AM29LV160DB90SD [SPANSION]

Flash, 1MX16, 90ns, PDSO44, LEAD FREE, MO-180AA, SOP-44;
AM29LV160DB90SD
型号: AM29LV160DB90SD
厂家: SPANSION    SPANSION
描述:

Flash, 1MX16, 90ns, PDSO44, LEAD FREE, MO-180AA, SOP-44

光电二极管 内存集成电路 闪存
文件: 总52页 (文件大小:1786K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am29LV160D  
Data Sheet  
RETIRED  
PRODUCT  
This product has been retired and is not recommended for designs. For new and current designs,  
S29AL016D supersedes Am29LV160D and is the factory-recommended migration path for this  
device. Please refer to the S29AL016D data sheet for specifications and ordering information. Avail-  
ability of this document is retained for reference and historical purposes only.  
The following document contains information on Spansion memory products.  
Continuity of Specifications  
There is no change to this data sheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal data sheet improvement and are noted in the  
document revision summary.  
For More Information  
Please contact your local sales office for additional information about Spansion memory solutions.  
Publication Number 22358 Revision B Amendment 7 Issue Date May 5, 2006  
THIS PAGE LEFT INTENTIONALLY BLANK.  
DATA SHEET  
Am29LV160D  
16 Megabit (2 M x 8-Bit/1 M x 16-Bit)  
CMOS 3.0 Volt-only Boot Sector Flash Memory  
This product has been retired and is not recommended for designs. For new and current designs, S29AL016D supersedes Am29LV160D and is the factory-recommended migration path  
for this device. Please refer to the S29AL016D data sheet for specifications and ordering information. Availability of this document is retained for reference and historical purposes only.  
DISTINCTIVE CHARACTERISTICS  
Single power supply operation  
Embedded Algorithms  
— Full voltage range: 2.7 to 3.6 volt read and write  
operations for battery-powered applications  
— Embedded Erase algorithm automatically  
preprograms and erases the entire chip or any  
combination of designated sectors  
— Regulated voltage range: 3.0 to 3.6 volt read and  
write operations and for compatibility with high  
performance 3.3 volt microprocessors  
— Embedded Program algorithm automatically  
writes and verifies data at specified addresses  
Manufactured on 0.23 µm process technology  
Minimum 1,000,000 write cycle guarantee  
per sector  
— Fully compatible with 0.32 µm Am29LV160B device  
20-year data retention at 125°C  
— Reliable operation for the life of the system  
Package option  
High performance  
— Access times as fast as 70 ns  
Ultra low power consumption (typical values at  
— 48-ball FBGA  
5 MHz)  
— 48-pin TSOP  
— 200 nA Automatic Sleep mode current  
— 200 nA standby mode current  
— 9 mA read current  
— 44-pin SO  
CFI (Common Flash Interface) compliant  
— 20 mA program/erase current  
— Provides device-specific information to the  
system, allowing host software to easily  
reconfigure for different Flash devices  
Flexible sector architecture  
— One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and  
thirty-one 64 Kbyte sectors (byte mode)  
Compatibility with JEDEC standards  
— Pinout and software compatible with single-  
power supply Flash  
— One 8 Kword, two 4 Kword, one 16 Kword, and  
thirty-one 32 Kword sectors (word mode)  
— Superior inadvertent write protection  
— Supports full chip erase  
— Sector Protection features:  
Data# Polling and toggle bits  
— A hardware method of locking a sector to prevent any  
program or erase operations within that sector  
— Provides a software method of detecting program  
or erase operation completion  
— Sectors can be locked in-system or via programming  
equipment  
Ready/Busy# pin (RY/BY#)  
— Provides a hardware method of detecting  
program or erase cycle completion (not available  
on 44-pin SO)  
Temporary Sector Unprotect feature allows code  
changes in previously locked sectors  
Unlock Bypass Program Command  
Erase Suspend/Erase Resume  
— Reduces overall programming time when issuing  
multiple program command sequences  
— Suspends an erase operation to read data from,  
or program data to, a sector that is not being  
erased, then resumes the erase operation  
Top or bottom boot block configurations  
available  
Hardware reset pin (RESET#)  
— Hardware method to reset the device to reading  
array data  
This Data Sheet states AMD’s current technical specifications regarding the Product described herein. This Data  
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.  
Publication# 22358  
Issue Date: May 5, 2006  
Rev: B Amendment: 7  
D A T A S H E E T  
GENERAL DESCRIPTION  
The Am29LV160D is a 16 Mbit, 3.0 Volt-only Flash  
memory organized as 2,097,152 bytes or 1,048,576  
words. The device is offered in 48-ball FBGA, 44-pin  
SO, and 48-pin TSOP packages. The word-wide data  
(x16) appears on DQ15–DQ0; the byte-wide (x8) data  
appears on DQ7–DQ0. This device is designed to be  
programmed in-system with the standard system 3.0  
The host system can detect whether a program or  
erase operation is complete by observing the RY/BY#  
pin, or by reading the DQ7 (Data# Polling) and DQ6  
(toggle) status bits. After a program or erase cycle  
has been completed, the device is ready to read array  
data or accept another command.  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
volt V  
supply. A 12.0 V V or 5.0 V  
are not re-  
CC  
PP  
CC  
quired for write or erase operations. The device can  
also be programmed in standard  
EPROM programmers.  
Hardware data protection measures include a low  
The device offers access times of 70, 90, and 120 ns,  
allowing high speed microprocessors to operate with-  
out wait states. To eliminate bus contention the device  
has separate chip enable (CE#), write enable (WE#)  
and output enable (OE#) controls.  
V
detector that automatically inhibits write opera-  
CC  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via  
programming equipment.  
The device requires only a single 3.0 volt power sup-  
ply for both read and write functions. Internally  
generated and regulated voltages are provided for the  
program and erase operations.  
The Erase Suspend/Erase Resume feature enables  
the user to put erase on hold for any period of time to  
read data from, or program data to, any sector that is  
not selected for erasure. True background erase can  
thus be achieved.  
The Am29LV160D is entirely command set compatible  
with the JEDEC single-power-supply Flash stan-  
dard. Commands are written to the command register  
using standard microprocessor write timings. Register  
contents serve as input to an internal state-machine  
that controls the erase and programming circuitry.  
Write cycles also internally latch addresses and data  
needed for the programming and erase operations.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
The hardware RESET# pin terminates any operation  
in progress and resets the internal state machine to  
reading array data. The RESET# pin may be tied to  
the system reset circuitry. A system reset would thus  
also reset the device, enabling the system micropro-  
cessor to read the boot-up firmware from the Flash  
memory.  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the  
standby mode. Power consumption is greatly re-  
duced in both these modes.  
Device programming occurs by executing the program  
command sequence. This initiates the Embedded  
Program algorithm—an internal algorithm that auto-  
matically times the program pulse widths and verifies  
proper cell margin. The Unlock Bypass mode facili-  
tates faster programming times by requiring only two  
write cycles to program data instead of four.  
AMD’s Flash technology combines years of Flash  
memory manufacturing experience to produce the  
highest levels of quality, reliability and cost effective-  
ness. The device electrically erases all bits within a  
sector simultaneously via Fowler-Nordheim tunnel-  
ing. The data is programmed using hot electron  
injection.  
Device erasure occurs by executing the erase com-  
mand sequence. This initiates the Embedded Erase  
algorithm—an internal algorithm that automatically  
preprograms the array (if it is not already programmed)  
before executing the erase operation. During erase,  
the device automatically times the erase pulse widths  
and verifies proper cell margin.  
2
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . .4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . .8  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . .9  
Table 1. Am29LV160D Device Bus Operations ................................9  
Word/Byte Configuration .......................................................... 9  
Requirements for Reading Array Data ..................................... 9  
Writing Commands/Command Sequences .............................. 9  
Program and Erase Operation Status .................................... 10  
Standby Mode ........................................................................ 10  
Automatic Sleep Mode ........................................................... 10  
RESET#: Hardware Reset Pin ............................................... 11  
Output Disable Mode .............................................................. 11  
Table 2. Sector Address Tables (Am29LV160DT) ..........................12  
Table 3. Sector Address Tables (Am29LV160DB) ..........................13  
Autoselect Mode ..................................................................... 14  
Table 4. Am29LV160D Autoselect Codes (High Voltage Method) ..14  
Sector Protection/Unprotection ............................................... 14  
Temporary Sector Unprotect .................................................. 15  
Figure 1. Temporary Sector Unprotect Operation........................... 15  
Figure 2. In-System Sector Protect/Unprotect Algorithms .............. 16  
Common Flash Memory Interface (CFI) . . . . . . .17  
Table 5. CFI Query Identification String ..........................................17  
Table 6. System Interface String .....................................................18  
Table 7. Device Geometry Definition ..............................................18  
Table 8. Primary Vendor-Specific Extended Query ........................19  
Hardware Data Protection ...................................................... 19  
DQ3: Sector Erase Timer ....................................................... 28  
Table 10. Write Operation Status ................................................... 28  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 29  
Figure 7. Maximum Negative Overshoot Waveform ...................... 30  
Figure 8. Maximum Positive Overshoot Waveform........................ 30  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 9. I  
Current vs. Time (Showing Active and  
CC1  
Automatic Sleep Currents)............................................................. 32  
Figure 10. Typical I vs. Frequency ........................................... 32  
CC1  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. Test Setup..................................................................... 33  
Table 11. Test Specifications ......................................................... 33  
Figure 12. Input Waveforms and Measurement Levels ................. 33  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 34  
Read Operations .................................................................... 34  
Figure 13. Read Operations Timings ............................................. 34  
Hardware Reset (RESET#) .................................................... 35  
Figure 14. RESET# Timings .......................................................... 35  
Word/Byte Configuration (BYTE#) ........................................ 36  
Figure 15. BYTE# Timings for Read Operations............................ 36  
Figure 16. BYTE# Timings for Write Operations............................ 36  
Erase/Program Operations ..................................................... 37  
Figure 17. Program Operation Timings.......................................... 38  
Figure 18. Chip/Sector Erase Operation Timings .......................... 39  
Figure 19. Data# Polling Timings (During Embedded Algorithms). 40  
Figure 20. Toggle Bit Timings (During Embedded Algorithms)...... 40  
Figure 21. DQ2 vs. DQ6 for Erase and  
Erase Suspend Operations............................................................ 41  
Figure 22. Temporary Sector Unprotect/Timing Diagram .............. 41  
Figure 23. Sector Protect/Unprotect Timing Diagram .................... 42  
Figure 24. Alternate CE# Controlled Write Operation Timings ...... 44  
Erase and Programming Performance . . . . . . . 45  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 45  
TSOP and SO Pin Capacitance . . . . . . . . . . . . . . 45  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 46  
TS 048—48-Pin Standard TSOP ............................................ 46  
TSR048—48-Pin Reverse TSOP ........................................... 47  
FBC048—48-Ball Fine-Pitch Ball Grid Array (FBGA)  
Low V Write Inhibit .............................................................. 19  
CC  
Write Pulse “Glitch” Protection ............................................... 19  
Logical Inhibit .......................................................................... 19  
Power-Up Write Inhibit ............................................................ 19  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .20  
Reading Array Data ................................................................ 20  
Reset Command ..................................................................... 20  
Autoselect Command Sequence ............................................ 20  
Word/Byte Program Command Sequence ............................. 20  
Unlock Bypass Command Sequence ..................................... 21  
Figure 3. Program Operation .......................................................... 21  
Chip Erase Command Sequence ........................................... 21  
Sector Erase Command Sequence ........................................ 22  
Erase Suspend/Erase Resume Commands ........................... 22  
Figure 4. Erase Operation............................................................... 23  
Command Definitions ............................................................. 24  
Table 9. Am29LV160D Command Definitions ................................24  
Write Operation Status . . . . . . . . . . . . . . . . . . . . .25  
DQ7: Data# Polling ................................................................. 25  
Figure 5. Data# Polling Algorithm ................................................... 25  
RY/BY#: Ready/Busy# ........................................................... 26  
DQ6: Toggle Bit I .................................................................... 26  
DQ2: Toggle Bit II ................................................................... 26  
Reading Toggle Bits DQ6/DQ2 .............................................. 26  
Figure 6. Toggle Bit Algorithm......................................................... 27  
8 x 9 mm ................................................................................ 48  
SO 044—44-Pin Small Outline Package ................................ 49  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 50  
Revision A (January 1999) ..................................................... 50  
Revision A+1 (April 19, 1999) ................................................. 50  
Revision B (November 23, 1999) ............................................50  
Revision B+1 (February 22, 2000) .......................................... 50  
Revision B+2 (November 7, 2000) ......................................... 50  
Revision B+3 (November 10, 2000) ....................................... 50  
Revision B+4 (April 5, 2004) ................................................... 50  
Revision B+5 (June 4, 2004) .................................................. 50  
Revision B+6 (October 7, 2004) ............................................. 50  
Revision B7 (May 5, 2006) ..................................................... 50  
22358B7 May 5, 2006  
Am29LV160D  
3
D A T A S H E E T  
PRODUCT SELECTOR GUIDE  
Family Part Number  
Am29LV160D  
Speed Option  
Voltage Range: V = 2.7–3.6 V  
-70  
70  
70  
30  
-90  
90  
90  
35  
-120  
120  
120  
50  
CC  
Max access time, ns (t  
)
ACC  
Max CE# access time, ns (t  
)
CE  
Max OE# access time, ns (t  
)
OE  
Note: See “AC Characteristics” for full specifications.  
BLOCK DIAGRAM  
DQ0DQ15 (A-1)  
RY/BY#  
V
CC  
Sector Switches  
V
SS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
State  
Control  
WE#  
BYTE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
V
Detector  
Timer  
CC  
Cell Matrix  
X-Decoder  
A0–A19  
4
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
CONNECTION DIAGRAMS  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
VSS  
CE#  
A0  
A8  
A19  
NC  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
NC  
Standard TSOP  
NC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
2
3
4
5
6
7
8
9
A15  
A14  
A13  
A12  
A11  
A10  
A9  
48  
A16  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
A8  
A19  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
NC  
Reverse TSOP  
NC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
OE#  
VSS  
CE#  
A0  
22358B7 May 5, 2006  
Am29LV160D  
5
D A T A S H E E T  
CONNECTION DIAGRAMS  
RESET#  
A18  
A17  
A7  
1
2
3
4
5
6
7
8
9
44 WE#  
43 A19  
42 A8  
41 A9  
A6  
40 A10  
39 A11  
38 A12  
37 A13  
36 A14  
35 A15  
34 A16  
33 BYTE#  
32 VSS  
A5  
A4  
A3  
A2  
A1 10  
A0 11  
CE# 12  
VSS 13  
SO  
OE# 14  
DQ0 15  
DQ8 16  
DQ1 17  
DQ9 18  
DQ2 19  
DQ10 20  
DQ3 21  
DQ11 22  
31 DQ15/A-1  
30 DQ7  
29 DQ14  
28 DQ6  
27 DQ13  
26 DQ5  
25 DQ12  
24 DQ4  
23 VCC  
FBGA  
Top View, Balls Facing Down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1 VSS  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
VCC  
DQ4  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY#  
NC  
A18  
NC  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
VSS  
Flash memory devices in FBGA packages may be  
damaged if exposed to ultrasonic cleaning methods.  
The package and/or data integrity may be compromised  
if the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
Special Handling Instructions  
Special handling is required for Flash Memory  
products in FBGA packages.  
6
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
PIN CONFIGURATION  
LOGIC SYMBOL  
A0–A19  
=20 addresses  
20  
DQ0–DQ14 =15 data inputs/outputs  
A0–A19  
16 or 8  
DQ15/A-1 =DQ15 (data input/output, word mode),  
A-1 (LSB address input, byte mode)  
DQ0–DQ15  
(A-1)  
BYTE#  
CE#  
=Selects 8-bit or 16-bit mode  
=Chip enable  
CE#  
OE#  
OE#  
=Output enable  
WE#  
=Write enable  
WE#  
RESET#  
RY/BY#  
=Hardware reset pin  
RESET#  
BYTE#  
=Ready/Busyoutput  
(N/A SO 044)  
RY/BY#  
(N/A SO 044)  
V
=3.0 volt-only single power supply  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
CC  
V
=Device ground  
SS  
NC  
=Pin not connected internally  
22358B7 May 5, 2006  
Am29LV160D  
7
D A T A S H E E T  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combi-  
nation) is formed by a combination of the elements below.  
Am29LV160D  
T
-70  
E
C
TEMPERATURE RANGE  
C
D
I
=
=
=
=
Commercial (0°C to +70°C)  
Commercial (0°C to +70°C) with Pb-Free Package  
Industrial (–40°C to +85°C)  
Industrial (–40°C to +85°C) with Pb-Free Package  
F
PACKAGE TYPE  
E
=
=
=
=
48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048)  
48-Pin Thin Small Outline Package (TSOP) Reverse Pinout (TSR048)  
44-Pin Small Outline Package (SO 044)  
F
S
WC  
48-ball Fine-Pitch Ball Grid Array (FBGA)  
0.80 mm pitch, 8 x 9 mm package (FBC048)  
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top sector  
Bottom sector  
DEVICE NUMBER/DESCRIPTION  
Am29LV160D  
16 Megabit (2M x 8-Bit/1M x 16-Bit) CMOS Flash Memory  
3.0 Volt-only Read, Program, and Erase  
Valid Combinations For TSOP and SO Packages  
Valid Combinations for FBGA Packages  
Order Number Package Marking  
Am29LV160DT-70,  
Am29LV160DT-70,  
Am29LV160DB-70  
L160DT70V,  
L160DB70V  
EC, EI, ED, EF  
Am29LV160DT-90,  
FC, FI  
Am29LV160DB-70  
WCC,  
WCI,  
Am29LV160DB-90  
SC, SI, SD, SF  
Am29LV160DT-90,  
Am29LV160DB-90  
L160DT90V,  
L160DB90V  
C, I,  
D, F  
Am29LV160DT-120,  
Am29LV160DB-120  
WCD,  
WCF  
Am29LV160DT-120,  
Am29LV160DB-120  
L160DT12V,  
L160DB12V  
Valid Combinations  
Valid Combinations list configurations planned to be sup-  
ported in volume for this device. Consult the local AMD sales  
office to confirm availability of specific valid combinations and  
to check on newly released combinations.  
8
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
DEVICE BUS OPERATIONS  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is composed of latches that store the  
commands, along with the address and data informa-  
tion needed to execute the command. The contents of  
the register serve as inputs to the internal state ma-  
chine. The state machine outputs dictate the function  
of the device. Table 1 lists the device bus operations,  
the inputs and control levels they require, and the re-  
sulting output. The following subsections describe  
each of these operations in further detail.  
Table 1. Am29LV160D Device Bus Operations  
DQ8–DQ15  
BYTE#  
= V  
Addresses  
(Note 1)  
DQ0– BYTE#  
Operation  
CE# OE# WE# RESET#  
DQ7  
= V  
IH  
IL  
Read  
Write  
L
L
L
H
L
H
H
A
D
D
DQ8–DQ14 = High-Z,  
DQ15 = A-1  
IN  
OUT  
OUT  
H
A
D
D
IN  
IN  
IN  
V
0.3 V  
±
V
0.3 V  
±
CC  
CC  
Standby  
X
X
X
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
Sector Address,  
A6 = L, A1 = H,  
A0 = L  
Sector Protect (Note 2)  
L
H
L
V
D
X
X
X
ID  
IN  
Sector Address,  
A6 = H, A1 = H,  
A0 = L  
Sector Unprotect (Note 2)  
L
H
X
L
V
V
D
D
X
ID  
ID  
IN  
IN  
Temporary Sector  
Unprotect  
X
X
A
D
High-Z  
IN  
IN  
Legend:  
L = Logic Low = V , H = Logic High = V , V = 12.0 ± 0.5 V, X = Don’t Care, A = Address In, D = Data In, D = Data Out  
IL  
IH  
ID  
IN  
IN  
OUT  
Notes:  
1. Addresses are A19:A0 in word mode (BYTE# = V ), A19:A-1 in byte mode (BYTE# = V ).  
IH  
IL  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the “Sector  
Protection/Unprotection” section.  
The internal state machine is set for reading array  
Word/Byte Configuration  
data upon device power-up, or after a hardware re-  
The BYTE# pin controls whether the device data I/O  
set. This ensures that no spurious alteration of the  
pins DQ15–DQ0 operate in the byte or word configura-  
memory content occurs during the power transition.  
tion. If the BYTE# pin is set at logic ‘1’, the device is in  
No command is necessary in this mode to obtain  
word configuration, DQ15–DQ0 are active and con-  
array data. Standard microprocessor read cycles that  
trolled by CE# and OE#.  
assert valid addresses on the device address inputs  
If the BYTE# pin is set at logic ‘0’, the device is in byte  
configuration, and only data I/O pins DQ0–DQ7 are  
active and controlled by CE# and OE#. The data I/O  
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
produce valid data on the device data outputs. The  
device remains enabled for read access until the  
command register contents are altered.  
See “Reading Array Data” for more information. Refer  
to the AC Read Operations table for timing specifica-  
tions and to Figure 13 for the timing diagram. I  
the DC Characteristics table represents the active cur-  
rent specification for reading array data.  
in  
CC1  
Requirements for Reading Array Data  
To read array data from the outputs, the system must  
drive the CE# and OE# pins to V . CE# is the power  
IL  
control and selects the device. OE# is the output control  
and gates array data to the output pins. WE# should re-  
Writing Commands/Command Sequences  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
main at V . The BYTE# pin determines whether the  
IH  
device outputs array data in words or bytes.  
22358B7 May 5, 2006  
Am29LV160D  
9
D A T A S H E E T  
sectors of memory), the system must drive WE# and  
CE# to V , and OE# to V .  
and I read specifications apply. Refer to “Write Op-  
CC  
eration Status” for more information, and to “AC  
IL  
IH  
Characteristics” for timing diagrams.  
For program operations, the BYTE# pin determines  
whether the device accepts program data in bytes or  
words. Refer to “Word/Byte Configuration” for more  
information.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device features an Unlock Bypass mode to facili-  
tate faster programming. Once the device enters the  
Unlock Bypass mode, only two write cycles are re-  
quired to program a word or byte, instead of four. The  
“Word/Byte Program Command Sequence” section  
has details on programming data to the device using  
both standard and Unlock Bypass command  
sequences.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at V ± 0.3 V.  
(Note that this is a more restricted voltage range than  
CC  
V
.) If CE# and RESET# are held at V , but not  
IH  
IH  
within V  
± 0.3 V, the device will be in the standby  
CC  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Tables 2 and 3 indicate the  
address space that each sector occupies. A “sector  
address” consists of the address bits required to  
uniquely select a sector. The “Command Definitions”  
section has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
mode, but the standby current will be greater. The de-  
vice requires standard access time (t ) for read  
access when the device is in either of these standby  
modes, before it is ready to read data.  
CE  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
After the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ7–DQ0. Standard read cycle timings apply in  
this mode. Refer to the “Autoselect Mode” and “Au-  
toselect Command Sequence” sections for more  
information.  
In the DC Characteristics table, I  
sents the standby current specification.  
and I  
repre-  
CC4  
CC3  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device  
energy consumption. The device automatically  
enables this mode when addresses remain stable for  
t
+ 30 ns. The automatic sleep mode is  
ACC  
I
in the DC Characteristics table represents the ac-  
CC2  
independent of the CE#, WE#, and OE# control  
signals. Standard address access timings provide new  
data when addresses are changed. While in sleep  
mode, output data is latched and always available to  
tive current specification for the write mode. The “AC  
Characteristics” section contains timing specification  
tables and timing diagrams for write operations.  
the system. I  
represents the automatic sleep mode current  
specification.  
in the DC Characteristics table  
CC4  
Program and Erase Operation Status  
During an erase or program operation, the system  
may check the status of the operation by reading the  
status bits on DQ7–DQ0. Standard read cycle timings  
10  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
memory, enabling the system to read the boot-up firm-  
RESET#: Hardware Reset Pin  
ware from the Flash memory.  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a “0” (busy) until the  
internal reset operation is complete, which requires a  
system drives the RESET# pin to V for at least a pe-  
IL  
riod of t , the device immediately terminates any  
RP  
operation in progress, tristates all data output pins,  
and ignores all read/write attempts for the duration of  
the RESET# pulse. The device also resets the internal  
state machine to reading array data. The operation  
that was interrupted should be reinitiated once the de-  
vice is ready to accept another command sequence,  
to ensure data integrity.  
time of t  
(during Embedded Algorithms). The  
READY  
system can thus monitor RY/BY# to determine  
whether the reset operation is complete. If RESET#  
is asserted when a program or erase operation is not  
executing (RY/BY# pin is “1”), the reset operation is  
completed within a time of t  
ded Algorithms). The system can read data t  
(not during Embed-  
READY  
after  
RH  
the RESET# pin returns to V .  
IH  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at V  
draws CMOS standby current (I  
0.3 V, the device  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 14 for the timing diagram.  
SS  
). If RESET# is  
CC4  
held at V but not within V  
rent will be greater.  
0.3 V, the standby cur-  
IL  
SS  
Output Disable Mode  
When the OE# input is at V , output from the device is  
disabled. The output pins are placed in the high im-  
pedance state.  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
IH  
22358B7 May 5, 2006  
Am29LV160D  
11  
D A T A S H E E T  
Table 2. Sector Address Tables (Am29LV160DT)  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Byte Mode (x8)  
000000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1F7FFF  
1F8000–1F9FFF  
1FA000–1FBFFF  
1FC000–1FFFFF  
Word Mode (x16)  
00000–07FFF  
08000–0FFFF  
10000–17FFF  
18000–1FFFF  
20000–27FFF  
28000–2FFFF  
30000–37FFF  
38000–3FFFF  
40000–47FFF  
48000–4FFFF  
50000–57FFF  
58000–5FFFF  
60000–67FFF  
68000–6FFFF  
70000–77FFF  
78000–7FFFF  
80000–87FFF  
88000–8FFFF  
90000–97FFF  
98000–9FFFF  
A0000–A7FFF  
A8000–AFFFF  
B0000–B7FFF  
B8000–BFFFF  
C0000–C7FFF  
C8000–CFFFF  
D0000–D7FFF  
D8000–DFFFF  
E0000–E7FFF  
E8000–EFFFF  
F0000–F7FFF  
F8000–FBFFF  
FC000–FCFFF  
FD000–FDFFF  
FE000–FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
32/16  
8/4  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
1
1
0
1
8/4  
1
1
X
16/8  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See “Word/Byte Configuration” section.  
12  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
Table 3. Sector Address Tables (Am29LV160DB)  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Byte Mode (x8)  
000000–003FFF  
004000–005FFF  
006000–007FFF  
008000–00FFFF  
010000–01FFFF  
020000–02FFFF  
030000–03FFFF  
040000–04FFFF  
050000–05FFFF  
060000–06FFFF  
070000–07FFFF  
080000–08FFFF  
090000–09FFFF  
0A0000–0AFFFF  
0B0000–0BFFFF  
0C0000–0CFFFF  
0D0000–0DFFFF  
0E0000–0EFFFF  
0F0000–0FFFFF  
100000–10FFFF  
110000–11FFFF  
120000–12FFFF  
130000–13FFFF  
140000–14FFFF  
150000–15FFFF  
160000–16FFFF  
170000–17FFFF  
180000–18FFFF  
190000–19FFFF  
1A0000–1AFFFF  
1B0000–1BFFFF  
1C0000–1CFFFF  
1D0000–1DFFFF  
1E0000–1EFFFF  
1F0000–1FFFFF  
Word Mode (x16)  
00000–01FFF  
02000–02FFF  
03000–03FFF  
04000–07FFF  
08000–0FFFF  
10000–17FFF  
18000–1FFFF  
20000–27FFF  
28000–2FFFF  
30000–37FFF  
38000–3FFFF  
40000–47FFF  
48000–4FFFF  
50000–57FFF  
58000–5FFFF  
60000–67FFF  
68000–6FFFF  
70000–77FFF  
78000–7FFFF  
80000–87FFF  
88000–8FFFF  
90000–97FFF  
98000–9FFFF  
A0000–A7FFF  
A8000–AFFFF  
B0000–B7FFF  
B8000–BFFFF  
C0000–C7FFF  
C8000–CFFFF  
D0000–D7FFF  
D8000–DFFFF  
E0000–E7FFF  
E8000–EFFFF  
F0000–F7FFF  
F8000–FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
X
0
16/8  
8/4  
SA2  
0
1
1
8/4  
SA3  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32/16  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA4  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See the “Word/Byte Configuration” section.  
22358B7 May 5, 2006  
Am29LV160D  
13  
D A T A S H E E T  
Table 4. In addition, when verifying sector protection,  
Autoselect Mode  
the sector address must appear on the appropriate  
highest order address bits (see Tables 2 and 3). Table  
4 shows the remaining address bits that are don’t  
care. When all necessary bits have been set as re-  
quired, the programming equipment may then read the  
corresponding identifier code on DQ7-DQ0.  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7–DQ0. This  
mode is primarily intended for programming equip-  
ment to automatically match a device to be  
programmed with its corresponding programming al-  
gorithm. However, the autoselect codes can also be  
accessed in-system through the command register.  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 9. This method  
When using programming equipment, the autoselect  
mode requires V (11.5 V to 12.5 V) on address pin  
does not require V . See “Command Definitions” for  
ID  
ID  
details on using the autoselect mode.  
A9. Address pins A6, A1, and A0 must be as shown in  
Table 4. Am29LV160D Autoselect Codes (High Voltage Method)  
A19 A11  
to to  
Mode CE# OE# WE# A12 A10 A9  
A8  
to  
A7  
A5  
to  
A2  
DQ8  
to  
A0 DQ15  
DQ7  
to  
DQ0  
Description  
A6  
A1  
Manufacturer ID: AMD  
L
L
L
L
H
H
X
X
V
X
X
L
X
X
L
L
X
01h  
C4h  
ID  
Device ID:  
Am29LV160D  
(Top Boot Block)  
Word  
Byte  
Word  
Byte  
22h  
X
X
V
L
L
L
L
H
ID  
L
L
L
L
L
L
H
H
H
X
22h  
X
C4h  
49h  
49h  
Device ID:  
Am29LV160D  
(Bottom Boot Block)  
X
X
X
V
V
X
X
X
X
H
L
ID  
ID  
01h  
(protected)  
X
X
Sector Protection Verification  
L
L
H
SA  
L
H
00h  
(unprotected)  
L = Logic Low = V , H = Logic High = V , SA = Sector Address, X = Don’t care.  
IL  
IH  
Note: The autoselect codes may also be accessed in-system via command sequences. See Table 9.  
The primary method requires V on the RESET# pin  
Sector Protection/Unprotection  
ID  
only, and can be implemented either in-system or via  
programming equipment. Figure 2 shows the algo-  
rithms and Figure 23 shows the timing diagram. This  
method uses standard microprocessor bus cycle tim-  
ing. For sector unprotect, all unprotected sectors must  
first be protected prior to the first sector unprotect  
write cycle.  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both  
program and erase operations in previously protected  
sectors.  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMD’s ExpressFlash™ Service. Contact an  
AMD representative for details.  
The alternate method intended only for programming  
equipment requires V on address pin A9 and OE#.  
ID  
This method is compatible with programmer routines  
written for earlier 3.0 volt-only AMD flash devices. De-  
tails on this method are provided in a supplement,  
publication number 21468. Contact an AMD represen-  
tative to request a copy.  
It is possible to determine whether a sector is pro-  
tected or unprotected. See “Autoselect Mode” for  
details.  
Sector protection/unprotection can be implemented  
via two methods.  
14  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
START  
SET# pin to V . During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
ID  
RESET# = V  
(Note 1)  
ID  
sector addresses. Once V is removed from the RE-  
ID  
SET# pin, all the previously protected sectors are  
protected again. Figure shows the algorithm, and Fig-  
ure 22 shows the timing diagrams, for this feature.  
Perform Erase or  
Program Operations  
RESET# = V  
IH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected.  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
22358B7 May 5, 2006  
Am29LV160D  
15  
D A T A S H E E T  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 μs  
Wait 1 μs  
unprotect address  
No  
First Write  
Cycle = 60h?  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Sector Protect/Unprotect Algorithms  
16  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
tem can read CFI information at the addresses given  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
in Tables 5–8. In word mode, the upper address bits  
(A7–MSB) must be all zeros. To terminate reading CFI  
data, the system must write the reset command.  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 5–8. The  
system must write the reset command to return the  
device to the autoselect mode.  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the World  
Wide Web at http://www.amd.com/products/nvd/over-  
view/cfi.html. Alternatively, contact an AMD  
representative for copies of these documents.  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The sys-  
Table 5. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string “QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
22358B7 May 5, 2006  
Am29LV160D  
17  
D A T A S H E E T  
Table 6. System Interface String  
Data Description  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
V
Min. (write/erase)  
CC  
1Bh  
1Ch  
36h  
38h  
0027h  
0036h  
D7–D4: volt, D3–D0: 100 millivolt  
V
Max. (write/erase)  
CC  
D7–D4: volt, D3–D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
N
Typical timeout per single byte/word write 2 µs  
N
Typical timeout for Min. size buffer write 2 µs (00h = not supported)  
N
Typical timeout per individual block erase 2 ms  
N
Typical timeout for full chip erase 2 ms (00h = not supported)  
N
Max. timeout for byte/word write 2 times typical  
N
Max. timeout for buffer write 2 times typical  
N
Max. timeout per individual block erase 2 times typical  
N
Max. timeout for full chip erase 2 times typical (00h = not supported)  
Table 7. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
N
27h  
4Eh  
0015h  
Device Size = 2 byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
N
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2  
(00h = not supported)  
2Ch  
58h  
0004h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0000h  
0000h  
0040h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
0001h  
0000h  
0020h  
0000h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0080h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
001Eh  
0000h  
0000h  
0001h  
18  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
Table 8. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string “PRI”  
43h  
44h  
86h  
88h  
0031h  
0030h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock  
0 = Required, 1 = Not Required  
45h  
46h  
47h  
48h  
8Ah  
8Ch  
8Eh  
90h  
0000h  
0002h  
0001h  
0001h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
92h  
0004h  
01 = 29F040 mode, 02 = 29F016 mode,  
03 = 29F400 mode, 04 = 29LV800A mode  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
4Ah  
4Bh  
4Ch  
94h  
96h  
98h  
0000h  
0000h  
0000h  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Table 9 for com-  
mand definitions). In addition, the following hardware  
data protection measures prevent accidental erasure  
or programming, which might otherwise be caused by  
Write Pulse “Glitch” Protection  
Noise pulses of less than 5 ns (typical) on OE#, CE#  
or WE# do not initiate a write cycle.  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
spurious system level signals during V  
power-up  
CC  
V , CE# = V or WE# = V . To initiate a write cycle,  
IL  
IH  
IH  
and power-down transitions, or from system noise.  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
Low V  
Write Inhibit  
CC  
When V  
is less than V  
, the device does not ac-  
LKO  
Power-Up Write Inhibit  
CC  
cept any write cycles. This protects data during V  
CC  
If WE# = CE# = V and OE# = V during power up,  
IL  
IH  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets. Subsequent writes are ignored  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to reading array data on power-up.  
until V  
is greater than V  
. The system must pro-  
CC  
LKO  
vide the proper signals to the control pins to prevent  
unintentional writes when V is greater than V  
.
CC  
LKO  
22358B7 May 5, 2006  
Am29LV160D  
19  
D A T A S H E E T  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device  
operations. Table 9 defines the valid register command  
sequences. Writing incorrect address and data val-  
ues or writing them in the improper sequence resets  
the device to reading array data.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to reading array data (also  
applies to autoselect during Erase Suspend).  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to read-  
ing array data (also applies during Erase Suspend).  
All addresses are latched on the falling edge of WE#  
or CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the appropriate timing diagrams in the  
“AC Characteristics” section.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and devices  
codes, and determine whether or not a sector is pro-  
tected. Table 9 shows the address and data  
requirements. This method is an alternative to that  
shown in Table 4, which is intended for PROM pro-  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is also ready to read array  
data after completing an Embedded Program or Em-  
bedded Erase algorithm.  
grammers and requires V on address bit A9.  
ID  
The autoselect command sequence is initiated by writ-  
ing two unlock cycles, followed by the autoselect  
command. The device then enters the autoselect  
mode, and the system may read at any address any  
number of times, without initiating another command  
sequence.  
After the device accepts an Erase Suspend com-  
mand, the device enters the Erase Suspend mode.  
The system can read array data using the standard  
read timings, except that if it reads at an address  
within erase-suspended sectors, the device outputs  
status data. After completing a programming opera-  
tion in the Erase Suspend mode, the system may  
once again read array data with the same exception.  
See “Erase Suspend/Erase Resume Commands” for  
more information on this mode.  
A read cycle at address XX00h retrieves the manufac-  
turer code. A read cycle at address XX01h returns the  
device code. A read cycle containing a sector address  
(SA) and the address 02h in word mode (or 04h in  
byte mode) returns 01h if that sector is protected, or  
00h if it is unprotected. Refer to Tables 2 and 3 for  
valid sector addresses.  
The system must issue the reset command to re-en-  
able the device for reading array data if DQ5 goes  
high, or while in the autoselect mode. See the “Reset  
Command” section, next.  
The system must write the reset command to exit the  
autoselect mode and return to reading array data.  
See also “Requirements for Reading Array Data” in  
the “Device Bus Operations” section for more informa-  
tion. The Read Operations table provides the read  
parameters, and Figure 13 shows the timing diagram.  
Word/Byte Program Command Sequence  
The system may program the device by word or byte,  
depending on the state of the BYTE# pin. Program-  
ming is a four-bus-cycle operation. The program  
command sequence is initiated by writing two unlock  
write cycles, followed by the program set-up com-  
mand. The program address and data are written  
next, which in turn initiate the Embedded Program al-  
gorithm. The system is not required to provide further  
controls or timings. The device automatically gener-  
ates the program pulses and verifies the programmed  
cell margin. Table 9 shows the address and data re-  
quirements for the byte program command  
sequence.  
Reset Command  
Writing the reset command to the device resets the  
device to reading array data. Address bits are don’t  
care for this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ig-  
nores reset commands until the operation is complete.  
The reset command may be written between the se-  
quence cycles in a program command sequence  
before programming begins. This resets the device to  
reading array data (also applies to programming in  
Erase Suspend mode). Once programming begins,  
however, the device ignores reset commands until the  
operation is complete.  
When the Embedded Program algorithm is complete,  
the device then returns to reading array data and ad-  
dresses are no longer latched. The system can  
determine the status of the program operation by  
using DQ7, DQ6, or RY/BY#. See “Write Operation  
Status” for information on these status bits.  
20  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
Any commands written to the device during the Em-  
90h; the second cycle the data 00h. Addresses are  
don’t care for both cycles. The device then returns to  
reading array data.  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program-  
ming operation. The Byte Program command  
sequence should be reinitiated once the device has  
reset to reading array data, to ensure data integrity.  
Figure 3 illustrates the algorithm for the program oper-  
ation. See the Erase/Program Operations table in “AC  
Characteristics” for parameters, and to Figure 17 for  
timing diagrams.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from a “0” back to a “1”. Attempting to do so may  
halt the operation and set DQ5 to “1,or cause the  
Data# Polling algorithm to indicate the operation was  
successful. However, a succeeding read will show that  
the data is still “0”. Only erase operations can convert  
a “0” to a “1”.  
START  
Write Program  
Command Sequence  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to the device faster than using the  
standard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
The device then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Table 9 shows the require-  
ments for the command sequence.  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Verify Data?  
No  
Yes  
No  
Increment Address  
Last Address?  
Yes  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the data  
Programming  
Completed  
Note: See Table 9 for program command sequence.  
Figure 3. Program Operation  
the address and data requirements for the chip erase  
command sequence.  
Any commands written to the chip during the Embed-  
ded Erase algorithm are ignored. Note that a  
hardware reset during the chip erase operation im-  
mediately terminates the operation. The Chip Erase  
command sequence should be reinitiated once the de-  
vice has returned to reading array data, to ensure data  
integrity.  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 9 shows  
The system can determine the status of the erase op-  
eration by using DQ7, DQ6, DQ2, or RY/BY#. See  
“Write Operation Status” for information on these sta-  
tus bits. When the Embedded Erase algorithm is  
complete, the device returns to reading array data and  
addresses are no longer latched.  
22358B7 May 5, 2006  
Am29LV160D  
21  
D A T A S H E E T  
Figure 4 illustrates the algorithm for the erase opera-  
status of the erase operation by using DQ7, DQ6,  
DQ2, or RY/BY#. (Refer to “Write Operation Status” for  
information on these status bits.)  
tion. See the Erase/Program Operations tables in “AC  
Characteristics” for parameters, and to Figure 18 for  
timing diagrams.  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase/Program Operations tables in  
the “AC Characteristics” section for parameters, and to  
Figure 18 for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock write cycles are then followed by the  
address of the sector to be erased, and the sector  
erase command. Table 9 shows the address and data  
requirements for the sector erase command  
sequence.  
Erase Suspend/Erase Resume  
Commands  
The Erase Suspend command allows the system to in-  
terrupt a sector erase operation and then read data  
from, or program data to, any sector not selected for  
erasure. This command is valid only during the sector  
erase operation, including the 50 µs time-out period  
during the sector erase command sequence. The  
Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algo-  
rithm. Writing the Erase Suspend command during the  
Sector Erase time-out immediately terminates the  
time-out period and suspends the erase operation. Ad-  
dresses are “don’t-cares” when writing the Erase  
Suspend command.  
The device does not require the system to preprogram  
the memory prior to erase. The Embedded Erase al-  
gorithm automatically programs and verifies the sector  
for an all zero data pattern prior to electrical erase.  
The system is not required to provide any controls or  
timings during these operations.  
After the command sequence is written, a sector erase  
time-out of 50 µs begins. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than 50  
µs, otherwise the last address and command might  
not be accepted, and erasure may begin. It is recom-  
mended that processor interrupts be disabled during  
this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector  
Erase command is written. If the time between addi-  
tional sector erase commands can be assumed to be  
less than 50 µs, the system need not monitor DQ3.  
Any command other than Sector Erase or Erase  
Suspend during the time-out period resets the de-  
vice to reading array data. The system must rewrite  
the command sequence and any additional sector ad-  
dresses and commands.  
When the Erase Suspend command is written during a  
sector erase operation, the device requires a maxi-  
mum of 20 µs to suspend the erase operation.  
However, when the Erase Suspend command is writ-  
ten during the sector erase time-out, the device  
immediately terminates the time-out period and sus-  
pends the erase operation.  
After the erase operation has been suspended, the  
system can read array data from or program data to  
any sector not selected for erasure. (The device “erase  
suspends” all sectors selected for erasure.) Normal  
read and write timings and command definitions apply.  
Reading at any address within erase-suspended sec-  
tors produces status data on DQ7–DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
See “Write Operation Status” for information on these  
status bits.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out. (See the “DQ3: Sector  
Erase Timer” section.) The time-out begins from the  
rising edge of the final WE# pulse in the command  
sequence.  
After an erase-suspended program operation is com-  
plete, the system can once again read array data  
within non-suspended sectors. The system can deter-  
mine the status of the program operation using the  
DQ7 or DQ6 status bits, just as in the standard pro-  
gram operation. See “Write Operation Status” for more  
information.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. Note that a hardware reset  
during the sector erase operation immediately termi-  
nates the operation. The Sector Erase command  
sequence should be reinitiated once the device has re-  
turned to reading array data, to ensure data integrity.  
The system may also write the autoselect command  
sequence when the device is in the Erase Suspend  
mode. The device allows reading autoselect codes  
even at addresses within erasing sectors, since the  
codes are not stored in the memory array. When the  
device exits the autoselect mode, the device reverts to  
the Erase Suspend mode, and is ready for another  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses  
are no longer latched. The system can determine the  
22  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
valid operation. See “Autoselect Command Sequence”  
for more information.  
START  
The system must write the Erase Resume command  
(address bits are “don’t care”) to exit the erase sus-  
pend mode and continue the sector erase operation.  
Further writes of the Resume command are ignored.  
Another Erase Suspend command can be written after  
the device has resumed erasing.  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 9 for erase command sequence.  
2. See “DQ3: Sector Erase Timer” for more information.  
Figure 4. Erase Operation  
22358B7 May 5, 2006  
Am29LV160D  
23  
D A T A S H E E T  
Command Definitions  
Table 9. Am29LV160D Command Definitions  
Bus Cycles (Notes 2–5)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Data Addr Data  
Fifth  
Sixth  
Addr Data Addr Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
XXX  
555  
RD  
F0  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
555  
Manufacturer ID  
4
4
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
X00  
01  
Byte  
Word  
Byte  
Word  
Byte  
AAA  
555  
X01  
X02  
X01  
X02  
22C4  
C4  
Device ID,  
Top Boot Block  
AAA  
555  
AAA  
555  
2249  
49  
Device ID,  
Bottom Boot Block  
AAA  
AAA  
XX00  
XX01  
00  
(SA)  
X02  
Word  
Byte  
555  
2AA  
555  
555  
Sector Protect Verify  
(Note 9)  
4
AA  
55  
90  
(SA)  
X04  
AAA  
AAA  
01  
Word  
Byte  
Word  
Byte  
Word  
Byte  
55  
CFI Query (Note 10)  
1
4
3
98  
AA  
AA  
AA  
555  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
Program  
55  
55  
A0  
20  
PA  
PD  
AAA  
555  
AAA  
XXX  
XXX  
555  
Unlock Bypass  
AAA  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
2
2
A0  
90  
PD  
00  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
Chip Erase  
Byte  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
AAA  
555  
AAA  
Word  
Sector Erase  
Byte  
SA  
AAA  
XXX  
XXX  
AAA  
AAA  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
1
1
B0  
30  
Legend:  
X = Don’t care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE# pulse, whichever happens first.  
RA = Address of the memory location to be read.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A19–A12 uniquely select any sector.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE# pulse, whichever happens  
later.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector and 01h for a  
protected sector. See “Autoselect Command Sequence” for  
more information.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
10. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
4. Data bits DQ15–DQ8 are don’t cares for unlock and command  
cycles.  
11. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
5. Address bits A19–A11 are don’t cares for unlock and  
command cycles, unless SA or PA required.  
12. The Unlock Bypass Reset command is required to return to  
reading array data when the device is in the unlock bypass  
mode.  
6. No unlock or command cycles required when reading array  
data.  
7. The Reset command is required to return to reading array data  
when device is in the autoselect mode, or if DQ5 goes high  
(while the device is providing status data).  
13. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector  
erase operation.  
8. The fourth cycle of the autoselect command sequence is a  
read cycle.  
14. The Erase Resume command is valid only during the Erase Suspend mode.  
24  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a write operation: DQ2, DQ3, DQ5, DQ6, DQ7,  
and RY/BY#. Table 10 and the following subsections  
describe the functions of these bits. DQ7, RY/BY#,  
and DQ6 each offer a method for determining whether  
a program or erase operation is complete or in  
progress. These three bits are discussed first.  
Table 10 shows the outputs for Data# Polling on DQ7.  
Figure 5 shows the Data# Polling algorithm.  
START  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host sys-  
tem whether an Embedded Algorithm is in progress or  
completed, or whether the device is in Erase Suspend.  
Data# Polling is valid after the rising edge of the final  
WE# pulse in the program or erase command  
sequence.  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
During the Embedded Program algorithm, the device  
outputs on DQ7 the complement of the datum pro-  
grammed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Em-  
bedded Program algorithm is complete, the device  
outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status  
information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to reading  
array data.  
No  
No  
DQ5 = 1?  
Yes  
During the Embedded Erase algorithm, Data# Polling  
produces a “0” on DQ7. When the Embedded Erase  
algorithm is complete, or if the device enters the Erase  
Suspend mode, Data# Polling produces a “1” on DQ7.  
This is analogous to the complement/true datum out-  
put described for the Embedded Program algorithm:  
the erase function changes all the bits in a sector to  
“1”; prior to this, the device outputs the “complement,”  
or “0.The system must provide an address within any  
of the sectors selected for erasure to read valid status  
information on DQ7.  
Read DQ7–DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then the  
device returns to reading array data. If not all selected  
sectors are protected, the Embedded Erase algorithm  
erases the unprotected sectors, and ignores the se-  
lected sectors that are protected.  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is an address within  
any sector selected for erasure. During chip erase, a  
valid address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = “1” because  
DQ7 may change simultaneously with DQ5.  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at  
DQ7–DQ0 on the following read cycles. This is be-  
cause DQ7 may change asynchronously with DQ0–  
DQ6 while Output Enable (OE#) is asserted low. Fig-  
Figure 5. Data# Polling Algorithm  
ure  
19,  
Data#  
Polling  
Timings  
(During Embedded Algorithms), in the “AC Character-  
istics” section illustrates this.  
22358B7 May 5, 2006  
Am29LV160D  
25  
D A T A S H E E T  
DQ6 also toggles during the erase-suspend-program  
RY/BY#: Ready/Busy#  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
Table 10 shows the outputs for Toggle Bit I on DQ6.  
Figure 6 shows the toggle bit algorithm in flowchart  
form, and the section “Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. Figure 20 in the “AC Character-  
istics” section shows the toggle bit timing diagrams.  
Figure 21 shows the differences between DQ2 and  
DQ6 in graphical form. See also the subsection on  
“DQ2: Toggle Bit II”.  
pull-up resistor to V . (The RY/BY# pin is not avail-  
CC  
able on the 44-pin SO package.)  
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is ready to read array data (includ-  
ing during the Erase Suspend mode), or is in the  
standby mode.  
DQ2: Toggle Bit II  
The “Toggle Bit II” on DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
Table 10 shows the outputs for RY/BY#. Figures 13,  
14, 17 and 18 shows RY/BY# for read, reset, program,  
and erase operations, respectively.  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to  
control the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 10 to compare out-  
puts for DQ2 and DQ6.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. (The system may use either OE# or  
CE# to control the read cycles.) When the operation is  
complete, DQ6 stops toggling.  
Figure 6 shows the toggle bit algorithm in flowchart  
form, and the section “Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. See also the DQ6: Toggle Bit I  
subsection. Figure 20 shows the toggle bit timing dia-  
gram. Figure 21 shows the differences between DQ2  
and DQ6 in graphical form.  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are  
protected.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 6 for the following discussion. When-  
ever the system initially begins reading toggle bit  
status, it must read DQ7–DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typi-  
cally, the system would note and store the value of  
the toggle bit after the first read. After the second  
read, the system would compare the new value of the  
toggle bit with the first. If the toggle bit is not toggling,  
the device has completed the program or erase oper-  
ation. The system can read array data on DQ7–DQ0  
on the following read cycle.  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that  
is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend  
mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing  
or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on “DQ7: Data# Polling”).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
26  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not complete the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
START  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
cles, determining the status as described in the  
previous paragraph. Alternatively, it may choose to  
perform other system tasks. In this case, the system  
must start at the beginning of the algorithm when it re-  
turns to determine the status of the operation (top of  
Figure 6).  
Read DQ7–DQ0  
Read DQ7–DQ0  
(Note 1)  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7–DQ0  
Twice  
(Notes  
1, 2)  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Notes:  
1. Read toggle bit twice to determine whether or not it is  
toggling. See text.  
2. Recheck toggle bit because it may stop toggling as DQ5  
changes to “1”. See text.  
Figure 6. Toggle Bit Algorithm  
22358B7 May 5, 2006  
Am29LV160D  
27  
D A T A S H E E T  
tional sectors are selected for erasure, the entire time-  
DQ5: Exceeded Timing Limits  
out also applies after each additional sector erase com-  
mand. When the time-out is complete, DQ3 switches  
from “0” to “1.The system may ignore DQ3 if the sys-  
tem can guarantee that the time between additional  
sector erase commands will always be less than 50  
μs. See also the “Sector Erase Command Sequence”  
section.  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a “1.This is a failure  
condition that indicates the program or erase cycle  
was not successfully completed.  
The DQ5 failure condition may appear if the system  
tries to program a “1” to a location that is previously  
programmed to “0.Only an erase operation can  
change a “0” back to a “1.Under this condition, the  
device halts the operation, and when the operation  
has exceeded the timing limits, DQ5 produces a “1.”  
After the sector erase command sequence is written,  
the system should read the status on DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure the device has  
accepted the command sequence, and then read  
DQ3. If DQ3 is “1”, the internally controlled erase cycle  
has begun; all further commands (other than Erase  
Suspend) are ignored until the erase operation is com-  
plete. If DQ3 is “0”, the device will accept additional  
sector erase commands. To ensure the command has  
been accepted, the system software should check the  
status of DQ3 prior to and following each subsequent  
sector erase command. If DQ3 is high on the second  
status check, the last command might not have been  
accepted. Table 10 shows the outputs for DQ3.  
Under both these conditions, the system must issue  
the reset command to return the device to reading  
array data.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not an  
erase operation has begun. (The sector erase timer  
does not apply to the chip erase command.) If addi-  
Table 10. Write Operation Status  
DQ7  
DQ5  
DQ2  
Operation  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
Reading within Erase  
Suspended Sector  
1
No toggle  
0
N/A  
Toggle  
1
Erase  
Suspend Reading within Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Mode  
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
See “DQ5: Exceeded Timing Limits” for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
28  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
V
(Note 1) . . . . . . . . . . . . . . . . . –0.5 V to +4.0 V  
CC  
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C  
A9, OE#, and RESET# (Note 2) . –0.5 V to +12.5 V  
Ambient Temperature  
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C  
All other pins (Note 1) . . . . . . . –0.5 V to V +0.5 V  
CC  
Output Short Circuit Current (Note 3) . . . . . . . 200 mA  
Voltage with Respect to Ground  
Notes:  
1. Minimum DC voltage on input or I/O pins is –0.5 V. During voltage transitions, input or I/O pins may overshoot V to –2.0 V  
SS  
for periods of up to 20 ns. See Figure 7. Maximum DC voltage on input or I/O pins is VCC +0.5 V. During voltage transitions,  
input or I/O pins may overshoot to V +2.0 V for periods up to 20 ns. See Figure 8.  
CC  
2. Minimum DC input voltage on pins A9, OE#, and RESET#  
is -0.5 V. During voltage transitions, A9, OE#, and RESET#  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater than  
one second.  
may overshoot V to –2.0 V for periods of up to 20 ns. See  
SS  
Figure 7. Maximum DC input voltage on pin A9 is +12.5 V  
which may overshoot to 14.0 V for periods up to 20 ns.  
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections  
of this data sheet is not implied. Exposure of the device to absolute maximum rating conditions for extended periods may affect  
device reliability.  
22358B7 May 5, 2006  
Am29LV160D  
29  
D A T A S H E E T  
20 ns  
20 ns  
20 ns  
+0.8 V  
V
CC  
+2.0 V  
–0.5 V  
–2.0 V  
V
CC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 8. Maximum Positive  
Overshoot Waveform  
Figure 7. Maximum Negative  
Overshoot Waveform  
OPERATING RANGES  
Commercial (C) Devices  
Ambient Temperature (T ) . . . . . . . . . . . 0°C to +70°C  
A
Industrial (I) Devices  
Ambient Temperature (T ) . . . . . . . . . –40°C to +85°C  
A
V
Supply Voltages  
CC  
V
for all devices . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
CC  
Operating ranges define those limits between which the functionality of the device is guaranteed.  
30  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Description  
Test Conditions  
= V to V  
Min  
Typ  
Max  
±1.0  
35  
Unit  
µA  
V
V
,
CC  
IN  
SS  
I
Input Load Current  
LI  
= V  
CC  
CC max  
I
A9 Input Load Current  
Output Leakage Current  
V
= V  
; A9 = 12.5 V  
µA  
LIT  
CC  
CC max  
V
V
= V to V  
,
OUT  
SS  
CC  
I
±1.0  
µA  
LO  
= V  
CC  
CC max  
5 MHz  
1 MHz  
5 MHz  
1 MHz  
9
2
9
2
16  
4
CE# = V OE#  
Byte Mode  
V
V
IL,  
=
=
IH,  
IH,  
V
Active Read Current  
CC  
I
mA  
CC1  
(Notes 1, 2)  
16  
4
CE# = V OE#  
IL,  
Word Mode  
V
Active Write Current  
CC  
I
I
I
CE# = V OE# = V  
IH  
20  
0.2  
0.2  
30  
5
mA  
µA  
µA  
CC2  
CC3  
CC4  
IL,  
(Notes 2, 3, 5)  
V
Standby Current (Notes 2, 4) CE#, RESET# = V ±0.3 V  
CC  
CC  
V
Standby Current During Reset  
CC  
RESET# = V ± 0.3 V  
5
SS  
(Notes 2, 4)  
Automatic Sleep Mode  
(Notes 2, 4, 6)  
V
V
= V ± 0.3 V;  
CC  
IH  
IL  
I
0.2  
5
µA  
CC5  
= V ± 0.3 V  
SS  
V
Input Low Voltage  
Input High Voltage  
–0.5  
0.8  
V
V
IL  
V
V
0.7 x V  
V
+ 0.3  
CC  
IH  
CC  
Voltage for Autoselect and  
Temporary Sector Unprotect  
V
= 3.3 V  
11.5  
12.5  
0.45  
V
ID  
CC  
V
Output Low Voltage  
I
I
I
= 4.0 mA, V = V  
CC min  
V
V
OL  
OL  
OH  
OH  
CC  
V
= -2.0 mA, V = V  
0.85 x V  
CC  
OH1  
OH2  
CC  
CC min  
CC min  
Output High Voltage  
V
= -100 µA, V = V  
V
–0.4  
CC  
CC  
V
Low V Lock-Out Voltage (Note 4)  
2.3  
2.5  
V
LKO  
CC  
Notes:  
1. The I current listed is typically less than 2 mA/MHz, with OE# at V . Typical V is 3.0 V.  
CC  
IH  
CC  
2. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
3. I active while Embedded Erase or Embedded Program is in progress.  
CC  
4. At extended temperature range (>+85°C), typical current is 5 µA and maximum current is 10 µA.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for t  
200 nA.  
+ 30 ns. Typical sleep mode current is  
ACC  
6. Not 100% tested.  
22358B7 May 5, 2006  
Am29LV160D  
31  
D A T A S H E E T  
DC CHARACTERISTICS (Continued)  
Zero Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 9.  
I
Current vs. Time (Showing Active and Automatic Sleep Currents)  
CC1  
10  
8
3.6 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 10. Typical I  
vs. Frequency  
CC1  
32  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
TEST CONDITIONS  
Table 11. Test Specifications  
3.3 V  
Test Condition  
Output Load  
-70  
-90, -120 Unit  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, C  
(including jig capacitance)  
L
30  
100  
pF  
C
L
Input Rise and Fall Times  
Input Pulse Levels  
5
0.0–3.0  
ns  
V
6.2 kΩ  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 11. Test Setup  
Key to Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Don’t Care, Any Change Permitted  
Does Not Apply  
Changing, State Unknown  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 12. Input Waveforms and Measurement Levels  
22358B7 May 5, 2006  
Am29LV160D  
33  
D A T A S H E E T  
AC CHARACTERISTICS  
Read Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
Test Setup  
-70  
-90  
-120  
Unit  
t
t
Read Cycle Time (Note 1)  
Min  
70  
70  
90  
120  
120  
ns  
AVAV  
RC  
CE# = V  
OE# = V  
IL  
IL  
t
t
Address to Output Delay  
Max  
90  
ns  
AVQV  
ACC  
t
t
Chip Enable to Output Delay  
OE# = V  
Max  
Max  
Max  
Max  
Min  
70  
30  
25  
25  
90  
35  
30  
30  
0
120  
50  
ns  
ns  
ns  
ns  
ns  
ELQV  
GLQV  
EHQZ  
GHQZ  
CE  
IL  
t
t
t
Output Enable to Output Delay  
OE  
t
t
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
30  
DF  
t
30  
DF  
Read  
Output Enable  
Hold Time (Note 1)  
t
OEH  
Toggle and  
Data# Polling  
Min  
Min  
10  
0
ns  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 1)  
t
t
OH  
AXQX  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 11 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 13. Read Operations Timings  
34  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
Test Setup  
Max  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read or Write (See Note)  
t
t
20  
µs  
READY  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read or Write (See Note)  
Max  
500  
ns  
READY  
t
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RP  
t
RESET# High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 14. RESET# Timings  
22358B7 May 5, 2006  
Am29LV160D  
35  
D A T A S H E E T  
AC CHARACTERISTICS  
Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
5
-120  
Unit  
ns  
t
t
t
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
ELFL/ ELFH  
FLQZ  
25  
70  
30  
90  
30  
ns  
120  
ns  
FHQV  
CE#  
OE#  
BYTE#  
t
ELFL  
Data Output  
(DQ0–DQ14)  
Data Output  
(DQ0–DQ7)  
BYTE#  
DQ0–DQ14  
DQ15/A-1  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
t
FLQZ  
t
ELFH  
BYTE#  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ0–DQ7)  
Data Output  
(DQ0–DQ14)  
DQ0–DQ14  
DQ15/A-1  
mode  
Address  
Input  
DQ15  
Output  
t
FHQV  
Figure 15. BYTE# Timings for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
t
SET  
(t  
)
AS  
t
(t  
)
HOLD AH  
Note: Refer to the Erase/Program Operations table for t and t specifications.  
AS  
AH  
Figure 16. BYTE# Timings for Write Operations  
Am29LV160D  
36  
May 5, 2006 22358B7  
D A T A S H E E T  
AC CHARACTERISTICS  
Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
90  
0
-120  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
120  
AVAV  
WC  
t
t
ns  
AVWL  
WLAX  
DVWH  
WHDX  
AS  
AH  
DS  
DH  
t
t
45  
35  
45  
45  
0
50  
50  
ns  
t
t
ns  
t
t
Data Hold Time  
ns  
t
Output Enable Setup Time  
0
ns  
OES  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
Min  
0
ns  
GHWL  
GHWL  
t
t
CE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Max  
0
0
ns  
ns  
ns  
ns  
ELWL  
WHEH  
WLWH  
WHWL  
CS  
CH  
WP  
t
t
CE# Hold Time  
t
t
Write Pulse Width  
Write Pulse Width High  
35  
35  
30  
5
50  
t
t
WPH  
Byte  
t
t
t
t
Programming Operation (Note 2)  
µs  
WHWH1  
WHWH2  
WHWH1  
Word  
7
Sector Erase Operation (Note 2)  
0.7  
50  
0
sec  
µs  
WHWH2  
t
V
Setup Time (Note 1)  
CC  
VCS  
t
Recovery Time from RY/BY#  
ns  
RB  
t
Program/Erase Valid to RY/BY# Delay  
90  
ns  
BUSY  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
22358B7 May 5, 2006  
Am29LV160D  
37  
D A T A S H E E T  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 17. Program Operation Timings  
38  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”).  
2. Illustration shows device in word mode.  
Figure 18. Chip/Sector Erase Operation Timings  
22358B7 May 5, 2006  
Am29LV160D  
39  
D A T A S H E E T  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
tOEH  
WE#  
tDF  
tOH  
Complement  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Status Data  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 19. Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
CE#  
VA  
tACC  
tCE  
VA  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
DQ6/DQ2  
RY/BY#  
Valid Status  
(first read)  
Valid Status  
Valid Status  
Valid Data  
(second read)  
(stops toggling)  
tBUSY  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle.  
Figure 20. Toggle Bit Timings (During Embedded Algorithms)  
40  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
AC CHARACTERISTICS  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: The system may use CE# or OE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an  
erase-suspended sector.  
Figure 21. DQ2 vs. DQ6 for Erase and  
Erase Suspend Operations  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
Rise and Fall Time (See Note)  
All Speed Options  
Unit  
t
V
Min  
Min  
500  
ns  
VIDR  
ID  
RESET# Setup Time for Temporary Sector  
Unprotect  
t
4
µs  
RSP  
Note: Not 100% tested.  
12 V  
RESET#  
0 or 3 V  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 22. Temporary Sector Unprotect/Timing Diagram  
22358B7 May 5, 2006  
Am29LV160D  
41  
D A T A S H E E T  
AC CHARACTERISTICS  
VID  
VIH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Sector Protect/Unprotect  
60h 60h  
Valid*  
Valid*  
Status  
Verify  
40h  
Data  
Sector Protect: 150 µs  
Sector Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 23. Sector Protect/Unprotect Timing Diagram  
42  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
90  
0
-120  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
120  
AVAV  
AVEL  
ELAX  
DVEH  
EHDX  
WC  
t
t
ns  
AS  
AH  
DS  
DH  
t
t
45  
35  
45  
45  
0
50  
50  
ns  
t
t
ns  
t
t
Data Hold Time  
ns  
t
Output Enable Setup Time  
0
ns  
OES  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
t
Min  
0
ns  
GHEL  
WLEL  
GHEL  
t
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
WS  
t
t
EHWH  
WH  
t
t
CE# Pulse Width  
CE# Pulse Width High  
35  
35  
30  
5
50  
ELEH  
CP  
t
t
CPH  
EHEL  
Byte  
t
t
t
t
Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
µs  
WHWH1  
WHWH1  
Word  
7
0.7  
sec  
WHWH2  
WHWH2  
Notes:  
1. Not 100% tested.  
2. See the “Erase and Programming Performance” section for more information.  
22358B7 May 5, 2006  
Am29LV160D  
43  
D A T A S H E E T  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. PA = program address, PD = program data, DQ7# = complement of the data written to the device, D  
device.  
= data written to the  
OUT  
2. Figure indicates the last two bus cycles of the command sequence.  
3. Word mode address used as an example.  
Figure 24. Alternate CE# Controlled Write Operation Timings  
44  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1)  
Max (Note 2)  
Unit  
s
Comments  
Sector Erase Time  
Chip Erase Time  
0.7  
25  
5
15  
Excludes 00h programming  
prior to erasure (Note 4)  
s
Byte Programming Time  
Word Programming Time  
150  
210  
33  
µs  
µs  
s
7
Excludes system level  
overhead (Note 5)  
Byte Mode  
Word Mode  
11  
7.2  
Chip Programming Time  
(Note 3)  
21.6  
s
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 1,000,000 cycles. Additionally,  
CC  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, V = 2.7 V, 1,000,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table 9  
for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to V on all pins except I/O pins  
(including A9, OE#, and RESET#)  
SS  
–1.0 V  
12.5 V  
Input voltage with respect to V on all I/O pins  
–1.0 V  
V
+ 1.0 V  
CC  
SS  
V
Current  
–100 mA  
+100 mA  
CC  
Includes all pins except V . Test conditions: V = 3.0 V, one pin at a time.  
CC  
CC  
TSOP AND SO PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
C
V
= 0  
IN  
IN  
C
Output Capacitance  
Control Pin Capacitance  
V
= 0  
8.5  
7.5  
pF  
OUT  
OUT  
C
V
= 0  
IN  
9
pF  
IN2  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
DATA RETENTION  
Parameter  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
22358B7 May 5, 2006  
Am29LV160D  
45  
D A T A S H E E T  
PHYSICAL DIMENSIONS*  
TS 048—48-Pin Standard TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
46  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
PHYSICAL DIMENSIONS  
TSR048—48-Pin Reverse TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
22358B7 May 5, 2006  
Am29LV160D  
47  
D A T A S H E E T  
PHYSICAL DIMENSIONS  
FBC048—48-Ball Fine-Pitch Ball Grid Array (FBGA)  
8 x 9 mm  
Dwg rev AF; 10/99  
48  
Am29LV160D  
May 5, 2006 22358B7  
D A T A S H E E T  
PHYSICAL DIMENSIONS  
SO 044—44-Pin Small Outline Package  
Dwg rev AC; 10/99  
22358B7 May 5, 2006  
Am29LV160D  
49  
D A T A S H E E T  
REVISION SUMMARY  
Ordering Information  
Revision A (January 1999)  
Added dash to OPN.  
The Am29LV160D is fully form, fit, and function com-  
patible with the Am29LV160B device, with the  
following differences:  
Revision B+2 (November 7, 2000)  
Global  
A 70 ns device at full voltage range is now available.  
The 80 ns speed option has been deleted.  
Deleted Preliminary status from data sheet. Deleted  
burn-in option. Added table of contents.  
Byte and word programming times, and byte- and  
word-mode chip programming times are now reduced.  
Revision B+3 (November 10, 2000)  
Command Definitions  
At extended temperatures (>+85°C), sleep and  
standby currents increase.  
Reset Command: Deleted reference to Figure 14, RE-  
SET# Timings, which applies only to hardware reset.  
Revision A+1 (April 19, 1999)  
Global  
Revision B+4 (April 5, 2004)  
Erase/Program Operations  
Reclassified the document from advance information  
to preliminary.  
Changed standard parameter t  
from Min to Max.  
BUSY  
The 70 ns speed option is now also available with the  
industrial and extended temperature range ratings.  
Revision B+5 (June 4, 2004)  
Ordering Information  
Revision B (November 23, 1999)  
Added Pb-Free OPNs.  
AC Characteristics—Figure 17. Program  
Operations Timing and Figure 18. Chip/Sector  
Erase Operations  
Revision B+6 (October 7, 2004)  
Cover Sheet and Title Page  
Deleted t  
high.  
and changed OE# waveform to start at  
GHWL  
Added notation to superseding document.  
Physical Dimensions  
Revision B7 (May 5, 2006)  
Updated migration and obsolescence statement on  
cover page and first page of data sheet.  
Replaced figures with more detailed illustrations.  
Revision B+1 (February 22, 2000)  
Global  
Updated trademarks.  
Added dash to speed options.  
Colophon  
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limita-  
tion, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as con-  
templated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the  
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,  
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for  
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion will not be liable to  
you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor de-  
vices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design mea-  
sures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating  
conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign  
Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior au-  
thorization by the respective government entity will be required for export of those products.  
Trademarks  
Copyright © 1999–2006 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
50  
Am29LV160D  
May 5, 2006 22358B7  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY