DR73-4R7-R [SKYWORKS]

12V, 1.5A Step-Down DC/DC Converter; 12V , 1.5A降压型DC / DC转换器
DR73-4R7-R
型号: DR73-4R7-R
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

12V, 1.5A Step-Down DC/DC Converter
12V , 1.5A降压型DC / DC转换器

转换器 电感器 PC
文件: 总19页 (文件大小:2637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Features  
General Description  
The AAT1162 is an 800kHz high efficiency step-down  
DC/DC converter. With a wide input voltage range of  
4.0V to 13.2V, the AAT1162 is an ideal choice for dual-  
cell Lithium-ion battery-powered devices and mid-pow-  
er-range regulated 12V-powered industrial applications.  
The internal power switches are capable of delivering up  
to 1.5A to the load.  
• Input Voltage Range: 4.0V to 13.2V  
• Up to 1.5A Load Current  
• Fixed or Adjustable Output:  
Output Voltage: 0.6V to VIN  
• Low 150μA No-Load Operating Current  
• Less than 1μA Shutdown Current  
• Up to 96% Efficiency  
• Integrated Power Switches  
• 800kHz Switching Frequency  
• Soft Start Function  
• Short-Circuit and Over-Temperature Protection  
• Minimum External Components  
• TDFN34-16 Package  
The AAT1162 is a highly integrated device, simplifying  
system-level design. Minimum external components are  
required for the converter.  
The AAT1162 optimizes efficiency throughout the entire  
load range. It operates in a combination PWM/Light Load  
mode for improved light-load efficiency. The high switch-  
ing frequency allows the use of small external compo-  
nents. The low current shutdown feature disconnects the  
load from VIN and drops shutdown current to less than  
1μA.  
Temperature Range: -40°C to +85°C  
Applications  
• Distributed Power Systems  
• Industrial Applications  
• Laptop Computers  
• Portable DVD Players  
• Portable Media Players  
• Set-Top Boxes  
The AAT1162 is available in a Pb-free, space-saving,  
thermally-enhanced 16-pin TDFN34 package and is  
rated over an operating temperature range of -40°C to  
+85°C.  
• TFT LCD Monitors and HDTVs  
Typical Application  
Output:  
L1  
0.6V min,  
1.5A max  
Input:  
4.0V ~ 13.2V  
IN  
LX  
FB  
2.2 to 4.7μH  
C2  
0.1μF  
R4  
10  
C6  
10μF  
EN  
DGND  
AIN  
AAT1162  
C8  
1μF  
C3  
22μF  
PGND  
AGND  
COMP  
LDO  
R5  
24k  
C7  
330pF  
C9  
1μF  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
1
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Pin Descriptions  
Pin #  
Symbol Function  
Power switching node. LX is the drain of the internal P-channel switch and N-channel synchronous recti-  
er. Connect the output inductor to the two LX pins and to EP2. A large exposed copper pad under the  
package should be used for EP2.  
1, 2, EP2  
3, 12  
LX  
N/C  
IN  
Not connected.  
Power source input. Connect IN to the input power source. Bypass IN to DGND with a 22μF or greater  
capacitor. Connect both IN pins together as close to the IC as possible. An additional 100nF ceramic  
capacitor should also be connected between the two IN pins and DGND, pin 6  
4, 5  
Exposed Pad 1 Digital Ground, DGND. The exposed thermal pad (EP1) should be connected to board  
ground plane and pins 6, 13, and 14. The ground plane should include a large exposed copper pad under  
the package for thermal dissipation (see package outline).  
Internal analog bias input. AIN supplies internal power to the AAT1162. Connect AIN to the input source  
voltage and bypass to AGND with a 0.1μF or greater capacitor. For additional noise rejection, connect to  
the input power source through a 10or lower value resistor.  
Internal LDO bypass node. The output voltage of the internal LDO is bypassed at LDO. The internal  
circuitry of the AAT1162 is powered from LDO. Do not draw external power from LDO. Bypass LDO to  
AGND with a 1μF or greater capacitor.  
Output voltage feedback input. FB senses the output voltage for regulation control. For xed output  
versions, connect FB to the output voltage. For adjustable versions, drive FB from the output voltage  
through a resistive voltage divider. The FB regulation threshold is 0.6V.  
6, 13,  
14, EP1  
DGND  
AIN  
7
8
9
LDO  
FB  
10  
11  
COMP  
AGND  
Control compensation node. Connect a series RC network from COMP to AGND, R = 51k and C = 150pF.  
Analog signal ground. Connect AGND to PGND at a single point as close to the IC as possible.  
Active high enable input. Drive EN high to turn on the AAT1162; drive it low to turn it off. For automatic  
startup, connect EN to IN through a 4.7kresistor. EN must be biased high, biased low, or driven to a  
logic level by an external source. Do not let the EN pin oat when the device is powered.  
15  
16  
EN  
PGND  
Power ground. Connect AGND to PGND at a single point as close to the IC as possible.  
Pin Configuration  
TDFN34-16  
(Top View)  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
PGND  
EN  
LX  
LX  
EP2  
EP1  
N/C  
IN  
DGND  
DGND  
N/C  
IN  
AGND  
DGND  
AIN  
LDO  
COMP  
FB  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
2
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Absolute Maximum Ratings1  
Symbol  
Description  
Value  
Units  
VIN, VAIN  
VLX  
VFB  
VEN  
TJ  
Input Voltage  
LX to GND Voltage  
FB to GND Voltage  
EN to GND Voltage  
-0.3 to 14  
V
V
V
V
°C  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-0.3 to VIN + 0.3  
-40 to 150  
Operating Junction Temperature Range  
Thermal Information3  
Symbol  
Description  
Maximum Power Dissipation4  
Thermal Resistance  
Value  
Units  
PD  
JA  
2.7  
37  
W
°C/W  
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum Rating should be applied at any one time.  
2. Based on long-term current density limitation.  
3. Mounted on an FR4 board.  
4. Derate 2.7mW/°C above 25°C.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
3
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Electrical Characteristics1  
4.0V < VIN < 13.2V. CIN = COUT = 22μF; L = 2.2 or 3.8μH, TA = -40°C to +85°C, unless otherwise noted. Typical values  
are at TA = 25°C.  
Symbol Description  
Conditions  
Min Typ Max Units  
VIN  
Input Voltage Range  
4.0  
13.2  
4.0  
V
Rising  
VUVLO  
Input Under-Voltage Lockout  
V
Hysteresis  
No Load  
VEN = GND  
0.3  
150  
IQ  
ISHDN  
Supply Current  
Shutdown Current  
300  
1
μA  
μA  
0.94  
VIN  
2.5  
VOUT  
Output Voltage Range  
Output Voltage Accuracy  
Line Regulation  
0.6  
V
%
VOUT  
VOUT  
VOUT/VIN  
VOUT  
IOUT = 0A to 1.5A  
-2.5  
/
VIN = 4.5V to 13.2V  
0.023 0.100  
0.4  
%/V  
/
Load Regulation  
VIN = 12V, VOUT = 5V, IOUT = 0A to 1.5A  
%
V
IOUT  
VFB  
Feedback Reference Voltage (adjustable version) No Load, TA = 25°C  
0.59 0.60  
0.61  
0.2  
Adjustable Version  
Fixed Version  
IFBLEAK  
FOSC  
FB Leakage Current  
VOUT = 1.2V  
μA  
2
0.8  
200  
PWM Oscillator Frequency  
Foldback Frequency  
Maximum Duty Cycle  
Minimum Turn-On Time  
Soft-Start Time  
0.6  
1
MHz  
kHz  
%
ns  
ms  
DC  
TON  
TS  
94  
100  
2
VIN = 12V  
VIN = 6V  
VIN = 12V  
VIN = 6V  
0.12  
0.15  
0.06  
0.08  
90  
RDS(ON)H  
RDS(ON)L  
P-Channel On Resistance  
N-Channel On Resistance  
ILIM  
ILXLEAK  
TSD  
THYS  
VIL  
Efciency  
PMOS Current Limit  
LX Leakage Current  
Over-Temperature Shutdown Threshold  
Over-Temperature Shutdown Hysteresis  
EN Logic Low Input Threshold  
EN Logic High Input Threshold  
EN Input Current  
VIN = 12V, VOUT = 5V, IOUT = 1.5A  
%
A
μA  
°C  
°C  
V
4.0  
6.0  
VIN = 13.2V, VLX = 0 to VIN  
1
140  
25  
0.4  
1.0  
VIH  
IEN  
1.4  
-1.0  
V
μA  
VEN = 0V, VEN = 13.2V  
1. The AAT1162 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-  
tion with statistical process controls.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Typical Characteristics  
Test circuit of Figure 2, unless otherwise specified.  
Efficiency vs. Output Current  
(VOUT = 5V)  
Load Regulation  
(VOUT = 5V)  
100  
90  
80  
70  
60  
50  
0.5  
VIN = 6V  
0.4  
VIN = 8.4V  
0.3  
VIN = 10V  
0.2  
VIN = 12V  
VIN = 13.2V  
0.1  
0
VIN = 6V  
40  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VIN = 8.4V  
VIN = 10V  
VIN = 12V  
VIN = 13.2V  
30  
20  
10  
0
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Efficiency vs. Output Current  
(VOUT = 3.3V)  
Load Regulation  
(VOUT = 3.3V)  
0.6  
0.4  
100  
VIN = 5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 8.4V  
VIN = 10V  
VIN = 12V  
VIN = 13.2V  
0.2  
0.0  
VIN = 5V  
-0.2  
-0.4  
-0.6  
VIN = 8.4V  
VIN = 10V  
VIN = 12V  
VIN = 13.2V  
1
10  
100  
1000  
10000  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Line Regulation  
(VOUT = 5V)  
Line Regulation  
(VOUT = 3.3V)  
0.4  
0.3  
0.2  
0.1  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
1.5A  
1mA  
10mA  
100mA  
-0.1  
-0.2  
-0.3  
-0.4  
-0.01  
-0.02  
-0.03  
-0.04  
1.5A  
1mA  
10mA  
100mA  
6
7
8
9
10  
11  
12  
5
6
7
8
9
10  
11  
12  
Input Voltage (V)  
Input Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
5
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Typical Characteristics  
Test circuit of Figure 2, unless otherwise specified.  
Supply Current vs. Input Voltage  
(VOUT = 5V)  
Switching Current vs. Temperature  
(VOUT = 5V)  
170  
160  
150  
140  
170  
160  
150  
140  
130  
130  
85°C  
VIN = 12V  
VIN = 6V  
120  
120  
110  
25°C  
-40°C  
110  
6
7
8
9
10  
11  
12  
-40  
-15  
10  
35  
60  
85  
Input Voltage (V)  
Temperature (°C)  
N-Channel RDS(ON) vs. Temperature  
P-Channel RDS(ON) vs. Temperature  
(VIN = 6V)  
120  
100  
80  
60  
40  
20  
0
200  
180  
160  
140  
120  
100  
80  
60  
40  
VIN = 12V  
VIN = 6V  
VIN = 6V  
VIN = 12V  
20  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Temperature (°C)  
Switching Frequency vs. Temperature  
Start-up Time  
(VOUT = 5.0V; CFF = 100pF; RLOAD = 1.5A;  
CIN = 10µF; COUT = 22µF; L = 3.8µH)  
810  
805  
800  
795  
790  
785  
780  
775  
770  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
VEN  
V
OUT  
ILOAD  
VIN = 6V  
VIN = 12V  
-40  
-15  
10  
35  
60  
85  
Temperature (°C)  
Time (500µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
6
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Typical Characteristics  
Test circuit of Figure 2, unless otherwise specified.  
Line Transient  
(VOUT = 5.0V; CFF = 100pF; VIN = 7.6V to 11V;  
IOUT = 1.5A; CIN = 10µF; COUT = 22µF; L = 3.8µH)  
Load Transient  
(VOUT = 3.3V; CFF = 100pF; COUT = 66µF)  
3.6  
3.4  
3.2  
12  
11  
10  
9
5.30  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
3
1.5A  
2.8  
8
10mA  
2.6  
2.4  
2.2  
2
7
6
5
4
Time (100µs/div)  
Time (50µs/div)  
Load Transient  
(VOUT = 3.3V; COUT = 66µF; No CFF  
Load Transient  
(VOUT = 5V; CFF = 100pF; COUT = 66µF)  
)
3.6  
3.4  
3.2  
3
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
1.5A  
1.5A  
2.8  
2.6  
2.4  
2.2  
2
10mA  
10mA  
Time (50µs/div)  
Time (50µs/div)  
Load Transient  
(VOUT = 5V; COUT = 66µF; No CFF  
VOUT vs. Temperature  
(VOUT = 3.3V; ILOAD = 1.5A)  
)
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
1
0.8  
0.6  
0.4  
0.2  
0
1.5A  
10mA  
-0.2  
-0.4  
-0.6  
-0.8  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
Time (50µs/div)  
Temperature (°C)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
7
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Typical Characteristics  
Test circuit of Figure 2, unless otherwise specified.  
Load Transient  
(VOUT = 3.3V; CFF = 100pF; COUT = 22µF)  
Load Transient  
(VOUT = 3.3V; COUT = 22µF; No CFF)  
3.9  
3.6  
3.3  
3.7  
3.3  
2.9  
2.5  
2.1  
1.7  
1.3  
0.9  
0.5  
3
1.5A  
1.5A  
2.7  
2.4  
2.1  
1.8  
1.5  
10mA  
10mA  
Time (50µs/div)  
Time (50µs/div)  
Load Transient  
(VOUT = 5V; CFF = 100pF; COUT = 22µF)  
Load Transient  
(VOUT = 5V; COUT = 22µF; No CFF)  
5.4  
5.4  
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
5.1  
4.8  
4.5  
4.2  
3.9  
3.6  
3.3  
3
1.5A  
1.5A  
10mA  
10mA  
Time (50µs/div)  
Time (50µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
8
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Functional Block Diagram  
LDO  
AIN  
IN  
Note1  
FB  
LDO  
Current  
Sense Amp  
+
-
+
-
+
Error  
Amp  
Control  
Logic  
Current  
Mode  
-
LX  
Comparator  
Reference  
PGND  
AGND  
EN  
DGND  
COMP  
.
Note1: For fixed output voltage versions, FB is connected to the  
error amplifier through the resistive voltage divider shown.  
back for improved short-circuit performance, and ther-  
mal overload protection to prevent damage in the event  
of an external fault condition.  
Functional Description  
The AAT1162 is a current-mode step-down DC/DC con-  
verter that operates over a wide 4V to 13.2V input volt-  
age range and is capable of supplying up to 1.5A to the  
load with the output voltage regulated as low as 0.6V.  
Both the P-channel power switch and N-channel syn-  
chronous rectifier are internal, reducing the number of  
external components required. The output voltage is  
adjusted by an external resistor divider; fixed output  
voltage versions are available upon request. The regula-  
tion system is externally compensated, allowing the cir-  
cuit to be optimized for each application. The AAT1162  
includes cycle-by-cycle current limiting, frequency fold-  
Control Loop  
The AAT1162 regulates the output voltage using con-  
stant frequency current mode control. The AAT1162  
monitors current through the high-side P-channel  
MOSFET and uses that signal to regulate the output volt-  
age. This provides improved transient response and  
eases compensation. Internal slope compensation is  
included to ensure the current “inside loop” stability.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
9
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
High efficiency is maintained under light load conditions  
by automatically switching to variable frequency Light  
Load control. In this condition, transition losses are  
reduced by operating at a lower frequency at light  
loads.  
Applications Information  
Setting the Output Voltage  
Figure 1 shows the basic application circuit for the  
AAT1162 and output setting resistors. Resistors R1 and  
R2 program the output to regulate at a voltage higher  
than 0.6V. To limit the bias current required for the  
external feedback resistor string while maintaining good  
noise immunity, the minimum suggested value for R2 is  
5.9kΩ. Although a larger value will further reduce quies-  
cent current, it will also increase the impedance of the  
feedback node, making it more sensitive to external  
noise and interference. Table 1 summarizes the resistor  
values for various output voltages with R2 set to either  
5.9kΩ for good noise immunity or 59kΩ for reduced no  
load input current.  
Short-Circuit Protection  
The AAT1162 uses a cycle-by-cycle current limit to pro-  
tect itself and the load from an external fault condition.  
When the inductor current reaches the internally set  
3.0A current limit, the P-channel MOSFET switch turns  
off and the N-channel synchronous rectifier is turned on,  
limiting the inductor and the load current.  
During an overload condition, when the output voltage  
drops below 50% of the regulation voltage (0.3V at FB),  
the AAT1162 switching frequency drops by a factor of 4.  
This gives the inductor current ample time to reset dur-  
ing the off time to prevent the inductor current from  
rising uncontrolled in a short-circuit condition.  
L1  
EP2  
VOUT  
VIN 4.5V- 13.2V  
R4  
C6  
10μF  
3.8μH  
5V, 1.5A  
LX  
3
4
1
2
LX  
LX  
EN  
IN  
C1  
100pF  
R3  
10Ω  
5
7
C3  
22μF  
Thermal Protection  
C2  
0.1μF  
432kΩ  
IN  
9
AAT1162  
FB  
AIN  
10  
11  
C8  
1μF  
R6  
COMP  
AGND  
The AAT1162 includes thermal protection that disables  
the regulator when the die temperature reaches 140ºC.  
It automatically restarts when the temperature decreas-  
es by 25ºC or more.  
59kΩ  
6
13  
16  
R5  
24kΩ  
DGND  
DGND  
PGND  
14  
8
DGND  
LDO  
DGND  
EP1  
C7  
330pF  
C9  
1μF  
Figure 1: Typical Application Circuit.  
The adjustable feedback resistors, combined with an  
external feed forward capacitor (C1 in Figure 1), deliver  
enhanced transient response for extreme pulsed load  
applications. The addition of the feed forward capacitor  
typically requires a larger output capacitor C3 for stabil-  
ity. Larger C1 values reduce overshoot and undershoot  
during startup and load changes. However, do not  
exceed 470pF to maintain stable operation.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
10  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
The external resistors set the output voltage according  
to the following equation:  
Where IL is inductor ripple current. Large value induc-  
tors lower ripple current and small value inductors result  
in high ripple currents. Choose inductor ripple current  
approximately 32% of the maximum load current 1.5A,  
or IL = 480mA. For output voltages above 3.3V, the  
minimum recommended inductor is 3.8μH. For 3.3V and  
below, use a 2 to 3.8μH inductor. For optimum voltage-  
positioning load transients, choose an inductor with DC  
series resistance in the 15mto 20mrange. For  
higher efficiency at heavy loads (above 1A), or minimal  
load regulation (but some transient overshoot), the  
resistance should be kept below 18m. The DC current  
rating of the inductor should be at least equal to the  
maximum load current plus half the ripple current to  
prevent core saturation (1.5A + 280mA). Table 2 lists  
some typical surface mount inductors that meet target  
applications for the AAT1162.  
R1⎞  
R2⎠  
V
OUT = 0.6V 1 +  
or  
V
-1 · R2  
OUT  
R1 =  
V
REF  
Table 1 shows the resistor selection for different output  
voltage settings.  
R2 = 5.9(kΩ)  
R1 (kΩ)  
R2 = 59(kΩ)  
R1 (kΩ)  
VOUT (V)  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.8  
1.85  
2.0  
2.5  
3.3  
5.0  
1.96  
2.94  
3.92  
4.99  
5.90  
6.81  
7.87  
8.87  
11.8  
12.4  
13.7  
18.7  
26.7  
43.2  
19.6  
29.4  
39.2  
49.9  
59.0  
68.1  
78.7  
88.7  
118  
124  
137  
187  
267  
Manufacturer’s specifications list both the inductor DC  
current rating, which is a thermal limitation, and the  
peak current rating, which is determined by the satura-  
tion characteristics. The inductor should not show any  
appreciable saturation under normal load conditions.  
Some inductors may meet the peak and average current  
ratings yet result in excessive losses due to a high DCR.  
Always consider the losses associated with the DCR and  
its effect on the total converter efficiency when selecting  
an inductor. For example, the 4.7H WE-TPC series  
inductor selected from Wurth has an 38mΩ DCR and a  
2.4ADC current rating. At full load, the inductor DC loss  
is 85mW which gives only a 1.1% loss in efficiency for a  
1.5A, 5V output.  
432  
Table 1: Resistor Selection for Different Output  
Voltage Settings. Standard 1% Resistors are  
Substituted for Calculated Values.  
Input Capacitor Selection  
The input capacitor reduces the surge current drawn  
from the input and switching noise from the device. The  
input capacitor impedance at the switching frequency  
shall be less than the input source impedance to prevent  
high frequency switching current passing to the input. A  
low ESR input capacitor sized for maximum RMS current  
must be used. Ceramic capacitors with X5R or X7R  
dielectrics are highly recommended because of their low  
ESR and small temperature coefficients. A 10μF ceramic  
capacitor is sufficient for most applications.  
Inductor Selection  
For most designs, the AAT1162 operates with inductors  
of 2μH to 4.7μH. Low inductance values are physically  
smaller, but require faster switching, which results in  
some efficiency loss. The inductor value can be derived  
from the following equation:  
VOUT  
L1 =  
· 3.8µH  
3.3  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
11  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Max DCR  
(mΩ)  
Rated DC  
Current (A)  
Size WxLxH  
(mm)  
Manufacturer  
Part Number  
L (μH)  
Sumida  
Sumida  
Coilcraft  
CDRH103RNP-2R2N  
CDR7D43MNNP-3R7NC  
MSS1038-382NL  
DR73-4R7-R  
2.2  
3.7  
3.8  
4.7  
4.7  
16.9  
18.9  
13  
29.7  
38  
5.10  
4.3  
4.25  
3.09  
2.40  
10.3x10.5x3.1  
7.6x7.6x4.5  
10.2x7.7x3.8  
6.0x7.6x3.55  
5.8x5.8x2.8  
Cooper Bussman  
Wurth  
7440530047  
Table 2: Typical Surface Mount Inductors.  
To estimate the required input capacitor size, determine  
the acceptable input ripple level (VPP) and solve for C.  
The calculated value varies with input voltage and is a  
maximum when VIN is double the output voltage.  
IO  
2
IRMS(MAX)  
=
VO  
VO  
1 -  
·
VIN  
VIN  
The term  
appears in both the input voltage  
ripple and input capacitor RMS current equations and is  
at maximum when VO is twice VIN. This is why the input  
voltage ripple and the input capacitor RMS current ripple  
are a maximum at 50% duty cycle. The input capacitor  
provides a low impedance loop for the edges of pulsed  
current drawn by the AAT1162. Low ESR/ESL X7R and  
X5R ceramic capacitors are ideal for this function. To  
minimize stray inductance, the capacitor should be  
placed as closely as possible to the IC. This keeps the  
high frequency content of the input current localized,  
minimizing EMI and input voltage ripple. The proper  
placement of the input capacitor (C6) can be seen in the  
evaluation board layout in Figure 3. Additional noise fil-  
tering for proper operation is accomplished by adding a  
small 0.1μF capacitor on the IN pins (C2).  
VO  
VO ⎞  
VIN ⎠  
· 1 -  
VIN  
CIN =  
VPP  
IO  
- ESR ·FOSC  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
for VIN = 2 · VO  
VIN  
4
1
CIN(MIN)  
=
VPP  
IO  
- ESR · 4 · FOSC  
Always examine the ceramic capacitor DC voltage coef-  
ficient characteristics when selecting the proper value.  
For example, the capacitance of a 10F, 16V, X5R ceram-  
ic capacitor with 12V DC applied is actually about 8.5F.  
A laboratory test set-up typically consists of two long  
wires running from the bench power supply to the eval-  
uation board input voltage pins. The inductance of these  
wires, along with the low-ESR ceramic input capacitor,  
can create a high Q network that may affect converter  
performance. This problem often becomes apparent in  
the form of excessive ringing in the output voltage dur-  
ing load transients. Errors in the loop phase and gain  
measurements can also result. Since the inductance of a  
short PCB trace feeding the input voltage is significantly  
lower than the power leads from the bench power sup-  
ply, most applications do not exhibit this problem. In  
applications where the input power source lead induc-  
tance cannot be reduced to a level that does not affect  
the converter performance, a high ESR tantalum or alu-  
minum electrolytic should be placed in parallel with the  
low ESR, ESL bypass ceramic. This dampens the high Q  
network and stabilizes the system.  
The maximum input capacitor RMS current is:  
VO  
VO ⎞  
VIN ⎠  
IRMS = IO ·  
· 1 -  
VIN  
The input capacitor RMS ripple current varies with the  
input and output voltage and will always be less than or  
equal to half of the total DC load current:  
VO  
VO ⎞  
VIN ⎠  
1
· 1 -  
=
D · (1 - D) = 0.52 =  
VIN  
2
for VIN = 2 · VO  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
12  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
The maximum output capacitor RMS ripple current is  
given by:  
Output Capacitor Selection  
The output capacitor is required to keep the output volt-  
age ripple small and to ensure regulation loop stability.  
The output capacitor must have low impedance at the  
switching frequency. Ceramic capacitors with X5R or  
X7R dielectrics are recommended due to their low ESR  
and high ripple current. The output ripple VOUT is deter-  
mined by:  
1
V
OUT · (VIN(MAX) - VOUT  
)
IRMS(MAX)  
=
·
L · FOSC · VIN(MAX)  
2 · 3  
Dissipation due to the RMS current in the ceramic output  
capacitor ESR is typically minimal, resulting in less than  
a few degrees rise in hot-spot temperature.  
VOUT · (VIN - VOUT  
)
1
ΔVOUT  
· ESR +  
Compensation  
VIN · FOSC · L  
8 · FOSC · COUT  
The AAT1162 step-down converter uses peak current  
mode control with slope compensation scheme to main-  
tain stability with lower value inductors for duty cycles  
greater than 50%. The regulation feedback loop in the  
IC is stabilized by the components connected to the  
COMP pin, as shown in Figure 1.  
The output capacitor limits the output ripple and pro-  
vides holdup during large load transitions. A 10F to  
47F X5R or X7R ceramic capacitor typically provides  
sufficient bulk capacitance to stabilize the output during  
large load transitions and has the ESR and ESL charac-  
teristics necessary for low output ripple. The output volt-  
age droop due to a load transient is dominated by the  
capacitance of the ceramic output capacitor. During a  
step increase in load current, the ceramic output capac-  
itor alone supplies the load current until the loop  
responds. Within two or three switching cycles, the loop  
responds and the inductor current increases to match  
the load current demand. The relationship of the output  
voltage droop during the three switching cycles to the  
output capacitance can be estimated by:  
To optimize the compensation components, the following  
equations can be used. The compensation resistor RCOMP  
(R5) is calculated using the following equation:  
2πVOUT · COUT  
10GEA · GCOMP · VFB  
·
FOSC  
RCOMP (R5)=  
Where VFB = 0.6V, GCOMP = 40.1734 and GEA = 9.091 ·  
10-5.  
FOSC is the switching frequency and COUT is based on the  
output capacitor calculation. The CCOMP value can be  
determined from the following equation:  
3 · ΔILOAD  
DROOP · FOSC  
COUT  
=
V
4
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients. The  
internal voltage loop compensation also limits the mini-  
mum output capacitor value to 22F. This is due to its  
effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
CCOMP (C7) =  
FOSC  
2πRCOMP (R5) ·  
10 ⎠  
The feed forward capacitor CFF (C1) provides faster  
transient response for pulsed load applications. The  
addition of the feed forward capacitor typically requires  
a larger output capacitor C1 for stability. Larger C1 val-  
ues reduce overshoot and undershoot during startup  
and line/load changes. The CFF value can be from 100pF  
to 470pF, but do not exceed 470pF to maintain stable  
operation.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
13  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
4. The input capacitors (C9 and C1) should be con-  
nected as close as possible to IN (Pins 4 and 5) and  
DGND (Pin 6) to get good power filtering.  
5. Keep the switching node LX away from the sensitive  
FB node.  
6. The feedback trace for the FB pin should be separate  
from any power trace and connected as closely as  
possible to the load point. Sensing along a high-  
current load trace will degrade DC load regulation.  
The feedback resistors should be placed as close as  
possible to the FB pin (Pin 9) to minimize the length  
of the high impedance feedback trace.  
7. The output capacitors C3, 4, and 5 and L1 should be  
connected as close as possible and there should not  
be any signal lines under the inductor.  
Layout Guidance  
Figure 2 is the schematic for the evaluation board. When  
laying out the PC board, the following layout guideline  
should be followed to ensure proper operation of the  
AAT1162:  
1. Exposed pad EP1 must be reliably soldered to PGND/  
DGND/AGND. The exposed thermal pad should be  
connected to board ground plane and pins 6, 11, 13,  
14 and 16. The ground plane should include a large  
exposed copper pad under the package for thermal  
dissipation.  
2. The power traces, including GND traces, the LX  
traces and the VIN trace should be kept short, direct  
and wide to allow large current flow. The L1 connec-  
tion to the LX pins should be as short as possible.  
Use several via pads when routing between layers.  
3. Exposed pad pin EP2 must be reliably soldered to the  
LX pins 1 and 2. The exposed thermal pad should be  
connected to the board LX connection and the induc-  
tor L1 and also pins 1 and 2. The LX plane should  
include a large exposed copper pad under the pack-  
age for thermal dissipation.  
8. The resistance of the trace from the load return to  
the PGND (Pin 16) should be kept to a minimum.  
This will help to minimize any error in DC regulation  
due to differences in the potential of the internal  
signal ground and the power ground.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
14  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
JP1  
Enable  
TP1  
GND  
TP14  
GND  
R1  
4.75K  
R2  
4.75K  
TP2  
LX  
TP3  
Enable  
U1  
VOUT  
TP4  
L1  
3.8μH  
VIN  
15  
1
TP5  
EN  
IN  
LX  
LX  
FB  
4
5
3
2
C1  
VOUT  
TP6  
AAT1162  
R3  
9
10  
100pF  
VIN  
TP7  
IN  
C2  
0.1μF  
432K  
R4  
N/C  
COMP  
10Ω  
7
11  
12  
VOUT  
TB2  
R5  
C3  
22μF  
C4  
NP  
C5  
NP  
AIN  
AGND  
N/C  
VIN  
24K  
6
13  
R6  
DGND  
DGND  
C6  
10μF  
TB1  
VIN  
14  
8
59K  
DGND  
LDO  
16  
C7  
330pF  
PGND  
VOUT  
TP8  
C8  
1μF  
C9  
1μF  
TP9  
*
TP11  
GND  
GND  
TP12  
GND  
TP13  
GND  
GND  
DGND  
*Note: Connect GND, DGND, and AGND at IC EP1  
Figure 2: AAT1162 Evaluation Board Schematic.  
Figure 3: AAT1162 Evaluation Board  
Component Side Layout.  
Figure 4: AAT1162 Evaluation Board  
Solder Side Layout.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
15  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Design Example  
Specifications  
VOUT  
VIN  
5V @ 1.5A, Pulsed Load ILOAD = 1.5A  
12V nominal  
FOSC  
TAMB  
800kHz  
85°C in TDFN34-16 Package  
Output Inductor  
VOUT  
L =  
· 3.8µH = 5.75µH; use 4.7µH (see Table 2)  
3.3  
ΔIL = 0.32 · ILOAD = 480mA  
For Cooper Bussman inductor DR73-4R7-R 4.7μH DCR = 29.7mW max.  
VOUT  
VO1  
5
V
5V  
ΔI1 =  
1 -  
=
1 -  
= 480mA  
L1 FOSC  
VIN  
4.7µH 800kHz  
12V  
ΔI1  
2
IPK1 = ILOAD  
+
= 1.5A + 0.480A = 1.98A  
2
PL1 = ILOAD DCR = 3A2 13mΩ = 117mW  
Output Capacitor  
VDROOP = 0.2V  
3 · ΔILOAD  
VDROOP · FOSC  
3 · 1.5A  
COUT  
=
=
= 28µF; use 22µF  
0.2V · 800kHz  
(VOUT) · (VIN(MAX) - VOUT  
)
1
5V · (12V - 5V)  
1
·
= 139mArms  
IRMS(MAX)  
=
·
=
4.7µH · 800kHz · 12V  
L · FOSC · VIN(MAX)  
2· 3  
2· 3  
Pesr = esr · IRMS2 = 5mΩ · (277mA)2 = 384µW  
Input Capacitor  
Input Ripple VPP = 50mV  
1
1
CIN =  
=
= 11µF; use 10µF  
VPP  
ILOAD  
50mV  
1.5A  
- ESR · 4 · FOSC  
- 5mΩ · 4 · 800kHz  
ILOAD  
IRMS(MAX)  
=
= 0.75Arms  
2
P = esr · IRMS2 = 5mΩ · (0.75A)2 = 2.81mW  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
16  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
AAT1162 Losses  
Total losses can be estimated by calculating the dropout (VIN = VO) losses where the power MOSFET RDS(ON) will be at  
the maximum value. All values assume an 85°C ambient temperature and a 140°C junction temperature with the TDFN  
37°C/W package.  
PLOSS = ILOAD2 · RDS(ON)H = 1.5A2 · 0.158Ω = 0.355W  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (37°C/W) · 355mW = 96.6°C  
The total losses are also investigated at the nominal input voltage (12V). The simplified version of the RDS(ON) losses  
assumes that the N-channel and P-channel RDS(ON) are equal.  
PTOTAL = ILOAD2 · RDS(ON) + [(tsw · FOSC · ILOAD + IQ) · VIN]  
= 1.5A2 · 100mΩ + [(5ns · 800kHz · 1.5A + 150µA) · 12V] = 299mW  
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (37°C/W) · 299mW = 96°C  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
17  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Ordering Information  
Package  
Marking1  
Part Number (Tape and Reel)2  
AAT1162IRN-0.6-T1  
TDFN34-16  
YYXYY  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Package Information  
TDFN34-163  
1.600 0.050  
R0.15 (REF)  
Pin 1 ID  
3.000 0.050  
Index Area  
0.25 REF  
0.430 0.050  
1.600 0.050  
Top View  
Bottom View  
+ 0.100  
-0.000  
0
0.230 0.050  
Side View  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
18  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  
DATA SHEET  
AAT1162  
12V, 1.5A Step-Down DC/DC Converter  
Copyright © 2012, 2013 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a  
service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Sky-  
works may change its documentation, products, services, specications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no  
responsibility whatsoever for conicts, incompatibilities, or other difculties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided here-  
under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR  
PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES  
NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN-  
CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM  
THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or en-  
vironmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper  
use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specications as a result of design defects, errors, or operation of products outside of pub-  
lished parameters or design specications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product  
design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specications or parameters.  
Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identication purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
19  
201998B  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • March 20, 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY