AM29LV116MB120EC [SPANSION]

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40;
AM29LV116MB120EC
型号: AM29LV116MB120EC
厂家: SPANSION    SPANSION
描述:

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40

CD 光电二极管 内存集成电路
文件: 总47页 (文件大小:925K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am29LV116M  
Data Sheet  
-XO\ꢀꢁꢂꢂꢃ  
7KHꢀIROORZLQJꢀGRFXPHQWꢀVSHFLILHVꢀ6SDQVLRQꢀPHPRU\ꢀSURGXFWVꢀWKDWꢀDUHꢀQRZꢀRIIHUHGꢀE\ꢀERWKꢀ$GYDQFHG  
0LFURꢀ'HYLFHVꢀDQGꢀ)XMLWVXꢄꢀ$OWKRXJKꢀWKHꢀGRFXPHQWꢀLVꢀPDUNHGꢀZLWKꢀWKHꢀQDPHꢀRIꢀWKHꢀFRPSDQ\ꢀWKDWꢀRULJꢅ  
LQDOO\ꢀGHYHORSHGꢀWKHꢀVSHFLILFDWLRQꢆꢀWKHVHꢀSURGXFWVꢀZLOOꢀEHꢀRIIHUHGꢀWRꢀFXVWRPHUVꢀRIꢀERWKꢀ$0'ꢀDQG  
)XMLWVXꢄ  
Continuity of Specifications  
7KHUHꢀLVꢀQRꢀFKDQJHꢀWRꢀWKLVꢀGDWDVKHHWꢀDVꢀDꢀUHVXOWꢀRIꢀRIIHULQJꢀWKHꢀGHYLFHꢀDVꢀDꢀ6SDQVLRQꢀSURGXFWꢄꢀꢀ$Q\  
FKDQJHVꢀWKDWꢀKDYHꢀEHHQꢀPDGHꢀDUHꢀWKHꢀUHVXOWꢀRIꢀQRUPDOꢀGDWDVKHHWꢀLPSURYHPHQWꢀDQGꢀDUHꢀQRWHGꢀLQꢀWKH  
GRFXPHQWꢀUHYLVLRQꢀVXPPDU\ꢆꢀZKHUHꢀVXSSRUWHGꢄꢀꢀ)XWXUHꢀURXWLQHꢀUHYLVLRQVꢀZLOOꢀRFFXUꢀZKHQꢀDSSURSULDWHꢆ  
DQGꢀFKDQJHVꢀZLOOꢀEHꢀQRWHGꢀLQꢀDꢀUHYLVLRQꢀVXPPDU\ꢄ  
Continuity of Ordering Part Numbers  
$0'ꢀDQGꢀ)XMLWVXꢀFRQWLQXHꢀWRꢀVXSSRUWꢀH[LVWLQJꢀSDUWꢀQXPEHUVꢀEHJLQQLQJꢀZLWKꢀꢇ$PꢇꢀDQGꢀꢇ0%0ꢇꢄꢀ7RꢀRUGHU  
WKHVHꢀSURGXFWVꢆꢀSOHDVHꢀXVHꢀRQO\ꢀWKHꢀ2UGHULQJꢀ3DUWꢀ1XPEHUVꢀOLVWHGꢀLQꢀWKLVꢀGRFXPHQWꢄ  
For More Information  
3OHDVHꢀFRQWDFWꢀ\RXUꢀORFDOꢀ$0'ꢀRUꢀ)XMLWVXꢀVDOHVꢀRIILFHꢀIRUꢀDGGLWLRQDOꢀLQIRUPDWLRQꢀDERXWꢀ6SDQVLRQ  
PHPRU\ꢀVROXWLRQVꢄ  
PRODUCTION PENDING  
Production is subject to customer demand. Contact your  
local AMD sales representative for more information  
Am29LV116M  
16 Megabit (2 M x 8-Bit) MirrorBitTM  
3.0 Volt-only Boot Sector Flash Memory  
DISTINCTIVE CHARACTERISTICS  
Single power supply operation  
Embedded Algorithms  
— 2.7 to 3.6 volt read and write operations for  
battery-powered applications  
— Embedded Erase algorithm automatically  
preprograms and erases the entire chip or any  
combination of designated sectors  
Manufactured on 0.23 µm MirrorBit process  
technology  
— Embedded Program algorithm automatically  
writes and verifies data at specified addresses  
— Compatible with and replaces Am29LV116D and  
Am29LV116B  
Minimum 100,000 write cycle guarantee  
SecSiTM (Secured Silicon) Sector region  
per sector  
20-year data retention at 125°C  
— Reliable operation for the life of the system  
Package option  
— 128-word/256-byte sector for permanent, secure  
identification through an 8-word/16-byte random  
Electronic Serial Number, accessible through a  
command sequence  
— 40-pin TSOP  
May be programmed and locked at the factory or by  
the customer  
CFI (Common Flash Interface) compliant  
— Provides device-specific information to the  
system, allowing host software to easily  
reconfigure for different Flash devices  
High performance  
— Access times as fast as 70 ns  
Ultra low power consumption (typical values at  
Compatibility with JEDEC standards  
5 MHz)  
— Pinout and software compatible with single-  
power supply Flash  
— 400 nA Automatic Sleep mode current  
— 400 nA standby mode current  
— 15 mA read current  
— Superior inadvertent write protection  
Data# Polling and toggle bits  
— 40 mA program/erase current  
— Provides a software method of detecting program  
or erase operation completion  
Flexible sector architecture  
— One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and  
thirty-one 64 Kbyte sectors  
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting  
program or erase cycle completion  
— Supports full chip erase  
— Sector Protection features:  
Erase Suspend/Erase Resume  
A hardware method of locking a sector to prevent  
any program or erase operations within that sector  
— Suspends an erase operation to read data from,  
or program data to, a sector that is not being  
erased, then resumes the erase operation  
Sectors can be locked in-system or via  
programming equipment  
Hardware reset pin (RESET#)  
Temporary Sector Unprotect feature allows code  
changes in previously locked sectors  
— Hardware method to reset the device to reading  
array data  
Unlock Bypass Program Command  
— Reduces overall programming time when issuing  
multiple program command sequences  
Top or bottom boot block configurations  
available  
This Data Sheet states AMD’s current technical specifications regarding the Product described herein. This Data  
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.  
Publication# 26008 Rev: A Amendment/+3  
Issue Date: April 7, 2003  
P E N D I N G  
GENERAL DESCRIPTION  
The Am29LV116M is a 16 Mbit, 3.0 Volt-only Flash  
memory organized as 2,097,152 bytes. The device is  
offered in a 40-pin TSOP package. The byte-wide (x8)  
data appears on DQ7–DQ0. All read, program, and  
erase operations are accomplished using only a single  
power supply. The device can also be programmed in  
standard EPROM programmers.  
pin, or by reading the DQ7 (Data# Polling) and DQ6  
(toggle) status bits. After a program or erase cycle  
has been completed, the device is ready to read array  
data or accept another command.  
The sector erase architecture allows memory sectors  
to be erased and reprogrammed without affecting the  
data contents of other sectors. The device is fully  
erased when shipped from the factory.  
The standard device offers access times of 70, 90, and  
120 ns, allowing high speed microprocessors to  
operate without wait states. To eliminate bus conten-  
tion the device has separate chip enable (CE#), write  
enable (WE#) and output enable (OE#) controls.  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via program-  
ming equipment.  
The device requires only a single 3.0 volt power sup-  
ply for both read and write functions. Internally gener-  
ated and regulated voltages are provided for the  
program and erase operations.  
The Erase Suspend feature enables the user to put  
erase on hold for any period of time to read data from,  
or program data to, any sector that is not selected for  
erasure. True background erase can thus be achieved.  
The Program Suspend/Program Resume feature en-  
ables the host system to pause a program operation in  
a given sector to read any other sector and then com-  
plete the program operation.  
The device is entirely command set compatible with the  
JEDEC single-power-supply Flash standard. Com-  
mands are written to the command register using stan-  
dard microprocessor write timings. Register contents  
serve as input to an internal state-machine that con-  
trols the erase and programming circuitry. Write cycles  
also internally latch addresses and data needed for the  
programming and erase operations. Reading data out  
of the device is similar to reading from other Flash or  
EPROM devices.  
The hardware RESET# pin terminates any operation  
in progress and resets the internal state machine to  
reading array data. The RESET# pin may be tied to the  
system reset circuitry. A system reset would thus also  
reset the device, enabling the system microprocessor  
to read the boot-up firmware from the Flash memory.  
Device programming occurs by executing the program  
command sequence. This initiates the Embedded  
Program algorithm—an internal algorithm that auto-  
matically times the program pulse widths and verifies  
proper cell margin. The Unlock Bypass mode facili-  
tates faster programming times by requiring only two  
write cycles to program data instead of four.  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the standby  
mode. Power consumption is greatly reduced in both  
these modes.  
Device erasure occurs by executing the erase com-  
mand sequence. This initiates the Embedded Erase  
algorithm—an internal algorithm that automatically pre-  
programs the array (if it is not already programmed) be-  
fore executing the erase operation. During erase, the  
device automatically times the erase pulse widths and  
verifies proper cell margin.  
AMD’s MirrorBit flash technology combines years of  
Flash memory manufacturing experience to produce  
the highest levels of quality, reliability and cost effec-  
tiveness. The device electrically erases all bits  
within a sector simultaneously via Fowler-Nordheim  
tunneling. The data is programmed using hot electron  
injection.  
The host system can detect whether a program or  
erase operation is complete by observing the RY/BY#  
2
Am29LV116M  
April 7, 2003  
P E N D I N G  
TABLE OF CONTENTS  
Table 9. Am29LV116M Command Definitions .............................. 25  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 26  
DQ7: Data# Polling .................................................................26  
Figure 6. Data# Polling Algorithm .................................................. 26  
RY/BY#: Ready/Busy# ............................................................27  
DQ6: Toggle Bit I ....................................................................27  
DQ2: Toggle Bit II ...................................................................27  
Reading Toggle Bits DQ6/DQ2 ...............................................27  
DQ5: Exceeded Timing Limits ................................................28  
DQ3: Sector Erase Timer .......................................................28  
Figure 7. Toggle Bit Algorithm........................................................ 28  
Table 10. Write Operation Status ................................................... 29  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 30  
Figure 8. Maximum Negative Overshoot Waveform ...................... 30  
Figure 9. Maximum Positive Overshoot Waveform........................ 30  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31  
CMOS Compatible ..................................................................31  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 10. Test Setup..................................................................... 32  
Table 11. Test Specifications ......................................................... 32  
Key to Switching Waveforms ..................................................32  
Figure 11. Input Waveforms and Measurement Levels ................. 32  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 33  
Read Operations ....................................................................33  
Figure 12. Read Operation Timing................................................. 33  
Hardware Reset (RESET#) ....................................................34  
Figure 13. RESET# Timings .......................................................... 34  
Erase/Program Operations .....................................................35  
Figure 14. Program Operation Timings.......................................... 36  
Figure 15. Chip/Sector Erase Operation Timings .......................... 36  
Figure 16. Data# Polling Timings (During Embedded Algorithms). 37  
Figure 17. Toggle Bit Timings (During Embedded Algorithms)...... 37  
Figure 18. DQ2 vs. DQ6................................................................. 38  
Temporary Sector Unprotect ..................................................38  
Figure 19. Temporary Sector Unprotect Timing Diagram .............. 38  
Figure 20. Sector Protect/Unprotect Timing Diagram .................... 39  
Figure 21. Alternate CE# Controlled Write Operation Timings ...... 41  
Erase and Programming Performance . . . . . . . 42  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 42  
TSOP Pin Capacitance . . . . . . . . . . . . . . . . . . . . . 42  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 43  
TS 04040-Pin Standard TSOP ............................................43  
TSR04040-Pin Reverse TSOP ...........................................44  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 45  
Revision A (June 24, 2002) ....................................................45  
Revision A + 1 (July 3, 2002) ..................................................45  
Revision A + 2 (February 6, 2003) ..........................................45  
Revision A + 3 (April 7, 2003) .................................................45  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . .4  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . .7  
Standard Products ....................................................................7  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .8  
Table 1. Am29LV116M Device Bus Operations ................................8  
Requirements for Reading Array Data .....................................8  
Writing Commands/Command Sequences ..............................8  
Program and Erase Operation Status ......................................9  
Standby Mode ..........................................................................9  
Automatic Sleep Mode .............................................................9  
RESET#: Hardware Reset Pin .................................................9  
Output Disable Mode ................................................................9  
Table 2. Am29LV116MT Top Boot Sector Address Table ..............10  
Table 3. Am29LV116MB Bottom Boot Sector Address Table .........11  
Autoselect Mode .....................................................................12  
Table 4. Am29LV116M Autoselect Codes (High Voltage Method) .12  
Sector Protection/Unprotection ...............................................13  
Temporary Sector Unprotect ..................................................13  
Figure 1. Temporary Sector Unprotect Operation........................... 13  
Figure 1. In-System Single High Voltage Sector Protect/Unprotect Al-  
gorithms .......................................................................................... 14  
SecSi (Secured Silicon) Sector Flash Memory Region ..........15  
Table 1. SecSi Sector Contents ......................................................15  
Figure 2. SecSi Sector Protect Verify.............................................. 16  
Hardware Data Protection ......................................................16  
Low VCC Write Inhibit ..............................................................16  
Write Pulse Glitch” Protection ...............................................16  
Logical Inhibit ..........................................................................16  
Power-Up Write Inhibit ............................................................16  
Common Flash Memory Interface (CFI) . . . . . . . 16  
Table 5. CFI Query Identification String ..........................................17  
Table 6. System Interface String .....................................................17  
Table 7. Device Geometry Definition ..............................................18  
Table 8. Primary Vendor-Specific Extended Query ........................19  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .20  
Reading Array Data ................................................................20  
Reset Command .....................................................................20  
Autoselect Command Sequence ............................................20  
Byte Program Command Sequence .......................................20  
Unlock Bypass Command Sequence .....................................21  
Figure 3. Program Operation .......................................................... 21  
Chip Erase Command Sequence ...........................................22  
Sector Erase Command Sequence ........................................22  
Erase Suspend/Erase Resume Commands ...........................22  
Figure 4. Erase Operation............................................................... 23  
Program Suspend/Program Resume Command Sequence ...24  
Figure 5. Program Suspend/Program Resume............................... 24  
Command Definitions .............................................................25  
April 7, 2003  
Am29LV116M  
3
P E N D I N G  
PRODUCT SELECTOR GUIDE  
Family Part Number  
Am29LV116M  
VCC = 2.7–3.6 V  
Speed Options  
70  
70R  
70  
90  
90R  
90  
120  
120R  
120  
120  
50  
VCC = 3.0–3.6 V  
Max access time, ns (tACC  
Max CE# access time, ns (tCE  
Max OE# access time, ns (tOE  
)
)
70  
90  
)
30  
35  
Note: See “AC Characteristics” for full specifications.  
BLOCK DIAGRAM  
DQ0DQ7  
RY/BY#  
VCC  
Sector Switches  
VSS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
State  
Control  
WE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
VCC Detector  
Timer  
Cell Matrix  
X-Decoder  
A0–A20  
4
Am29LV116M  
April 7, 2003  
P E N D I N G  
CONNECTION DIAGRAMS  
A17  
VSS  
A16  
A15  
A14  
A13  
A12  
A11  
A9  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A20  
A19  
A10  
DQ7  
DQ6  
DQ5  
DQ4  
VCC  
VCC  
A8  
WE#  
RESET#  
NC  
RY/BY#  
A18  
A7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40-Pin Standard TSOP  
NC  
DQ3  
DQ2  
DQ1  
DQ0  
OE#  
VSS  
A6  
A5  
A4  
A3  
A2  
A1  
CE#  
A0  
A17  
VSS  
1
2
3
4
5
6
7
8
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
A16  
A15  
A14  
A13  
A12  
A11  
A9  
A20  
A19  
A10  
DQ7  
DQ6  
DQ5  
DQ4  
VCC  
VCC  
NC  
DQ3  
DQ2  
DQ1  
DQ0  
A8  
9
WE#  
RESET#  
NC  
RY/BY#  
A18  
A7  
A6  
A5  
A4  
A3  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
40-Pin Reverse TSOP  
OE#  
VSS  
CE#  
A0  
A2  
A1  
April 7, 2003  
Am29LV116M  
5
P E N D I N G  
PIN CONFIGURATION  
LOGIC SYMBOL  
A0–A20  
= 21 addresses  
21  
DQ0–DQ7 = 8 data inputs/outputs  
A0–A20  
8
CE#  
= Chip enable  
DQ0–DQ7  
OE#  
= Output enable  
WE#  
= Write enable  
CE#  
OE#  
RESET#  
RY/BY#  
VCC  
= Hardware reset pin, active low  
= Ready/Busy output  
WE#  
RESET#  
= 3.0 volt-only single power supply  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
RY/BY#  
VSS  
NC  
=
Device ground  
= Pin not connected internally  
6
Am29LV116M  
April 7, 2003  
P E N D I N G  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combi-  
nation) is formed by a combination of the elements below.  
Am29LV116M  
T
70  
E
C
TEMPERATURE RANGE  
C
I
=
=
Commercial (0°C to +70°C)  
Industrial (–40°C to +85°C)  
PACKAGE TYPE  
E
=
40-Pin Thin Small Outline Package (TSOP)  
Standard Pinout (TS 040)  
F
=
40-Pin Thin Small Outline Package (TSOP)  
Reverse Pinout (TSR040)  
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top Sector  
Bottom Sector  
DEVICE NUMBER/DESCRIPTION  
Am29LV116M  
16 Megabit (2 M x 8-Bit) CMOS Flash Memory  
3.0 Volt-only Read, Program and Erase  
Production Pending  
Production subject to customer demand. Contact your  
local AMD sale representative for ordering information.  
Valid Combinations  
Valid Combinations list configurations planned to be sup-  
ported in volume for this device. Consult the local AMD sales  
office to confirm availability of specific valid combinations and  
to check on newly released combinations.  
April 7, 2003  
Am29LV116M  
7
P E N D I N G  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of the  
device bus operations, which are initiated through the  
internal command register. The command register itself  
does not occupy any addressable memory location.  
The register is composed of latches that store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Table 1. Am29LV116M Device Bus Operations  
Operation  
CE#  
L
OE#  
L
WE#  
H
RESET#  
Addresses  
AIN  
DQ0–DQ7  
DOUT  
Read  
Write  
H
H
L
H
L
AIN  
DIN  
VCC  
0.3 V  
±
VCC ±  
0.3 V  
Standby  
X
X
X
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
High-Z  
High-Z  
X
Sector Addresses,  
A6 = L, A1 = H, A0 = L  
Sector Protect (See Note)  
L
H
L
VID  
DIN, DOUT  
Sector Addresses  
A6 = H, A1 = H, A0 = L  
Sector Unprotect (See Note)  
L
H
X
L
VID  
VID  
DIN, DOUT  
DIN  
Temporary Sector Unprotect  
X
X
AIN  
Legend:  
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT = Data Out  
Note: The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector  
Protection/Unprotection” section.  
Requirements for Reading Array Data  
Writing Commands/Command Sequences  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to VIL. CE# is the power  
control and selects the device. OE# is the output con-  
trol and gates array data to the output pins. WE#  
should remain at VIH.  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to VIL, and OE# to VIH.  
The device features an Unlock Bypass mode to facil-  
itate faster programming. Once the device enters the  
Unlock Bypass mode, only two write cycles are re-  
quired to program a byte, instead of four. The “Byte  
Program Command Sequence” section has details on  
programming data to the device using both standard  
and Unlock Bypass command sequences.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory con-  
tent occurs during the power transition. No command is  
necessary in this mode to obtain array data. Standard  
microprocessor read cycles that assert valid addresses  
on the device address inputs produce valid data on the  
device data outputs. The device remains enabled for  
read access until the command register contents are  
altered.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Tables 2 and 3 indicate the  
address space that each sector occupies. A “sector ad-  
dress” consists of the address bits required to uniquely  
select a sector. The “Command Definitions” section  
has details on erasing a sector or the entire chip, or  
suspending/resuming the erase operation.  
See “Reading Array Data” for more information. Refer  
to the AC Read Operations table for timing specifica-  
tions and to Figure 12 for the timing diagram. ICC1 in  
the DC Characteristics table represents the active cur-  
rent specification for reading array data.  
After the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ7–DQ0. Standard read cycle timings apply in this  
8
Am29LV116M  
April 7, 2003  
P E N D I N G  
mode. Refer to the Autoselect Mode and Autoselect  
Command Sequence sections for more information.  
dard address access timings provide new data when  
addresses are changed. While in sleep mode, output  
data is latched and always available to the system. ICC5  
in the DC Characteristics table represents the auto-  
matic sleep mode current specification.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The “AC  
Characteristics” section contains timing specification  
tables and timing diagrams for write operations.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of reset-  
ting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is ready  
to accept another command sequence, to ensure data  
integrity.  
Program and Erase Operation Status  
During an erase or program operation, the system may  
check the status of the operation by reading the status  
bits on DQ7–DQ0. Standard read cycle timings and ICC  
read specifications apply. Refer to “Write Operation  
Status” for more information, and to “AC Characteris-  
tics” for timing diagrams.  
Standby Mode  
When the system is not reading or writing to the device,  
it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the  
outputs are placed in the high impedance state, inde-  
pendent of the OE# input.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS±0.3 V, the device  
draws CMOS standby current (ICC4). If RESET# is held  
at VIL but not within VSS±0.3 V, the standby current will  
be greater.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at VCC ± 0.3 V.  
(Note that this is a more restricted voltage range than  
VIH.) If CE# and RESET# are held at VIH, but not within  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
VCC ± 0.3 V, the device will be in the standby mode, but  
the standby current will be greater. The device requires  
standard access time (tCE) for read access when the  
device is in either of these standby modes, before it is  
ready to read data.  
If RESET# is asserted during a program or erase oper-  
ation, the RY/BY# pin remains a “0” (busy) until the in-  
ternal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The  
system can thus monitor RY/BY# to determine whether  
the reset operation is complete. If RESET# is asserted  
when a program or erase operation is not executing  
(RY/BY# pin is “1”), the reset operation is completed  
within a time of tREADY (not during Embedded Algo-  
rithms). The system can read data tRH after the RE-  
SET# pin returns to VIH.  
The device also enters the standby mode when the  
RESET# pin is driven low. Refer to the next section,  
“RESET#: Hardware Reset Pin”.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
ICC3 in the DC Characteristics table represents the  
standby current specification.  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 13 for the timing diagram.  
Automatic Sleep Mode  
Output Disable Mode  
The automatic sleep mode minimizes Flash device  
energy consumption. The device automatically  
enables this mode when addresses remain stable for  
tACC + 30 ns. The automatic sleep mode is indepen-  
dent of the CE#, WE#, and OE# control signals. Stan-  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high imped-  
ance state.  
April 7, 2003  
Am29LV116M  
9
P E N D I N G  
Table 2. Am29LV116MT Top Boot Sector Address Table  
Sector Size  
Address Range  
(in hexadecimal)  
Sector  
SA0  
A20  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A19  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
A18  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
A17  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
A16  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
A15  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
A14  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
A13  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
(Kbytes)  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
32  
8
000000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1F7FFF  
1F8000–1F9FFF  
1FA000–1FBFFF  
1FC000–1FFFFF  
SA1  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
1
1
0
1
8
1
1
X
16  
10  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Table 3. Am29LV116MB Bottom Boot Sector Address Table  
Sector Size  
Address Range  
(in hexadecimal)  
Sector  
SA0  
A20  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A19  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A18  
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A17  
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A16  
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
A15  
A14  
A13  
X
0
(Kbytes)  
16  
8
0
0
000000–003FFF  
004000–005FFF  
006000–007FFF  
008000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1FFFFF  
SA1  
0
1
SA2  
0
1
1
8
SA3  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
64  
SA4  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
April 7, 2003  
Am29LV116M  
11  
P E N D I N G  
Table 4. In addition, when verifying sector protection,  
Autoselect Mode  
the sector address must appear on the appropriate  
highest order address bits (see Tables 2 and 3). Table  
4 shows the remaining address bits that are don’t care.  
When all necessary bits have been set as required, the  
programming equipment may then read the corre-  
sponding identifier code on DQ7-DQ0.  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equipment  
to automatically match a device to be programmed with  
its corresponding programming algorithm. However,  
the autoselect codes can also be accessed in-system  
through the command register.  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 9. This method  
does not require VID. See “Command Definitions” for  
details on using the autoselect mode.  
When using programming equipment, the autoselect  
mode requires VID (11.5 V to 12.5 V) on address pin  
A9. Address pins A6, A1, and A0 must be as shown in  
Table 4. Am29LV116M Autoselect Codes (High Voltage Method)  
A20 A12  
to to  
OE# WE# A13 A10  
A8  
to  
A7  
A5  
to  
A2  
DQ7  
to  
DQ0  
Description  
CE#  
A9  
A6  
A1  
A0  
Manufacturer ID: AMD  
L
L
L
H
H
X
X
X
X
VID  
X
X
L
X
X
L
L
01h  
Device ID: Am29LV116M  
(Top Boot Block)  
L
L
VID  
VID  
L
L
L
L
H
H
C7h  
Device ID: Am29LV116M  
(Bottom Boot Block)  
L
L
H
H
X
X
X
X
X
X
X
4Ch  
01h  
(protected)  
Sector Protection Verification  
L
SA  
VID  
L
H
L
00h  
(unprotected)  
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.  
12  
Am29LV116M  
April 7, 2003  
P E N D I N G  
SET# pin, all the previously protected sectors are  
Sector Protection/Unprotection  
protected again. Figure 1 shows the algorithm, and  
Figure 19 shows the timing diagrams, for this feature.  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sectors.  
START  
Sector protection/unprotection requires VID on the RE-  
SET# pin only, and can be implemented either in-sys-  
tem or via programming equipment. Figure 1 shows the  
algorithms and Figure 20 shows the timing diagram.  
This method uses standard microprocessor bus cycle  
timing. For sector unprotect, all unprotected sectors  
must first be protected prior to the first sector unprotect  
write cycle.  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
Temporary Sector  
Unprotect Completed  
(Note 2)  
It is possible to determine whether a sector is protected  
or unprotected. See “Autoselect Mode” for details.  
Temporary Sector Unprotect  
Notes:  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID. During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
sector addresses. Once VID is removed from the RE-  
1. All protected sectors unprotected.  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
April 7, 2003  
Am29LV116M  
13  
P E N D I N G  
START  
START  
Protect all sectors:  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
unprotected sectors  
prior to issuing the  
first sector  
RESET# = VID  
Wait 1 µs  
Wait 1 µs  
unprotect address  
No  
First Write  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
In System  
from RESET#  
In System  
Sector Protect  
complete  
Single High Voltage  
Sector Unprotect  
Algorithm  
Single High Voltage  
Sector Protect  
Algorithm  
Write reset  
command  
Sector Unprotect  
complete  
Figure 1. In-System Single High Voltage Sector Protect/Unprotect Algorithms  
14  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Factory Locked: SecSi Sector Programmed and  
SecSi (Secured Silicon) Sector Flash  
Memory Region  
Protected At the Factory  
In devices with an ESN, the SecSi Sector is protected  
when the device is shipped from the factory. The SecSi  
Sector cannot be modified in any way. A factory locked  
device has an 8-word/16-byte random ESN at ad-  
dresses 000000h–000007h.  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN). The SecSi Sector is 128 words/256 bytes in  
length, and uses a SecSi Sector Indicator Bit (DQ7) to  
indicate whether or not the SecSi Sector is locked  
when shipped from the factory. This bit is permanently  
set at the factory and cannot be changed, which pre-  
vents cloning of a factory locked part. This ensures the  
security of the ESN once the product is shipped to the  
field.  
Customers may opt to have their code programmed by  
AMD through the AMD ExpressFlash service. The de-  
vices are then shipped from AMD’s factory with the  
SecSi Sector permanently locked. Contact an AMD  
representative for details on using AMD’s Express-  
Flash service.  
AMD offers the device with the SecSi Sector either  
factory locked or customer lockable. The factory-  
locked version is always protected when shipped from  
the factory, and has the SecSi (Secured Silicon) Sec-  
tor Indicator Bit permanently set to a “1.” The cus-  
tomer-lockable version is shipped with the SecSi  
Sector unprotected, allowing customers to program  
the sector after receiving the device. The customer-  
lockable version also has the SecSi Sector Indicator  
Bit permanently set to a “0.” Thus, the SecSi Sector In-  
dicator Bit prevents customer-lockable devices from  
being used to replace devices that are factory locked.  
Customer Lockable: SecSi Sector NOT  
Programmed or Protected At the Factory  
As an alternative to the factory-locked version, the de-  
vice may be ordered such that the customer may pro-  
gram and protect the 128-word/256 bytes SecSi  
sector.  
The system may program the SecSi Sector using the  
write-buffer, accelerated and/or unlock bypass meth-  
ods, in addition to the standard programming com-  
mand sequence. See Command Definitions.  
Programming and protecting the SecSi Sector must be  
used with caution since, once protected, there is no  
procedure available for unprotecting the SecSi Sector  
area and none of the bits in the SecSi Sector memory  
space can be modified in any way.  
The SecSi sector address space in this device is allo-  
cated as follows:  
Table 1. SecSi Sector Contents  
SecSi Sector  
Address Range  
Standard  
Factory  
Locked  
ExpressFlash  
Factory Locked  
Customer  
Lockable  
The SecSi Sector area can be protected using one of  
the following procedures:  
x16  
x8  
ESN or  
determined by  
customer  
000000h– 000000h–  
000007h 00000Fh  
ESN  
Determined by  
customer  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 1,  
except that RESET# may be at either VIH or VID.  
This allows in-system protection of the SecSi Sector  
without raising any device pin to a high voltage.  
Note that this method is only applicable to the SecSi  
Sector.  
000008h– 000010h–  
00007Fh 0000FFh  
Determined by  
customer  
Unavailable  
The system accesses the SecSi Sector through a  
command sequence (see “Enter SecSi Sector/Exit  
SecSi Sector Command Sequence”). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the ad-  
dresses normally occupied by the first sector (SA0).  
This mode of operation continues until the system is-  
sues the Exit SecSi Sector command sequence, or  
until power is removed from the device. On power-up,  
or following a hardware reset, the device reverts to  
sending commands to sector SA0. Note that the ACC  
function and unlock bypass modes are not available  
when the SecSi Sector is enabled.  
To verify the protect/unprotect status of the SecSi  
Sector, follow the algorithm shown in Figure 2.  
Once the SecSi Sector is programmed, locked and  
verified, the system must write the Exit SecSi Sector  
Region command sequence to return to reading and  
writing within the remainder of the array.  
April 7, 2003  
Am29LV116M  
15  
P E N D I N G  
against inadvertent writes (refer to Table 9 for com-  
mand definitions). In addition, the following hardware  
data protection measures prevent accidental erasure  
or programming, which might otherwise be caused by  
spurious system level signals during VCC power-up  
and power-down transitions, or from system noise.  
START  
If data = 00h,  
SecSi Sector is  
unprotected.  
If data = 01h,  
SecSi Sector is  
protected.  
RESET# =  
VIH or VID  
Low V  
Write Inhibit  
CC  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register and  
all internal program/erase circuits are disabled, and the  
device resets. Subsequent writes are ignored until VCC  
is greater than VLKO. The system must provide the  
proper signals to the control pins to prevent uninten-  
Wait 1 µs  
Write 60h to  
any address  
Remove VIH or VID  
from RESET#  
Write 40h to SecSi  
Sector address  
with A6 = 0,  
Write reset  
command  
tional writes when VCC is greater than VLKO  
.
A1 = 1, A0 = 0  
Write Pulse “Glitch” Protection  
SecSi Sector  
Protect Verify  
complete  
Noise pulses of less than 5 ns (typical) on OE#, CE# or  
WE# do not initiate a write cycle.  
Read from SecSi  
Sector address  
with A6 = 0,  
Logical Inhibit  
A1 = 1, A0 = 0  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
Figure 2. SecSi Sector Protect Verify  
Power-Up Write Inhibit  
If WE# = CE# = VIL and OE# = VIH during power up, the  
device does not accept commands on the rising edge  
of WE#. The internal state machine is automatically  
reset to reading array data on power-up.  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
data. The system can read CFI information at the  
addresses given in Tables 5–8. To terminate reading  
CFI data, the system must write the reset command.  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-indepen-  
dent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families.  
Flash vendors can standardize their existing interfaces  
for long-term compatibility.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 5–8. The  
system must write the reset command to return the  
device to the read mode.  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/flash/cfi. Alterna-  
tively, contact an AMD representative for copies of  
these documents.  
This device enters the CFI Query mode when the  
system writes the CFI Query command, 98h, to  
address 55h, any time the device is ready to read array  
16  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Table 5. CFI Query Identification String  
Addresses  
Data  
Description  
10h  
11h  
12h  
51h  
52h  
59h  
Query Unique ASCII string “QRY”  
13h  
14h  
02h  
00h  
Primary OEM Command Set  
15h  
16h  
40h  
00h  
Address for Primary Extended Table  
17h  
18h  
00h  
00h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
00h  
00h  
Table 6. System Interface String  
Description  
Addresses  
Data  
V
CC Min. (write/erase)  
1Bh  
27h  
D7–D4: volt, D3–D0: 100 millivolt  
VCC Max. (write/erase)  
D7–D4: volt, D3–D0: 100 millivolt  
1Ch  
36h  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
00h  
00h  
07h  
00h  
0Ah  
00h  
01h  
00h  
04h  
00h  
VPP Min. voltage (00h = no VPP pin present)  
VPP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
April 7, 2003  
Am29LV116M  
17  
P E N D I N G  
Table 7. Device Geometry Definition  
Addresses  
Data  
Description  
27h  
15h  
Device Size = 2N byte  
28h  
29h  
00h  
00h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
00h  
00h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
04h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
00h  
00h  
40h  
00h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
01h  
00h  
20h  
00h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
00h  
00h  
80h  
00h  
39h  
3Ah  
3Bh  
3Ch  
1Eh  
00h  
00h  
01h  
18  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Table 8. Primary Vendor-Specific Extended Query  
Addresses  
Data  
Description  
40h  
41h  
42h  
50h  
52h  
49h  
Query-unique ASCII string “PRI”  
43h  
44h  
31h  
33h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bit 1-0)  
0 = Required, 1 = Not Required  
45h  
46h  
08h  
02h  
Process Technology (Bit 7-2)  
10b = 0.23 µm MirrorBit  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
47h  
48h  
01h  
01h  
Sector Temporary Unprotect: 00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
04h  
01 = 29F040 mode, 02 = 29F016 mode,  
03 = 29F400 mode, 04 = 29LV800A mode  
4Ah  
4Bh  
00h  
00h  
Simultaneous Operation: 00 = Not Supported, 01 = Supported  
Burst Mode Type: 00 = Not Supported, 01 = Supported  
Page Mode Type: 00 = Not Supported, 01 = 4 Word Page,  
02 = 8 Word Page  
4Ch  
00h  
April 7, 2003  
Am29LV116M  
19  
P E N D I N G  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device op-  
erations. Table 9 defines the valid register command  
sequences. Writing incorrect address and data values  
or writing them in the improper sequence may place  
the device in an unknown state. A reset command is  
then required to return the device to reading array data.  
however, the device ignores reset commands until the  
operation is complete.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must  
be written to return to reading array data (also applies  
to autoselect during Erase Suspend).  
All addresses are latched on the falling edge of WE# or  
CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the appropriate timing diagrams in the  
“AC Characteristics” section.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to read-  
ing array data (also applies during Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and devices codes,  
and determine whether or not a sector is protected.  
Table 9 shows the address and data requirements.  
This method is an alternative to that shown in Table 4,  
which is intended for PROM programmers and requires  
VID on address bit A9.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is also ready to read array  
data after completing an Embedded Program or Em-  
bedded Erase algorithm.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode. The sys-  
tem can read array data using the standard read tim-  
ings, except that if it reads at an address within erase-  
suspended sectors, the device outputs status data.  
After completing a programming operation in the Erase  
Suspend mode, the system may once again read array  
data with the same exception. See “Erase Sus-  
pend/Erase Resume Commands” for more information  
on this mode.  
The autoselect command sequence is initiated by writ-  
ing two unlock cycles, followed by the autoselect com-  
mand. The device then enters the autoselect mode,  
and the system may read at any address any number  
of times, without initiating another command sequence.  
A read cycle at address XX00h retrieves the manufac-  
turer code. A read cycle at address XX01h returns the  
device code. A read cycle containing a sector address  
(SA) and the address XX02h returns XX01h if that sec-  
tor is protected, or 00h if it is unprotected. Refer to Ta-  
bles 2 and 3 for valid sector addresses.  
The system must issue the reset command to re-en-  
able the device for reading array data if DQ5 goes high,  
or while in the autoselect mode. See the “Reset Com-  
mand” section, next.  
The system must write the reset command to exit the  
autoselect mode and return to reading array data.  
Byte Program Command Sequence  
See also “Requirements for Reading Array Data” in the  
“Device Bus Operations” section for more information.  
The Read Operations table provides the read parame-  
ters, and Figure 12 shows the timing diagram.  
The device programs one byte of data for each pro-  
gram operation. The command sequence requires four  
bus cycles, and is initiated by writing two unlock write  
cycles, followed by the program set-up command. The  
program address and data are written next, which in  
turn initiate the Embedded Program algorithm. The  
system is not required to provide further controls or tim-  
ings. The device automatically generates the program  
pulses and verifies the programmed cell margin. Table  
9 shows the address and data requirements for the  
byte program command sequence.  
Reset Command  
Writing the reset command to the device resets the de-  
vice to reading array data. Address bits are don’t care  
for this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ig-  
nores reset commands until the operation is complete.  
When the Embedded Program algorithm is complete,  
the device then returns to reading array data and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. See “Write Operation Status”  
for information on these status bits.  
The reset command may be written between the se-  
quence cycles in a program command sequence be-  
fore programming begins. This resets the device to  
reading array data (also applies to programming in  
Erase Suspend mode). Once programming begins,  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
20  
Am29LV116M  
April 7, 2003  
P E N D I N G  
hardware reset immediately terminates the program-  
don’t cares for both cycles. The device then returns to  
reading array data.  
ming operation. The Byte Program command se-  
quence should be reinitiated once the device has reset  
to reading array data, to ensure data integrity. Note that  
the SecSi Sector, autoselect, and CFI functions are un-  
available when a program operation is in progress.  
Figure 3 illustrates the algorithm for the program oper-  
ation. See the Erase/Program Operations table in “AC  
Characteristics” for parameters, and to Figure 14 for  
timing diagrams  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from a “0” back to a “1”. Attempting to do so may halt  
the operation and set DQ5 to “1,” or cause the Data#  
Polling algorithm to indicate the operation was suc-  
cessful. However, a succeeding read will show that the  
data is still “0”. Only erase operations can convert a “0”  
to a “1”.  
START  
Write Program  
Command Sequence  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes to the device faster than using the standard  
program command sequence. The unlock bypass com-  
mand sequence is initiated by first writing two unlock  
cycles. This is followed by a third write cycle containing  
the unlock bypass command, 20h. The device then en-  
ters the unlock bypass mode. A two-cycle unlock by-  
pass program command sequence is all that is  
required to program in this mode. The first cycle in this  
sequence contains the unlock bypass program com-  
mand, A0h; the second cycle contains the program ad-  
dress and data. Additional data is programmed in the  
same manner. This mode dispenses with the initial two  
unlock cycles required in the standard program com-  
mand sequence, resulting in faster total programming  
time. Table 9 shows the requirements for the command  
sequence.  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the data  
90h; the second cycle the data 00h. Addresses are  
Note: See Table 9 for program command sequence.  
Figure 3. Program Operation  
April 7, 2003  
Am29LV116M  
21  
P E N D I N G  
otherwise the last address and command might not be  
Chip Erase Command Sequence  
accepted, and erasure may begin. It is recommended  
that processor interrupts be disabled during this time to  
ensure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. If the time between additional sector erase  
commands can be assumed to be less than 50 µs, the  
system need not monitor DQ3. Any command other  
than Sector Erase or Erase Suspend during the  
time-out period resets the device to reading array  
data. The system must rewrite the command sequence  
and any additional sector addresses and commands.  
Note that the SecSi Sector, autoselect, and CFI func-  
tions are unavailable when an erase operation is in  
progress.  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 9 shows  
the address and data requirements for the chip erase  
command sequence.  
Any commands written to the chip during the Embed-  
ded Erase algorithm are ignored. Note that a hardware  
reset during the chip erase operation immediately ter-  
minates the operation. The Chip Erase command se-  
quence should be reinitiated once the device has  
returned to reading array data, to ensure data integrity.  
Note that the SecSi Sector, autoselect, and CFI func-  
tions are unavailable when an erase operation is in  
progress.  
The system can monitor DQ3 to determine if the sector  
erase timer has timed out. (See the “DQ3: Sector  
Erase Timer” section.) The time-out begins from the ris-  
ing edge of the final WE# pulse in the command se-  
quence.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other commands  
are ignored. Note that a hardware reset during the  
sector erase operation immediately terminates the op-  
eration. The Sector Erase command sequence should  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system can determine the status of the erase op-  
eration by using DQ7, DQ6, DQ2, or RY/BY#. See  
“Write Operation Status” for information on these sta-  
tus bits. When the Embedded Erase algorithm is com-  
plete, the device returns to reading array data and  
addresses are no longer latched.  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2, or  
RY/BY#. (Refer to “Write Operation Status” for informa-  
tion on these status bits.)  
Figure 4 illustrates the algorithm for the erase opera-  
tion. See the Erase/Program Operations tables in “AC  
Characteristics” for parameters, and to Figure 15 for  
timing diagrams.  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase/Program Operations tables in  
the “AC Characteristics” section for parameters, and to  
Figure 15 for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock write cycles are then followed by the ad-  
dress of the sector to be erased, and the sector erase  
command. Table 9 shows the address and data re-  
quirements for the sector erase command sequence.  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system to in-  
terrupt a sector erase operation and then read data  
from, or program data to, any sector not selected for  
erasure. This command is valid only during the sector  
erase operation, including the time-out period 50 µs  
during the sector erase command sequence. The  
Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algo-  
rithm. Writing the Erase Suspend command during the  
Sector Erase time-out immediately terminates the  
time-out period and suspends the erase operation. Ad-  
dresses are “don’t-cares” when writing the Erase Sus-  
pend command.  
The device does not require the system to preprogram  
the memory prior to erase. The Embedded Erase algo-  
rithm automatically programs and verifies the sector for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
After the command sequence is written, a sector erase  
time-out of 50 µs begins. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time be-  
tween these additional cycles must be less than 50 µs,  
When the Erase Suspend command is written during a  
sector erase operation, the device requires a maximum  
of 20 µs to suspend the erase operation. However,  
22  
Am29LV116M  
April 7, 2003  
P E N D I N G  
when the Erase Suspend command is written during  
Erase Suspend command can be written after the de-  
vice has resumed erasing.  
the sector erase time-out, the device immediately ter-  
minates the time-out period and suspends the erase  
operation.  
After the erase operation has been suspended, the  
system can read array data from or program data to  
any sector not selected for erasure. (The device “erase  
suspends” all sectors selected for erasure.) Normal  
read and write timings and command definitions apply.  
Reading at any address within erase-suspended sec-  
tors produces status data on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
See “Write Operation Status” for information on these  
status bits.  
START  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
After an erase-suspended program operation is com-  
plete, the system can once again read array data within  
non-suspended sectors. The system can determine the  
status of the program operation using the DQ7 or DQ6  
status bits, just as in the standard program operation.  
See “Write Operation Status” for more information.  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
The system may also write the autoselect command  
sequence when the device is in the Erase Suspend  
mode. The device allows reading autoselect codes  
even at addresses within erasing sectors, since the  
codes are not stored in the memory array. When the  
device exits the autoselect mode, the device reverts to  
the Erase Suspend mode, and is ready for another  
valid operation. See “Autoselect Command Sequence”  
for more information.  
Yes  
Erasure Completed  
Notes:  
1. See Table 9 for erase command sequence.  
The system must write the Erase Resume command  
(address bits are “don’t care”) to exit the erase suspend  
mode and continue the sector erase operation. Further  
writes of the Resume command are ignored. Another  
2. See “DQ3: Sector Erase Timer” for more information.  
Figure 4. Erase Operation  
April 7, 2003  
Am29LV116M  
23  
P E N D I N G  
The system must write the Program Resume com-  
Program Suspend/Program Resume  
Command Sequence  
mand (address bits are don’t care) to exit the Program  
Suspend mode and continue the programming opera-  
tion. Further writes of the Resume command are ig-  
nored. Another Program Suspend command can be  
written after the device has resume programming.  
The Program Suspend command allows the system to  
interrupt a programming operation or a Write to Buffer  
programming operation so that data can be read from  
any non-suspended sector. When the Program Sus-  
pend command is written during a programming pro-  
cess, the device halts the program operation within 15  
µs maximum (5µs typical) and updates the status bits.  
Addresses are not required when writing the Program  
Suspend command.  
Program Operation  
or Write-to-Buffer  
Sequence in Progress  
Write Program Suspend  
Command Sequence  
After the programming operation has been sus-  
pended, the system can read array data from any non-  
suspended sector. The Program Suspend command  
may also be issued during a programming operation  
while an erase is suspended. In this case, data may  
be read from any addresses not in Erase Suspend or  
Program Suspend. If a read is needed from the SecSi  
Sector area (One-time Program area), then user must  
use the proper command sequences to enter and exit  
this region.  
Write address/data  
XXXh/B0B0h  
Command is also valid for  
Erase-suspended-program  
operations  
Wait 15 µs  
Autoselect and SecSi Sector  
read operations are also allowed  
Read data as  
required  
Data cannot be read from erase- or  
program-suspended sectors  
The system may also write the autoselect command  
sequence when the device is in the Program Suspend  
mode. The system can read as many autoselect  
codes as required. When the device exits the autose-  
lect mode, the device reverts to the Program Suspend  
mode, and is ready for another valid operation. See  
Autoselect Command Sequence for more information.  
Done  
reading?  
No  
Yes  
Write Program Resume  
Command Sequence  
Write address/data  
XXXh/3030h  
After the Program Resume command is written, the  
device reverts to programming. The system can deter-  
mine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard pro-  
gram operation. See Write Operation Status for more  
information.  
Device reverts to  
operation prior to  
Program Suspend  
Figure 5. Program Suspend/Program Resume  
24  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Command Definitions  
Table 9. Am29LV116M Command Definitions  
Bus Cycles (Notes 2–4)  
Command Sequence  
(Note 1)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data  
Read (Note 5)  
Reset (Note 6)  
1
1
4
RA  
XXX  
555  
RD  
F0  
Manufacturer ID  
AA  
2AA  
2AA  
55  
55  
555  
555  
90  
90  
X00  
X01  
01  
Device ID,  
Top Boot Block  
C7  
4
555  
555  
AA  
Device ID,  
Bottom Boot Block  
4C  
00  
01  
Sector Protect  
Verify (Note 8)  
SA  
X02  
4
AA  
2AA  
55  
555  
90  
CFI Query (Note 9)  
1
4
3
55  
98  
AA  
AA  
Byte Program  
Unlock Bypass  
555  
555  
2AA  
2AA  
55  
55  
555  
555  
A0  
20  
PA  
PD  
Unlock Bypass Program  
(Note 10)  
2
2
XXX  
XXX  
A0  
90  
PA  
PD  
00  
Unlock Bypass Reset  
(Note 11)  
XXX  
Chip Erase  
6
6
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
SA  
10  
30  
Sector Erase  
Program/Erase Suspend  
(Note 12)  
1
1
XXX  
XXX  
B0  
30  
Program/Erase Resume  
(Note 13)  
Legend:  
X = Don’t care  
PD = Data to be programmed at location PA. Data is latched  
on the rising edge of WE# or CE# pulse.  
RA = Address of the memory location to be read.  
SA = Address of the sector to be erased or verified. Address  
bits A20–A13 uniquely select any sector.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed.  
Addresses are latched on the falling edge of the WE# or CE#  
pulse.  
Notes:  
1. See Table 1 for descriptions of bus operations.  
8. The data is 00h for an unprotected sector and 01h for a  
protected sector.  
2. All values are in hexadecimal.  
9. Command is valid when device is ready to read array data  
or when device is in autoselect mode.  
3. Except when reading array or autoselect data, all bus  
cycles are write operations.  
10. The Unlock Bypass command is required prior to the  
Unlock Bypass Program command.  
4. Address bits A20–A11 are don’t care for unlock and  
command cycles, except when PA or SA is required.  
11. The Unlock Bypass Reset command is required to return  
to reading array data when the device is in the Unlock  
Bypass mode.  
5. No unlock or command cycles required when device is in  
read mode.  
6. The Reset command is required to return to the read  
mode when the device is in the autoselect mode or if DQ5  
goes high.  
12. The system may read and program functions in non-  
erasing sectors, or enter the autoselect mode, when in  
the Erase Suspend mode. The Erase Suspend command  
is valid only during a sector erase operation.  
7. The fourth cycle of the autoselect command sequence is  
a read cycle.  
13. The Erase Resume command is valid only during the  
Erase Suspend mode.  
April 7, 2003  
Am29LV116M  
25  
P E N D I N G  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a write operation: DQ2, DQ3, DQ5, DQ6, DQ7,  
and RY/BY#. Table 10 and the following subsections  
describe the functions of these bits. DQ7, RY/BY#, and  
DQ6 each offer a method for determining whether a  
program or erase operation is complete or in progress.  
These three bits are discussed first.  
Table 10 shows the outputs for Data# Polling on DQ7.  
Figure 6 shows the Data# Polling algorithm.  
START  
DQ7: Data# Polling  
Read DQ7–DQ0  
Addr = VA  
The Data# Polling bit, DQ7, indicates to the host sys-  
tem whether an Embedded Algorithm is in progress or  
completed, or whether the device is in Erase Suspend.  
Data# Polling is valid after the rising edge of the final  
WE# pulse in the program or erase command se-  
quence.  
Yes  
DQ7 = Data?  
During the Embedded Program algorithm, the device  
outputs on DQ7 the complement of the datum pro-  
grammed to DQ7. This DQ7 status also applies to pro-  
gramming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device  
outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status  
information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to reading  
array data.  
No  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Addr = VA  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase al-  
gorithm is complete, or if the device enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
This is analogous to the complement/true datum output  
described for the Embedded Program algorithm: the  
erase function changes all the bits in a sector to “1”;  
prior to this, the device outputs the “complement,” or  
“0.” The system must provide an address within any of  
the sectors selected for erasure to read valid status in-  
formation on DQ7.  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, Data# Polling  
on DQ7 is active for approximately 100 µs, then the de-  
vice returns to reading array data. If not all selected  
sectors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected.  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is an address within any  
sector selected for erasure. During chip erase, a valid  
address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at DQ7–  
DQ0 on the following read cycles. This is because DQ7  
may change asynchronously with DQ0–DQ6 while  
Output Enable (OE#) is asserted low. Figure 16, Data#  
Polling Timings (During Embedded Algorithms), in the  
“AC Characteristics” section illustrates this.  
Figure 6. Data# Polling Algorithm  
26  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Table 10 shows the outputs for Toggle Bit I on DQ6.  
RY/BY#: Ready/Busy#  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. Figure 17 in the “AC Character-  
istics” section shows the toggle bit timing diagrams.  
Figure 18 shows the differences between DQ2 and  
DQ6 in graphical form. See also the subsection on  
DQ2: Toggle Bit II.  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
pull-up resistor to VCC. (The RY/BY# pin is not avail-  
able on the 44-pin SO package.)  
DQ2: Toggle Bit II  
If the output is low (Busy), the device is actively erasing  
or programming. (This includes programming in the  
Erase Suspend mode.) If the output is high (Ready),  
the device is ready to read array data (including during  
the Erase Suspend mode), or is in the standby mode.  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
Table 10 shows the outputs for RY/BY#. Figures 12, 14  
and 15 shows RY/BY# for reset, program, and erase  
operations, respectively.  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to con-  
trol the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 10 to compare out-  
puts for DQ2 and DQ6.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is  
valid after the rising edge of the final WE# pulse in the  
command sequence (prior to the program or erase op-  
eration), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle (The system may use either OE# or CE#  
to control the read cycles). When the operation is com-  
plete, DQ6 stops toggling.  
Figure 7 shows the toggle bit algorithm in flowchart  
form, and the section “Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. See also the DQ6: Toggle Bit I  
subsection. Figure 17 shows the toggle bit timing dia-  
gram. Figure 18 shows the differences between DQ2  
and DQ6 in graphical form.  
After an erase command sequence is written, if all sec-  
tors selected for erasing are protected, DQ6 toggles for  
approximately 100 µs, then returns to reading array  
data. If not all selected sectors are protected, the Em-  
bedded Erase algorithm erases the unprotected sec-  
tors, and ignores the selected sectors that are  
protected.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 7 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7–DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically, the  
system would note and store the value of the toggle bit  
after the first read. After the second read, the system  
would compare the new value of the toggle bit with the  
first. If the toggle bit is not toggling, the device has com-  
pleted the program or erase operation. The system can  
read array data on DQ7–DQ0 on the following read cy-  
cle.  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that  
is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend  
mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing  
or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on DQ7: Data# Polling).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is toggling,  
since the toggle bit may have stopped toggling just as  
DQ5 went high. If the toggle bit is no longer toggling,  
the device has successfully completed the program or  
erase operation. If it is still toggling, the device did not  
completed the operation successfully, and the system  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
April 7, 2003  
Am29LV116M  
27  
P E N D I N G  
must write the reset command to return to reading  
array data.  
START  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has not  
gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles, de-  
termining the status as described in the previous para-  
graph. Alternatively, it may choose to perform other  
system tasks. In this case, the system must start at the  
beginning of the algorithm when it returns to determine  
the status of the operation (top of Figure 7).  
Read DQ7–DQ0  
(Note 1)  
Read DQ7–DQ0  
Table 10 shows the outputs for Toggle Bit I on DQ6.  
Figure 7 shows the toggle bit algorithm. Figure 17 in the  
“AC Characteristics” section shows the toggle bit timing  
diagrams. Figure 18 shows the differences between  
DQ2 and DQ6 in graphical form. See also the subsec-  
tion on DQ2: Toggle Bit II.  
No  
Toggle Bit  
= Toggle?  
Yes  
DQ5: Exceeded Timing Limits  
No  
DQ5 = 1?  
Yes  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a “1.” This is a failure  
condition that indicates the program or erase cycle was  
not successfully completed.  
(Notes  
1, 2)  
Read DQ7–DQ0  
Twice  
The DQ5 failure condition may appear if the system  
tries to program a “1” to a location that is previously  
programmed to “0.” Only an erase operation can  
change a “0” back to a “1.” Under this condition, the  
device halts the operation, and when the operation has  
exceeded the timing limits, DQ5 produces a “1.”  
Toggle Bit  
= Toggle?  
No  
Under both these conditions, the system must issue  
the reset command to return the device to reading  
array data.  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not an  
erase operation has begun. (The sector erase timer  
does not apply to the chip erase command.) If addi-  
tional sectors are selected for erasure, the entire time-  
out also applies after each additional sector erase com-  
mand. When the time-out is complete, DQ3 switches  
from “0” to “1.” If the time between additional sector  
erase commands from the system can be assumed to  
be less than 50 µs, the system need not monitor DQ3.  
See also the “Sector Erase Command Sequence” sec-  
tion.  
Notes:  
1. Read toggle bit twice to determine whether or not it is  
toggling. See text.  
2. Recheck toggle bit because it may stop toggling as DQ5  
changes to “1”. See text.  
Figure 7. Toggle Bit Algorithm  
are ignored until the erase operation is complete. If  
DQ3 is “0”, the device will accept additional sector  
erase commands. To ensure the command has been  
accepted, the system software should check the status  
of DQ3 prior to and following each subsequent sector  
erase command. If DQ3 is high on the second status  
check, the last command might not have been ac-  
cepted. Table 10 shows the outputs for DQ3.  
After the sector erase command sequence is written,  
the system should read the status on DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure the device has ac-  
cepted the command sequence, and then read DQ3. If  
DQ3 is “1”, the internally controlled erase cycle has be-  
gun; all further commands (other than Erase Suspend)  
28  
Am29LV116M  
April 7, 2003  
P E N D I N G  
Table 10. Write Operation Status  
DQ7  
DQ5  
DQ2  
Status  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
DQ1 RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Program-Suspended  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
0
Standard  
Mode  
N/A  
Invalid (not allowed)  
Data  
1
1
1
1
0
Program  
Suspend  
Mode  
Program-  
Sector  
Suspend  
Non-Program  
Read  
Suspended Sector  
Erase-Suspended  
1
No toggle  
Toggle  
0
N/A  
Toggle  
N/A  
N/A  
N/A  
Erase-  
Sector  
Suspend  
Erase  
Suspend  
Mode  
Non-EraseSuspended  
Read  
Data  
Sector  
Erase-Suspend-Program  
(Embedded Program)  
DQ7#  
0
N/A  
Busy (Note 3)  
Abort (Note 4)  
DQ7#  
DQ7#  
Toggle  
Toggle  
0
0
N/A  
N/A  
N/A  
N/A  
0
1
0
0
Write-to-  
Buffer  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
See “DQ5: Exceeded Timing Limits” for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
April 7, 2003  
Am29LV116M  
29  
P E N D I N G  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . –55°C to +150°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . –65°C to +125°C  
+0.8 V  
Voltage with Respect to Ground  
–0.5 V  
–2.0 V  
VCC (Note 1) . . . . . . . . . . . . . . . . .–0.5 V to +4.0 V  
A9, OE#, and  
RESET# (Note 2) . . . . . . . . . . . .0.5 V to +12.5 V  
20 ns  
All other pins (Note 1) . . . . . . –0.5 V to VCC+0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Figure 8. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During  
voltage transitions, input or I/O pins may overshoot VSS  
to –2.0 V for periods of up to 20 ns. See Figure 8.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot to VCC +2.0 V for periods up to 20 ns. See  
Figure 9.  
20 ns  
VCC  
+2.0 V  
VCC  
2. Minimum DC input voltage on pins A9, OE#, and RESET#  
is –0.5 V. During voltage transitions, A9, OE#, and  
RESET# may overshoot VSS to –2.0 V for periods of up  
to 20 ns. See Figure 8. Maximum DC input voltage on pin  
A9 is +12.5 V which may overshoot to 14.0 V for periods  
up to 20 ns.  
+0.5 V  
2.0 V  
20 ns  
20 ns  
Figure 9. Maximum Positive  
Overshoot Waveform  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OPERATING RANGES  
Commercial (C) Devices  
Ambient Temperature (TA) . . . . . . . . . . . 0°C to +70°C  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C  
VCC Supply Voltages  
VCC (full voltage range) . . . . . . . . . . . .+2.7 V to 3.6 V  
VCC (regulated voltage range) . . . . . . .+3.0 V to 3.6 V  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
30  
Am29LV116M  
April 7, 2003  
P E N D I N G  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Description  
Test Conditions  
Min  
Typ  
Max  
±1.0  
35  
Unit  
µA  
VIN = VSS to VCC  
,
ILI  
Input Load Current  
VCC = VCC max  
ILIT  
ILO  
ILR  
A9 Input Load Current  
Output Leakage Current  
Reset Leakage Current  
VCC = VCC max; A9 = 12.5 V  
µA  
VOUT = VSS to VCC  
VCC = VCC max  
,
±1.0  
µA  
VCC = VCC max; RESET# = 12.5 V  
35  
30  
10  
µA  
5 MHz  
CE# = VIL, OE# = VIH  
1 MHz  
15  
2
VCC Active Read Current  
(Notes 1, 2)  
ICC1  
mA  
mA  
VCC Active Write Current  
(Notes 2, 3, 4)  
ICC2  
CE# = VIL, OE# = VIH  
40  
60  
ICC3  
ICC4  
VCC Standby Current (Note 2)  
VCC Reset Current (Note 2)  
CE#, RESET# = VCC±0.3 V  
RESET# = VSS ± 0.3 V  
0.4  
0.8  
5
5
µA  
µA  
Automatic Sleep Mode  
(Notes 2, 5)  
V
IH = VCC ± 0.3 V;  
ICC5  
0.4  
5
µA  
VIL = VSS ± 0.3 V  
VIL1  
VIH1  
VIL2  
VIH2  
Input Low Voltage 1(6, 7)  
Input High Voltage 1 (6, 7)  
Input Low Voltage 2 (6, 8)  
Input High Voltage 2 (6, 8)  
–0.5  
1.9  
0.8  
V
V
V
V
VCC + 0.5  
0.3 x VIO  
VIO + 0.5  
–0.5  
1.9  
Voltage for Autoselect and  
Temporary Sector Unprotect  
VID  
VCC = 3.3 V  
11.5  
12.5  
V
VOL  
VOL  
Output Low Voltage  
IOL = 4.0 mA, VCC = VCC min  
0.45  
V
V
Output Low Voltage (10)  
IOL = 4.0 mA, VCC = VCC min = VIO  
0.15 x VIO  
I
OH = –2.0 mA, VCC = VCC min  
=
VOH1  
0.85 VIO  
VIO–0.4  
2.3  
V
V
V
VIO  
Output High Voltage  
IOH = –100 µA, VCC = VCC min  
VIO  
=
VOH2  
Low VCC Lock-Out Voltage  
(Note 4)  
VLKO  
2.5  
Notes:  
1. On the WP#/ACC pin only, the maximum input load current when  
5. Automatic sleep mode enables the low power mode when  
addresses remain stable for t + 30 ns.  
WP# = V is ± 5.0 µA.  
IL  
ACC  
2. The I current listed is typically less than 2 mA/MHz, with OE# at  
6. If V < V , maximum V for CE# and DQ I/Os is 0.3 V .  
IO  
CC  
IO  
CC  
IL  
V
.
Maximum V for these connections is V + 0.3 V  
IH  
IH  
IO  
3. Maximum I specifications are tested with V = V max.  
7.  
8.  
V
V
voltage requirements.  
CC  
CC  
CC  
CC  
IO  
4.  
I
active while Embedded Erase or Embedded Program is in  
voltage requirements.  
CC  
progress.  
9. Not 100% tested.  
10. Includes RY/BY#  
April 7, 2003  
Am29LV116M  
31  
P E N D I N G  
TEST CONDITIONS  
Table 11. Test Specifications  
90, 90R  
3.3 V  
Test Condition  
70, 70R 120, 120R Unit  
2.7 kΩ  
Output Load  
1 TTL gate  
Device  
Under  
Test  
Output Load Capacitance,  
CL (including jig  
capacitance)  
30  
100  
pF  
C
L
6.2 kΩ  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
0.0–3.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Note: Diodes are IN3064 or equivalent  
Output timing  
measurement reference  
levels  
Figure 10. Test Setup  
Key to Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 11. Input Waveforms and Measurement Levels  
32  
Am29LV116M  
April 7, 2003  
P E N D I N G  
AC CHARACTERISTICS  
Read Operations  
Parameter  
Speed Option  
70,  
90,  
120,  
JEDEC  
Std  
Description  
Test Setup  
70R  
90R 120R Unit  
tAVAV  
tRC  
Read Cycle Time (Note 1)  
Min  
70  
90  
90  
120  
120  
ns  
ns  
CE# = VIL  
OE# = VIL  
tAVQV  
tACC  
Address to Output Delay  
Max  
70  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
Output Enable to Output Delay  
OE# = VIL  
Max  
Max  
Max  
Max  
Min  
70  
30  
25  
25  
90  
35  
30  
30  
0
120  
50  
ns  
ns  
ns  
ns  
ns  
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
30  
30  
Read  
Output Enable  
Hold Time (Note 1)  
tOEH  
Toggle and  
Data# Polling  
Min  
Min  
10  
0
ns  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 1)  
tAXQX  
tOH  
Notes:  
1. Not 100% tested.  
2. See Figure 10 and Table 11 for test specifications  
3. AC Specifications are tested with VIO=VCC. Contact AMD for information on AC operations with VIOVCC.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 12. Read Operation Timing  
April 7, 2003  
Am29LV116M  
33  
P E N D I N G  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
Test Setup  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read or Write (See Note)  
tREADY  
Max  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read or Write (See Note)  
tREADY  
500  
ns  
tRP  
tRH  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RESET# High Time Before Read (See Note)  
tRPD RESET# Low to Standby Mode  
tRB RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 13. RESET# Timings  
34  
Am29LV116M  
April 7, 2003  
P E N D I N G  
AC CHARACTERISTICS  
Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70, 70R 90, 90R 120, 120R  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
90  
120  
tAVWL  
tWLAX  
tDVWH  
tWHDX  
0
ns  
tAH  
45  
35  
45  
45  
50  
50  
ns  
tDS  
ns  
tDH  
tOES  
0
ns  
Output Enable Setup Time (Note 1)  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
ns  
tELWL  
tWHEH  
tCS  
tCH  
CE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
µs  
sec  
µs  
ns  
ns  
CE# Hold Time  
tWLWH  
tWHWL  
tWHWH1  
tWHWH2  
tWP  
Write Pulse Width  
Write Pulse Width High  
35  
35  
50  
tWPH  
30  
TBD  
0.7  
50  
tWHWH1 Programming Operation (Note 2)  
tWHWH2 Sector Erase Operation (Note 2)  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
0
tBUSY  
90  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
April 7, 2003  
Am29LV116M  
35  
P E N D I N G  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Note: PA = program address, PD = program data, DOUT is the true data at the program address.  
Figure 14. Program Operation Timings  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Note: SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”).  
Figure 15. Chip/Sector Erase Operation Timings  
36  
Am29LV116M  
April 7, 2003  
P E N D I N G  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
tOEH  
WE#  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
Status Data  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 16. Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
DQ6/DQ2  
RY/BY#  
Valid Status  
(first read)  
Valid Status  
Valid Status  
Valid Data  
(second read)  
(stops toggling)  
tBUSY  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status  
read cycle, and array data read cycle.  
Figure 17. Toggle Bit Timings (During Embedded Algorithms)  
April 7, 2003  
Am29LV116M  
37  
P E N D I N G  
AC CHARACTERISTICS  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: The system can use OE# or CE# to toggle DQ2/DQ6. DQ2 toggles only when read at an address within an  
erase-suspended sector.  
Figure 18. DQ2 vs. DQ6  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
tVIDR  
VID Rise and Fall Time (See Note)  
Min  
Min  
500  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
4
µs  
Note: Not 100% tested.  
12 V  
RESET#  
0 or 3 V  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 19. Temporary Sector Unprotect Timing Diagram  
38  
Am29LV116M  
April 7, 2003  
P E N D I N G  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Sector Protect/Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
Sector Protect: 150 µs  
Sector Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 20. Sector Protect/Unprotect Timing Diagram  
April 7, 2003  
Am29LV116M  
39  
P E N D I N G  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
Speed Options  
120,  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70, 70R 90, 90R 120R  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
90  
0
120  
tAVEL  
ns  
tELAX  
tDVEH  
tEHDX  
tAH  
45  
35  
45  
45  
0
50  
50  
ns  
tDS  
ns  
tDH  
tOES  
Data Hold Time  
ns  
Output Enable Setup Time  
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
0
ns  
tWLEL  
tEHWH  
tELEH  
tWS  
tWH  
WE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
WE# Hold Time  
tCP  
CE# Pulse Width  
35  
35  
50  
ns  
tEHEL  
tCPH  
CE# Pulse Width High  
Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
30  
ns  
tWHWH1  
tWHWH2  
Notes:  
tWHWH1  
tWHWH2  
TBD  
0.4  
µs  
sec  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
40  
Am29LV116M  
April 7, 2003  
P E N D I N G  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Note: PA = program address, PD = program data, DQ7# = complement of the data written to the device, DOUT = data written to  
the device. Figure indicates the last two bus cycles of the command sequence.  
Figure 21. Alternate CE# Controlled Write Operation Timings  
April 7, 2003  
Am29LV116M  
41  
P E N D I N G  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
s
Comments  
Sector Erase Time  
0.4  
25  
15  
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
s
Byte Programming Time  
Chip Programming Time (Note 3)  
TBD  
TBD  
TBD  
TBD  
µs  
s
Excludes system level  
overhead (Note 5)  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 100,000 cycles. Additionally,  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 100,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the four- or two-bus-cycle sequence for the program command. See  
Table 9 for further information on command definitions.  
6. The device has a guaranteed minimum erase and program cycle endurance of 100,000 cycles per sector.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
–1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
–1.0 V  
VCC + 1.0 V  
+100 mA  
VCC Current  
–100 mA  
Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
TSOP PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
CIN  
COUT  
CIN2  
Output Capacitance  
Control Pin Capacitance  
VOUT = 0  
VIN = 0  
8.5  
7.5  
pF  
9
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
DATA RETENTION  
Parameter  
Test Conditions  
Min  
10  
Unit  
Years  
Years  
150°C  
125°C  
Minimum Pattern Data Retention Time  
20  
42  
Am29LV116M  
April 7, 2003  
P E N D I N G  
PHYSICAL DIMENSIONS*  
TS 040—40-Pin Standard TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
April 7, 2003  
Am29LV116M  
43  
P E N D I N G  
PHYSICAL DIMENSIONS  
TSR040—40-Pin Reverse TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
44  
Am29LV116M  
April 7, 2003  
P E N D I N G  
REVISION SUMMARY  
Table 10. Write Operation Status  
Revision A (June 24, 2002)  
Added program suspend mode.  
Initial release.  
Operating Ranges  
Revision A + 1 (July 3, 2002)  
Corrected typos in VIO ranges.  
Changed DC characteristics current numbers.  
DC Characteristics Zero Power Flash tables removed,  
currently TBD.  
CMOS Compatible  
Changed VIH1 and VIH2 minimum to 1.9.  
Changed erase and programming performance times.  
Removed typos in notes.  
Corrected minimum erase and page cycle specifica-  
tion.  
Hardware Reset, Erase and Program Operations,  
Temporary Sector Unprotect, and Alternate CE#  
Controlled Erase and Program Operations  
Revision A + 2 (February 6, 2003)  
Added Note.  
Global  
CMOS Compatible  
Added regulated speed options and updated effected  
tables in datasheet.  
Removed VIL, VIH, VOL, and VOH from table and  
added VIL1, VIH1, VIL2, VIH2, VOL, VOH1, and VOH2  
from the CMOS table in the Am29LV640MH/L  
datasheet.  
Destinctive Characteristics  
Added SecSi text.  
Customer Lockable: SecSi Sector NOT  
Programmed or Protected at the factory.  
General Description  
Added page suspend text.  
Added second bullet, SecSi sector-protect verify text  
and figure 3.  
Product Selector Guide  
Byte/Word Program Command Sequence, Sector  
Erase Command Sequence, and Chip Erase Com-  
mand Sequence  
Added another Vcc range and regulated speed  
options.  
Ordering Information  
Noted that the SecSi Sector, autoselect, and CFI  
functions are unavailable when a program or erase  
operation is in progress.  
Added regulated speed options.  
Table 8. Primary Vendor-Specific Extend Query  
Added proccess technology reference to the 45h ad-  
dress and corrected data variable.  
Erase/Program Operations and Alternate CE#  
Controlled Erase/Program Operations  
Changed Programming operation for all speed options  
to TBD.  
Common Flash Memory Interface (CFI)  
Changed wording in last sentence of third paragraph  
from, “...the autoselect mode.” to “...reading array  
data.”  
Revision A + 3 (April 7, 2003)  
Global  
Changed CFI website address  
Converted to “Production Pending” version.  
Figure 6. Program Suspend/Program Resume  
Added text and flowchart.  
Corrected typo in wait time.  
Trademarks  
Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, MirrorBitTM and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
April 7, 2003  
Am29LV116M  
45  
Representatives in U.S. and Canada  
Sales Offices and Representatives  
ARIZONA,  
North America  
Tempe - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(480)839-2320  
CALIFORNIA,  
ALABAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 256)830-9192  
ARIZONA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(602)242-4400  
CALIFORNIA,  
Calabasas - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(818)878-5800  
Irvine - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (949)261-2123  
San Diego - Centaur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(858)278-4950  
Santa Clara - Fourfront. . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)350-4800  
CANADA,  
Burnaby, B.C. - Davetek Marketing. . . . . . . . . . . . . . . . . . . .(604)430-3680  
Calgary,Alberta - Davetek Marketing. . . . . . . . . . . . . . . . .(403)283-3577  
Kanata, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . . . .(613)592-9540  
Mississauga, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . .(905)672-2030  
St Laurent, Quebec - J-Squared Tech. . . . . . . . . . . . . . . . ( 5 1 4 ) 74 7 - 1 2 1 1  
COLORADO,  
Irvine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(949)450-7500  
Sunnyvale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)732-2400  
COLORADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 303)741-2900  
CONNECTICUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(203)264-7800  
FLORIDA,  
Clearwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(727)793-0055  
Miami (Lakes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 0 5 ) 8 2 0 - 1 1 1 3  
GEORGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(770)814-0224  
ILLINOIS,  
Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(630)773-4422  
MASSACHUSETTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (781)2 13-6400  
MICHIGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(248)471-6294  
MINNESOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(612)745- 0005  
NEW JERSEY,  
Chatham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 97 3 ) 7 0 1 - 1 7 7 7  
NEWYORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(716)425- 8050  
NORTH CAROLINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(919)840-8080  
OREGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(503)245-0080  
PENNSYLVANIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 1 5 ) 3 4 0 - 1 1 8 7  
SOUTH DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(605)692-5777  
TEXAS,  
Golden - Compass Marketing . . . . . . . . . . . . . . . . . . . . . .(303)277-0456  
FLORIDA,  
Melbourne - Marathon Technical Sales . . . . . . . . . . . . . . . .(321)728- 7706  
Ft. Lauderdale - Marathon Technical Sales . . . . . . . . . . . . . .(954)527-4949  
Orlando - Marathon Technical Sales . . . . . . . . . . . . . . . . . .(407)872-5775  
St. Petersburg - Marathon Technical Sales . . . . . . . . . . . . . .(727)894-3603  
GEORGIA,  
Duluth - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . (678) 584-1128  
ILLINOIS,  
Skokie - Industrial Reps, Inc. . . . . . . . . . . . . . . . . . . . . . . . .(847)967-8430  
INDIANA,  
Kokomo - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (765)457-7241  
IOWA,  
Cedar Rapids - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . (319)294-1000  
KANSAS,  
Lenexa - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 1 3 ) 4 69 - 1 3 1 2  
MASSACHUSETTS,  
Austin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(512)346-7830  
Dallas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(972)985-1344  
Houston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(281)376-8084  
VIRGINIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(703)736-9568  
Burlington - Synergy Associates . . . . . . . . . . . . . . . . . . . . .(781)238-0870  
MICHIGAN,  
Brighton - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(810)227-0007  
MINNESOTA,  
St. Paul - Cahill, Schmitz & Cahill, Inc. . . . . . . . . . . . . . . . . .(651)699-0200  
MISSOURI,  
St. Louis - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . . (314)997-4558  
NEW JERSEY,  
International  
AUSTRALIA, North Ryde . . . . . . . . . . . . . . . . . . . . . . .TEL(61)2-88-777-222  
BELGIUM,Antwerpen . . . . . . . . . . . . . . . . . . . . . . . . TEL(32)3-248-43-00  
BRAZIL, San Paulo . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(55)11-5501-2105  
CHINA,  
Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(86)10-6510-2188  
Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)21-635-00838  
Shenzhen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)755-246-1550  
FINLAND, Helsinki . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 5 8 ) 8 8 1 - 3 1 1 7  
FRANCE, Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 3 ) - 1 - 4 975 1 0 1 0  
GERMANY,  
Bad Homburg . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(49)-6172-92670  
Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 4 9 ) - 8 9 - 4 5 0 5 3 0  
HONG KONG, Causeway Bay . . . . . . . . . . . . . . . . . . .TEL(85)2-2956-0388  
ITALY, Milan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 3 9 ) - 0 2 - 3 8 1 9 6 1  
INDIA, New Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . T E L ( 9 1 ) 1 1 - 62 3 - 8 62 0  
JAPAN,  
es  
Mt. Laurel - SJ Associates . . . . . . . . . . . . . . . . . . . . . . . . .(856)866-1234  
NEWYORK,  
Buffalo - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . ( 7 1 6 ) 74 1 - 7 1 1 6  
East Syracuse - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . (315)437-8343  
Pittsford - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(716)586-3660  
Rockville Centre - SJ Associates . . . . . . . . . . . . . . . . . . . . (516) 536-4242  
NORTH CAROLINA,  
Raleigh - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . .(919)846-5728  
OHIO,  
Middleburg Hts - Dolfuss Root & Co. . . . . . . . . . . . . . . . .(440)816-1660  
Powell - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . . . (614)781-0725  
Vandalia - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . .(937)898-9610  
Westerville - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . (614)52 3-1990  
OREGON,  
Lake Oswego - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . .(503)670-0557  
UTAH,  
Murray - Front Range Marketing . . . . . . . . . . . . . . . . . . . .(801)288-2500  
VIRGINIA,  
Osaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)6-6243-3250  
Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)3-3346-7600  
KOREA, Seoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(82)2-3468-2600  
RUSSIA, Moscow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(7)-095-795-06-22  
SWEDEN, Stockholm . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(46)8-562-540-00  
TAIWAN,Taipei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(886)2-8773-1555  
UNITED KINGDOM,  
Frimley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1276-803100  
Haydcock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(44)1942-272888  
Glen Burnie - Coherent Solution, Inc. . . . . . . . . . . . . . . . . ( 4 1 0 ) 76 1 - 2 2 5 5  
WASHINGTON,  
Kirkland - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(425)822-9220  
WISCONSIN,  
Pewaukee - Industrial Representatives . . . . . . . . . . . . . . . .(262)574-9393  
Advanced Micro Devices reserves the right to make changes in its product without notice  
in order to improve design or performance characteristics.The performance  
characteristics listed in this document are guaranteed by specific tests, guard banding,  
design and other practices common to the industry. For specific testing details, contact  
your local AMD sales representative.The company assumes no responsibility for the use of  
any circuits described herein.  
Representatives in Latin America  
ARGENTINA,  
Capital Federal Argentina/WW Rep. . . . . . . . . . . . . . . . . . . .54-11)4373-0655  
CHILE,  
Santiago - LatinRep/WWRep. . . . . . . . . . . . . . . . . . . . . . . . . .(+562)264-0993  
COLUMBIA,  
Bogota - Dimser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 5 7 1 ) 4 1 0 - 4 1 8 2  
MEXICO,  
Guadalajara - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(523)817-3900  
Mexico City - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . .(525)752-2727  
Monterrey - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . .(528)369-6828  
PUERTO RICO,  
© Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD Arrow logo and combination thereof, are trademarks of  
Advanced Micro Devices, Inc. Other product names are for informational purposes only  
and may be trademarks of their respective companies.  
Boqueron - Infitronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . (787)851-6000  
One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453 408-732-2400  
TWX 910-339-9280 TELEX 34-6306 800-538-8450 http://www.amd.com  
©2003 Advanced Micro Devices, Inc.  
01/03  
Printed in USA  

相关型号:

AM29LV116MB120ED

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120EF

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120EI

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120FC

Flash, 2MX8, 120ns, PDSO40, PLASTIC, REVERSE, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120FD

Flash, 2MX8, 120ns, PDSO40, PLASTIC, REVERSE, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120FF

Flash, 2MX8, 120ns, PDSO40, PLASTIC, REVERSE, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120FI

Flash, 2MX8, 120ns, PDSO40, PLASTIC, REVERSE, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120REC

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120RED

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120REF

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120REI

Flash, 2MX8, 120ns, PDSO40, PLASTIC, MO-142CD, TSOP-40
SPANSION

AM29LV116MB120RFC

Flash, 2MX8, 120ns, PDSO40, PLASTIC, REVERSE, MO-142CD, TSOP-40
SPANSION