CXD2309Q [SONY]

10-bit 50MSPS RGB 3-channel D/A Converter; 10位50MSPS RGB三通道D / A转换器
CXD2309Q
型号: CXD2309Q
厂家: SONY CORPORATION    SONY CORPORATION
描述:

10-bit 50MSPS RGB 3-channel D/A Converter
10位50MSPS RGB三通道D / A转换器

转换器
文件: 总16页 (文件大小:244K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXD2309Q  
10-bit 85MSPS 3-Channel D/A Converter  
Description  
48 pin QFP (Plastic)  
The CXD2309Q is a 10-bit high-speed D/A  
converter for video band, featuring RGB 3-channel  
input/output. This is ideal for use in high-definition  
TVs and high-resolution displays.  
Features  
Resolution 10-bit  
• Maximum conversion speed 85MSPS  
• RGB 3-channel input/output  
• Differential linearity error ±0.5 LSB  
• Low power consumption 275 mW  
(200 load for 2 Vp-p output)  
• Single +5 V power supply  
• Low glitch  
Absolute Maximum Ratings (Ta=25 °C)  
Supply voltage AVDD, DVDD  
Input voltage (All pins)  
7
V
VIN  
VDD+0.5 to VSS–0.5  
0 to 15  
V
Output current  
IOUT  
mA  
Storage temperature  
Tstg  
• 48-pin QFP package  
–55 to +150  
°C  
Structure  
Recommended Operating Conditions  
Supply voltage AVDD, AVSS 4.75 to 5.25  
DVDD, DVSS 4.75 to 5.25  
Silicon gate CMOS IC  
V
V
Reference input voltage  
VREF  
0.5 to 2.0  
9 (min.)  
V
ns  
°C  
Clock pulse width  
TPW1, TPW0  
Operating temperature  
Topr  
–20 to +85  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
—1—  
E94341B01  
CXD2309Q  
Block Diagram  
43  
42  
AVSS  
RO  
1
2
3
(LSB) R0  
4LSB’S  
CURRENT  
CELLS  
R1  
R2  
R3  
4
5
R4  
R5  
6LSB’S  
CURRENT  
CELLS  
LATCHES  
LATCHES  
LATCHES  
DECODER  
DECODER  
6
7
R6  
8
R7  
9
R8  
CLOCK  
GENERATOR  
10  
(MSB) R9  
31  
RCK  
45  
44  
AVSS  
GO  
(LSB) G0 11  
G1 12  
4LSB’S  
CURRENT  
CELLS  
G2 13  
G3 14  
G4 15  
6LSB’S  
CURRENT  
CELLS  
16  
17  
18  
19  
20  
G5  
G6  
DECODER  
DECODER  
G7  
G8  
CLOCK  
GENERATOR  
(MSB) G9  
32  
GCK  
47  
46  
AVSS  
BO  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
(LSB) B0  
4LSB’S  
CURRENT  
CELLS  
B1  
B2  
B3  
41  
40  
39  
AVDD  
AVDD  
AVDD  
B4  
6LSB’S  
CURRENT  
CELLS  
DECODER  
DECODER  
B5  
B6  
B7  
B8  
CLOCK  
GENERATOR  
(MSB) B9  
38  
37  
36  
VG  
33  
48  
BCK  
VREF  
IREF  
DVDD  
BIAS VOLTAGE  
GENERATOR  
CURRENT CELLS  
(FOR FULL SCALE)  
35  
34  
VB  
DVSS  
—2—  
CXD2309Q  
Pin Configuration  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VREF  
VG  
B3  
B2  
AVDD  
AVDD  
AVDD  
RO  
B1  
B0 (LSB)  
G9 (MSB)  
G8  
AVSS  
GO  
G7  
G6  
AVSS  
BO  
G5  
G4  
AVSS  
DVDD  
G3  
G2  
10 11 12  
1
2
3
4
5
6
7
8
9
to 35  
48  
1
Digital system  
Analog system  
,
36 to 47  
Pin Description and Equivalent Circuit  
Pin No. Symbol I/O  
Equivalent circuit  
Description  
1 to 10 R0 to R9  
11 to 20 G0 to G9  
21 to 30 B0 to B9  
Digital input.  
1 pin R0 (LSB) to 10 pin R9 (MSB)  
11 pin G0 (LSB) to 20 pin G9 (MSB)  
21 pin B0 (LSB) to 30 pin B9 (MSB)  
DVDD  
I
to  
33  
1
31  
32  
RCLK  
GCLK  
DVSS  
Clock input.  
33  
34  
BCLK  
DVSS  
O
Digital ground.  
DVDD  
DVDD  
Connect an approximately 0.1µF  
capacitor.  
35  
VB  
35  
DVSS  
—3—  
CXD2309Q  
Pin No.  
36  
Symbol  
IREF  
I/O  
O
Equivalent circuit  
Description  
Reference current output.  
Connect an “RIR” resistor which are  
16 times the output resistance  
“ROUT”.  
AVDD  
AVDD  
36  
AVDD  
Reference voltage input.  
AVDD  
37  
38  
VREF  
I
AVSS  
Sets an output full-scale value.  
37  
38  
AVSS  
AVSS  
Connect an approximately 0.1µF  
capacitor.  
VG  
O
39 to 41  
42  
AVDD  
RO  
Analog power supply.  
AVDD  
42  
Current output. Output can be  
obtained by connecting a resistor  
(200 typ.).  
44  
46  
44  
46  
GO  
BO  
O
AVSS  
AVSS  
43, 45, 47  
48  
AVSS  
DVDD  
Analog ground.  
Digital power supply.  
—4—  
CXD2309Q  
Electrical Characteristics  
(fCLK=85 MHz, AVDD=DVDD=5 V, ROUT=200 , VREF=2.0 V, RIR=3.3 k, Ta=25°C)  
Item  
Symbol  
n
Measurement conditions  
Min.  
Typ.  
10  
Max.  
Unit  
bit  
Resolution  
AVDD=DVDD=4.75 to 5.25 V  
Ta=–20 to +85 °C  
Conversion speed  
fCLK  
0
85  
MSPS  
Integral non-linearity error  
EL  
–2.0  
–0.5  
2.0  
0.5  
LSB  
LSB  
Endpoint  
Differential non-linearity error ED  
Precision guaranteed  
VOC  
1.8  
1.92  
1.92  
2.0  
V
output voltage range  
Output full-scale voltage  
VFS  
FSR  
IFS  
1.8  
0
2.0  
3
V
%
1
Output full-scale ratio  
Output full-scale current  
Output offset voltage  
Glitch energy  
9.0  
9.6  
10  
1
mA  
mV  
pV•s  
VOS  
GE  
When “0000000000” data input  
ROUT=100 , 1 Vp-p output  
50  
42  
40  
55  
50  
48  
55  
When 10 MHz  
sin wave input  
When 1 MHz  
sin wave input  
When 10 MHz  
FCLK=50 MHz  
FCLK=85 MHz  
FCLK=50 MHz  
FCLK=85 MHz  
FCLK=50 MHz  
40  
50  
Crosstalk  
CT  
dB  
dB  
SN ratio  
SNR  
IDD  
58  
9
Supply current  
mA  
sin wave output FCLK=85 MHz  
VREF  
Analog input resistance  
Input capacitance  
RIN  
CI  
CO  
VIH  
VIL  
IIH  
IIL  
1
MΩ  
pF  
Output capacitance  
125  
pF  
AVDD=DVDD=4.75 to 5.25 V  
Ta=–20 to +75 °C  
2.15  
–5  
Digital input voltage  
Digital input current  
V
0.85  
5
AVDD=DVDD=4.75 to 5.25 V  
Ta=–20 to +75 °C  
µA  
Setup time  
ts  
4
1
ns  
ns  
ns  
ns  
ns  
Hold time  
th  
Propagation delay time  
Rise time  
tPD  
tr  
14  
26.5  
26.0  
Fall time  
tf  
Full-scale voltage of channel  
1
Full-scale output ratio =  
–1 × 100 (%)  
Average of the full-scale voltage of the channels  
Electrical Characteristics Measurement Circuit  
Analog Input Resistance  
Measurement Circuit  
+5.25V  
}
Digital Input Current  
AVDD, DVDD  
A
CXD2309Q  
AVSS, DVSS  
V
—5—  
CXD2309Q  
Conversion Rate Measurement Circuit  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
AVSS  
GO  
42  
43  
44  
10bit  
COUNTER  
with  
200  
AVSS  
200  
LATCH  
OSCILLOSCOPE  
VB  
35  
AVSS  
BO  
45  
46  
AVSS  
200  
0.1µ  
DVSS  
RCK  
CLK  
31  
32  
33  
AVSS  
47  
38  
37  
36  
AVSS  
AVDD  
50MHz  
SQUARE  
WAVE  
GCK  
BCK  
VG  
VREF  
IREF  
2V  
0.1µ  
3.3k  
AVSS  
Setup Time  
Hold Time  
Measurement Circuit  
}
Glitch Energy  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
AVSS  
GO  
42  
43  
44  
10bit  
COUNTER  
with  
200  
AVSS  
LATCH  
OSCILLOSCOPE  
200  
VB  
35  
AVSS  
BO  
45  
46  
0.1µ  
AVSS  
200  
DELAY  
CONTROLLER  
DVSS  
RCK  
31  
32  
33  
AVSS  
47  
38  
AVSS  
AVDD  
CLK  
GCK  
BCK  
VG  
VREF  
IREF  
50MHz  
SQUARE  
WAVE  
DELAY  
CONTROLLER  
2V  
37  
36  
0.1µ  
3.3k  
AVSS  
Crosstalk Measurement Circuit  
DVDD  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
42  
43  
44  
200  
DIGITAL  
WAVEFORM  
GENERATOR  
AVSS  
GO  
AVSS  
200  
SPECTRUM  
ANALYZER  
VB  
35  
AVSS  
BO  
45  
46  
0.1µ  
AVSS  
200  
DVSS  
RCK  
31  
32  
33  
AVSS  
47  
38  
AVSS  
AVDD  
CLK  
GCK  
BCK  
VG  
VREF  
IREF  
50MHz  
SQUARE  
WAVE  
2V  
37  
36  
0.1µ  
3.3k  
AVSS  
—6—  
CXD2309Q  
DC Characteristics Measurement Circuit  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
AVSS  
GO  
42  
43  
44  
200  
CONTROLLER  
AVSS  
200  
DVM  
VB  
35  
AVSS  
BO  
45  
46  
0.1µ  
AVSS  
200  
DVSS  
RCK  
CLK  
31  
32  
33  
AVSS  
47  
38  
37  
36  
AVSS  
AVDD  
50MHz  
SQUARE  
WAVE  
GCK  
BCK  
VG  
VREF  
IREF  
2V  
0.1µ  
3.3k  
AVSS  
Propagation Delay Time Measurement Circuit  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
42  
43  
44  
10bit  
COUNTER  
with  
200  
AVSS  
GO  
AVSS  
200  
LATCH  
OSCILLOSCOPE  
VB  
35  
AVSS  
BO  
45  
46  
0.1µ  
AVSS  
200  
DELAY  
CONTROLLER  
DVSS  
RCK  
31  
32  
33  
AVSS  
47  
38  
37  
36  
AVSS  
AVDD  
CLK  
50MHz  
SQUARE  
WAVE  
GCK  
BCK  
VG  
VREF  
IREF  
DELAY  
CONTROLLER  
2V  
0.1µ  
3.3k  
AVSS  
SNR Measurement Circuit  
R0 to R9  
1 to 10  
G0 to G9  
11 to 20  
B0 to B9  
21 to 30  
RO  
ALL “1”  
ALL “1”  
42  
43  
44  
200  
DIGITAL  
WAVEFORM  
GENERATOR  
AVSS  
GO  
AVSS  
200  
SPECTRUM  
ANALYZER  
VB  
35  
AVSS  
BO  
45  
46  
0.1µ  
AVSS  
200  
DVSS  
RCK  
31  
32  
33  
AVSS  
47  
38  
AVSS  
AVDD  
CLK  
GCK  
BCK  
VG  
VREF  
IREF  
50MHz  
SQUARE  
WAVE  
2V  
37  
0.1µ  
3.3k  
36  
AVSS  
—7—  
CXD2309Q  
Description of Operation  
Timing Chart  
tPW1  
tPW0  
1.5V  
1.5V  
CLK  
ts th  
ts th  
ts th  
DATA  
100%  
90%  
D/A OUT  
50%  
tPD  
10%  
0%  
tr  
tf  
I/O Correspondence Table (output full-scale voltage: 2.00 V)  
Input code  
Output voltage  
MSB  
LSB  
1 1 1 1 1 1 1 1 1 1  
2.0 V  
:
1 0 0 0 0 0 0 0 0 0  
:
1.0 V  
0 0 0 0 0 0 0 0 0 0  
0 V  
—8—  
CXD2309Q  
Notes on Operation  
Selecting the Output Resistance  
CXD2309Q is a current output type D/A converter. The output voltage can be obtained by connecting the  
resistor ROUT to the current output pins RO, GO and BO.  
Specifications:  
Output full-scale voltage VFS = 1.8 to 2.0 [V]  
Output full-scale current IFS = 9.0 to 10.0 [mA]  
Calculate the output resistance from VFS = IFS × ROUT. Connect a resistance sixteen times the output  
resistance to the reference current output pin IREF. In some cases, as this value may not exist, a similar  
value can be used instead.  
Note that the VFS will be the following.  
VFS = VREF × 16ROUT/RIR  
VREF is the voltage set at the reference voltage input pin VREF, ROUT is the resistor to be connected to the  
current output pins RO, GO, BO and RIR is the resistor to be connected to the IREF. Power consumption can  
be reduced by increasing the resistance, but this will on the contrary increase the glitch energy and data  
setting time. Set the best values according to the purpose of use.  
Correlation between Data and Clock  
For CXD2309Q to display the desired performance as a D/A converter, the data transmitted from outside and  
the clock must be synchronized properly. Adjust the setup time (ts) and hold time (th) as specified in  
“Electrical Characteristics”.  
Power supply, ground  
Separate the analog and digital signals around the device to reduce noise effects. Bypass the power supply  
pin to each ground with a 0.1 µF ceramics capacitor as near as possible to the pin for both the digital and  
analog signals.  
Latch up  
Analog and digital power supplies must be able to share the same power supply of the board. This is to  
prevent latch up caused by potential difference between the two pins when the power is turned on.  
IREF  
The IREF pin is very sensitive to improve the AC characteristics. Pay attention for capacitance component not  
to attach to this pin because its output may become unstable.  
VG pin  
It is recommended to use a 1 µF capacitor to improve the AC characteristics though the typical capacitance  
value externally connected to the VG pin is 0.1 µF.  
Output full-scale voltage  
For the applications using the RGB signal, the color balance may be broken up when the RO, GO and BO  
output full-scale voltages are used with not adjustment.  
—9—  
CXD2309Q  
Application Circuit  
C
C
R2  
Clock input  
36 35 34 33 32 31 30 29 28 27 26 25  
R3  
R4  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
C
B ch input  
C
C
LSB  
MSB  
R1  
R1  
R1  
G ch input  
10 11 12  
1
2
3
4
5
6
7
8
9
R ch  
input  
AVDD  
AVSS  
DVDD  
DVSS  
When the power supply (AVDD and DVDD) is 5.0 V.  
R1=200 Ω  
R2=3.3 kΩ  
R3=3.0 kΩ  
R4=2.0 kΩ  
C=0.1 µF  
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
—10—  
CXD2309Q  
Latch Up Prevention  
The CX2309Q is a CMOS IC which requires latch up precautions. Latch up is mainly generated by the lag in  
the voltage rising time of AVDD (Pin 39, 40 and 41) and DVDD (Pin 48), when power supply is ON.  
1. Correct usage  
a. When analog and digital supplies are from different sources  
DVDD  
AVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
+5V  
CXD2309Q  
DIGITAL IC  
C
C
AVSS  
DVSS  
34  
43 45 47  
AVSS  
b. When analog and digital supplies are from a common source  
(i)  
DVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
CXD2309Q  
DIGITAL IC  
C
C
AVSS  
DVSS  
34  
43 45 47  
AVSS  
(ii)  
DVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
CXD2309Q  
DIGITAL IC  
C
C
AVSS  
DVSS  
34
43 45 47  
AVSS  
—11—  
CXD2309Q  
2. Example when latch up easily occurs  
a. When analog and digital supplies are from different sources  
DVDD  
AVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
+5V  
CXD2309Q  
DIGITAL IC  
C
C
AVSS  
DVSS  
34  
43 45 47  
AVSS  
b. When analog and digital supplies are from common source  
(i)  
DVDD  
AVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
CXD2309Q  
DIGITAL IC  
C
C
AVSS  
DVSS  
34  
43 45 47  
AVSS  
(ii)  
DVDD  
AVDD  
39 40 41  
AVDD  
48  
DVDD  
+5V  
CXD2309Q  
DIGITAL IC  
C
AVSS  
DVSS  
34  
43 45 47  
AVSS  
—12—  
CXD2309Q  
Example of Representative Characteristics  
2.0  
100  
1.0  
50  
0
1.0  
2.0  
0
100  
200  
Reference voltage VREF [V]  
Output resistance ROUT []  
Fig. 1. Reference voltage vs. Output full-scale voltage  
Fig. 2. Output resistance vs. Glitch energy  
70  
60  
50  
40  
1.95  
sin wave output  
1.90  
V=0.02mV/°C  
0
–25  
0
25  
Ambient temperature Ta [°C]  
Fig. 3. Ambient temperature vs. Output full-scale voltage  
50  
75  
1 2  
5
10  
20  
30  
40 42  
Output frequency Fo [MHz]  
Fig. 4. Output frequency vs. Supply current  
Standard Measurement Conditions  
AVDD=DVDD=5.0 V  
VREF=2.0 V  
FCLK=85 MHZ  
ROUT=200 Ω  
RIR=3.3 kΩ  
Ta=25 °C  
—13—  
CXD2309Q  
fout=1MHz sin wave  
IDD  
fout=10MHz sin wave  
IDD  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
IA [Analog]  
IA [Analog]  
ID [Digital]  
ID [Digital]  
50  
20  
85  
20  
50  
85  
Clock frequency FCLK [MHz]  
Fig. 5. Clock frequency vs. Supply current  
Clock frequency FCLK [MHz]  
Fig. 6. Clock frequency vs. Supply current  
60  
50  
40  
30  
20  
10  
0
–10  
–20  
sin wave output  
0
1
2
5
10  
Output frequency Fo [MHz]  
Fig. 7. Output frequency vs. Cross talk  
20  
42  
0
1
2
5
10  
Output frequency Fo [MHz]  
Fig. 8. Output frequency vs. Output level  
20  
50  
(Including primary hold characteristics sinx/x)  
Standard Measurement Conditions  
AVDD=DVDD=5.0 V  
VREF=2.0 V  
FCLK=85 MHZ  
ROUT=200 Ω  
RIR=3.3 kΩ  
Ta=25 °C  
—14—  
CXD2309Q  
50  
40  
30  
1000  
500  
0
1
2
5
10  
Output frequency Fo [MHz]  
Fig. 9. Output frequency vs. SNR  
20  
50  
–1  
0
1
5
6
Input voltage [V]  
500  
1000  
Fig. 10. Input terminal V-I characteristics  
Standard Measurement Conditions  
AVDD=DVDD=5.0 V  
VREF=2.0 V  
FCLK=85 MHZ  
ROUT=200 Ω  
RIR=3.3 kΩ  
Ta=25 °C  
—15—  
CXD2309Q  
Package Outline Unit : mm  
48PIN QFP (PLASTIC)  
15.3 ± 0.4  
+ 0.1  
0.15 – 0.05  
+ 0.4  
12.0 – 0.1  
0.15  
36  
25  
24  
37  
+ 0.2  
0.1 – 0.1  
48  
13  
1
12  
+ 0.15  
0.3 – 0.1  
0.8  
0.24  
M
+ 0.35  
2.2 – 0.15  
PACKAGE STRUCTURE  
EPOXY RESIN  
PACKAGE MATERIAL  
LEAD TREATMENT  
LEAD MATERIAL  
SOLDER / PALLADIUM  
PLATING  
SONY CODE  
EIAJ CODE  
QFP-48P-L04  
QFP048-P-1212  
42/COPPER ALLOY  
0.7g  
JEDEC CODE  
PACKAGE MASS  
—16—  

相关型号:

CXD2310

10-bit 20MSPS Video A/D Converter
SONY

CXD2310AR

10-bit 20MSPS Video A/D Converter
SONY

CXD2311

10-bit 20MSPS Video A/D Converter
SONY

CXD2311AR

10-bit 20MSPS Video A/D Converter
SONY

CXD2312

9-bit 20MSPS Video A/D Converter
SONY

CXD2312R

9-bit 20MSPS Video A/D Converter
SONY

CXD2314R

9-bit 20MSPS Video A/D Converter
SONY

CXD2315Q

10-bit 80MSPS 1ch D/A Converter (Ultra-low Glitch Version)
SONY

CXD24-12

Analog IC
ETC

CXD24-15

Analog IC
ETC

CXD2400

Timing Controller for CCD cameras
SONY

CXD2400R

Timing Controller for CCD cameras
SONY