  
sistor for the 1 LSB offset in bipolar mode.  
The SP7514 is available for use in commercial and  
industrial temperature ranges, packaged in a 20-pin  
SOIC. The HS3140 is available in commercial  
and military temperature ranges, packaged in a  
20–pin side–brazed DIP. For product processed  
and screened to the requirements of MIL–M–  
38510 and MIL–STD–883C, please consult the  
factory (HS3140B only).  
C
f
R
f
V
REF  
E
R
O
C
i
+
O
R
C
p
Figure 1. SP7514/HS3140 Equivalent Output Circuit  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
4
- 1  
- 2  
2
(MSB)  
2
Output  
400  
470Ω  
V
V
REF  
DD  
0
0
1
1
0
0
200Ω  
1
0
1
1/4 Full-Scale  
1/2 Full-Scale  
3/4 Full-Scale  
R
I
FEEDBACK  
R
OS  
-
O1  
DIGITAL  
INPUTS  
A
+
I
O2  
SP7514  
HS3140  
V
Table 1. Contribution of the two MSB's  
OUT  
accuracy required of any switch for a given overall  
converter accuracy.  
GND  
With the decoded converter described above, a 1%  
change in any of the converter’s switches will affect  
the output by no more than 0.25% of full-scale as  
compared to 0.5% for a conventional converter. In  
other words the conventional D/A converter can be  
made less sensitive to the quality of its individual bits  
by decoding.  
Figure 2. Unipolar Operation  
settlingtime,andbandwidth.TheDACoutputequiva-  
lent circuit can be represented as shown in Figure 1.  
Digitalfeedthroughisthechangeinanalogoutputdue  
to the toggling conditions on the converter input data  
lines when the analog input VREF is at 0V. The  
SP7514/HS3140verylowCOandthereforewillyield  
low digital feedthrough. Inputs to the DAC can be  
buffered.Thisinputlatchwithmicroprocessorcontrol  
is shown in Figure 4.  
In the SP7514/HS3140 the first four MSB’s are  
decodedinto16levelswhichdrive15equallyweighted  
current sources. The sensitivity of each switch on the  
output is reduced by a factor of 8. Each of the 15  
sources contributes 6.25% output change rather than  
an MSB change of 50% for the common approach.  
SettlingtimeisdirectlyaffectedbyCO.InFigure1,CO  
combines with Rf to add a pole to the open loop  
response, reducing bandwidth and causing excessive  
phase shift - which could result in ringing and/or  
oscillation.Afeedbackcapacitor,Cf mustbeaddedto  
restorestability.EvenwithCf,thereisstillazero-pole  
mismatchduetoRiCO whichiscodedependent. This  
codedependentmismatchisminimizedwhenCORi =  
RfCf. However Cf must now be made larger to  
compensate for worst case RiCO - resulting in re-  
ducedbandwidthandincreasedsettlingtime.Withthe  
SP7514/HS3140, small values for Cf must be used.  
FollowingthedecodedsectionoftheDACastandard  
binary weighted R-2R approach is used. This divides  
each of the 16 levels (or 6.25% of F.S.) into 4096  
discrete levels (the 12 LSB’s).  
Output Capacitance  
The SP7514/HS3140 have very low output capaci-  
tance(CO).ThisisspecifiedbothwithallswitchesON  
andallswitchesOFF.Outputcapacitancevariesfrom  
50pF to 100pF over all input codes. This low capaci-  
tance is due in part to the decoding technique used.  
Smaller switches are used with resulting less capaci-  
tance. Three important system characteristics are  
affected by CO andCO; namely digital feedthrough,  
400  
470Ω  
V
V
REF  
DD  
200Ω  
R
FEEDBACK  
R
OS1  
-
I
I
O1  
A
1
DIGITAL  
INPUTS  
SP7514  
HS3140  
TRANSFER FUNCTION (N=14)  
+
V
OUT  
4KΩ  
BINARY INPUT UNIPOLAR OUTPUT BIPOLAR OUTPUT  
4KΩ  
111...111  
100...001  
100...000  
011...111  
000…001  
000...000  
–VREF (1 - 2–N  
)
–VREF (1 – 2 –(N – 1)  
–VREF (2 –(N – 1)  
0
VREF (2 –(N – 1)  
VREF (1 – 2 –(N – 1)  
)
O2  
–VREF (1/2 + 2–N  
)
)
)
R
R
OS2  
GND  
–VREF /2  
–VREF (1/2 – 2–N  
R
OS2  
)
-
A
2
+
–VREF (2(N – 1)  
)
)
V
OUT1  
, A  
, OP-07  
2
A
1
0
VREF  
Table 2. Transfer Function  
Figure 3. Bipolar Operation  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
5
1. Using LF441A amplifier (low power - 741 pinout)  
2. Specified offset: 0.5mV max  
3. Temperature coefficient of input offset: 10µV/°C max  
VOS max (0°C to 70°C) = 0.5mV + (70µV)10  
= 1.2mV  
V
DD  
470  
V
REF  
(+ 25V MAX)  
400  
3
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
V
LSB  
15  
14  
13  
12  
11  
10  
9
REF  
UNIPOLAR MODE  
(2-QUADRANT)  
V
+
DD  
200  
74273  
CLK  
R
F
2
V
OUT  
REF  
N
I
01  
02  
6
0 TO - V  
(1-2 -  
A
1
3
I
+
)
Add'l nonlinearity (max.) = 1.2mV x 0.065mV/mV  
SP7514/  
HS3140  
8
7
6
5
R
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
0S  
=
78µV (1/2 LSB @ 16 Bits)  
Where: 78µV = 1/2 LSB @ 16 Bits (10V range)  
WR  
G2A  
74273  
74LS138  
4
3
2
BDSEL  
G2B  
C
Via the above configuration, the SP7514/HS3140  
can be used to divide an analog signal by digital code  
(i.e. for digitally controlled gain). The transfer func-  
tion is given in Table 2, where the value of each bit is  
0or1.Divisionbyall0”sisundefinedandcausesthe  
op amp to saturate.  
A
2
MSB  
GND  
CLK  
A
A
1
0
B
A
ADDRESS DECODER  
LATCHES  
Figure 4. Microprocessor Interface to SP7514/HS3140  
ResistorRp canbeadded,thiswillparallelRj decreas-  
ing the effective resistance. If Cf is reduced the  
bandwidth will be increased and settling time de-  
creased. HoweverasystempenaltyforloweringCf is  
to increase noise gain. The trade-off is noise vs.  
settling time. If Rp is added then a large value (1µF or  
greater) non-polarized capacitor Cp should be added  
in series with Rp to eliminate any DC drifts. If settling  
time is not important, eliminate Rp and Cp, and adjust  
Cf to prevent overshoot.  
Applications Information  
Unipolar Operation  
Figure 2 shows the interconnections for unipolar  
operation. ConnectIO1 andFB1 asshownindiagram.  
TieIO2 (Pin7),FB3 (Pin3),andFB4 (Pin1)toGround  
(Pin8).Asshown,aseriesresistorisrecommendedin  
the VDD supply line to limit current during ‘turn-on’.  
To maintain specified linearity, external amplifiers  
must be zeroed. Apply an ALL “ZEROES” digital  
input and adjust ROS for VOUT = 0 ± 1mV. The  
SP7514 and HS3140 have been used successfully  
with OP-07, OP-27 and LF441A. For high speed  
applications the SP2525 is recommended.  
Output Offset  
Inmostapplications,theoutputoftheDACisfedinto  
an amplifier to convert the DAC’s current output to  
voltage. A little known and not commonly discussed  
parameteristhelinearityerrorversusoffsetvoltageof  
theoutputamplifier. AllCMOSDAC’smustoperate  
into a virtual ground, i.e., the summing junction of an  
opamp.Anyamplifier’soffsetfromtheamplifierwill  
appear as an error at the output (which can be related  
to LSB’s of error).  
Bipolar Operation  
Figure 3 shows the interconnections for bipolar op-  
eration. Connect IO1, IO2, FB1, FB3, FB4 as shown in  
diagram.TieLDTRtoIO2.Asshown,aseriesresistor  
isrecommendedintheVDDsupplylinetolimitcurrent  
during‘turn-on.Tomaintainspecifiedlinearity,exter-  
nal amplifiers must be zeroed. This is best done with  
MostallCMOSDAC’scurrentlyavailableareimple-  
mented using an R-2R ladder network. The formula  
for nonlinearity is typically 0.67mV/mVOS (not de-  
rived here). However the SP7516 has a coefficient of  
only 0.065mV/mVOS. This is due to the decoding  
technique described earlier. CMOS DAC applica-  
tions notes (including this one) always show a poten-  
tiometer used to null out the amplifier’s offset. If an  
amplifierischosenhavingpretrimmedoffsetitmay  
bepossibletoeliminatethiscomponent.Considerthe  
following calculations:  
V
REF set to zero and, the DAC register loaded with  
10...0 (MSB = 1). Set R0S1 for V01 = 0. Set R0S2 for  
OUT = 0. Set VREF to +10V and adjust RB for VOUT  
V
to be 0V.  
Grounding  
Connect all GND pins to system analog ground  
and tie this to digital ground. All unused input pins  
must be grounded.  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
6
ORDERING INFORMATION  
Model ................................................................ Monotonicity .................................. Temperature Range .................................... Package  
Double-Buffered 12-Bit Multiplying DAC  
HS3140C-3Q............................................................ 13-Bit ............................................... 0°C to +70°C ................... 20-pin, 0.3" Side-Brazed DIP  
HS3140B-3Q............................................................ 13-Bit ......................................... -55°C to +125°C ................... 20-pin, 0.3" Side-Brazed DIP  
HS3140B-3/883 ....................................................... 13-Bit ......................................... -55°C to +125°C ................... 20-pin, 0.3" Side-Brazed DIP  
HS3140C-4Q............................................................ 14-Bit ............................................... 0°C to +70°C ................... 20-pin, 0.3" Side-Brazed DIP  
HS3140B-4Q............................................................ 14-Bit ......................................... -55°C to +125°C ................... 20-pin, 0.3" Side-Brazed DIP  
HS3140B-4/883 ....................................................... 14-Bit ......................................... -55°C to +125°C ................... 20-pin, 0.3" Side-Brazed DIP  
SP7514JN ................................................................ 13-Bit ............................................... 0°C to +70°C ...................................... 20-pin, 0.3" SOIC  
SP7514KN ............................................................... 14-Bit ............................................... 0°C to +70°C ...................................... 20-pin, 0.3" SOIC  
SP7514AN ............................................................... 13-Bit .......................................... –40°C to +85°C ...................................... 20-pin, 0.3" SOIC  
SP7514BN ............................................................... 14-Bit .......................................... –40°C to +85°C ...................................... 20-pin, 0.3" SOIC  
Co rp o ra tio n  
SIGNAL PROCESSING EXCELLENCE  
Sipex Corporation  
Headquarters and  
Sales Office  
22 Linnell Circle  
Billerica, MA 01821  
TEL: (978) 667-8700  
FAX: (978) 670-9001  
e-mail: sales@sipex.com  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.  
HS3140/SP7514  
HS3140/SP7514 14-Bit Multiplying DACs  
© Copyright 2000 Sipex Corporation  
7

相关型号:

SP7516

16-Bit Multiplying DACs
SIPEX

SP7516AN

16-Bit Multiplying DACs
SIPEX

SP7516BN

16-Bit Multiplying DACs
SIPEX

SP7516JN

16-Bit Multiplying DACs
SIPEX

SP7516KN

16-Bit Multiplying DACs
SIPEX

SP752120

Power Solid State Relay
CELDUC

SP7534JN

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.8us Settling Time, PDIP20, PLASTIC, DIP-20
SPECTRUM

SP7534JN

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.8us Settling Time, PDIP20, PLASTIC, DIP-20
SIPEX

SP7534JQ

D/A Converter, 1 Func, Parallel, 8 Bits Input Loading, 0.8us Settling Time, CDIP20, CERAMIC, DIP-20
SPECTRUM

SP7535JN

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, PDIP28, PLASTIC, DIP-28
SPECTRUM

SP7535JN

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, PDIP28, PLASTIC, DIP-28
SIPEX

SP7535JQ

D/A Converter, 1 Func, Parallel, Word Input Loading, 0.8us Settling Time, CDIP28, CERDIP-28
SPECTRUM