AM29LV160MB-120WCF [SPANSION]

Flash, 1MX16, 120ns, PBGA48, 8 X 9 MM, 0.80 MM PITCH, FBGA-48;
AM29LV160MB-120WCF
型号: AM29LV160MB-120WCF
厂家: SPANSION    SPANSION
描述:

Flash, 1MX16, 120ns, PBGA48, 8 X 9 MM, 0.80 MM PITCH, FBGA-48

文件: 总51页 (文件大小:1319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
Am29LV160M  
16 Megabit (2 M x 8-Bit/1 M x 16-Bit) MirrorBitTM  
3.0 Volt-only Boot Sector Flash Memory  
DISTINCTIVE CHARACTERISTICS  
Single power supply operation  
Embedded Algorithms  
Full voltage range: 2.7 to 3.6 volt read and write  
Embedded Erase algorithm automatically  
preprograms and erases the entire chip or any  
combination of designated sectors  
operations for battery-powered applications  
Regulated voltage range: 3.0 to 3.6 volt read and  
write operations and for compatibility with high  
performance 3.3 volt microprocessors  
Embedded Program algorithm automatically  
writes and verifies data at specified addresses  
TM  
Manufactured on 0.23 µm MirrorBit process  
Minimum 1,000,000 write cycle guarantee  
technology  
per sector  
Fully compatible with Am29LV160D device  
20-year data retention at 125°C  
Reliable operation for the life of the system  
Package option  
High performance  
Access times as fast as 70 ns  
48-ball FBGA  
Ultra low power consumption (typical values at  
5 MHz)  
48-pin TSOP  
400 nA Automatic Sleep mode current  
400 nA standby mode current  
15 mA read current  
44-pin SO  
64-ball Fortified BGA  
CFI (Common Flash Interface) compliant  
40 mA program/erase current  
Provides device-specific information to the  
system, allowing host software to easily  
reconfigure for different Flash devices  
Flexible sector architecture  
One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and  
thirty-one 64 Kbyte sectors (byte mode)  
Compatibility with JEDEC standards  
One 8 Kword, two 4 Kword, one 16 Kword, and  
Pinout and software compatible with single-  
thirty-one 32 Kword sectors (word mode)  
power supply Flash  
Supports full chip erase  
Superior inadvertent write protection  
Data# Polling and toggle bits  
Sector Protection features:  
A hardware method of locking a sector to prevent  
any program or erase operations within that sector  
Provides a software method of detecting program  
or erase operation completion  
Sectors can be locked in-system or via  
programming equipment  
Ready/Busy# pin (RY/BY#)  
Provides a hardware method of detecting  
program or erase cycle completion (not available  
on 44-pin SO)  
Temporary Sector Unprotect feature allows code  
changes in previously locked sectors  
Unlock Bypass Program Command  
Erase Suspend/Erase Resume  
Reduces overall programming time when issuing  
Suspends an erase operation to read data from,  
or program data to, a sector that is not being  
erased, then resumes the erase operation  
multiple program command sequences  
Top or bottom boot block configurations  
available  
Hardware reset pin (RESET#)  
Hardware method to reset the device to reading  
array data  
This Data Sheet states AMD’s current technical specifications regarding the Product described herein. This Data  
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.  
Publication# 25974  
Issue Date: July 3, 2002  
Rev: A Amendment/1  
GENERAL DESCRIPTION  
The Am29LV160M is a 16 Mbit, 3.0 Volt-only Flash  
memory organized as 2,097,152 bytes or 1,048,576  
words. The device is offered in 48-ball FBGA, 44-pin  
SO, and 48-pin TSOP packages. The word-wide data  
(x16) appears on DQ15DQ0; the byte-wide (x8) data  
appears on DQ7DQ0. This device is designed to be  
programmed in-system with the standard system 3.0  
The host system can detect whether a program or  
erase operation is complete by observing the RY/BY#  
pin, or by reading the DQ7 (Data# Polling) and DQ6  
(toggle) status bits. After a program or erase cycle  
has been completed, the device is ready to read array  
data or accept another command.  
The sector erase architecture allows memory sectors  
to be erased and reprogrammed without affecting the  
data contents of other sectors. The device is fully  
erased when shipped from the factory.  
volt V  
supply. A 12.0 V V  
or 5.0 V  
are not  
CC  
PP  
CC  
required for write or erase operations. The device can  
also be programmed in standard  
EPROM programmers.  
Hardware data protection measures include a low  
The device offers access times of 70, 90, and 120 ns,  
allowing high speed microprocessors to operate  
without wait states. To eliminate bus contention the  
device has separate chip enable (CE#), write enable  
(WE#) and output enable (OE#) controls.  
V
detector that automatically inhibits write opera-  
CC  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of  
memory. This can be achieved in-system or via pro-  
gramming equipment.  
The device requires only a single 3.0 volt power  
supply for both read and write functions. Internally  
generated and regulated voltages are provided for the  
program and erase operations.  
The Erase Suspend/Erase Resume feature enables  
the user to put erase on hold for any period of time to  
read data from, or program data to, any sector that is  
not selected for erasure. True background erase can  
thus be achieved.  
The Am29LV160M is entirely command set compatible  
with the JEDEC single-power-supply Flash stan-  
dard. Commands are written to the command register  
using standard microprocessor write timings. Register  
contents serve as input to an internal state-machine  
that controls the erase and programming circuitry.  
Write cycles also internally latch addresses and data  
needed for the programming and erase operations.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
The hardware RESET# pin terminates any operation  
in progress and resets the internal state machine to  
reading array data. The RESET# pin may be tied to the  
system reset circuitry. A system reset would thus also  
reset the device, enabling the system microprocessor  
to read the boot-up firmware from the Flash memory.  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the standby  
mode. Power consumption is greatly reduced in both  
these modes.  
Device programming occurs by executing the program  
command sequence. This initiates the Embedded  
Program algorithman internal algorithm that auto-  
matically times the program pulse widths and verifies  
proper cell margin. The Unlock Bypass mode facili-  
tates faster programming times by requiring only two  
write cycles to program data instead of four.  
AMDs Flash technology combines years of Flash  
memory manufacturing experience to produce the  
highest levels of quality, reliability and cost effective-  
ness. The device electrically erases all bits within a  
sector simultaneously via Fowler-Nordheim tun-  
neling. The data is programmed using hot electron  
injection.  
Device erasure occurs by executing the erase  
command sequence. This initiates the Embedded  
Erase algorithman internal algorithm that automati-  
cally preprograms the array (if it is not already pro-  
grammed) before executing the erase operation.  
During erase, the device automatically times the erase  
pulse widths and verifies proper cell margin.  
2
Am29LV160M  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . .4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . .5  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . .9  
Device Bus Operations . . . . . . . . . . . . . . . . . . . . .10  
Table 1. Am29LV160M Device Bus Operations ..............................10  
Word/Byte Configuration ........................................................10  
Requirements for Reading Array Data ...................................10  
Writing Commands/Command Sequences ............................11  
Program and Erase Operation Status .................................... 11  
Standby Mode ........................................................................ 11  
Automatic Sleep Mode ...........................................................11  
RESET#: Hardware Reset Pin ...............................................12  
Output Disable Mode .............................................................. 12  
Table 2. Sector Address Tables (Am29LV160MT) .........................13  
Table 3. Sector Address Tables (Am29LV160MB) .........................14  
Autoselect Mode .....................................................................15  
Table 4. Am29LV160M Autoselect Codes (High Voltage Method) .15  
Sector Protection/Unprotection ...............................................15  
Temporary Sector Unprotect ..................................................16  
Figure 1. Temporary Sector Unprotect Operation........................... 16  
Figure 2. In-System Single High Voltage Sector Protect/Unprotect Al-  
gorithms .......................................................................................... 17  
Common Flash Memory Interface (CFI) . . . . . . .18  
Table 5. CFI Query Identification String ..........................................18  
Table 6. System Interface String .....................................................18  
Table 7. Device Geometry Definition ..............................................19  
Table 8. Primary Vendor-Specific Extended Query ........................19  
Hardware Data Protection ......................................................20  
RY/BY#: Ready/Busy# ............................................................ 27  
DQ6: Toggle Bit I ....................................................................27  
DQ2: Toggle Bit II ................................................................... 27  
Reading Toggle Bits DQ6/DQ2 ...............................................27  
Figure 6. Toggle Bit Algorithm........................................................ 28  
DQ3: Sector Erase Timer ....................................................... 29  
Table 10. Write Operation Status ................................................... 29  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 30  
Figure 7. Maximum Negative Overshoot Waveform ...................... 30  
Figure 8. Maximum Positive Overshoot Waveform........................ 30  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . 30  
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 31  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 9. Test Setup....................................................................... 33  
Table 11. Test Specifications ......................................................... 33  
Figure 10. Input Waveforms and Measurement Levels ................. 33  
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 34  
Read Operations ....................................................................34  
Figure 11. Read Operations Timings ............................................. 34  
Hardware Reset (RESET#) .................................................... 35  
Figure 12. RESET# Timings .......................................................... 35  
Word/Byte Configuration (BYTE#) ........................................36  
Figure 13. BYTE# Timings for Read Operations............................ 36  
Figure 14. BYTE# Timings for Write Operations............................ 36  
Erase/Program Operations .....................................................37  
Figure 15. Program Operation Timings.......................................... 38  
Figure 16. Chip/Sector Erase Operation Timings .......................... 39  
Figure 17. Data# Polling Timings (During Embedded Algorithms). 40  
Figure 18. Toggle Bit Timings (During Embedded Algorithms)...... 40  
Figure 19. DQ2 vs. DQ6 for Erase and  
Erase Suspend Operations ............................................................ 41  
Figure 20. Temporary Sector Unprotect/Timing Diagram .............. 41  
Figure 21. Sector Protect/Unprotect Timing Diagram .................... 42  
Figure 22. Alternate CE# Controlled Write Operation Timings ...... 44  
Erase and Programming Performance . . . . . . . 45  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 45  
TSOP and SO Pin Capacitance . . . . . . . . . . . . . . 45  
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 46  
TS 04848-Pin Standard TSOP ............................................46  
TSR04848-Pin Reverse TSOP ........................................... 47  
FBC04848-Ball Fine-Pitch Ball Grid Array (FBGA)  
Low V Write Inhibit .............................................................. 20  
CC  
Write Pulse Glitch” Protection ...............................................20  
Logical Inhibit .......................................................................... 20  
Power-Up Write Inhibit ............................................................ 20  
Command Definitions . . . . . . . . . . . . . . . . . . . . . .21  
Reading Array Data ................................................................21  
Reset Command .....................................................................21  
Autoselect Command Sequence ............................................21  
Word/Byte Program Command Sequence ............................. 21  
Unlock Bypass Command Sequence .....................................22  
Figure 3. Program Operation .......................................................... 22  
Chip Erase Command Sequence ........................................... 22  
Sector Erase Command Sequence ........................................23  
Erase Suspend/Erase Resume Commands ........................... 23  
Figure 4. Erase Operation............................................................... 24  
Command Definitions .............................................................25  
Table 9. Am29LV160M Command Definitions ................................25  
Write Operation Status . . . . . . . . . . . . . . . . . . . . .26  
DQ7: Data# Polling ................................................................. 26  
Figure 5. Data# Polling Algorithm ................................................... 26  
8 x 9 mm ................................................................................48  
SO 04444-Pin Small Outline Package ................................49  
LAA06464-Ball Fortified Ball Grid Array (FBGA) 13 x 11 mm  
Package ..................................................................................50  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision A (June 24, 2002) .................................................... 51  
Revision A + 1 (July 3, 2002) .................................................. 51  
Am29LV160M  
3
PRODUCT SELECTOR GUIDE  
Family Part Number  
Am29LV160M  
Speed Option  
Voltage Range: V = 2.73.6 V  
-70  
70  
70  
30  
-90  
90  
90  
35  
-120  
120  
120  
50  
CC  
Max access time, ns (t  
)
ACC  
Max CE# access time, ns (t  
)
CE  
Max OE# access time, ns (t  
)
OE  
Note: See “AC Characteristics” for full specifications.  
BLOCK DIAGRAM  
DQ0DQ15 (A-1)  
RY/BY#  
V
CC  
Sector Switches  
V
SS  
Erase Voltage  
Generator  
Input/Output  
Buffers  
RESET#  
State  
Control  
WE#  
BYTE#  
Command  
Register  
PGM Voltage  
Generator  
Data  
Latch  
Chip Enable  
Output Enable  
Logic  
STB  
CE#  
OE#  
Y-Decoder  
Y-Gating  
STB  
V
Detector  
Timer  
CC  
Cell Matrix  
X-Decoder  
A0A19  
4
Am29LV160M  
CONNECTION DIAGRAMS  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A19  
NC  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
DQ12  
DQ4  
VCC  
WE#  
RESET#  
NC  
Standard TSOP  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
VSS  
CE#  
A0  
NC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
1
2
3
4
5
6
7
8
9
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A19  
NC  
48  
A16  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BYTE#  
VSS  
DQ15/A-1  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
WE#  
RESET#  
NC  
Reverse TSOP  
NC  
RY/BY#  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
OE#  
VSS  
CE#  
A0  
Am29LV160M  
5
CONNECTION DIAGRAMS  
RESET#  
A18  
A17  
A7  
1
2
3
4
5
6
7
8
9
44 WE#  
43 A19  
42 A8  
41 A9  
A6  
40 A10  
39 A11  
38 A12  
37 A13  
36 A14  
35 A15  
34 A16  
33 BYTE#  
32 VSS  
A5  
A4  
A3  
A2  
A1 10  
A0 11  
CE# 12  
VSS 13  
SO  
OE# 14  
DQ0 15  
DQ8 16  
DQ1 17  
DQ9 18  
DQ2 19  
DQ10 20  
DQ3 21  
DQ11 22  
31 DQ15/A-1  
30 DQ7  
29 DQ14  
28 DQ6  
27 DQ13  
26 DQ5  
25 DQ12  
24 DQ4  
23 VCC  
FBGA  
Top View, Balls Facing Down  
A6  
B6  
C6  
D6  
E6  
F6  
G6  
H6  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1 VSS  
A5  
A9  
B5  
A8  
C5  
D5  
E5  
F5  
G5  
H5  
A10  
A11  
DQ7  
DQ14  
DQ13  
DQ6  
A4  
B4  
C4  
D4  
E4  
F4  
G4  
H4  
WE# RESET#  
NC  
A19  
DQ5  
DQ12  
VCC  
DQ4  
A3  
B3  
C3  
D3  
E3  
F3  
G3  
H3  
RY/BY#  
NC  
A18  
NC  
DQ2  
DQ10  
DQ11  
DQ3  
A2  
A7  
B2  
C2  
A6  
D2  
A5  
E2  
F2  
G2  
H2  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A1  
A3  
B1  
A4  
C1  
A2  
D1  
A1  
E1  
A0  
F1  
G1  
H1  
CE#  
OE#  
VSS  
Flash memory devices in FBGA packages may be  
damaged if exposed to ultrasonic cleaning methods.  
The package and/or data integrity may be compromised  
if the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
Special Handling Instructions  
Special handling is required for Flash Memory products  
in FBGA packages.  
6
Am29LV160M  
CONNECTION DIAGRAMS  
64-Ball Fortified BGA (FBGA)  
A8  
B8  
C8  
D8  
E8  
F8  
G8  
NC  
H8  
NC  
NC  
NC  
VIO  
VSS  
NC  
NC  
A7  
B7  
C7  
D7  
E7  
F7  
G7  
H7  
A13  
A12  
A14  
A15  
A16  
BYTE# DQ15/A-1 VSS  
A6  
A9  
B6  
A8  
C6  
D6  
E6  
F6  
G6  
H6  
DQ6  
A10  
A11  
DQ7  
DQ14  
DQ13  
A5  
B5  
C5  
D5  
E5  
F5  
G5  
H5  
WE# RESET#  
A21  
A19  
DQ5  
DQ12  
VCC  
DQ4  
A4 B4  
C4  
D4  
E4  
F4  
G4  
H4  
RY/BY# WP#/ACC A18  
A20  
DQ2  
DQ10  
DQ11  
DQ3  
A3  
A7  
B3  
C3  
A6  
D3  
A5  
E3  
F3  
G3  
H3  
A17  
DQ0  
DQ8  
DQ9  
DQ1  
A2  
A3  
B2  
A4  
C2  
A2  
D2  
A1  
E2  
A0  
F2  
G2  
H2  
CE#  
OE#  
VSS  
A1  
B1  
C1  
D1  
E1  
F1  
G1  
NC  
H1  
NC  
NC  
NC  
NC  
NC  
VIO  
NC  
temperatures above 150°C for prolonged periods of  
time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (TSOP, BGA, SSOP, PDIP,  
PLCC). The package and/or data integrity may be  
compromised if the package body is exposed to  
Am29LV160M  
7
PIN CONFIGURATION  
LOGIC SYMBOL  
A0A19  
= 20 addresses  
20  
DQ0DQ14 = 15 data inputs/outputs  
A0A19  
16 or 8  
DQ15/A-1  
=
DQ15 (data input/output, word mode),  
A-1 (LSB address input, byte mode)  
DQ0DQ15  
(A-1)  
BYTE#  
CE#  
=
=
=
=
=
=
Selects 8-bit or 16-bit mode  
Chip enable  
CE#  
OE#  
OE#  
Output enable  
WE#  
Write enable  
WE#  
RESET#  
RY/BY#  
Hardware reset pin  
RESET#  
BYTE#  
Ready/Busy output  
(N/A SO 044)  
RY/BY#  
(N/A SO 044)  
V
=
3.0 volt-only single power supply  
CC  
(see Product Selector Guide for speed  
options and voltage supply tolerances)  
V
=
=
Device ground  
SS  
NC  
Pin not connected internally  
8
Am29LV160M  
ORDERING INFORMATION  
Standard Products  
AMD standard products are available in several packages and operating ranges. The order number (Valid Combi-  
nation) is formed by a combination of the elements below.  
Am29LV160M  
T
-70  
E
C
TEMPERATURE RANGE  
C
I
=
=
=
Commercial (0°C to +70°C)  
Industrial (40°C to +85°C)  
Extended (55°C to +125°C)  
E
PACKAGE TYPE  
E
=
=
=
=
48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048)  
48-Pin Thin Small Outline Package (TSOP) Reverse Pinout (TSR048)  
44-Pin Small Outline Package (SO 044)  
F
S
WC  
48-ball Fine-Pitch Ball Grid Array (FBGA)  
0.80 mm pitch, 8 x 9 mm package (FBC048)  
PC  
=
64-ball Fortified Ball Grid Array (FBGA)  
1.0 mm pitch, 13 x 11 mm package (LAA064)  
SPEED OPTION  
See Product Selector Guide and Valid Combinations  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top sector  
Bottom sector  
DEVICE NUMBER/DESCRIPTION  
Am29LV160M  
16 Megabit (2M x 8-Bit/1M x 16-Bit) MirrorBitTM Flash Memory  
3.0 Volt-only Read, Program, and Erase  
Valid Combinations For TSOP and SO Packages  
Valid Combinations for FBGA Packages  
Order Number Package Marking  
Am29LV160MT-70,  
Am29LV160MT-70,  
Am29LV160MB-70  
L160MT70V,  
L160MB70V  
EC, EI, EE,  
FC, FI, FE,  
SC, SI, SE  
Am29LV160MT-90,  
Am29LV160MB-90  
Am29LV160MB-70  
WCC,  
Am29LV160MT-90,  
Am29LV160MB-90  
WCI, L160MT90V,  
WCE, L160MB90V  
C, I, E  
Am29LV160MT-120,  
Am29LV160MB-120  
PCI  
Am29LV160MT-120,  
Am29LV160MB-120  
L160MT12V,  
L160MB12V  
Valid Combinations  
Valid Combinations list configurations planned to be sup-  
ported in volume for this device. Consult the local AMD sales  
office to confirm availability of specific valid combinations and  
to check on newly released combinations.  
Am29LV160M  
9
DEVICE BUS OPERATIONS  
This section describes the requirements and use of the  
device bus operations, which are initiated through the  
internal command register. The command register itself  
does not occupy any addressable memory location.  
The register is composed of latches that store the com-  
mands, along with the address and data information  
needed to execute the command. The contents of the  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Table 1 lists the device bus operations, the in-  
puts and control levels they require, and the resulting  
output. The following subsections describe each of  
these operations in further detail.  
Table 1. Am29LV160M Device Bus Operations  
DQ8–DQ15  
BYTE#  
= V  
Addresses  
(Note 1)  
DQ0– BYTE#  
Operation  
CE# OE# WE# RESET#  
DQ7  
= V  
IH  
IL  
Read  
Write  
L
L
L
H
L
H
H
A
D
D
DQ8DQ14 = High-Z,  
IN  
OUT  
OUT  
DQ15 = A-1  
H
A
D
D
IN  
IN  
IN  
V
0.3 V  
±
V
0.3 V  
±
CC  
CC  
Standby  
X
X
X
High-Z High-Z  
High-Z  
Output Disable  
Reset  
L
H
X
H
X
H
L
X
X
High-Z High-Z  
High-Z High-Z  
High-Z  
High-Z  
X
Sector Address,  
A6 = L, A1 = H,  
A0 = L  
Sector Protect (Note 2)  
L
H
L
V
D
X
X
X
ID  
IN  
Sector Address,  
A6 = H, A1 = H,  
A0 = L  
Sector Unprotect (Note 2)  
L
H
X
L
V
V
D
D
X
ID  
ID  
IN  
IN  
Temporary Sector  
Unprotect  
X
X
A
D
High-Z  
IN  
IN  
Legend:  
L = Logic Low = V , H = Logic High = V , V = 12.0 ± 0.5 V, X = Dont Care, A = Address In, D = Data In, D = Data Out  
IL  
IH  
ID  
IN  
IN  
OUT  
Notes:  
1. Addresses are A19:A0 in word mode (BYTE# = V ), A19:A-1 in byte mode (BYTE# = V ).  
IH  
IL  
2. The sector protect and sector unprotect functions may also be implemented via programming equipment. See the Sector  
Protection/Unprotectionsection.  
main at V . The BYTE# pin determines whether the de-  
vice outputs array data in words or bytes.  
Word/Byte Configuration  
IH  
The BYTE# pin controls whether the device data I/O  
pins DQ15DQ0 operate in the byte or word configura-  
tion. If the BYTE# pin is set at logic 1, the device is in  
word configuration, DQ15DQ0 are active and con-  
trolled by CE# and OE#.  
The internal state machine is set for reading array  
data upon device power-up, or after a hardware reset.  
This ensures that no spurious alteration of the mem-  
ory content occurs during the power transition. No  
command is necessary in this mode to obtain array  
data. Standard microprocessor read cycles that as-  
sert valid addresses on the device address inputs pro-  
duce valid data on the device data outputs. The  
device remains enabled for read access until the com-  
mand register contents are altered.  
If the BYTE# pin is set at logic 0, the device is in byte  
configuration, and only data I/O pins DQ0DQ7 are ac-  
tive and controlled by CE# and OE#. The data I/O pins  
DQ8DQ14 are tri-stated, and the DQ15 pin is used as  
an input for the LSB (A-1) address function.  
Requirements for Reading Array Data  
See Reading Array Datafor more information. Refer  
to the AC Read Operations table for timing specifica-  
To read array data from the outputs, the system must  
tions and to Figure 11 for the timing diagram. I  
in  
CC1  
drive the CE# and OE# pins to V . CE# is the power  
IL  
the DC Characteristics table represents the active cur-  
rent specification for reading array data.  
control and selects the device. OE# is the output control  
and gates array data to the output pins. WE# should re-  
10  
Am29LV160M  
bits on DQ7DQ0. Standard read cycle timings and I  
Writing Commands/Command Sequences  
CC  
read specifications apply. Refer to Write Operation  
Statusfor more information, and to AC Characteris-  
ticsfor timing diagrams.  
To write a command or command sequence (which  
includes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE# to V , and OE# to V .  
IL  
IH  
Standby Mode  
For program operations, the BYTE# pin determines  
whether the device accepts program data in bytes or  
words. Refer to Word/Byte Configurationfor more  
information.  
When the system is not reading or writing to the device,  
it can place the device in the standby mode. In this  
mode, current consumption is greatly reduced, and the  
outputs are placed in the high impedance state, inde-  
pendent of the OE# input.  
The device features an Unlock Bypass mode to facil-  
itate faster programming. Once the device enters the  
Unlock Bypass mode, only two write cycles are  
required to program a word or byte, instead of four. The  
Word/Byte Program Command Sequencesection  
has details on programming data to the device using  
both standard and Unlock Bypass command  
sequences.  
The device enters the CMOS standby mode when the  
CE# and RESET# pins are both held at V ± 0.3 V.  
CC  
(Note that this is a more restricted voltage range than  
V .) If CE# and RESET# are held at V , but not within  
IH  
IH  
V
± 0.3 V, the device will be in the standby mode, but  
CC  
the standby current will be greater. The device requires  
standard access time (t ) for read access when the  
CE  
device is in either of these standby modes, before it is  
ready to read data.  
An erase operation can erase one sector, multiple sec-  
tors, or the entire device. Tables 2 and 3 indicate the  
address space that each sector occupies. A sector  
addressconsists of the address bits required to  
uniquely select a sector. The Command Definitions”  
section has details on erasing a sector or the entire  
chip, or suspending/resuming the erase operation.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
In the DC Characteristics table, I  
and I  
repre-  
CC4  
CC3  
sents the standby current specification.  
After the system writes the autoselect command  
sequence, the device enters the autoselect mode. The  
system can then read autoselect codes from the  
internal register (which is separate from the memory  
array) on DQ7DQ0. Standard read cycle timings  
apply in this mode. Refer to the Autoselect Modeand  
Autoselect Command Sequencesections for more  
information.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device  
energy consumption. The device automatically  
enables this mode when addresses remain stable for  
t
+ 30 ns. The automatic sleep mode is  
ACC  
independent of the CE#, WE#, and OE# control  
signals. Standard address access timings provide new  
data when addresses are changed. While in sleep  
mode, output data is latched and always available to  
I
in the DC Characteristics table represents the ac-  
CC2  
tive current specification for the write mode. The AC  
Characteristicssection contains timing specification  
tables and timing diagrams for write operations.  
the system. I  
in the DC Characteristics table  
CC4  
represents the automatic sleep mode current  
specification.  
Program and Erase Operation Status  
During an erase or program operation, the system may  
check the status of the operation by reading the status  
Am29LV160M  
11  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
RESET#: Hardware Reset Pin  
The RESET# pin provides a hardware method of reset-  
ting the device to reading array data. When the system  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a 0(busy) until the  
internal reset operation is complete, which requires a  
drives the RESET# pin to V for at least a period of t  
,
IL  
RP  
the device immediately terminates any operation in  
progress, tristates all data output pins, and ignores all  
read/write attempts for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is ready  
to accept another command sequence, to ensure data  
integrity.  
time of t  
(during Embedded Algorithms). The  
READY  
system can thus monitor RY/BY# to determine  
whether the reset operation is complete. If RESET# is  
asserted when a program or erase operation is not ex-  
ecuting (RY/BY# pin is 1), the reset operation is  
completed within a time of t  
(not during Embed-  
READY  
ded Algorithms). The system can read data t  
after  
RH  
the RESET# pin returns to V .  
IH  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at V ±0.3 V, the device  
Refer to the AC Characteristics tables for RESET# pa-  
rameters and to Figure 12 for the timing diagram.  
SS  
draws CMOS standby current (I  
). If RESET# is held  
CC4  
at V but not within V ±0.3 V, the standby current will  
IL  
SS  
Output Disable Mode  
be greater.  
When the OE# input is at V , output from the device is  
disabled. The output pins are placed in the high imped-  
ance state.  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
IH  
12  
Am29LV160M  
Table 2. Sector Address Tables (Am29LV160MT)  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Byte Mode (x8)  
00000000FFFF  
01000001FFFF  
02000002FFFF  
03000003FFFF  
04000004FFFF  
05000005FFFF  
06000006FFFF  
07000007FFFF  
08000008FFFF  
09000009FFFF  
0A00000AFFFF  
0B00000BFFFF  
0C00000CFFFF  
0D00000DFFFF  
0E00000EFFFF  
0F00000FFFFF  
10000010FFFF  
11000011FFFF  
12000012FFFF  
13000013FFFF  
14000014FFFF  
15000015FFFF  
16000016FFFF  
17000017FFFF  
18000018FFFF  
19000019FFFF  
1A00001AFFFF  
1B00001BFFFF  
1C00001CFFFF  
1D00001DFFFF  
1E00001EFFFF  
1F00001F7FFF  
1F80001F9FFF  
1FA0001FBFFF  
1FC0001FFFFF  
Word Mode (x16)  
000000007FFF  
00800000FFFF  
010000017FFF  
01800001FFFF  
020000027FFF  
02800002FFFF  
030000037FFF  
03800003FFFF  
040000047FFF  
04800004FFFF  
050000057FFF  
05800005FFFF  
060000067FFF  
06800006FFFF  
070000077FFF  
07800007FFFF  
080000087FFF  
08800008FFFF  
090000097FFF  
09800009FFFF  
0A00000A7FFF  
0A8000AFFFF  
0B00000B7FFF  
0B80000BFFFF  
0C00000C7FFF  
0C80000CFFFF  
0D00000D7FFF  
0D80000DFFFF  
0E00000E7FFF  
0E80000EFFFF  
0F00000F7FFF  
0F80000FBFFF  
0FC0000FCFFF  
0FD0000FDFFF  
0FE0000FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
1
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
32/16  
8/4  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
1
1
0
1
8/4  
1
1
X
16/8  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See Word/Byte Configurationsection.  
Am29LV160M  
13  
Table 3. Sector Address Tables (Am29LV160MB)  
Sector Size  
(Kbytes/  
Address Range (in hexadecimal)  
Sector A19 A18 A17 A16 A15 A14 A13 A12  
Kwords)  
Byte Mode (x8)  
000000003FFF  
004000005FFF  
006000007FFF  
00800000FFFF  
01000001FFFF  
02000002FFFF  
03000003FFFF  
04000004FFFF  
05000005FFFF  
06000006FFFF  
07000007FFFF  
08000008FFFF  
09000009FFFF  
0A00000AFFFF  
0B00000BFFFF  
0C00000CFFFF  
0D00000DFFFF  
0E00000EFFFF  
0F00000FFFFF  
10000010FFFF  
11000011FFFF  
12000012FFFF  
13000013FFFF  
14000014FFFF  
15000015FFFF  
16000016FFFF  
17000017FFFF  
18000018FFFF  
19000019FFFF  
1A00001AFFFF  
1B00001BFFFF  
1C00001CFFFF  
1D00001DFFFF  
1E00001EFFFF  
1F00001FFFFF  
Word Mode (x16)  
000000001FFF  
002000002FFF  
003000003FFF  
004000007FFF  
00800000FFFF  
010000017FFF  
01800001FFFF  
020000027FFF  
02800002FFFF  
030000037FFF  
03800003FFFF  
040000047FFF  
04800004FFFF  
050000057FFF  
05800005FFFF  
060000067FFF  
06800006FFFF  
070000077FFF  
07800007FFFF  
080000087FFF  
08800008FFFF  
090000097FFF  
09800009FFFF  
0A00000A7FFF  
0A80000AFFFF  
0B00000B7FFF  
0B80000BFFFF  
0C00000C7FFF  
0C80000CFFFF  
0D00000D7FFF  
0D80000DFFFF  
0E00000E7FFF  
0E80000EFFFF  
0F00000F7FFF  
0F80000FFFFF  
SA0  
SA1  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
1
X
0
16/8  
8/4  
SA2  
0
1
1
8/4  
SA3  
1
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
32/16  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA4  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
Note: Address range is A19:A-1 in byte mode and A19:A0 in word mode. See the Word/Byte Configurationsection.  
14  
Am29LV160M  
Table 4. In addition, when verifying sector protection,  
the sector address must appear on the appropriate  
highest order address bits (see Tables 2 and 3). Table  
4 shows the remaining address bits that are dont care.  
When all necessary bits have been set as required, the  
programming equipment may then read the corre-  
sponding identifier code on DQ7-DQ0.  
Autoselect Mode  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7DQ0. This  
mode is primarily intended for programming equipment  
to automatically match a device to be programmed with  
its corresponding programming algorithm. However,  
the autoselect codes can also be accessed in-system  
through the command register.  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Table 9. This method  
When using programming equipment, the autoselect  
does not require V . See Command Definitionsfor  
ID  
mode requires V (11.5 V to 12.5 V) on address pin  
ID  
details on using the autoselect mode.  
A9. Address pins A6, A1, and A0 must be as shown in  
Table 4. Am29LV160M Autoselect Codes (High Voltage Method)  
A19 A11  
to to  
Mode CE# OE# WE# A12 A10 A9  
A8  
to  
A7  
A5  
to  
A2  
DQ8  
to  
A0 DQ15  
DQ7  
to  
DQ0  
Description  
A6  
A1  
Manufacturer ID: AMD  
L
L
L
L
H
H
X
X
V
X
L
X
L
L
X
01h  
C4h  
ID  
Device ID:  
Am29LV160M  
(Top Boot Block)  
Word  
Byte  
Word  
Byte  
22h  
X
X
V
X
L
L
X
L
L
H
ID  
L
L
L
L
L
L
H
H
H
X
22h  
X
C4h  
49h  
49h  
Device ID:  
Am29LV160M  
(Bottom Boot Block)  
X
X
X
V
V
X
X
X
X
H
L
ID  
01h  
(protected)  
X
X
Sector Protection Verification  
L
L
H
SA  
L
H
ID  
00h  
(unprotected)  
L = Logic Low = V , H = Logic High = V , SA = Sector Address, X = Dont care.  
IL  
IH  
Note: The autoselect codes may also be accessed in-system via command sequences. See Table 9.  
The primary method requires V on the RESET# pin  
Sector Protection/Unprotection  
ID  
only, and can be implemented either in-system or via  
programming equipment. Figure 2 shows the algo-  
rithms and Figure 21 shows the timing diagram. This  
method uses standard microprocessor bus cycle tim-  
ing. For sector unprotect, all unprotected sectors must  
first be protected prior to the first sector unprotect write  
cycle.  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both pro-  
gram and erase operations in previously protected  
sectors.  
The device is shipped with all sectors unprotected.  
AMD offers the option of programming and protecting  
sectors at its factory prior to shipping the device  
through AMDs ExpressFlashService. Contact an  
AMD representative for details.  
The alternate method intended only for programming  
equipment requires V on address pin A9 and OE#.  
ID  
This method is compatible with programmer routines  
written for earlier 3.0 volt-only AMD flash devices. De-  
tails on this method are provided in a supplement, pub-  
lication number 21468. Contact an AMD representative  
to request a copy.  
It is possible to determine whether a sector is protected  
or unprotected. See Autoselect Modefor details.  
Sector protection/unprotection can be implemented via  
two methods.  
Am29LV160M  
15  
Temporary Sector Unprotect  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
START  
SET# pin to V . During this mode, formerly protected  
sectors can be programmed or erased by selecting the  
ID  
RESET# = V  
(Note 1)  
ID  
sector addresses. Once V is removed from the RE-  
ID  
SET# pin, all the previously protected sectors are  
protected again. Figure shows the algorithm, and Fig-  
ure 20 shows the timing diagrams, for this feature.  
Perform Erase or  
Program Operations  
RESET# = V  
IH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected.  
2. All previously protected sectors are protected once  
again.  
Figure 1. Temporary Sector Unprotect Operation  
16  
Am29LV160M  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 µs  
Wait 1 µs  
unprotect address  
No  
First Write  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
In-System Single  
High Voltage  
Sector Unprotect  
Algorithm  
from RESET#  
In-System Single  
High Voltage  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Figure 2. In-System Single High Voltage Sector Protect/Unprotect Algorithms  
Am29LV160M  
17  
mode), any time the device is ready to read array data.  
The system can read CFI information at the addresses  
given in Tables 58. In word mode, the upper address  
bits (A7MSB) must be all zeros. To terminate reading  
CFI data, the system must write the reset command.  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-indepen-  
dent, JEDEC ID-independent, and forward- and back-  
ward-compatible for the specified flash device families.  
Flash vendors can standardize their existing interfaces  
for long-term compatibility.  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 58. The  
system must write the reset command to return the  
device to the read/reset mode.  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100. Alternatively, contact  
an AMD representative for copies of these documents.  
This device enters the CFI Query mode when the  
system writes the CFI Query command, 98h, to  
address 55h in word mode (or address AAh in byte  
Table 5. CFI Query Identification String  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
Table 6. System Interface String  
Data Description  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
V
Min. (write/erase)  
CC  
1Bh  
1Ch  
36h  
38h  
0027h  
0036h  
D7D4: volt, D3D0: 100 millivolt  
V
Max. (write/erase)  
CC  
D7D4: volt, D3D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0007h  
0000h  
000Ah  
0000h  
0001h  
0000h  
0004h  
0000h  
V
V
Min. voltage (00h = no V pin present)  
PP  
PP  
PP  
Max. voltage (00h = no V pin present)  
PP  
N
Typical timeout per single byte/word write 2 µs  
N
Typical timeout for Min. size buffer write 2 µs (00h = not supported)  
N
Typical timeout per individual block erase 2 ms  
N
Typical timeout for full chip erase 2 ms (00h = not supported)  
N
Max. timeout for byte/word write 2 times typical  
N
Max. timeout for buffer write 2 times typical  
N
Max. timeout per individual block erase 2 times typical  
N
Max. timeout for full chip erase 2 times typical (00h = not supported)  
18  
Am29LV160M  
Table 7. Device Geometry Definition  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
N
27h  
4Eh  
0015h  
Device Size = 2 byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
N
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2  
(00h = not supported)  
2Ch  
58h  
0004h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0000h  
0000h  
0040h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
0001h  
0000h  
0020h  
0000h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0080h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
001Eh  
0000h  
0000h  
0001h  
Table 8. Primary Vendor-Specific Extended Query  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock  
0 = Required, 1 = Not Required  
45h  
46h  
47h  
48h  
8Ah  
8Ch  
8Eh  
90h  
0000h  
0002h  
0001h  
0001h  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
49h  
4Ah  
92h  
94h  
0004h  
0000h  
01 = 29F040 mode, 02 = 29F016 mode,  
03 = 29F400 mode, 04 = 29LV800A mode  
Simultaneous Operation  
00 = Not Supported, 01 = Supported  
Am29LV160M  
19  
Table 8. Primary Vendor-Specific Extended Query (Continued)  
Addresses  
Addresses  
(Word Mode)  
(Byte Mode)  
Data  
Description  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
4Bh  
4Ch  
96h  
0000h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
98h  
0000h  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Table 9 for com-  
mand definitions). In addition, the following hardware  
data protection measures prevent accidental erasure  
or programming, which might otherwise be caused by  
proper signals to the control pins to prevent uninten-  
tional writes when V is greater than V  
.
CC  
LKO  
Write Pulse GlitchProtection  
Noise pulses of less than 5 ns (typical) on OE#, CE# or  
WE# do not initiate a write cycle.  
spurious system level signals during V  
and power-down transitions, or from system noise.  
power-up  
CC  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
V , CE# = V or WE# = V . To initiate a write cycle,  
Low V Write Inhibit  
CC  
IL  
IH  
IH  
CE# and WE# must be a logical zero while OE# is a  
logical one.  
When V  
is less than V  
, the device does not ac-  
LKO  
CC  
cept any write cycles. This protects data during V  
CC  
power-up and power-down. The command register and  
all internal program/erase circuits are disabled, and the  
Power-Up Write Inhibit  
If WE# = CE# = V and OE# = V during power up, the  
IL  
IH  
device resets. Subsequent writes are ignored until V  
CC  
device does not accept commands on the rising edge  
of WE#. The internal state machine is automatically  
reset to reading array data on power-up.  
is greater than V  
. The system must provide the  
LKO  
20  
Am29LV160M  
COMMAND DEFINITIONS  
Writing specific address and data commands or  
sequences into the command register initiates device  
operations. Table 9 defines the valid register command  
sequences. Writing incorrect address and data  
values or writing them in the improper sequence  
resets the device to reading array data.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must  
be written to return to reading array data (also applies  
to autoselect during Erase Suspend).  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to read-  
ing array data (also applies during Erase Suspend).  
All addresses are latched on the falling edge of WE# or  
CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the appropriate timing diagrams in the  
AC Characteristicssection.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and devices codes,  
and determine whether or not a sector is protected.  
Table 9 shows the address and data requirements.  
This method is an alternative to that shown in Table 4,  
which is intended for PROM programmers and requires  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is also ready to read array  
data after completing an Embedded Program or Em-  
bedded Erase algorithm.  
V
on address bit A9.  
ID  
The autoselect command sequence is initiated by writ-  
ing two unlock cycles, followed by the autoselect com-  
mand. The device then enters the autoselect mode,  
and the system may read at any address any number  
of times, without initiating another command sequence.  
After the device accepts an Erase Suspend com-  
mand, the device enters the Erase Suspend mode.  
The system can read array data using the standard  
read timings, except that if it reads at an address  
within erase-suspended sectors, the device outputs  
status data. After completing a programming opera-  
tion in the Erase Suspend mode, the system may  
once again read array data with the same exception.  
See Erase Suspend/Erase Resume Commandsfor  
more information on this mode.  
A read cycle at address XX00h retrieves the manufac-  
turer code. A read cycle at address XX01h returns the  
device code. A read cycle containing a sector address  
(SA) and the address XX02h in word mode (or XX04h  
in byte mode) returns XX01h if that sector is protected,  
or 00h if it is unprotected. Refer to Tables 2 and 3 for  
valid sector addresses.  
The system must issue the reset command to re-en-  
able the device for reading array data if DQ5 goes high,  
or while in the autoselect mode. See the Reset Com-  
mandsection, next.  
The system must write the reset command to exit the  
autoselect mode and return to reading array data.  
Word/Byte Program Command Sequence  
See also Requirements for Reading Array Datain the  
Device Bus Operationssection for more information.  
The Read Operations table provides the read parame-  
ters, and Figure 11 shows the timing diagram.  
The system may program the device by word or byte,  
depending on the state of the BYTE# pin. Program-  
ming is a four-bus-cycle operation. The program com-  
mand sequence is initiated by writing two unlock write  
cycles, followed by the program set-up command.  
The program address and data are written next, which  
in turn initiate the Embedded Program algorithm. The  
system is not required to provide further controls or  
timings. The device automatically generates the pro-  
gram pulses and verifies the programmed cell margin.  
Table 9 shows the address and data requirements for  
the byte program command sequence.  
Reset Command  
Writing the reset command to the device resets the de-  
vice to reading array data. Address bits are dont care  
for this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ig-  
nores reset commands until the operation is complete.  
When the Embedded Program algorithm is complete,  
the device then returns to reading array data and ad-  
dresses are no longer latched. The system can deter-  
mine the status of the program operation by using  
DQ7, DQ6, or RY/BY#. See Write Operation Status”  
for information on these status bits.  
The reset command may be written between the se-  
quence cycles in a program command sequence be-  
fore programming begins. This resets the device to  
reading array data (also applies to programming in  
Erase Suspend mode). Once programming begins,  
however, the device ignores reset commands until the  
operation is complete.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
Am29LV160M  
21  
hardware reset immediately terminates the program-  
ming operation. The Byte Program command se-  
quence should be reinitiated once the device has reset  
to reading array data, to ensure data integrity.  
START  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from a 0back to a 1. Attempting to do so may halt  
the operation and set DQ5 to 1,or cause the Data#  
Polling algorithm to indicate the operation was suc-  
cessful. However, a succeeding read will show that the  
data is still 0. Only erase operations can convert a 0”  
to a 1.  
Write Program  
Command Sequence  
Data Poll  
from System  
Embedded  
Program  
algorithm  
in progress  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to the device faster than using the  
standard program command sequence. The unlock by-  
pass command sequence is initiated by first writing two  
unlock cycles. This is followed by a third write cycle  
containing the unlock bypass command, 20h. The de-  
vice then enters the unlock bypass mode. A two-cycle  
unlock bypass program command sequence is all that  
is required to program in this mode. The first cycle in  
this sequence contains the unlock bypass program  
command, A0h; the second cycle contains the program  
address and data. Additional data is programmed in  
the same manner. This mode dispenses with the initial  
two unlock cycles required in the standard program  
command sequence, resulting in faster total program-  
ming time. Table 9 shows the requirements for the  
command sequence.  
Verify Data?  
Yes  
No  
No  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
Note: See Table 9 for program command sequence.  
Figure 3. Program Operation  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the data  
90h; the second cycle the data 00h. Addresses are  
dont care for both cycles. The device then returns to  
reading array data.  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Table 9 shows  
the address and data requirements for the chip erase  
command sequence.  
Figure 3 illustrates the algorithm for the program oper-  
ation. See the Erase/Program Operations table in AC  
Characteristicsfor parameters, and to Figure 15 for  
timing diagrams.  
Any commands written to the chip during the Embed-  
ded Erase algorithm are ignored. Note that a hardware  
reset during the chip erase operation immediately ter-  
minates the operation. The Chip Erase command se-  
quence should be reinitiated once the device has  
returned to reading array data, to ensure data integrity.  
The system can determine the status of the erase op-  
eration by using DQ7, DQ6, DQ2, or RY/BY#. See  
22  
Am29LV160M  
Write Operation Statusfor information on these sta-  
tus bits. When the Embedded Erase algorithm is com-  
plete, the device returns to reading array data and  
addresses are no longer latched.  
When the Embedded Erase algorithm is complete, the  
device returns to reading array data and addresses are  
no longer latched. The system can determine the sta-  
tus of the erase operation by using DQ7, DQ6, DQ2, or  
RY/BY#. (Refer to Write Operation Statusfor informa-  
tion on these status bits.)  
Figure 4 illustrates the algorithm for the erase opera-  
tion. See the Erase/Program Operations tables in AC  
Characteristicsfor parameters, and to Figure 16 for  
timing diagrams.  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase/Program Operations tables in  
the AC Characteristicssection for parameters, and to  
Figure 16 for timing diagrams.  
Sector Erase Command Sequence  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock write cycles are then followed by the ad-  
dress of the sector to be erased, and the sector erase  
command. Table 9 shows the address and data re-  
quirements for the sector erase command sequence.  
Erase Suspend/Erase Resume Commands  
The Erase Suspend command allows the system to in-  
terrupt a sector erase operation and then read data  
from, or program data to, any sector not selected for  
erasure. This command is valid only during the sector  
erase operation, including the 50 µs time-out period  
during the sector erase command sequence. The  
Erase Suspend command is ignored if written during  
the chip erase operation or Embedded Program algo-  
rithm. Writing the Erase Suspend command during the  
Sector Erase time-out immediately terminates the  
time-out period and suspends the erase operation. Ad-  
dresses are dont-careswhen writing the Erase Sus-  
pend command.  
The device does not require the system to preprogram  
the memory prior to erase. The Embedded Erase algo-  
rithm automatically programs and verifies the sector for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
After the command sequence is written, a sector erase  
time-out of 50 µs begins. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time be-  
tween these additional cycles must be less than 50 µs,  
otherwise the last address and command might not be  
accepted, and erasure may begin. It is recommended  
that processor interrupts be disabled during this time to  
ensure all commands are accepted. The interrupts can  
be re-enabled after the last Sector Erase command is  
written. If the time between additional sector erase  
commands can be assumed to be less than 50 µs, the  
system need not monitor DQ3. Any command other  
than Sector Erase or Erase Suspend during the  
time-out period resets the device to reading array  
data. The system must rewrite the command sequence  
and any additional sector addresses and commands.  
When the Erase Suspend command is written during a  
sector erase operation, the device requires a maximum  
of 20 µs to suspend the erase operation. However,  
when the Erase Suspend command is written during  
the sector erase time-out, the device immediately ter-  
minates the time-out period and suspends the erase  
operation.  
After the erase operation has been suspended, the  
system can read array data from or program data to  
any sector not selected for erasure. (The device erase  
suspendsall sectors selected for erasure.) Normal  
read and write timings and command definitions apply.  
Reading at any address within erase-suspended sec-  
tors produces status data on DQ7DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
See Write Operation Statusfor information on these  
status bits.  
The system can monitor DQ3 to determine if the sector  
erase timer has timed out. (See the DQ3: Sector  
Erase Timersection.) The time-out begins from the ris-  
ing edge of the final WE# pulse in the command se-  
quence.  
After an erase-suspended program operation is com-  
plete, the system can once again read array data within  
non-suspended sectors. The system can determine the  
status of the program operation using the DQ7 or DQ6  
status bits, just as in the standard program operation.  
See Write Operation Statusfor more information.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other commands  
are ignored. Note that a hardware reset during the  
sector erase operation immediately terminates the op-  
eration. The Sector Erase command sequence should  
be reinitiated once the device has returned to reading  
array data, to ensure data integrity.  
The system may also write the autoselect command  
sequence when the device is in the Erase Suspend  
mode. The device allows reading autoselect codes  
even at addresses within erasing sectors, since the  
codes are not stored in the memory array. When the  
device exits the autoselect mode, the device reverts to  
Am29LV160M  
23  
the Erase Suspend mode, and is ready for another  
valid operation. See Autoselect Command Sequence”  
for more information.  
START  
The system must write the Erase Resume command  
(address bits are dont care) to exit the erase suspend  
mode and continue the sector erase operation. Further  
writes of the Resume command are ignored. Another  
Erase Suspend command can be written after the de-  
vice has resumed erasing.  
Write Erase  
Command Sequence  
Data Poll  
from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
Yes  
Erasure Completed  
Notes:  
1. See Table 9 for erase command sequence.  
2. See DQ3: Sector Erase Timerfor more information.  
Figure 4. Erase Operation  
24  
Am29LV160M  
Command Definitions  
Table 9. Am29LV160M Command Definitions  
Bus Cycles (Notes 25)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data  
Data Addr Data Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
XXX  
555  
RD  
F0  
Word  
2AA  
555  
2AA  
555  
2AA  
555  
555  
AAA  
555  
Manufacturer ID  
4
4
4
AA  
AA  
AA  
55  
55  
55  
90  
90  
90  
X00  
01  
Byte  
Word  
Byte  
Word  
Byte  
AAA  
555  
X01 22C4  
Device ID,  
Top Boot Block  
AAA  
555  
AAA  
555  
X02  
X01  
X02  
C4  
2249  
49  
Device ID,  
Bottom Boot Block  
AAA  
AAA  
XX00  
XX01  
00  
(SA)  
X02  
Word  
Byte  
555  
2AA  
555  
555  
Sector Protect Verify  
(Note 9)  
4
AA  
55  
90  
(SA)  
X04  
AAA  
AAA  
01  
Word  
Byte  
Word  
Byte  
Word  
Byte  
55  
CFI Query (Note 10)  
Program  
1
4
3
98  
AA  
AA  
AA  
555  
AAA  
555  
AAA  
XXX  
XXX  
555  
AAA  
555  
AAA  
XXX  
XXX  
2AA  
555  
2AA  
555  
PA  
555  
AAA  
555  
55  
55  
A0  
20  
PA  
PD  
Unlock Bypass  
AAA  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
2
2
A0  
90  
PD  
00  
XXX  
2AA  
555  
2AA  
555  
Word  
555  
AAA  
555  
555  
AAA  
555  
2AA  
555  
2AA  
555  
555  
Chip Erase  
Byte  
6
6
AA  
AA  
55  
55  
80  
80  
AA  
AA  
55  
55  
10  
30  
AAA  
Word  
Sector Erase  
Byte  
SA  
AAA  
AAA  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
1
1
B0  
30  
Legend:  
X = Dont care  
PD = Data to be programmed at location PA. Data latches on the  
rising edge of WE# or CE# pulse, whichever happens first.  
RA = Address of the memory location to be read.  
SA = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A19A12 uniquely select any sector.  
RD = Data read from location RA during read operation.  
PA = Address of the memory location to be programmed.  
Addresses latch on the falling edge of the WE# or CE# pulse,  
whichever happens later.  
Notes:  
1. See Table 1 for description of bus operations.  
2. All values are in hexadecimal.  
9. The data is 00h for an unprotected sector and 01h for a  
protected sector. See Autoselect Command Sequencefor  
more information.  
3. Except for the read cycle and the fourth cycle of the  
autoselect command sequence, all bus cycles are write  
cycles.  
10. Command is valid when device is ready to read array data or  
when device is in autoselect mode.  
11. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
4. Data bits DQ15DQ8 are dont cares for unlock and  
command cycles.  
12. The Unlock Bypass Reset command is required to return to  
reading array data when the device is in the unlock bypass  
mode.  
5. Address bits A19A11 are dont cares for unlock and  
command cycles, unless SA or PA required.  
6. No unlock or command cycles required when reading array  
data.  
13. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend  
mode. The Erase Suspend command is valid only during a  
sector erase operation.  
7. The Reset command is required to return to reading array  
data when device is in the autoselect mode, or if DQ5 goes  
high (while the device is providing status data).  
14. The Erase Resume command is valid only during the Erase  
Suspend mode.  
8. The fourth cycle of the autoselect command sequence is a  
read cycle.  
Am29LV160M  
25  
WRITE OPERATION STATUS  
The device provides several bits to determine the  
status of a write operation: DQ2, DQ3, DQ5, DQ6,  
DQ7, and RY/BY#. Table 10 and the following subsec-  
tions describe the functions of these bits. DQ7,  
RY/BY#, and DQ6 each offer a method for determining  
whether a program or erase operation is complete or in  
progress. These three bits are discussed first.  
Table 10 shows the outputs for Data# Polling on DQ7.  
Figure 5 shows the Data# Polling algorithm.  
START  
DQ7: Data# Polling  
The Data# Polling bit, DQ7, indicates to the host  
system whether an Embedded Algorithm is in progress  
or completed, or whether the device is in Erase Sus-  
pend. Data# Polling is valid after the rising edge of the  
final WE# pulse in the program or erase command  
sequence.  
Read DQ7DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
During the Embedded Program algorithm, the device  
outputs on DQ7 the complement of the datum pro-  
grammed to DQ7. This DQ7 status also applies to pro-  
gramming during Erase Suspend. When the  
Embedded Program algorithm is complete, the device  
outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status  
information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then the device returns to reading  
array data.  
No  
No  
DQ5 = 1?  
Yes  
During the Embedded Erase algorithm, Data# Polling  
produces a 0on DQ7. When the Embedded Erase  
algorithm is complete, or if the device enters the Erase  
Suspend mode, Data# Polling produces a 1on DQ7.  
This is analogous to the complement/true datum output  
described for the Embedded Program algorithm: the  
erase function changes all the bits in a sector to 1;  
prior to this, the device outputs the complement,or  
0.The system must provide an address within any of  
the sectors selected for erasure to read valid status  
information on DQ7.  
Read DQ7DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
No  
PASS  
FAIL  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data#  
Polling on DQ7 is active for approximately 100 µs, then  
the device returns to reading array data. If not all  
selected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores  
the selected sectors that are protected.  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is an address within any  
sector selected for erasure. During chip erase, a valid  
address is any non-protected sector address.  
2. DQ7 should be rechecked even if DQ5 = 1because  
When the system detects DQ7 has changed from the  
complement to true data, it can read valid data at DQ7–  
DQ0 on the following read cycles. This is because DQ7  
may change asynchronously with DQ0DQ6 while  
Output Enable (OE#) is asserted low. Figure 17, Data#  
Polling Timings (During Embedded Algorithms), in the  
AC Characteristicssection illustrates this.  
DQ7 may change simultaneously with DQ5.  
Figure 5. Data# Polling Algorithm  
26  
Am29LV160M  
Table 10 shows the outputs for Toggle Bit I on DQ6.  
Figure 6 shows the toggle bit algorithm in flowchart  
form, and the section Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. Figure 18 in the AC Character-  
isticssection shows the toggle bit timing diagrams.  
Figure 19 shows the differences between DQ2 and  
DQ6 in graphical form. See also the subsection on  
DQ2: Toggle Bit II.  
RY/BY#: Ready/Busy#  
The RY/BY# is a dedicated, open-drain output pin that  
indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output,  
several RY/BY# pins can be tied together in parallel  
with a pull-up resistor to V . (The RY/BY# pin is not  
CC  
available on the 44-pin SO package.)  
DQ2: Toggle Bit II  
If the output is low (Busy), the device is actively erasing  
or programming. (This includes programming in the  
Erase Suspend mode.) If the output is high (Ready),  
the device is ready to read array data (including during  
the Erase Suspend mode), or is in the standby mode.  
The Toggle Bit IIon DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
Table 10 shows the outputs for RY/BY#. Figures 11, 12,  
15 and 16 shows RY/BY# for read, reset, program, and  
erase operations, respectively.  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE# to  
control the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 10 to compare  
outputs for DQ2 and DQ6.  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or complete,  
or whether the device has entered the Erase Suspend  
mode. Toggle Bit I may be read at any address, and is  
valid after the rising edge of the final WE# pulse in the  
command sequence (prior to the program or erase  
operation), and during the sector erase time-out.  
During an Embedded Program or Erase algorithm  
operation, successive read cycles to any address  
cause DQ6 to toggle. (The system may use either OE#  
or CE# to control the read cycles.) When the operation  
is complete, DQ6 stops toggling.  
Figure 6 shows the toggle bit algorithm in flowchart  
form, and the section Reading Toggle Bits DQ6/DQ2”  
explains the algorithm. See also the DQ6: Toggle Bit I  
subsection. Figure 18 shows the toggle bit timing dia-  
gram. Figure 19 shows the differences between DQ2  
and DQ6 in graphical form.  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6  
toggles for approximately 100 µs, then returns to  
reading array data. If not all selected sectors are pro-  
tected, the Embedded Erase algorithm erases the  
unprotected sectors, and ignores the selected sectors  
that are protected.  
Reading Toggle Bits DQ6/DQ2  
Refer to Figure 6 for the following discussion. When-  
ever the system initially begins reading toggle bit sta-  
tus, it must read DQ7DQ0 at least twice in a row to  
determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7DQ0 on the fol-  
lowing read cycle.  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is erase-  
suspended. When the device is actively erasing (that  
is, the Embedded Erase algorithm is in progress), DQ6  
toggles. When the device enters the Erase Suspend  
mode, DQ6 stops toggling. However, the system must  
also use DQ2 to determine which sectors are erasing  
or erase-suspended. Alternatively, the system can use  
DQ7 (see the subsection on DQ7: Data# Polling).  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the  
system also should note whether the value of DQ5 is  
high (see the section on DQ5). If it is, the system  
should then determine again whether the toggle bit is  
toggling, since the toggle bit may have stopped tog-  
gling just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the  
device did not complete the operation successfully, and  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
DQ6 also toggles during the erase-suspend-program  
mode, and stops toggling once the Embedded  
Program algorithm is complete.  
Am29LV160M  
27  
the system must write the reset command to return to  
reading array data.  
The remaining scenario is that the system initially  
determines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor the  
toggle bit and DQ5 through successive read cycles,  
determining the status as described in the previous  
paragraph. Alternatively, it may choose to perform  
other system tasks. In this case, the system must start  
at the beginning of the algorithm when it returns to  
determine the status of the operation (top of Figure 6).  
START  
Read DQ7DQ0  
Read DQ7DQ0  
(Note 1)  
No  
Toggle Bit  
= Toggle?  
Yes  
No  
DQ5 = 1?  
Yes  
Read DQ7DQ0  
(Notes  
1, 2)  
Twice  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
Notes:  
1. Read toggle bit twice to determine whether or not it is  
toggling. See text.  
2. Recheck toggle bit because it may stop toggling as DQ5  
changes to 1. See text.  
Figure 6. Toggle Bit Algorithm  
28  
Am29LV160M  
sectors are selected for erasure, the entire time-out also  
applies after each additional sector erase command.  
When the time-out is complete, DQ3 switches from 0”  
to 1.The system may ignore DQ3 if the system can  
guarantee that the time between additional sector  
erase commands will always be less than 50 µs. See  
also the Sector Erase Command Sequencesection.  
DQ5: Exceeded Timing Limits  
DQ5 indicates whether the program or erase time has  
exceeded a specified internal pulse count limit. Under  
these conditions DQ5 produces a 1.This is a failure  
condition that indicates the program or erase cycle was  
not successfully completed.  
The DQ5 failure condition may appear if the system  
tries to program a 1to a location that is previously  
programmed to 0.Only an erase operation can  
change a 0back to a 1.Under this condition, the  
device halts the operation, and when the operation has  
exceeded the timing limits, DQ5 produces a 1.”  
After the sector erase command sequence is written,  
the system should read the status on DQ7 (Data# Poll-  
ing) or DQ6 (Toggle Bit I) to ensure the device has ac-  
cepted the command sequence, and then read DQ3. If  
DQ3 is 1, the internally controlled erase cycle has be-  
gun; all further commands (other than Erase Suspend)  
are ignored until the erase operation is complete. If  
DQ3 is 0, the device will accept additional sector  
erase commands. To ensure the command has been  
accepted, the system software should check the status  
of DQ3 prior to and following each subsequent sector  
erase command. If DQ3 is high on the second status  
check, the last command might not have been ac-  
cepted. Table 10 shows the outputs for DQ3.  
Under both these conditions, the system must issue  
the reset command to return the device to reading  
array data.  
DQ3: Sector Erase Timer  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not an  
erase operation has begun. (The sector erase timer  
does not apply to the chip erase command.) If additional  
Table 10. Write Operation Status  
DQ7  
DQ5  
DQ2  
Operation  
(Note 2)  
DQ6  
(Note 1)  
DQ3  
N/A  
1
(Note 2)  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
DQ7#  
0
Toggle  
Toggle  
0
0
No toggle  
Toggle  
0
0
Standard  
Mode  
Reading within Erase  
Suspended Sector  
1
No toggle  
0
N/A  
Toggle  
1
Erase  
Suspend Reading within Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Mode  
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to 1when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
See DQ5: Exceeded Timing Limitsfor more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.  
Am29LV160M  
29  
ABSOLUTE MAXIMUM RATINGS  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . 65°C to +150°C  
20 ns  
20 ns  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . 55°C to +125°C  
+0.8 V  
Voltage with Respect to Ground  
0.5 V  
2.0 V  
V
(Note 1). . . . . . . . . . . . . . . . . .0.5 V to +4.0 V  
CC  
A9, OE#, and RESET# (Note 2). .0.5 V to +12.5 V  
All other pins (Note 1). . . . . . . 0.5 V to V +0.5 V  
CC  
20 ns  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Figure 7. Maximum Negative  
Overshoot Waveform  
Notes:  
1. Minimum DC voltage on input or I/O pins is 0.5 V. During  
voltage transitions, input or I/O pins may overshoot V  
SS  
to 2.0 V for periods of up to 20 ns. See Figure 7.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot to V +2.0 V for periods up to 20 ns. See  
Figure 8.  
CC  
20 ns  
V
2. Minimum DC input voltage on pins A9, OE#, and RESET#  
is -0.5 V. During voltage transitions, A9, OE#, and  
CC  
+2.0 V  
V
RESET# may overshoot V to 2.0 V for periods of up  
SS  
CC  
+0.5 V  
to 20 ns. See Figure 7. Maximum DC input voltage on pin  
A9 is +12.5 V which may overshoot to 14.0 V for periods  
up to 20 ns.  
2.0 V  
20 ns  
20 ns  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Figure 8. Maximum Positive  
Overshoot Waveform  
Stresses above those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
OPERATING RANGES  
Commercial (C) Devices  
Ambient Temperature (T ) . . . . . . . . . . . 0°C to +70°C  
A
Industrial (I) Devices  
Ambient Temperature (T ) . . . . . . . . . 40°C to +85°C  
A
Extended (E) Devices  
Ambient Temperature (T ) . . . . . . . . 55°C to +125°C  
A
V
Supply Voltages  
CC  
V
for all devices . . . . . . . . . . . . . . . . .2.7 V to 3.6 V  
CC  
Operating ranges define those limits between which the  
functionality of the device is guaranteed.  
30  
Am29LV160M  
DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Description  
Test Conditions  
= V to V  
Min  
Typ  
Max  
±1.0  
35  
Unit  
µA  
V
V
,
CC  
IN  
SS  
I
Input Load Current  
LI  
= V  
CC  
CC max  
I
A9 Input Load Current  
Output Leakage Current  
V
= V  
; A9 = 12.5 V  
µA  
LIT  
CC  
CC max  
V
V
= V to V  
CC  
,
OUT  
SS  
I
±1.0  
µA  
LO  
= V  
CC  
CC max  
5 MHz  
1 MHz  
5 MHz  
1 MHz  
15  
2
30  
10  
30  
10  
CE# = V OE#  
Byte Mode  
V
IL,  
=
=
IH,  
V
Active Read Current  
CC  
I
mA  
CC1  
(Notes 1, 2)  
15  
2
CE# = V OE#  
V
IL,  
IH,  
Word Mode  
V
Active Write Current  
CC  
I
I
I
CE# = V OE# = V  
IH  
40  
0.4  
0.8  
60  
5
mA  
µA  
µA  
CC2  
CC3  
CC4  
IL,  
(Notes 2, 3, 5)  
V
V
Standby Current (Notes 2, 4) CE#, RESET# = V ±0.3 V  
CC  
CC  
Standby Current During Reset  
CC  
RESET# = V ± 0.3 V  
5
SS  
(Notes 2, 4)  
Automatic Sleep Mode  
(Notes 2, 4, 6)  
V
V
= V ± 0.3 V;  
CC  
IH  
IL  
I
0.4  
5
µA  
CC5  
= V ± 0.3 V  
SS  
V
Input Low Voltage  
Input High Voltage  
0.5  
0.8  
V
V
IL  
V
0.7 x V  
V
+ 0.3  
IH  
CC  
CC  
Voltage for Autoselect and  
Temporary Sector Unprotect  
V
V
= 3.3 V  
11.5  
12.5  
0.45  
V
ID  
CC  
V
Output Low Voltage  
I
I
I
= 4.0 mA, V = V  
CC min  
V
V
OL  
OL  
OH  
OH  
CC  
V
V
V
= -2.0 mA, V = V  
0.85 x V  
CC  
OH1  
OH2  
LKO  
CC  
CC min  
CC min  
Output High Voltage  
= -100 µA, V = V  
V
0.4  
CC  
CC  
Low V Lock-Out Voltage (Note 4)  
2.3  
2.5  
V
CC  
Notes:  
1. The I current listed is typically less than 2 mA/MHz, with OE# at V . Typical V is 3.0 V.  
CC  
IH  
CC  
2. Maximum I specifications are tested with V = V max.  
CC  
CC  
CC  
3. I active while Embedded Erase or Embedded Program is in progress.  
CC  
4. At extended temperature range (>+85°C), typical current is 5 µA and maximum current is 10 µA.  
5. Automatic sleep mode enables the low power mode when addresses remain stable for t  
current is 200 nA.  
+ 30 ns. Typical sleep mode  
ACC  
6. Not 100% tested.  
Am29LV160M  
31  
DC CHARACTERISTICS (Continued)  
Zero Power Flash - TBD  
32  
Am29LV160M  
TEST CONDITIONS  
Table 11. Test Specifications  
3.3 V  
Test Condition  
-70  
-90, -120 Unit  
Output Load  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, C  
(including jig capacitance)  
L
30  
100  
pF  
C
L
Input Rise and Fall Times  
Input Pulse Levels  
5
0.03.0  
ns  
V
6.2 kΩ  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 9. Test Setup  
Key to Switching Waveforms  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Dont Care, Any Change Permitted  
Changing, State Unknown  
Does Not Apply  
Center Line is High Impedance State (High Z)  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 10. Input Waveforms and Measurement Levels  
Am29LV160M  
33  
AC CHARACTERISTICS  
Read Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
Test Setup  
-70  
-90  
-120  
Unit  
t
t
Read Cycle Time (Note 1)  
Min  
70  
70  
90  
120  
120  
ns  
AVAV  
RC  
CE# = V  
OE# = V  
IL  
IL  
t
t
Address to Output Delay  
Max  
90  
ns  
AVQV  
ACC  
t
t
Chip Enable to Output Delay  
OE# = V  
Max  
Max  
Max  
Max  
Min  
70  
30  
25  
25  
90  
35  
30  
30  
0
120  
50  
ns  
ns  
ns  
ns  
ns  
ELQV  
GLQV  
EHQZ  
GHQZ  
CE  
IL  
t
t
t
Output Enable to Output Delay  
OE  
t
t
Chip Enable to Output High Z (Note 1)  
Output Enable to Output High Z (Note 1)  
30  
DF  
DF  
t
30  
Read  
Output Enable  
t
OEH  
Toggle and  
Data# Polling  
Hold Time (Note 1)  
Min  
Min  
10  
0
ns  
ns  
Output Hold Time From Addresses, CE# or  
OE#, Whichever Occurs First (Note 1)  
t
t
OH  
AXQX  
Notes:  
1. Not 100% tested.  
2. See Figure 9 and Table 11 for test specifications.  
tRC  
Addresses Stable  
tACC  
Addresses  
CE#  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 11. Read Operations Timings  
34  
Am29LV160M  
AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
Test Setup  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read or Write (See Note)  
t
t
Max  
Max  
20  
µs  
READY  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read or Write (See Note)  
500  
ns  
READY  
t
t
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
RP  
RESET# High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
RH  
t
RPD  
t
RB  
Note: Not 100% tested.  
RY/BY#  
CE#, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#, OE#  
RESET#  
tRP  
Figure 12. RESET# Timings  
Am29LV160M  
35  
AC CHARACTERISTICS  
Word/Byte Configuration (BYTE#)  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
5
-120  
Unit  
ns  
t
t
t
t
CE# to BYTE# Switching Low or High  
BYTE# Switching Low to Output HIGH Z  
BYTE# Switching High to Output Active  
Max  
Max  
Min  
ELFL/ ELFH  
25  
70  
30  
90  
30  
ns  
FLQZ  
120  
ns  
FHQV  
CE#  
OE#  
BYTE#  
t
ELFL  
Data Output  
(DQ0DQ14)  
Data Output  
(DQ0DQ7)  
BYTE#  
DQ0DQ14  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
t
FLQZ  
t
ELFH  
BYTE#  
BYTE#  
Switching  
from byte  
to word  
Data Output  
(DQ0DQ7)  
Data Output  
(DQ0DQ14)  
DQ0DQ14  
mode  
Address  
Input  
DQ15  
Output  
DQ15/A-1  
t
FHQV  
Figure 13. BYTE# Timings for Read Operations  
CE#  
The falling edge of the last WE# signal  
WE#  
BYTE#  
t
SET  
(t  
)
AS  
t
(t  
)
HOLD AH  
Note: Refer to the Erase/Program Operations table for t and t specifications.  
AS  
AH  
Figure 14. BYTE# Timings for Write Operations  
Am29LV160M  
36  
AC CHARACTERISTICS  
Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
90  
0
-120  
Unit  
ns  
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
120  
AVAV  
WC  
t
t
ns  
AVWL  
WLAX  
AS  
AH  
DS  
DH  
t
t
45  
35  
45  
45  
0
50  
50  
ns  
t
t
t
ns  
DVWH  
WHDX  
t
Data Hold Time  
ns  
t
Output Enable Setup Time  
0
ns  
OES  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
t
Min  
0
ns  
GHWL  
GHWL  
t
t
t
CE# Setup Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
Min  
Min  
Min  
0
0
ns  
ns  
ns  
ns  
ELWL  
WHEH  
WLWH  
WHWL  
CS  
CH  
WP  
CE# Hold Time  
t
t
t
Write Pulse Width  
Write Pulse Width High  
35  
35  
30  
5
50  
t
WPH  
Byte  
t
t
t
t
Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
µs  
WHWH1  
WHWH2  
WHWH1  
Word  
7
0.7  
50  
0
sec  
µs  
WHWH2  
t
V
Setup Time (Note 1)  
VCS  
CC  
t
Recovery Time from RY/BY#  
ns  
RB  
t
Program/Erase Valid to RY/BY# Delay  
90  
ns  
BUSY  
Notes:  
1. Not 100% tested.  
2. See the Erase and Programming Performancesection for more information.  
Am29LV160M  
37  
AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
tWC  
Addresses  
555h  
PA  
PA  
PA  
tAH  
CE#  
OE#  
tCH  
tWHWH1  
tWP  
WE#  
Data  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. PA = program address, PD = program data, D  
is the true data at the program address.  
OUT  
2. Illustration shows device in word mode.  
Figure 15. Program Operation Timings  
38  
Am29LV160M  
AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
SA  
tWC  
VA  
Addresses  
CE#  
2AAh  
555h for chip erase  
tAH  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
VCC  
tVCS  
Notes:  
1. SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status).  
2. Illustration shows device in word mode.  
Figure 16. Chip/Sector Erase Operation Timings  
Am29LV160M  
39  
AC CHARACTERISTICS  
tRC  
VA  
Addresses  
VA  
VA  
tACC  
tCE  
CE#  
tCH  
tOE  
OE#  
tOEH  
tDF  
tOH  
WE#  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0–DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 17. Data# Polling Timings (During Embedded Algorithms)  
tRC  
Addresses  
VA  
tACC  
tCE  
VA  
VA  
VA  
CE#  
tCH  
tOE  
OE#  
tOEH  
tDF  
tOH  
WE#  
High Z  
DQ6/DQ2  
RY/BY#  
Valid Status  
(first read)  
Valid Status  
Valid Status  
Valid Data  
(second read)  
(stops toggling)  
tBUSY  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read  
cycle, and array data read cycle.  
Figure 18. Toggle Bit Timings (During Embedded Algorithms)  
40  
Am29LV160M  
AC CHARACTERISTICS  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: The system may use CE# or OE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an  
erase-suspended sector.  
Figure 19. DQ2 vs. DQ6 for Erase and  
Erase Suspend Operations  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
Description  
Rise and Fall Time (See Note)  
All Speed Options  
Unit  
t
V
Min  
Min  
500  
ns  
VIDR  
ID  
RESET# Setup Time for Temporary Sector  
Unprotect  
t
4
µs  
RSP  
Note: Not 100% tested.  
12 V  
RESET#  
0 or 3 V  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#  
WE#  
tRSP  
RY/BY#  
Figure 20. Temporary Sector Unprotect/Timing Diagram  
Am29LV160M  
41  
AC CHARACTERISTICS  
V
ID  
V
IH  
RESET#  
SA, A6,  
A1, A0  
Valid*  
Valid*  
Valid*  
Status  
Sector Protect/Unprotect  
Verify  
40h  
Data  
60h  
60h  
Sector Protect: 150 µs  
Sector Unprotect: 15 ms  
1 µs  
CE#  
WE#  
OE#  
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.  
Figure 21. Sector Protect/Unprotect Timing Diagram  
42  
Am29LV160M  
AC CHARACTERISTICS  
Alternate CE# Controlled Erase/Program Operations  
Parameter  
Speed Options  
JEDEC  
Std  
Description  
-70  
-90  
90  
0
-120  
Unit  
ns  
t
t
t
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
70  
120  
AVAV  
AVEL  
ELAX  
WC  
t
ns  
AS  
AH  
DS  
DH  
t
t
45  
35  
45  
45  
0
50  
50  
ns  
t
t
t
ns  
DVEH  
EHDX  
t
Data Hold Time  
ns  
t
Output Enable Setup Time  
0
ns  
OES  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
t
t
t
Min  
0
ns  
GHEL  
GHEL  
t
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
WLEL  
WS  
t
t
EHWH  
WH  
t
t
CE# Pulse Width  
CE# Pulse Width High  
35  
35  
30  
5
50  
ELEH  
EHEL  
CP  
t
t
CPH  
Byte  
t
t
t
t
Programming Operation (Note 2)  
Sector Erase Operation (Note 2)  
µs  
WHWH1  
WHWH1  
Word  
7
0.7  
sec  
WHWH2  
WHWH2  
Notes:  
1. Not 100% tested.  
2. See the Erase and Programming Performancesection for more information.  
Am29LV160M  
43  
AC CHARACTERISTICS  
555 for program  
PA for program  
2AA for erase  
SA for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tWH  
tAS  
tAH  
WE#  
OE#  
tGHEL  
tWHWH1 or 2  
tCP  
CE#  
Data  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. PA = program address, PD = program data, DQ7# = complement of the data written to the device, D  
device.  
= data written to the  
OUT  
2. Figure indicates the last two bus cycles of the command sequence.  
3. Word mode address used as an example.  
Figure 22. Alternate CE# Controlled Write Operation Timings  
44  
Am29LV160M  
ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1)  
0.4  
Max (Note 2)  
Unit  
s
Comments  
Sector Erase Time  
Chip Erase Time  
15  
Excludes 00h programming  
prior to erasure (Note 4)  
25  
s
Byte Programming Time  
Word Programming Time  
TBD  
TBD  
TBD  
TBD  
TBD  
µs  
µs  
s
TBD  
Excludes system level  
overhead (Note 5)  
Byte Mode  
Word Mode  
TBD  
Chip Programming Time  
(Note 3)  
TBD  
s
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V V , 100,000 cycles. Additionally,  
CC  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, V = 2.7 V, 100,000 cycles.  
CC  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See  
Table 9 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 100,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to V on all pins except I/O pins  
(including A9, OE#, and RESET#)  
SS  
1.0 V  
12.5 V  
Input voltage with respect to V on all I/O pins  
1.0 V  
V
+ 1.0 V  
CC  
SS  
V
Current  
100 mA  
+100 mA  
CC  
Includes all pins except V . Test conditions: V = 3.0 V, one pin at a time.  
CC  
CC  
TSOP AND SO PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
Typ  
6
Max  
7.5  
12  
Unit  
pF  
C
V
= 0  
IN  
IN  
C
Output Capacitance  
Control Pin Capacitance  
V
= 0  
OUT  
8.5  
7.5  
pF  
OUT  
C
V
= 0  
IN  
9
pF  
IN2  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions T = 25°C, f = 1.0 MHz.  
A
DATA RETENTION  
Parameter  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
Am29LV160M  
45  
PHYSICAL DIMENSIONS*  
TS 04848-Pin Standard TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
46  
Am29LV160M  
PHYSICAL DIMENSIONS  
TSR04848-Pin Reverse TSOP  
Dwg rev AA; 10/99  
* For reference only. BSC is an ANSI standard for Basic Space Centering.  
Am29LV160M  
47  
PHYSICAL DIMENSIONS  
FBC04848-Ball Fine-Pitch Ball Grid Array (FBGA)  
8 x 9 mm  
Dwg rev AF; 10/99  
48  
Am29LV160M  
PHYSICAL DIMENSIONS  
SO 04444-Pin Small Outline Package  
Dwg rev AC; 10/99  
Am29LV160M  
49  
PHYSICAL DIMENSIONS  
LAA06464-Ball Fortified Ball Grid Array (FBGA) 13 x 11 mm Package  
50  
Am29LV160M  
REVISION SUMMARY  
Corrected power consumption currents.  
Revision A (June 24, 2002)  
Initial release.  
Changed DC Characteristics Zero Power Flash tables  
to TBD.  
Revision A + 1 (July 3, 2002)  
Changed minimum erase and program cycle endur-  
ance to 100,000 cycles per sector.  
Added LAA064 package.  
Trademarks  
Copyright © 2002 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, MirrorBitTM and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
Am29LV160M  
51  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY