AAT3607INJ-T1 [SKYWORKS]

Power Supply Support Circuit, Adjustable, 6 Channel, TDFN-28;
AAT3607INJ-T1
型号: AAT3607INJ-T1
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

Power Supply Support Circuit, Adjustable, 6 Channel, TDFN-28

文件: 总26页 (文件大小:3162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT3607: PMU with OVP Dynamic Li-ion Charger  
Applications  
Description  
Cellular phones  
Digital cameras  
Handheld instruments  
MP3 and MP4  
PDAs and handheld computers  
Portable GPS devices  
The AAT3607 is a member of the Skyworks Total Power  
Management IC (TPMICTM) product family that functions as a  
highly integrated power management unit (PMU) for MP3/MP4  
players and other handheld applications. It integrates a single-cell  
Lithium Ion/Polymer battery dynamic charger module powered  
from an AC/DC adapter or USB port, three 120° phase shifted  
synchronous 1.6 MHz DC-DC step-down converters and two LDOs  
for the system.  
The typical input power source for the AAT3607 is a single-cell  
Li-ion battery. The charger can be powered from either a current-  
limited USB port or an AC/DC adapter, with charge current  
programmed by two separate external resistors and selected by a  
logic input pin. With the device’s dynamic charging feature, a  
system connected to the AAT3607 can draw power from the  
power supply without a battery, or charge the battery with the  
power left over from the system. If the power supply has limited  
current capability, the system draws power from both the limited  
power supply source and the battery.  
Features  
VIN operating range: 4.1 V to 5.5 V  
Over-voltage input protection  
Functional without battery connected  
Dynamic Li-ion charger:  
Charge enable control  
Two programmable/selectable charging currents up to 1 A  
Programmable end of charge current  
Charge current reduction  
Thermal loop charge reduction  
Reverse blocking  
Three 1.6 MHz synchronous programmable step-down  
The battery charger is a complete constant current/constant  
voltage linear charger. It offers an integrated pass device, reverse  
blocking protection, high accuracy current and voltage regulation,  
charge status, and charge termination. The charging current is  
programmable by means of an external resistor up to 1 A.  
converters:  
120 switching phase shift  
Three independent enable controls  
Buck 1: 400 mA  
Buck 2: 300 mA  
Buck 3: 300 mA  
Two programmable and separate enable LDOs:  
LDO1: 150 mA  
LDO2: 150 mA  
Fault protection scheme:  
Under-voltage lockout (UVLO)  
The AAT3607 also includes over-voltage input protection (OVP),  
under-voltage lockout (UVLO), and over-temperature protection  
(OTP) to protect the PMU under fault conditions.  
The three integrated step-down converters operate under  
synchronous PWM control with a 1.6 MHz switching frequency  
and internal compensation, decreasing both size and quantity of  
external components. The phase shift feature allows ripple  
cancellation between the three converters when all are running  
with nominal load.  
Over-temperature protection (OTP)  
Fast turn-on time  
The AAT3607 is available in a thermally enhanced 28-pin 4 mm   
4 mm TQFN package with exposed pad.  
Built-in soft-start and power on reset  
Low standby current  
Thermally enhanced TQFN (28-pin, 4 mm 4 mm) package  
A typical application circuit is shown in Figure 1. The pin  
configurations are shown in Figure 2. Signal pin assignments  
descriptions are provided in Table 1.  
(MSL1, 260 ºC per JEDEC J-STD-020)  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30 2014  
1
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
1 kΩ  
1 μF  
ADP/USB  
BAT  
VIN  
10 μF  
SYS  
SYS  
CHG  
IR1  
R
SET1  
SET0  
10 μF  
PB  
PGND  
ENB1  
BAT  
R
IR0  
En Buck 1  
2.2 μH  
Current Select  
Charger Enable  
ISEL  
CEN  
ITERM  
LO1  
LFB1  
400 mA  
4.7 μF  
BO1  
BO2  
BO3  
LX1  
BFB1  
ENB2  
R
TERM  
AAT3607  
En Buck 2  
2.2 μH  
LO1  
150 mA  
300 mA  
4.7 μF  
2.2 μF  
2.2 μF  
LX2  
BFB2  
ENB3  
LDO1 EN  
LDO2 EN  
ENL1  
LO2  
En Buck 3  
2.2 μH  
LO2  
150 mA  
300 mA  
4.7 μF  
LFB2  
ENL2  
LX3  
BFB3  
R
ESET  
RST  
AGND  
tc339  
Figure 1. AAT3607 Typical Application Circuit  
28  
27  
26  
25  
24  
23  
22  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
ENB1  
LFB1  
LFB2  
LO1  
LO2  
SYS  
BAT  
RST  
ENB2  
ENB3  
CHG  
LX1  
PGND  
LX2  
8
9
10  
11  
12  
13  
14  
tc340  
Figure 2. AAT3607 Pinout – 28-Pin, 4 mm 4 mm TQFN  
(Top View)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
2
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Table 1. AAT3607 Signal Descriptions  
Pin Number  
Name  
ENB1  
ENB2  
ENB3  
CHG  
Description  
Enable input for Buck 1 with 1 Minternal pull down resistor.  
1
2
Enable input for Buck 2 with 1 Minternal pull down resistor.  
Enable input for Buck 3 with 1 Minternal pull down resistor.  
Open drain charge status output. Active low to indicate the battery is charging.  
Inductor switching node of Buck 1.  
3
4
5
LX1  
6
PGND  
LX2  
Power ground.  
7
Inductor switching node of Buck 2.  
8
LX3  
Inductor switching node of Buck 3.  
9
PB  
Input power for Buck 1, 2, and 3. Connect to SYS with a bypass capacitor to ground.  
Feedback pin for Buck 3; connect to a resistor divider for an adjustable output voltage.  
Feedback pin for Buck 2; connect to a resistor divider for an adjustable output voltage.  
Feedback pin for Buck 1; connect to a resistor divider for an adjustable output voltage.  
Enable input for LDO 2 with 1 Minternal pull-down resistor.  
Enable input for LDO 1 with 1 Minternal pull-down resistor.  
10  
11  
12  
13  
14  
BFB3  
BFB2  
BFB1  
ENL2  
ENL1  
RST  
Open drain reset output. Active low to indicate that BFB1, or BFB2, or BFB3 is below its regulation threshold after enable. RST goes  
high 200 ms after the last enabled Buck reaches 80% of the regulation threshold. RST is high-impedance when ENB1, 2 and 3 are  
low, and VIN is unconnected.  
15  
16  
17  
Positive battery terminal connection. Connect BAT to the positive terminal of a single-cell Li+/Li-Poly battery. Bypass BAT to GND  
with a 1 F to 10 F ceramic capacitor.  
BAT  
SYS  
System supply output. Bypass SYS to GND with a 10 F ceramic capacitor. If a valid voltage is present at VIN, and the system load  
exceeds the input supply current limit to cause VIN drops below BAT, then both the external power source and the battery supplies  
current to SYS. SYS is connected to BAT through an internal system load switch when a valid source is not present at VIN.  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
LO2  
LO1  
LFB2  
LFB1  
AGND  
VIN  
LDO 2 output with 5 kinternal pull down resistor for fast turn off.  
LDO 1 output with 5 kinternal pull down resistor for fast turn off.  
Feedback pin for LDO 2; connect to a resistor divider for an adjustable output voltage.  
Feedback pin for LDO 1; connect to a resistor divider for an adjustable output voltage.  
Analog ground.  
DC power input from AC/DC adapters or USB input.  
ISEL  
IR1  
Charge current setting selection input to select IR0 or IR1.  
Charge current 1 programming resistor, selected by ISEL = 1.  
Charge current 2 programming resistor, selected by ISEL = 0.  
Connect a resistor between this pin and ground to set the end of charge termination current.  
Battery charger enable pin, active high with 200 kinternal pull down resistor.  
Exposed pad. Connect to ground directly beneath the package.  
IR0  
ITERM  
CEN  
EP  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
3
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Table 2, the recommended operating conditions are listed in  
Table 3, and electrical specifications are provided in Table 4.  
Electrical and Mechanical Specifications  
The absolute maximum ratings of the AAT3607 are provided in  
Table 2. AAT3607 Absolute Maximum Ratings (Note 1)  
Parameter  
Symbol  
Minimum  
Maximum  
7.5  
Units  
V
Maximum DC input voltage for VIN  
Maximum rating  
VIN_MAX  
Power and logic pins  
VIN + 0.3  
85  
V
Operating temperature range  
Soldering temperature range  
TJ  
40  
65  
ºC  
TS  
150  
ºC  
Maximum soldering temperature (at leads, 10 sec.)  
TLEAD  
300  
ºC  
Note 1: Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit and all other  
parameters set at or below their nominal value. Exceeding any of the limits listed may result in permanent damage to the device.  
Table 3. AAT3607 Recommended Operating Conditions  
Parameter  
Symbol  
Value  
49  
Units  
Thermal resistance  
JA  
JC  
PD  
ºC/W  
ºC/W  
W
Thermal resistance from junction to case  
Maximum power dissipation  
29  
2.0  
CAUTION: Although this device is designed to be as robust as possible, electrostatic discharge (ESD) can damage this device. This  
device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or  
equipment, which can discharge without detection. Industry-standard ESD precautions should be used at all times.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Table 4. AAT3607 Electrical Specifications (1 of 2) (Note 1)  
(VIN = 5 V, VBAT = 3.6 V, VSYS = VIN or VBAT, TA = –40 C to +85 C, Typical Values are TA = 25 C, Unless Otherwise Noted)  
Parameter  
Power Supply  
Symbol  
Test Condition  
Min  
Typical  
Max  
Units  
Input over-voltage protection range  
DC input operating voltage  
VIN_OVPMAX  
VIN  
AC/DC adaptor connected  
7.5  
5.5  
4.2  
V
V
V
4.1  
2.7  
Battery input operating voltage  
VBAT  
Buck 1-3 and LDO 1/2 enable,  
battery charger enabled, no load  
Quiescent current  
IQ  
700  
1000  
A  
Shutdown current  
ISHDN  
CEN; ENL1; ENL2; ENB1; ENB2; ENB3 = 0  
VIN rising  
1
A  
V
Under-voltage lockout voltage  
UVLO hysteresis  
VUVLO  
3.85  
6.05  
4
4.1  
VUVLOHYS  
VOVP  
500  
6.25  
200  
0.18  
1000  
mV  
V
Over-voltage protection voltage  
OVP hysteresis  
VIN rising  
6.45  
OVPHYS  
OVPRDSON  
ILIM  
mV  
OVP switch on-resistance  
Load switch current limit  
900  
1100  
mA  
Buck 1  
Input voltage  
VPB  
VSYS  
0.6  
V
%
Output voltage accuracy  
Output voltage range  
Feedback voltage  
VACC_BO1  
VRG_BO1  
VBFB1  
IBO1 = 10 mA to 400 mA, VIN = 4.1 V to 5.5 V  
3  
0.6  
3
VSYS 0.6  
0.609  
V
0.591  
400  
V
Maximum load current  
Feedback leakage  
P-channel current limit  
High side switch on-resistance  
Low side switch on-resistance  
Load regulation  
IBO1_MAX  
IBO1FBL  
mA  
A  
mA  
m  
m  
%
IBO1FB = 0.6 V  
0.2  
IBO1LIMP  
RBO1(DSON)_P  
RBO1(DSON)_N  
ΔVBO1/VBO1  
ΔVLBO1/ΔVBO1  
fOSCB1  
800  
300  
200  
1
ILOADB1 = 10 mA to 400 mA  
Line regulation  
VIN = 4.1 V to 5.5 V, ILOADB1 = 400 mA  
0.3  
1.6  
120  
%/V  
MHz  
s  
A  
mA  
V
Oscillator frequency  
Start-up time  
tSB1  
From enable to output regulation  
VSYS = VFBB1 = 5.0 V  
Input low current  
IENB1  
10  
10  
RST pin sink current  
RST pin low voltage  
IRST  
8
VRST_LOW  
IRST = 4 mA  
0.4  
Buck 2 and Buck 3  
Input voltage  
VPB  
VSYS  
0.6  
Output voltage accuracy  
Output voltage range  
Feedback voltage  
VACC_BO2,3  
VRG_BO2,3  
VBFB2,3  
IBO2,3 = 10 mA to 300 mA  
3  
0.6  
3
%
V
VSYS 0.6  
0.609  
0.591  
300  
V
Maximum load current  
Feedback leakage  
IBO2,3_MAX  
IBO2,3FBL  
mA  
A  
mA  
m  
m  
VBO2,3FB = 0.6 V  
0.2  
P-channel current limit  
High-side switch on-resistance  
Low-side switch on-resistance  
IBO2,3LIM_P  
RBO2,3DSON_P  
RBO2,3DSON_N  
600  
300  
200  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
5
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Table 4. AAT3607 Electrical Specifications (2 of 2) (Note 1)  
(VIN = 5 V, VBAT = 3.6 V, VSYS = VIN or VBAT, TA = –40 C to +85 C, Typical Values are TA = 25 C, Unless Otherwise Noted)  
Parameter  
Buck 2 and Buck 3  
Symbol  
Test Condition  
Min  
Typical  
Max  
Units  
Load regulation  
ΔVBO2,3/VBO2,3  
ILOADB2,3 = 10 mA to 300 mA  
1
%
VIN = 4.1 V to 5.5 V, ILOADB2,3 = 300 mA,  
TA = 25 °C  
Line regulation  
ΔVLBO2,3/ΔVBO2,3  
0.3  
%/V  
Oscillator frequency  
Start-up time  
fOSCB2,3  
tSB2,3  
1.6  
MHz  
s  
From enable to output regulation  
VSYS = VFBB2,3 = 5.0 V  
120  
Input low current  
IENB2,3  
10  
10  
A  
Battery Charger  
Output charger voltage regulation  
Preconditioning voltage threshold  
Preconditioning charge current  
VBAT_REG  
VMIN  
0 °C TA +70 °C  
4.158  
2.4  
4.2  
2.6  
10  
4.242  
2.8  
V
V
ICH_PRE  
%ICH_CC  
Constant-current mode charge  
current  
ICH_CC  
ISEL = 1, RSET1 =1.6 k, VBAT = 3.6 V  
900  
1000  
1100  
mA  
Thermal loop regulation  
Thermal loop entering threshold  
Thermal loop exiting threshold  
CHG pin sink current  
TREG  
90  
110  
85  
8
°C  
°C  
°C  
mA  
V
TLOOP_IN  
TLOOP_OUT  
ICHG  
CHG pin low voltage  
VCHGL  
0.4  
0.6  
Enable threshold low  
VCENL  
V
Enable threshold high  
VCENH  
1.4  
V
LDO 1, 2  
IOUT = 1 mA to 150 mA, TA = 25 °C  
1.5  
2.5  
0.6  
1.5  
2.5  
%
Output voltage accuracy  
VACC_LO1,2  
IOUT = 1 mA to 150 mA, TA = 40 °C to 85 °C  
Output voltage range  
Input voltage  
VRG_LO1,2  
VLDO1,2_IN  
VDO  
VSYS VDO2  
V
V
VSYS  
200  
Dropout voltage (Note 2)  
ILO1,2 = 150 mA  
400  
mV  
ΔVLO1,2/VLO1,2   
ΔVLDO1,2_IN  
Line regulation  
VSYS = VLO1,2 + 1 to 5.0 V  
0.09  
%/V  
Output current  
ILO1,2  
ISC  
VLO1,2 > 0.6 V  
VLO1,2 < 0.4 V  
150  
mA  
mA  
Short circuit current  
250  
22  
Output voltage temperature  
coefficient  
TLO1,2C  
ppm/°C  
Enable time delay  
TENL1,2_DLY  
VENL1,2_L  
VENL1,2_H  
15  
μs  
V
Enable threshold low  
Enable threshold high  
0.6  
1.4  
V
Thermal  
Over-temperature shutdown  
threshold  
TSD  
Warning thermal threshold  
140  
15  
°C  
°C  
Over-temperature shutdown  
hysteresis  
THYS  
Note 1: Performance is guaranteed only under the conditions listed in this table.  
Note 2: VDO is defined as VIN – VOUT when VOUT is 98% of nominal.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
6
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Typical Performance Characteristics  
(VIN = 5 V, VBAT = 3.6 V, VSYS = VIN or VBAT, TA = –40 C to +85 C, Typical Values are TA = 25 C, Unless Otherwise Noted)  
1200  
600  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
R
R
R
SET = 1.6 kΩ  
SET = 1.78 kΩ  
SET = 2 kΩ  
R
R
R
SET = 3.24 kΩ  
SET = 3.56 kΩ  
SET = 16 kΩ  
V
V
V
IN = 4.5 V  
IN = 5.0 V  
IN = 5.5 V  
R
SET = 32.4 kΩ  
2.4  
2.8  
3.2  
3.6  
4.0  
4.4  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
V
BAT (V)  
Input Voltage VIN (V)  
Figure 4. Charge Current vs Battery Voltage (RSET = 3.24 k)  
Figure 3. Constant Current vs Input Voltage  
4.3  
4.25  
4.2  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
4.15  
T
T
T
A
A
A
= 0 °C  
= 25 °C  
= 70 °C  
4.1  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
4.5  
4.6  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
Figure 6. Battery Voltage vs Input Voltage  
Figure 5. Pre-Conditioning Threshold Voltage vs Input Voltage  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
7
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
100  
90  
80  
70  
60  
3
2
VSYS = 4.2 V  
VSYS = 4.5 V  
VSYS = 5.0 V  
VSYS = 5.5 V  
VBAT = 3.7 V  
VBAT = 4.2 V  
1
0
50  
40  
30  
20  
10  
0
VSYS = 4.2 V  
VSYS = 4.5 V  
VSYS = 5.0 V  
VSYS = 5.5 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
-1  
-2  
-3  
0
50  
100  
150  
200  
250  
300  
350  
400  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Figure 8. Buck 1 DC Regulation  
Figure 7. Step-Down Buck Efficiency vs Output Current  
(VOUT = 3.0 V, L = 2.2 H)  
(VOUT = 3.0 V, L = 2.2 H)  
1
0.5  
0
100  
90  
80  
70  
60  
50  
V
V
V
BAT = 3.0 V  
BAT = 3.6 V  
BAT = 4.2 V  
V
V
V
V
SYS = 4.2 V  
SYS = 4.5 V  
SYS = 5.0 V  
SYS = 5.5 V  
VSYS = 4.2 V  
VSYS = 4.5 V  
VSYS = 5.0 V  
VSYS = 5.5 V  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
40  
30  
20  
10  
0
-0.5  
-1  
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Figure 10. Buck 2 DC Regulation  
Figure 9. Step-Down Buck Efficiency vs Output Current  
(VOUT = 1.8 V, L = 2.2 H)  
(VOUT = 1.8 V, L = 2.2 H)  
1
0.5  
0
100  
90  
80  
70  
60  
VSYS = 4.2 V  
VSYS = 4.5 V  
VSYS = 5.0 V  
VSYS = 5.5 V  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
-0.5  
-1  
50  
40  
30  
20  
10  
0
V
V
V
BAT = 3.0 V  
BAT = 3.6 V  
BAT = 4.2 V  
V
V
V
V
SYS = 4.2 V  
SYS = 4.5 V  
SYS = 5.0 V  
SYS = 5.5 V  
-1.5  
-2  
0
50  
100  
150  
200  
250  
300  
0.1  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Figure 12. Buck 3 DC Regulation  
Figure 11. Step-Down Buck Efficiency vs Output Current  
(VOUT = 1.2 V, L = 2.2 H)  
(VOUT = 1.2 V, L = 2.2 H)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
8
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
T
T
T
A
A
A
= –40 °C  
= 25 °C  
= 85 °C  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
85  
85  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
Input Voltage VIN (V)  
Input Voltage VIN (V)  
Figure 13. Quiescent Current vs Input Voltage  
(Buck 1-3 and LDO 1/2 Enabled, No Load)  
Figure 14 Frequency vs Input Voltage  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
V
EN  
(2 V/div)  
0
VOUT  
(2 V/div)  
IIN  
0
(200 mA/div)  
tc354  
-40  
-15  
10  
35  
60  
Time (40 μs/div)  
Temperature (°C)  
Figure 16. Buck 1 Soft Start  
Figure 15. Switching Frequency vs Temperature  
(VIN = 5.0 V)  
(VIN = 5.0 V, VOUT = 3.0 V, IOUT = 400 mA)  
2.0  
1.5  
2.0  
1.5  
1.0  
1.0  
0.5  
0.5  
0.0  
0.0  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-2.0  
-2.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
Temperature (°C)  
Temperature (°C)  
Figure 18. Buck 2 Output Voltage Accuracy vs Temperature  
(VIN = 5.0 V, VOUT = 1.8 V, IOUT = 300 mA)  
Figure 17. Buck 1 Output Voltage Accuracy vs Temperature  
(VIN = 5.0 V, VOUT = 3.0 V, IOUT = 400 mA)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
9
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
2.0  
1.5  
0.5  
0.25  
0
I
I
I
I
I
OUT = 10 mA  
OUT = 100 mA  
OUT = 200 mA  
OUT = 300 mA  
OUT = 400 mA  
1.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.25  
-0.5  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
-40  
-15  
10  
35  
60  
85  
Input Voltage VIN V)  
Temperature (°C)  
Figure 20. Buck 1 Line Regulation  
(VOUT = 3.0 V)  
Figure 19. Buck 3 Output Voltage Accuracy vs Temperature  
(VIN = 5.0 V, VOUT = 1.2 V, IOUT = 300 mA)  
0.5  
0.25  
0
0.5  
IOUT = 10 mA  
IOUT = 100 mA  
IOUT = 200 mA  
I
I
I
I
OUT = 10 mA  
OUT = 100 mA  
OUT = 200 mA  
OUT = 300 mA  
0.25  
IOUT = 300 mA  
0
-0.25  
-0.5  
-0.25  
-0.5  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
Input Voltage VIN V)  
Input Voltage VIN V)  
Figure 22. Buck 1 Line Regulation  
(VOUT = 1.2 V)  
Figure 21. Buck 2 Line Regulation  
(VOUT = 1.8 V)  
I
INDUCTOR  
IINDUCTOR  
(200 mA/div)  
(200 mA/div)  
0
0
0
VLX  
V
LX  
(2 V/div)  
(2 V/div)  
OUT 0  
V
V
OUT  
(20 mV/div)  
(AC Coupled)  
(20 mV/div)  
0
0
(AC Coupled)  
tc361  
tc362  
Time (400 ns/div)  
Time (400 ns/div)  
Figure 23. Buck 1 Output Ripple  
Figure 24. Buck 2 Output Ripple  
(VIN = 5.0 V, VOUT = 3.0 V, COUT = 4.7 F, 400 mA Load)  
(VIN = 5.0 V, VOUT = 1.8 V, COUT = 4.7 F, 300 mA Load)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
10  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
I
INDUCTOR  
(200 mA/div)  
VOUT  
0
(100 mV/div)  
0
VLX  
(2 V/div)  
I
OUT  
0
0
V
OUT  
(100 mA/div)  
(20 mV/div)  
(AC Coupled)  
0
tc364  
tc363  
Time (20 μs/div)  
Time (400 ns/div)  
Figure 26. Buck 1 Load Transient Response  
(VIN = 5.0 V, VOUT = 3.0 V, 75 mA to 150 mA Load)  
Figure 25. Buck 3 Output Ripple  
(VIN = 5.0 V, VOUT = 1.2 V, COUT = 4.7 F, 300 mA Load)  
V
OUT  
VOUT  
(50 mV/div)  
0
0
(100 mV/div)  
I
OUT  
I
OUT  
(100 mA/div)  
(100 mA/div)  
0
0
tc365  
tc366  
Time (20 μs/div)  
Time (20 μs/div)  
Figure 28. Buck 3 Load Transient Response  
(VIN = 5.0 V, VOUT = 1.2 V, 75 mA to 200 mA Load)  
Figure 27. Buck 2 Load Transient Response  
(VIN = 5.0 V, VOUT = 1.8 V, 75 mA to 125 mA Load)  
V
IN  
V
IN  
(2 V/div)  
(2 V/div)  
0
0
0
0
V
OUT  
V
OUT  
(100 mV/div)  
(100 mV/div)  
tc368  
tc367  
Time (40 μs/div)  
Figure 30. Buck 2 Line Transient Response  
(VIN = 4.1 V to 5.0 V, VOUT = 1.8 V, 300 mA Load)  
Time (40 μs/div)  
Figure 29. Buck 1 Line Transient Response  
(VIN = 4.1 V to 5.0 V, VOUT = 3.0 V, 400 mA Load)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
11  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
0.3  
0.2  
VBAT = 3.0 V  
VBAT = 3.6 V  
VBAT = 4.2 V  
VSYS = 4.2 V  
VSYS = 4.5 V  
VSYS = 5.0 V  
VSYS = 5.5 V  
V
IN  
(2 V/div)  
0.1  
0.0  
0
-0.1  
-0.2  
-0.3  
V
OUT  
(100 mV/div) 0  
tc369  
0
30  
60  
90  
120  
150  
Output Current (mA)  
Time (40 μs/div)  
Figure 32. Load Regulation vs Output Current  
Figure 31. Buck 3 Line Transient Response  
(VIN = 4.1 V to 5.0 V, VOUT = 1.2 V, 300 mA Load)  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
2.55  
2.0  
1.5  
1.0  
0.5  
0.0  
I
I
I
I
I
OUT = 0 mA  
-0.5  
-1.0  
-1.5  
-2.0  
OUT = 10 mA  
OUT = 50 mA  
OUT = 100 mA  
OUT = 150 mA  
2.8  
2.85  
2.9  
2.95  
3.0  
3.05  
3.1  
3.15  
3.2  
-40  
-15  
10  
35  
60  
85  
Input Voltage VIN V)  
Temperature (°C)  
Figure 34. Dropout Characteristics vs Input Voltage  
(VOUT = 2.8 V)  
Figure 33. Output Voltage Accuracy vs. Temperature  
(VIN = 5.0 V, VOUT = 2.8 V, IOUT = 150 mA)  
1.2  
1.1  
1.0  
0.9  
0.8  
70  
60  
50  
40  
30  
20  
10  
0
0.7  
ENH  
ENL  
0.6  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
0.1  
1
10  
100  
Input Voltage VIN V)  
Frequency (kHz)  
Figure 36. Enable Threshold Voltage vs Input Voltage (LDO2)  
Figure 35. PSRR vs Frequency  
(VIN = 5.0 V, VRIPPLE = 500 mV, 10 mA Load)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
12  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
0.5  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
IOUT = 10 mA  
IOUT = 50 mA  
IOUT = 100 mA  
IOUT = 150 mA  
0.4  
0.3  
0.2  
0.1  
0
TA = –40 °C  
TA = 25 °C  
TA = 85 °C  
-40  
-15  
10  
35  
60  
85  
0
30  
60  
90  
120  
150  
Temperature (°C)  
Output Current (mA)  
Figure 38. Dropout Voltage vs Temperature  
Figure 37. Dropout Voltage vs Output Current  
0.5  
0.25  
0
-0.25  
-0.5  
I
I
I
OUT = 50 mA  
OUT = 100 mA  
OUT = 150 mA  
4.1  
4.3  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
Input Voltage VIN V)  
Figure 39. Line Regulation  
(VOUT = 2.8 V)  
V
IN  
V
OUT  
(2 V/div)  
0
(50 mV/div)  
0
0
I
OUT  
V
OUT  
(50 mA/div)  
(100 mA/div)  
0
tc379  
tc378  
Time (20 μs/div)  
Time (40 μs/div)  
Figure 41. Load Transient Response  
(VIN = 5.0 V, VOUT = 2.8 V, 50 mA to 150 mA Load)  
Figure 40. Line Transient Response  
(VIN = 4.1 V to 5.0 V, VOUT = 1.8 V, 150 mA Load)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
13  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
VIN  
BAT  
CHG  
OVP Circuit  
OVP  
Switch  
SYS  
ISEL  
IR1  
Charger Control Logic  
CEN  
VB  
IR0  
ITERM  
LX1  
BFB1  
ENB1  
BUCK1  
LO1  
ENL1  
LFB1  
LDO1  
LDO2  
PGND  
AGND  
LX2  
BFB2  
ENB2  
BUCK2  
BUCK3  
ENL2  
LO2  
LFB2  
LX3  
RST  
Reset  
Function  
BFB3  
ENB3  
tc380  
Figure 42. AAT3607 Functional Block Diagram  
exceeds the input current limit, supplemental current is taken  
from the battery.  
Functional Description  
The AAT3607 is a complete power management solution. It  
seamlessly integrates a battery charger with three step-down  
converters and two low-dropout regulators to provide power  
from a wall adapter, a USB port, or a single-cell Lithium  
Ion/Polymer battery. Internal load switches allow the converters  
to operate from the best available power source.  
Figure 42 shows the functional block diagram for the AAT3607.  
Battery Charger and SYS  
The charger seamlessly distributes power between the current-  
limited external input, the battery, and the system load. The  
basic functions performed with the battery and external power  
source are:  
If only the battery is available, the voltage converters are  
powered directly from the battery through a 100 mload  
switch. The charger goes into sleep mode and draws less than  
1 A quiescent current. If the system is connected to a wall  
adapter, the voltage converters are powered directly from the  
adapter through the Over-Voltage Protection (OVP) switch with  
on-resistance of 180 mand the battery is disconnected from  
the voltage converters’ inputs. This allows the system to  
operate regardless of the charging state of the battery, or to  
operate with no battery.  
If the system load requirements are less than the input  
current limit, the battery is charged with residual power from  
the input source.  
If the system load requirements exceed the input current limit,  
the battery supplies supplemental current to the load through  
the internal system load switch.  
If the battery is connected and there is no external power  
input, SYS is powered only from the battery.  
The charger circuitry offers flexible power distribution from an  
AC/DC adapter or a current-limited USB source to the battery  
and system load. The battery is charged with any available  
power not used by the system load. If a system load peak  
If an external power input is connected and there is no  
battery, the SYS is powered from the external power input.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
14  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
A thermal-limiting circuit reduces the battery charge rate from  
the external power source current to prevent the IC from  
overheating.  
Trickle charge mode continues until the battery voltage reaches  
2.6 V. At this point the battery charger switches to constant  
current charge mode. The current level for this mode is  
programmed by the IR1 and IR0 pins using a resistor connected  
from the pin to ground and selected by the ISET pin.  
VIN is the power input pin that supplies the system (SYS) up to  
1 A through an over-voltage protection switch. The battery  
charge current level is selected with the ISEL input pin. The two  
current levels are designed for use with AC/DC wall adapters  
and current-limited USB power sources. The operating voltage  
range for VIN is 4.1 V to 5.5 V.  
Programmed current can be set from a minimum of 100 mA up  
to a maximum of 1 A. Constant current charge mode continues  
until the battery voltage reaches the voltage regulation point  
VBAT_REG. When the battery voltage reaches the regulation  
voltage (VBAT_REG), the battery charger transitions to constant  
voltage mode. VBAT_REG is factory programmed to 4.2 V  
(nominal). Charging in constant voltage mode continues until  
the charge current has fallen to the end of charge termination  
current. The charge termination current level is programmed by  
the ITERM pin with a resistor connected to this pin to ground.  
Floating this pin will result in the termination current set to 10%  
of IR0 or IR1. Connecting this pin to ground will result in the  
lowest termination current.  
When the input voltage is below the under-voltage threshold or  
below the battery voltage, it is considered to be invalid. The  
power input is disconnected when the input voltage is invalid.  
Battery Charger  
Battery charging commences only after the AAT3607 battery  
charger enable pin (CEN) is turned on and the charger circuits  
check for several conditions in order to maintain a safe charging  
environment. The input supply must be above the minimum  
operating voltage (UVLO) and must be within specifications. The  
OVP function ensures that only safe input voltages within  
specifications are connected to the battery charger. Otherwise,  
the unsafe input voltage is completely disconnected from the  
battery charger terminals.  
After the charge cycle is complete, the battery charger turns off  
the series pass device and automatically goes into a power  
saving sleep mode. During this time, the series pass device  
blocks current in both directions to prevent the battery from  
discharging through the battery charger.  
The battery charger remains in sleep mode even if the charger  
source is disconnected. It comes out of sleep mode when either  
the battery terminal voltage drops below the (VBAT_REG 0.1 V)  
threshold or the charger CEN pin is recycled, or the charging  
source is reconnected. In all cases, the battery charger monitors  
all parameters and resumes charging in the most appropriate  
mode. When no automatic charge reduction mode or digital  
thermal loop is triggered, the charge profile is controlled as  
shown in Figure 43. The AAT3607 also includes an integrated  
reverse blocking function.  
When the battery is connected to the BAT pin, the battery  
charger checks the condition of the battery and determines  
which charging mode to apply. If the battery voltage is below  
VMIN, the battery charger initiates trickle charge mode and  
charges the battery at 10% of the programmed constant-  
current magnitude. For example, if the programmed current is  
500 mA, the trickle charge current will be 50mA. Trickle charge  
is a safety precaution for a deeply discharged cell and also  
reduces the power dissipation in the internal series pass  
MOSFET when the input-output voltage differential is at its  
highest.  
Battery Charge Current  
Battery Voltage  
Preconditioning  
Trickle Charge  
Phase  
Constant Current (CC) Charge Phase  
Constant Voltage (CV)  
Charge Phase  
Charge Complete Voltage  
I = Max CC  
Regulated Current  
Charge Current  
Battery Voltage  
Constant Current Mode  
Voltage Threshold  
Termination Current  
Set by RTERM  
I = CC/10  
Trickle Charge Current  
tc381  
Time  
Figure 43. Charge Current vs. Battery Voltage Profile During Charging Phases  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
15  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Thermal Loop Control  
OVP Switch  
The actual maximum charging current is a function of charge  
adapter input voltage, the state of charge of the battery at the  
moment of charge, the ambient temperature, and the thermal  
impedance of the package. The maximum programmable  
current may not be achievable under all operating parameters.  
One issue to consider is the amount of current being provided to  
the SYS from VIN and at the same time being provided as  
charge current to the battery from VIN. A reduction in the  
charge current is designed when the device temperature is too  
high through the digital thermal loop of the charger.  
In normal operation the OVP switch acts as a load switch,  
connecting and disconnecting the power supply from VIN. A low  
resistance MOSFET is used to minimize the voltage drop  
between the voltage source and the charger and to reduce  
power dissipation. When the voltage on the input exceeds the  
6.25 V voltage limit, the device immediately turns off the  
internal OVP switch, disconnecting the load from the abnormal  
voltage and preventing damage to any downstream  
components. If an over-voltage condition is applied when the  
device is enabled, then the switch remains OFF.  
To protect the linear charging IC from thermal problems, a  
special thermal loop control system is used to maximize  
charging current. The thermal management system measures  
the internal circuit die temperature and reduces the fast charge  
current when the die exceeds the preset internal temperature  
control threshold. Once the thermal loop control becomes  
active, the fast charge current is initially reduced by a factor of  
0.44.  
On initial power-up, if UVLO < VIN < 6.25 V, the OVP switch  
turns on after an 180 s typical internal delay, if VIN < UVLO or  
if VOVP > 6.25 V, the OVP switch is held off.  
If VIN > 6.25 V, the OVP switch is held off. After VIN < (6.25 V   
hysteresis), the OVP switch turns on after an 180 s typical  
internal delay.  
Synchronous Step-Down Converter  
The initial thermal loop current can be estimated by the  
following equation:  
The AAT3607 contains two high-performance 300 mA and one  
high-performance 400 mA, 1.6 MHz synchronous step-down  
converters. The step-down converters operate to ensure high  
efficiency performance over all load conditions. All three output  
voltages are programmable by external resistor dividers to  
feedback the output voltage and compare it to the internal 0.6 V  
reference voltage.  
ITLOOP ICC 0.44  
The thermal loop control re-evaluates the circuit die  
temperature every three seconds and raises the fast charge  
current in small steps to the full fast charge current level.  
Figure 44 illustrates the thermal loop function at 1 A fast charge  
current as the ambient temperature increases and recovers. In  
this manner the thermal loop controls the system charge level,  
and the AAT3607 provides the highest level of constant current  
in the fast charge mode for any possible valid ambient  
temperature condition.  
The input voltage range is from 4.1 V to 5.5 V, and the output  
voltage is programmable. Power devices are sized for 300 mA  
and 400 mA current capability while maintaining over 90%  
efficiency at full load. High efficiency is maintained at lower  
currents.  
A high DC gain error amplifier with internal compensation  
controls the output. It provides excellent transient response and  
load/line regulation. Transient response time is typically less  
than 20 s. The converter has soft start control to limit inrush  
current.  
1.2  
1.0  
0.8  
Apart from the input capacitor, only a small L-C filter is required  
at the output side for the step-down converters to operate  
properly. Typically, a 2.2 H inductor or a 4.7 F ceramic  
capacitor is recommended for low output voltage ripple and  
small component size.  
0.6  
0.4  
0.2  
0
tc382  
Time (10 s/div)  
Figure 44. Digital Thermal Loop Function at 1 A Fast Charge  
Current with Ambient Temperature Increasing and Recovering  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
16  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Control Loop  
of the chip rises above the temperature shutdown threshold, the  
AAT3607 is forced to turn off and restarts when the over-  
temperature condition is removed.  
The converter is a peak current mode step-down converter. The  
inner, wide bandwidth loop controls the inductor peak current.  
The inductor current is sensed through the P-channel MOSFET  
(high side) and is also used for short-circuit and overload  
protection. A fixed slope compensation signal is added to the  
sensed current to maintain stability for duty cycles greater than  
50%. The peak current mode loop appears as a voltage  
programmed current source in parallel with the output  
Worst case clock  
Buck1  
Buck2  
Buck3  
capacitor. The output of the voltage error amplifier programs  
the current mode loop for the necessary peak inductor current  
to force a constant output voltage for all load and line  
conditions. The voltage feedback resistive divider is external  
and the error amplifier reference voltage is 0.6 V. The voltage  
loop has a high DC gain making for excellent DC load and line  
regulation. The internal voltage loop compensation is located at  
the output of the transconductance voltage error amplifier.  
with built-in  
Buck1  
120º phase shift  
Soft Start  
Soft start increases the inductor current limit point linearly  
when the input voltage or enable input is applied. It limits the  
current surge seen at the input and eliminates output voltage  
overshoot.  
Buck2  
Buck3  
Active Discharge in Shutdown  
tc383  
All AAT3607 synchronous buck converters have an internal  
1 kresistor that discharges the output capacitor when the  
converter is off at LX node. The discharge resistors ensure that  
the load circuitry powers down quickly and completely. The  
internal discharge resistors are connected when a converter is  
disabled and when the device is in UVLO with an input voltage  
greater than 1.0 V. With an input voltage less than 1.0 V, the  
internal discharge resistors are not activated.  
Figure 45. Buck Converter Phase Shifting  
Low Dropout Regulator  
The advanced circuit design of the linear regulator has been  
specifically optimized for very fast startup and shutdown timing.  
This proprietary LDO has also been tailored for superior  
transient response characteristics. These traits are particularly  
important for applications that require fast power supply timing.  
Synchronous Buck Converters Phase Shift  
The high-speed turn-on capability is enabled through the  
implementation of a fast-start control circuit, which accelerates  
the power-up behavior of fundamental control and feedback  
circuits within the LDO regulator. Fast turn-off time response is  
achieved by an active output pull-down circuit, which is enabled  
when the LDO regulator is placed in shutdown mode. This  
active fast shutdown circuit has no adverse effect on normal  
device operation. The LDO regulator output has been  
specifically optimized to function with low cost, low ESR  
ceramic capacitors. However, the design allows for operation  
over a wide range of capacitor types.  
Converter phase shifting significantly reduces both input and  
output ripple current. Reducing ripple current allows for less  
input and output capacitance, reduces power dissipation, and  
improves efficiency. Figure 45 shows a comparison of the two  
approaches.  
Current Limit and Over-Temperature Protection  
Peak input current is limited for overload conditions. As load  
impedance decreases and the output voltage falls closer to  
zero, more power is dissipated internally, raising the device  
temperature. Thermal protection completely disables switching  
when internal dissipation becomes excessive, protecting the  
device from damage. The junction over-temperature threshold  
is 140 °C with 15 °C of hysteresis. If the junction temperature  
The regulator comes with complete short circuit and thermal  
protection. The combination of these two internal protection  
circuits gives a comprehensive safety system to guard against  
extreme adverse operating conditions.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
17  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Charge Enable  
CEN = High  
No  
Yes  
Yes  
V
IN OVP Test  
Shutdown  
VIN > VOVP  
No  
No  
V
IN UVLO Test  
VIN > VUVLO  
Yes  
Preconditioning  
Current Charge  
Yes  
Preconditioning Test  
Yes  
Yes  
Yes  
Yes  
Temperature Detection  
V
MIN > VBAT  
TJ  
> 140 °C  
No  
No  
No  
CC Phase Test  
Constant Current  
Charge  
Temperature Detection  
> 110 °C  
V
BAT_EOC > VBAT  
TJ  
No  
Yes  
Thermal Loop  
Charge Current  
Reduction  
CV Phase Test  
Constant Voltage  
Charge Mode  
I
TERM < IBAT  
No  
Recharge Test  
No  
Sleep Mode  
(VBAT_REG – 0.1) < VBAT  
tc384  
Figure 46. Battery Charger Operation Flowchart  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
18  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
100mA  
500mA  
Application Information  
Battery Charger  
RTERM 133   
103 26.7 k  
At this RTERM setting, when the other fast charge current is  
300 mA set by IR1, according to the same charge termination  
current percentage (20%), the ICH_TERM is 60 mA when IR1 is  
active to set the fast charge current by ISEL = high.  
Figure 46 shows the battery charger operation flowchart.  
Programmable Charge Current  
The AAT3607 has two pins (IR0 and IR1) for two kinds of charge  
current level setting selected by ISEL. When ISEL is low, the  
constant charge current is set by the resistor connected  
between IR0 and ground; when ISEL is high, it is set by the  
resistor between IR1 and ground. The programmed charge  
current up to 1 A can be calculated by:  
Floating the ITERM pin sets the termination charge current to a  
default 10% of the fast charge current.  
Table 6 shows some standard metal resistor values for different  
charge termination current percentages.  
Table 6. Standard 1% Metal Film Resistor Values for  
Charge Termination Current Percentage Setting.  
2
RSET  
ICH_CC  
KISET  
KISET  
Charge Termination  
Current Percentage (%)  
RTERM (k)  
13.3 or float  
20  
2
RSET  
10  
15  
20  
25  
30  
35  
40  
45  
50  
ICH_CC  
Among them, KISET = 800. Table 5 gives the recommended 1%  
tolerance metal film resistance values for a desired constant  
current charge level.  
26.7  
34  
41.2  
Table 5. Standard 1% Metal Film Resistor Values  
for Constant Current Setting  
47.5  
53.6  
ICH_CC (mA)  
50  
RSET (k)  
32.4  
21.5  
16  
60.4  
66.5  
75  
100  
Charge Status Indication  
200  
8.06  
5.36  
4.02  
3.24  
2.67  
2.32  
2
The AAT3607 has one status LED driver output with open drain  
structure. This single LED can indicate simple functions such as  
battery charging, charge complete, and charge disabled as  
shown in Table 7.  
300  
400  
500  
600  
Table 7. LED Status at Different Charge States  
700  
Description  
Battery charging  
Charge complete  
Charge disabled  
EN  
high  
high  
low  
LED Status  
800  
on  
off  
off  
900  
1.78  
1.60  
1000  
Programmable Charge Termination Current Percentage  
Reverse Blocking  
The charge termination current percentage of fast charge  
current can be programmed by an external resistor connected  
between ITERM and GND. This resistance can be calculated by  
The AAT3607 includes internal circuitry that eliminates the need  
for series blocking diodes, reducing solution size and cost as  
well as dropout voltage relative to conventional battery  
chargers. When the input supply is removed or when VIN goes  
below the AAT3607 Under-Voltage Lockout (UVLO) voltage, or  
when VIN drops below VBAT, the AAT3607 automatically  
reconfigures its power switches to minimize current drain from  
the battery.  
ICH _TERM  
RTERM 133   
103  
ICH_CC  
when ICH_CC is the fast charge current. For example, if the  
design’s intended charge termination current is 100 mA for a  
500 mA fast charge current set by IR0, then  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
19  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Charge Current Reduction  
R2  
R1  
VOUT 0.6V 1   
In many instances, product system designers do not know the  
real properties of potential ports used to supply power to the  
battery charger. Typically, powered USB ports found on desktop  
and notebook PCs should supply up to 500 mA. In the event the  
input power being used to supply the charger is unable to  
provide the programmed fast charge current or if the system  
under charge must also share supply current with other  
functions, the AAT3607 automatically reduces charge current to  
maintain SYS voltage not less than 4.5 V typical value.  
or  
V
OUT  
R2   
1 R1  
0.6V  
Table 8. Resistor Selection for Output Voltage Setting; Standard  
1% Resistor Values Substituted Closest to the Calculated  
Values  
R1 = 59 k  
R2 (k)  
R1 = 316 k  
R2 (k)  
VOUT (V)  
0.8  
Step-down Converter  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
105  
158  
210  
261  
316  
365  
422  
475  
634  
655  
732  
1000  
1430  
Programmable Output Voltage  
0.9  
For applications requiring an adjustable output voltage, the  
AAT3607 buck converter outputs can be externally  
programmed. Resistors R1 and R2 of Figure 47 program the  
output to regulate at a voltage higher than 0.6 V. To limit the  
bias current required for the external feedback resistor string  
while maintaining good noise immunity, the minimum  
suggested value for R1 is 59 k. Although a larger value further  
reduces quiescent current, it also increases the impedance of  
the feedback node, making it more sensitive to external noise  
and interference. Table 8 summarizes the resistor values for  
various output voltages with R1 set to either 59 kfor good  
noise immunity or 316 kfor reduced no load input current.  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
124  
137  
2.5  
187  
The AAT3607, combined with an external feed-forward  
capacitor (C2 in Figure 47), delivers enhanced transient  
response for extreme pulsed load applications. The addition of  
the feed-forward capacitor typically requires a larger output  
capacitor C3 for stability. The external resistor sets the output  
voltage according to the following equation:  
3.3  
267  
L1 2.2 μH  
VOUT  
VIN  
LX  
VIN  
C2  
22 pF  
AAT3607  
PGND  
C1  
10 μF  
C3  
10 μF  
FB  
R1  
267 kΩ  
R1  
59 kΩ  
tc385  
Figure 47. AAT3607 Basic Application Circuit with Programmable Output Voltage  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
20  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Low Dropout (LDO) Regulator  
Programmable Output Voltage  
Always examine the ceramic capacitor DC voltage coefficient  
characteristics when selecting the proper value. For example,  
the capacitance of a 10 F, 6.3 V, X5R ceramic capacitor with  
5.0 V DC applied is actually about 6 F.  
For applications requiring an adjustable output voltage, the  
AAT3607 LDO regulator outputs can also be externally  
programmed similar to the buck converter outputs. The  
feedback voltage is also set to 0.6 V, so the values of R1 and R2  
are determined by the equation:  
The maximum input capacitor RMS current for a single  
converter is:  
VOUT  
VIN  
VOUT  
VIN  
IRMS IOUT  
1   
R2  
R1  
VOUT 0.6V 1   
The input capacitor provides a low impedance loop for the  
edges of pulsed current drawn by the AAT3607. Low ESR/ESL  
X7R and X5R ceramic capacitors are ideal for this function. To  
minimize parasitic inductances, the capacitor should be placed  
as closely as possible to the IC. This keeps the high frequency  
content of the input current localized, minimizing EMI and input  
voltage ripple.  
or  
V
OUT  
R2   
1 R1  
0.6V  
Inductor Selection  
The step-down converter uses peak current mode control with  
slope compensation to maintain stability for duty cycles greater  
than 50%. The output inductor value must be selected so the  
inductor current down slope meets the internal slope  
compensation requirements. For most designs, the AAT3607  
operates with inductor values of 2.2 H to 3.3 H. Inductors  
with lower inductance values are physically smaller but  
generate higher inductor current ripple leading to higher output  
voltage ripple.  
In applications where the input power source lead inductance  
cannot be reduced to a level that does not affect the converter  
performance, a high ESR tantalum or aluminum electrolytic  
should be placed in parallel with the low ESR/ESL bypass  
ceramic capacitor. This dampens the high Q network and  
stabilizes the system.  
Output Capacitor  
The output capacitor limits the output ripple and provides  
holdup during large load transitions. A typical 4.7 F X5R or  
X7R ceramic capacitor typically provides sufficient bulk  
capacitance to stabilize the output during large load transitions  
and has the ESR and ESL characteristics necessary for low  
output ripple.  
Manufacturer specifications list both the inductor DC current  
rating, which is a thermal limitation, and the peak current  
rating, which is determined by the saturation characteristics.  
The inductor should not show any appreciable saturation under  
normal load conditions.  
Some inductors may meet the peak and average current ratings  
but still result in excessive losses due to a high DCR.  
The output voltage droop due to a load transient is dominated  
by the capacitance of the ceramic output capacitor. During a  
step increase in load current, the ceramic output capacitor  
alone supplies the load current until the loop responds. Within  
two or three switching cycles, the loop responds and the  
inductor current increases to match the load current demand.  
The relationship of the output voltage droop during the three  
switching cycles to the output capacitance can be estimated by:  
Always consider the losses associated with the DCR and its  
effect on the total converter efficiency when selecting an  
inductor.  
Input Capacitor  
Select a 10 F to 22 F X7R or X5R ceramic capacitor for the  
input. To estimate the required input capacitor size, determine  
the acceptable input ripple level (VPP) and solve for CIN. The  
calculated value varies with input voltage and is a maximum  
when VIN is double the output voltage.  
3 ILOAD  
VDROOP fSW  
COUT  
Once the average inductor current increases to the DC load  
level, the output voltage recovers. The above equation  
establishes a limit on the minimum value for the output  
capacitor with respect to load transients.  
VOUT  
VIN  
VOUT  
VIN  
1   
CIN  
VPP  
- ESR fSW  
IOUT  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
21  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Power Calculations  
TJ ( MAX ) pTOTAL JA TA  
Layout Considerations  
There are three types of losses associated with the AAT3607  
step-down converters: switching losses, conduction losses, and  
quiescent current losses. Conduction losses are associated with  
the RDS(ON) characteristics of the power output switching  
devices. Switching losses are dominated by the gate charge of  
the power output switching devices. At full load, with  
Continuous Conduction Mode (CCM), a simplified form of the  
losses is given by:  
When laying out the PC board of the AAT3607, follow the  
guidelines below:  
For the best results physically place the battery pack as close  
to the AAT3607 BAT pin as possible.  
To minimize voltage drops on the PCB, keep the high current  
carrying traces adequately wide.  
VOUT  
VIN  
VOUT  
VIN  
pBUCK I 2  
R
DS( ON )P   
RDS( ON )N 1   
For maximum power dissipation of the AAT3607 TQFN  
package, the exposed pad should be soldered to the board  
ground plane to further increase local heat dissipation.  
OUT   
tSW fS IOUT VIN IQ V\IN  
A ground pad below the exposed pad is strongly  
IQ is the step-down converter quiescent current. tSW is the  
recommended.  
switching time, RDS(ON)P and RDS(ON)N are the high side and low  
side switching MOSFETs’ on-resistance. VIN, VOUT and IOUT are  
the input voltage, the output voltage and the load current.  
Evaluation Board Description  
The AAT3607 Evaluation Board is used to test the AAT3607  
power management unit. A schematic diagram for the AAT3607  
Evaluation Board is provided in Figure 48, and the board layer  
details are shown in Figure 49. The actual bill of materials  
required for the AAT3607 Evaluation Board is shown in Table 9.  
Since R DS(ON), quiescent current, and switching losses all vary  
with input voltage, the total losses should be investigated over  
the complete input voltage range.  
For all the LDOs,  
PD(MAX)  
VIN VOUT IOUT( MAX )  
Package Information  
Package dimensions for the 28-pin TQFN package are shown in  
Figure 50. Tape and reel dimensions are shown in Figure 51.  
The total power losses of step-down converter and LDOs can be  
expressed as  
P
P  
pD( MAX )  
TOTAL  
BUCK  
Given the total losses, the maximum junction temperature can  
be derived from the JA for the package.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
22  
Data Sheet • AAT3620 Single Cell Li+ Switch Mode Battery Charger  
BAT  
U1  
AAT3607  
C4  
VIN  
23  
16  
10 μF  
VIN  
BAT  
4.1 V to 5.5 V  
R
SET  
0
1
3.24 kΩ  
1.6 kΩ  
26  
C1  
10 μF  
10 V  
17  
9
SYS  
4.1 V to 5.5 V  
IR0  
IR1  
RF11  
SYS  
R
SET  
25  
27  
59 kΩ  
PB  
C3  
C2  
R1 1 kΩ  
RTERM 13.3 kΩ  
ITERM  
ISEL  
CEN  
10 μF  
10 μF  
24  
28  
6
4
PGND  
CHG  
D1  
JISEL  
JCEN  
Red  
RF12  
59k  
R2 100 kΩ  
L1 2.2 μH  
15  
5
RST  
19  
21  
LO1  
BO1  
3 V/400 mA  
RL11 215 kΩ  
RL12 59 kΩ  
LO1  
2.8 V/150 mA  
LX1  
LFB1  
12  
CB12  
RB11 237 kΩ  
RB12 59 kΩ  
L2 2.2 μH  
CB11  
4.7 μF  
BFB1  
CL1  
2.2 μF  
18  
20  
LO2  
1.8 V/150 mA  
LO2  
RL21 118 kΩ  
RL22 59 kΩ  
CL2  
2.2 μF  
LFB2  
7
BO2  
1.8 V/300 mA  
LX2  
CB22  
CB21  
4.7 μF  
11  
BFB2  
RB21 118 kΩ  
14  
13  
1
ENL1  
ENL2  
ENB1  
ENB2  
ENB3  
JENL1  
JENL2  
JENB1  
JENB2  
JENB3  
RB22 59 kΩ  
L3 2.2 μH  
8
BO3  
1.2 V/300 mA  
LX3  
BFB3  
AGND  
CB32  
10  
22  
CB31  
4.7 μF  
2
RB31 59 kΩ  
3
RB32 59 kΩ  
EP  
0
tc386  
Figure 48. AAT3607 Evaluation Board Schematic  
tc387  
(a) Top Layer  
(b) Bottom Layer  
Figure 49. AAT3607 Evaluation Board Layer Details  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
201904D • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • August 27, 2013  
9
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Table 9. AAT3607 Evaluation Board Bill of Materials (BOM)  
Component  
Part Number  
Description  
PMU with OVP Dynamic Li-ion Charger  
Cap Ceramic, 10 F, 0805 X7R, 10 V, 10%  
Cap Ceramic, 4.7 F, 0603 X5R, 6.3 V, 10%  
Cap Ceramic, 2.2 F, 0603 X7R, 6.3 V, 10%  
Manufacturer  
Skyworks  
Murata  
U1  
AAT3607  
C1, C2, C3, C4  
CB11, CB21, CB31  
CL1, CL2  
GRM21BR71A106KE51  
GRM188R60J475KE19  
GCM188R70J225KE22  
Not populated  
Murata  
Murata  
CB12, CB22, CB32  
L1, L2, L3  
R1  
LQH3NPN2R2NM0L  
RC0603FR-071KL  
2.2 H, 73 m, 1.25 A, 20%  
Murata  
Yageo  
Yageo  
Yageo  
Res, 1 k, 1/10W, 1% 0603 SMD  
Res, 100 k, 1/10W, 1% 0603 SMD  
Res, 237 k, 1/10W, 1% 0603 SMD  
R2  
RC0603FR-07100KL  
RC0603FR-07237KL  
RB11  
RB12, RB22, RB31, RB32,  
RF11, RF12, RL12, RL22  
RC0603FR-0759KL  
Res, 59 k, 1/10W, 1% 0603 SMD  
Yageo  
RB21, RL21  
RL11  
RC0603FR-07118KL  
RC0603FR-07215KL  
RC0603FR-073K24L  
RC0603FR-071K6L  
RC0603FR-0713K3L  
0805KRCT  
Res, 118 k, 1/10W, 1% 0603 SMD  
Res, 215 k, 1/10W, 1% 0603 SMD  
Res, 3.24 k, 1/10W, 1% 0603 SMD  
Res, 1.6 k, 1/10W, 1% 0603 SMD  
Res, 13.3 k, 1/10W, 1% 0603 SMD  
Red LED 0805  
Yageo  
Yageo  
Yageo  
Yageo  
Yageo  
HB  
RSET0  
RSET1  
RTERM  
D1  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  
24  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Pin 1 Dot  
by Marking  
Detail "A"  
C0.3  
2.600 0.050  
4.000 0.050  
Bottom View  
Top View  
0.430 0.050  
0.400 0.050  
0.750 0.050  
0.203 REF  
0.050 0.050  
Pin 1 Indicator  
Side View  
All dimensions are in millimeters  
Detail "A"  
tc388  
Figure 50. AAT3607 28-Pin, 4 mm 4 mm TQFN Package Dimensions  
1.10  
2.00 0.05  
1.75 0.10  
4.00  
Ø1.50 0.10  
5.50 0.05  
4.35 0.10  
0.30 0.05  
Pin 1 Location  
8.00 0.10  
4.35 0.10  
tc186  
All dimensions are in millimeters  
Figure 51. AAT3607 Tape and Reel Dimensions  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
203236A • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • June 30, 2014  
25  
DATA SHEET • AAT3607: PMU WITH OVP DYNAMIC LI-ION CHARGER  
Ordering Information  
Model Name  
Part Marking (Note 1)  
Manufacturing Part Number  
AAT3607INJ-T1  
Evaluation Board Part Number  
AAT3607: PMU with OVP Dynamic Li-ion Charger  
Note 1: XY = assembly and date code.  
C1XYY  
AAT3607INJ-EVB  
Copyright © 2012 - 2014 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by  
Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the  
information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to  
update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or  
information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of  
Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A  
PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY  
DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS  
SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION,  
LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE  
POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury,  
death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any  
damages resulting from such improper use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of  
products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for  
applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.  
Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by  
reference.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
26  
June 30, 2014 • Skyworks Proprietary and Confidential Information • Products and Product Information are Subject to Change Without Notice • 203236A  

相关型号:

AAT3608IIC-1-T1

Power Supply Management Circuit, Adjustable, 8 Channel, TQFN-40
SKYWORKS

AAT3608IIC-1-T1

Power Management Circuit,
ANALOGICTECH

AAT3620IWO-4.2-T1

Power Supply Management Circuit, PDSO14,
SKYWORKS

AAT3663

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO14, TDFN-14
SKYWORKS

AAT3663IWO-4.2-2-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-8.4-1-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH