AM49DL324BGT70 [SPANSION]

Stacked Multi-Chip Package (MCP) Flash Memory and SRAM 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous; 3.0伏只堆叠多芯片封装( MCP )闪存和SRAM 32兆位( 4米×8位/ 2的M× 16位) CMOS ,同时
AM49DL324BGT70
型号: AM49DL324BGT70
厂家: SPANSION    SPANSION
描述:

Stacked Multi-Chip Package (MCP) Flash Memory and SRAM 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous
3.0伏只堆叠多芯片封装( MCP )闪存和SRAM 32兆位( 4米×8位/ 2的M× 16位) CMOS ,同时

闪存 静态存储器
文件: 总64页 (文件大小:1054K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Am49DL32xBG  
Data Sheet  
July 2003  
The following document specifies Spansion memory products that are now offered by both Advanced  
Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-  
inally developed the specification, these products will be offered to customers of both AMD and  
Fujitsu.  
Continuity of Specifications  
There is no change to this datasheet as a result of offering the device as a Spansion product. Any  
changes that have been made are the result of normal datasheet improvement and are noted in the  
document revision summary, where supported. Future routine revisions will occur when appropriate,  
and changes will be noted in a revision summary.  
Continuity of Ordering Part Numbers  
AMD and Fujitsu continue to support existing part numbers beginning with “Am” and “MBM. To order  
these products, please use only the Ordering Part Numbers listed in this document.  
For More Information  
Please contact your local AMD or Fujitsu sales office for additional information about Spansion  
memory solutions.  
Publication Number 26645 Revision A Amendment +1 Issue Date July 19, 2002  
PRELIMINARY  
Am49DL32xBG  
Stacked Multi-Chip Package (MCP) Flash Memory and SRAM  
Am29DL32xG 32 Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous  
Operation Flash Memory and 32 Mbit (2M x 16-Bit) Pseudo Static RAM with Page Mode  
DISTINCTIVE CHARACTERISTICS  
SOFTWARE FEATURES  
MCP Features  
Power supply voltage of 2.7 to 3.3 volt  
Data Management Software (DMS)  
AMD-supplied software manages data programming and  
erasing, enabling EEPROM emulation  
Eases sector erase limitations  
High performance  
Access time as fast as 70 ns  
Package  
Supports Common Flash Memory Interface (CFI)  
Erase Suspend/Erase Resume  
73-Ball FBGA  
Operating Temperature  
Suspends erase operations to allow programming in same  
bank  
–40°C to +85°C  
Data# Polling and Toggle Bits  
Flash Memory Features  
Provides a software method of detecting the status of  
program or erase cycles  
ARCHITECTURAL ADVANTAGES  
Unlock Bypass Program command  
Simultaneous Read/Write operations  
Reduces overall programming time when issuing multiple  
program command sequences  
Data can be continuously read from one bank while  
executing erase/program functions in other bank  
Zero latency between read and write operations  
HARDWARE FEATURES  
Secured Silicon (SecSi) Sector: Extra 256 Byte sector  
Any combination of sectors can be erased  
Factory locked and identifiable: 16 bytes available for  
secure, random factory Electronic Serial Number; verifiable  
as factory locked through autoselect function.  
Customer lockable: Sector is one-time programmable. Once  
locked, data cannot be changed  
Ready/Busy# output (RY/BY#)  
Hardware method for detecting program or erase cycle  
completion  
Hardware reset pin (RESET#)  
Hardware method of resetting the internal state machine to  
reading array data  
Zero Power Operation  
Sophisticated power management circuits reduce power  
consumed during inactive periods to nearly zero  
WP#/ACC input pin  
Write protect (WP#) function allows protection of two outermost  
boot sectors, regardless of sector protect status  
Top or bottom boot block  
Manufactured on 0.17 µm process technology  
Compatible with JEDEC standards  
Acceleration (ACC) function accelerates program timing  
Sector protection  
Pinout and software compatible with single-power-supply  
flash standard  
Hardware method of locking a sector, either in-system or  
using programming equipment, to prevent any program or  
erase operation within that sector  
PERFORMANCE CHARACTERISTICS  
Temporary Sector Unprotect allows changing data in  
protected sectors in-system  
High performance  
Access time as fast as 70 ns  
Program time: 4 µs/word typical utilizing Accelerate function  
pSRAM Features  
Ultra low power consumption (typical values)  
Power dissipation  
2 mA active read current at 1 MHz  
Operating: 40 mA maximum  
Standby: 70 µA maximum  
Deep power-down standby: 5 µA  
10 mA active read current at 5 MHz  
200 nA in standby or automatic sleep mode  
CE1s# and CE2s Chip Select  
Minimum 1 million write cycles guaranteed per sector  
20 Year data retention at 125°C  
Power down features using CE1s# and CE2s  
Data retention supply voltage: 2.7 to 3.3 volt  
Byte data control: LB#s (DQ7–DQ0), UB#s (DQ15–DQ8)  
8-word page mode access  
Reliable operation for the life of the system  
Publication# 26645  
Issue Date: July 19, 2002  
Rev: A Amendment/+1  
This document contains information on a product under development at Advanced Micro Devices. The information  
is intended to help you evaluate this product. AMD reserves the right to change or discontinue work on this proposed  
product without notice.  
Refer to AMD’s Website (www.amd.com) for the latest information.  
P R E L I M I N A R Y  
GENERAL DESCRIPTION  
Am29DL32xG Features  
DMS (Data Management Software) allows systems  
to easily take advantage of the advanced architecture  
of the simultaneous read/write product line by allowing  
removal of EEPROM devices. DMS will also allow the  
system software to be simplified, as it will perform all  
functions necessary to modify data in file structures,  
as opposed to single-byte modifications. To write or  
update a particular piece of data (a phone number or  
configuration data, for example), the user only needs  
to state which piece of data is to be updated, and  
where the updated data is located in the system. This  
is an advantage compared to systems where  
user-written software must keep track of the old data  
location, status, logical to physical translation of the  
data onto the Flash memory device (or memory de-  
vices), and more. Using DMS, user-written software  
does not need to interface with the Flash memory di-  
rectly. Instead, the user's software accesses the Flash  
memory by calling one of only six functions. AMD pro-  
vides this software to simplify system design and  
software integration efforts.  
The Am29DL322G/323G/324G consists of 32 megabit,  
3.0 volt-only flash memory devices, organized as  
2,097,152 words of 16 bits each or 4,194,304 bytes of  
8 bits each. Word mode data appears on DQ15DQ0;  
byte mode data appears on DQ7DQ0. The device is  
designed to be programmed in-system with the stan-  
dard 3.0 volt VCC supply, and can also be programmed  
in standard EPROM programmers.  
The devices are available with access times of 70 and  
85 ns. The device is offered in a 73-ball FBGA pack-  
age. Standard control pinschip enable (CE#f), write  
enable (WE#), and output enable (OE#)control nor-  
mal read and write operations, and avoid bus  
contention issues.  
The devices requires only a single 3.0 volt power  
supply for both read and write functions. Internally  
generated and regulated voltages are provided for the  
program and erase operations.  
Simultaneous Read/Write Operations with  
Zero Latency  
The device offers complete compatibility with the  
JEDEC single-power-supply Flash command set  
standard. Commands are written to the command  
register using standard microprocessor write timings.  
Reading data out of the device is similar to reading  
from other Flash or EPROM devices.  
The Simultaneous Read/Write architecture provides  
simultaneous operation by dividing the memory  
space into two banks. The device can improve overall  
system performance by allowing a host system to pro-  
gram or erase in one bank, then immediately and  
simultaneously read from the other bank, with zero la-  
tency. This releases the system from waiting for the  
completion of program or erase operations.  
The host system can detect whether a program or  
erase operation is complete by using the device sta-  
tus bits: RY/BY# pin, DQ7 (Data# Polling) and  
DQ6/DQ2 (toggle bits). After a program or erase cycle  
has been completed, the device automatically returns  
to reading array data.  
The Am29DL32xG device family uses multiple bank  
architectures to provide flexibility for different applica-  
tions. Three devices are available with the following  
bank sizes:  
The sector erase architecture allows memory sec-  
tors to be erased and reprogrammed without affecting  
the data contents of other sectors. The device is fully  
erased when shipped from the factory.  
Device  
DL322  
DL323  
DL324  
Bank 1  
Bank 2  
28  
4
8
24  
Hardware data protection measures include a low  
VCC detector that automatically inhibits write opera-  
tions during power transitions. The hardware sector  
protection feature disables both program and erase  
operations in any combination of the sectors of mem-  
ory. This can be achieved in-system or via  
programming equipment.  
16  
16  
The Secured Silicon (SecSi) Sector is an extra 256  
byte sector capable of being permanently locked by  
AMD or customers. The SecSi Sector Indicator Bit  
(DQ7) is permanently set to a 1 if the part is factory  
locked, and set to a 0 if customer lockable. This  
way, customer lockable parts can never be used to re-  
place a factory locked part.  
The device offers two power-saving features. When  
addresses have been stable for a specified amount of  
time, the device enters the automatic sleep mode.  
The system can also place the device into the  
standby mode. Power consumption is greatly re-  
duced in both modes.  
Factory locked parts provide several options. The  
SecSi Sector may store a secure, random 16 byte  
ESN (Electronic Serial Number). Customer lockable  
devices are one-time programmable and one-time  
lockable.  
2
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
TABLE OF CONTENTS  
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 5  
MCP Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . 5  
Flash Memory Block Diagram. . . . . . . . . . . . . . . . 6  
Connection Diagram . . . . . . . . . . . . . . . . . . . . . . . . 7  
Special Package Handling Instructions .................................... 7  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 9  
MCP Device Bus Operations . . . . . . . . . . . . . . . .10  
Flash Device Bus Operations . . . . . . . . . . . . . . . 12  
Word/Byte Configuration ........................................................12  
Requirements for Reading Array Data ...................................12  
Writing Commands/Command Sequences ............................12  
Accelerated Program Operation ..........................................12  
Autoselect Functions ...........................................................12  
Simultaneous Read/Write Operations with Zero Latency .......12  
Standby Mode ........................................................................ 13  
Automatic Sleep Mode ...........................................................13  
RESET#: Hardware Reset Pin ...............................................13  
Output Disable Mode .............................................................. 13  
Table 3. Device Bank Division ........................................................13  
Table 4. Top Boot Sector Addresses .............................................14  
Table 6. Bottom Boot Sector Addresses .........................................16  
Autoselect Mode ..................................................................... 18  
Sector/Sector Block Protection and Unprotection ..................18  
Table 8. Top Boot Sector/Sector Block Addresses  
Write Operation Status . . . . . . . . . . . . . . . . . . . . 32  
DQ7: Data# Polling .................................................................32  
Figure 5. Data# Polling Algorithm .................................................. 32  
RY/BY#: Ready/Busy# ............................................................ 33  
DQ6: Toggle Bit I ....................................................................33  
Figure 6. Toggle Bit Algorithm........................................................ 33  
DQ2: Toggle Bit II ................................................................... 34  
Reading Toggle Bits DQ6/DQ2 ...............................................34  
DQ5: Exceeded Timing Limits ................................................ 34  
DQ3: Sector Erase Timer ....................................................... 34  
Table 18. Write Operation Status ................................................... 35  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 36  
Operating Ranges. . . . . . . . . . . . . . . . . . . . . . . . . 36  
Industrial (I) Devices ............................................................ 36  
V f/V s Supply Voltage ...................................................36  
CC CC  
Flash DC Characteristics . . . . . . . . . . . . . . . . . . 37  
CMOS Compatible ..................................................................37  
Figure 9. ICC1 Current vs. Time (Showing Active and  
Automatic Sleep Currents)............................................................. 39  
Figure 10. Typical ICC1 vs. Frequency............................................ 39  
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 11. Test Setup.................................................................... 40  
Figure 12. Input Waveforms and Measurement Levels ................. 40  
pSRAM AC Characteristics . . . . . . . . . . . . . . . . . 41  
CE#s Timing ...........................................................................41  
Figure 13. Timing Diagram for Alternating  
for Protection/Unprotection .............................................................18  
Table 9. Bottom Boot Sector/Sector Block Addresses  
Between Pseudo SRAM to Flash................................................... 41  
Read-Only Operations ...........................................................42  
Figure 14. Read Operation Timings ............................................... 42  
Hardware Reset (RESET#) .................................................... 43  
Figure 15. Reset Timings ............................................................... 43  
Word/Byte Configuration (CIOf) ..............................................44  
Figure 16. CIOf Timings for Read Operations................................ 44  
Figure 17. CIOf Timings for Write Operations................................ 44  
Erase and Program Operations ..............................................45  
Figure 18. Program Operation Timings.......................................... 46  
Figure 19. Accelerated Program Timing Diagram.......................... 46  
Figure 20. Chip/Sector Erase Operation Timings .......................... 47  
Figure 21. Back-to-back Read/Write Cycle Timings ...................... 48  
Figure 22. Data# Polling Timings (During Embedded Algorithms). 48  
Figure 23. Toggle Bit Timings (During Embedded Algorithms)...... 49  
Figure 24. DQ2 vs. DQ6................................................................. 49  
Temporary Sector Unprotect .................................................. 50  
Figure 25. Temporary Sector Unprotect Timing Diagram .............. 50  
Figure 26. Sector/Sector Block Protect and  
Unprotect Timing Diagram ............................................................. 51  
Alternate CE#f Controlled Erase and Program Operations ....52  
Figure 27. Flash Alternate CE#f Controlled Write (Erase/Program)  
Operation Timings.......................................................................... 53  
Read Cycle .............................................................................54  
Figure 28. Psuedo SRAM Read Cycle........................................... 54  
Figure 29. Page Read Timing ........................................................ 55  
Write Cycle .............................................................................56  
Figure 30. Pseudo SRAM Write CycleWE# Control................... 56  
Figure 31. Pseudo SRAM Write CycleCE1#s Control................ 57  
Figure 32. Pseudo SRAM Write Cycle—  
for Protection/Unprotection .............................................................19  
Write Protect (WP#) ................................................................19  
Temporary Sector/Sector Block Unprotect ............................. 19  
Figure 1. Temporary Sector Unprotect Operation........................... 20  
Figure 2. In-System Sector/Sector Block Protect and Unprotect Algo-  
rithms .............................................................................................. 21  
SecSi (Secured Silicon) Sector Flash Memory Region .......... 22  
Factory Locked: SecSi Sector Programmed and Protected At  
the Factory .......................................................................... 22  
Customer Lockable: SecSi Sector NOT Programmed or Pro-  
tected At the Factory ...........................................................22  
Hardware Data Protection ......................................................22  
Low V Write Inhibit ...........................................................22  
CC  
Write Pulse Glitch” Protection ............................................22  
Logical Inhibit ......................................................................22  
Power-Up Write Inhibit .........................................................23  
Common Flash Memory Interface (CFI) . . . . . . .23  
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 26  
Reading Array Data ................................................................26  
Reset Command .....................................................................26  
Autoselect Command Sequence ............................................26  
Enter SecSi Sector/Exit SecSi Sector Command Sequence ..26  
Byte/Word Program Command Sequence ............................. 27  
Unlock Bypass Command Sequence .................................. 27  
Figure 3. Program Operation .......................................................... 28  
Chip Erase Command Sequence ........................................... 28  
Sector Erase Command Sequence ........................................28  
Erase Suspend/Erase Resume Commands ........................... 29  
Figure 4. Erase Operation............................................................... 29  
Table 15. Autoselect Device IDs (Word Mode) ...............................30  
Table 17. Autoselect Device IDs (Byte Mode) ................................31  
UB#s and LB#s Control.................................................................. 58  
Flash Erase And Programming Performance . . 59  
Latchup Characteristics. . . . . . . . . . . . . . . . . . . . 59  
July 19, 2002  
Am49DL32xBG  
3
P R E L I M I N A R Y  
Figure 35. Read Address Skew ..................................................... 61  
Package Pin Capacitance . . . . . . . . . . . . . . . . . . 59  
Flash Data Retention . . . . . . . . . . . . . . . . . . . . . . 59  
pSRAM Data Retention . . . . . . . . . . . . . . . . . . . . . 60  
pSRAM Power on and Deep Power Down . . . . . 60  
Figure 33. Deep Power-down Timing.............................................. 60  
Figure 34. Power-on Timing............................................................ 60  
pSRAM Address Skew . . . . . . . . . . . . . . . . . . . . . 61  
Figure 36. Write Address Skew...................................................... 61  
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 62  
FLB07373-Ball Fine-Pitch Grid Array 8 x 11.6 mm .............62  
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 63  
4
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
PRODUCT SELECTOR GUIDE  
Part Number  
Am49DL32xBG  
Flash Memory  
Pseudo SRAM  
Speed  
Options  
Standard Voltage Range:  
VCC = 2.73.3 V  
70  
70  
85  
85  
70  
70  
30  
70  
25  
85  
85  
35  
85  
30  
Max Access Time, ns  
Page Access Time (pSRAM), ns  
CE#f Access, ns  
N/A  
70  
N/A  
85  
OE# Access, ns  
30  
40  
MCP BLOCK DIAGRAM  
VCC  
f
VSS  
A20 to A0  
RY/BY#  
A20 to A0  
A1  
WP#/ACC  
RESET#  
CE#f  
32 MBit  
Flash Memory  
DQ15/A1 to DQ0  
CIOf  
DQ15/A1 to DQ0  
VCCs/VCCQ VSS/VSSQ  
A20 to A0  
32 MBit  
Pseudo  
SRAM  
LB#s  
DQ15 to DQ0  
UB#s  
WE#  
OE#  
CE1#s  
CE2s  
July 19, 2002  
Am49DL32xBG  
5
P R E L I M I N A R Y  
FLASH MEMORY BLOCK DIAGRAM  
OE# CIOf  
V
V
CC  
SS  
Upper Bank Address  
A20A0  
Upper Bank  
X-Decoder  
RY/BY#  
A20A0  
RESET#  
STATE  
CONTROL  
&
COMMAND  
REGISTER  
WE#  
CE#  
Status  
DQ15DQ0  
CIOf  
Control  
WP#/ACC  
DQ15DQ0  
X-Decoder  
Lower Bank  
A20A0  
Lower Bank Address  
OE# CIOf  
6
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
CONNECTION DIAGRAM  
73-Ball FBGA  
Top View  
Flash only  
A1  
A10  
NC  
NC  
Pseudo  
SRAM only  
B1  
B5  
NC  
C5  
B6  
B10  
NC  
NC  
NC  
Shared  
C1  
C3  
C4  
C6  
C7  
C8  
NC  
A7  
LB# WP#/ACC WE#  
A8  
A11  
D2  
A3  
D3  
A6  
D4  
D5  
D6  
D7  
A19  
E7  
A9  
D8  
A12  
E8  
A13  
F8  
D9  
A15  
E9  
NC  
F9  
NC  
UB# RESET# CE2s  
E5  
E2  
A2  
E3  
A5  
E4  
E6  
A18 RY/BY# A20  
F1  
NC  
G1  
NC  
F2  
A1  
F3  
A4  
F4  
A17  
G4  
DQ1  
F7  
F10  
A10  
G7  
DQ6  
H7  
A14  
G8  
NC  
NC  
G2  
A0  
G3  
G9 G10  
V
SS  
A16  
NC  
H2  
CE#f  
J2  
H3  
OE#  
J3  
H4  
DQ9  
J4  
H5  
DQ3  
J5  
H6  
DQ4  
J6  
H8  
H9  
DQ13 DQ15/A-1 CIOf  
J7  
DQ12  
K7  
J8  
DQ7  
K8  
J9  
V
CC  
f
V s  
CC  
CE1#s DQ0  
DQ10  
K4  
V
SS  
K3  
K5  
DQ11  
L5  
K6  
NC  
L6  
NC  
DQ8  
DQ2  
DQ5  
DQ14  
L1  
NC  
M1  
NC  
L10  
NC  
NC  
M10  
NC  
package and/or data integrity may be compromised if  
the package body is exposed to temperatures above  
150°C for prolonged periods of time.  
Special Package Handling Instructions  
Special handling is required for Flash Memory products  
in molded packages (TSOP, SO, PDIP, PLCC). The  
July 19, 2002  
Am49DL32xBG  
7
P R E L I M I N A R Y  
PIN DESCRIPTION  
LOGIC SYMBOL  
A20A0  
= 21 Address Inputs (Common)  
21  
A-1  
= 2 Address Inputs (Flash)  
= 16 Data Inputs/Outputs (Common)  
= Chip Enable (Flash)  
A20A0  
DQ15DQ0  
CE#f  
A-1  
SA  
CE1#s  
CE2s  
= Chip Enable 1 (pSRAM)  
= Chip Enable 2 (pSRAM)  
= Output Enable (Common)  
= Write Enable (Common)  
= Ready/Busy Output  
16 or 8  
CE#f  
DQ15DQ0  
OE#  
CE1#s  
CE2s  
WE#  
RY/BY#  
RY/BY#  
UB#s  
OE#  
= Upper Byte Control (pSRAM)  
= Lower Byte Control (pSRAM)  
WE#  
LB#s  
WP#/ACC  
RESET#  
UB#s  
CIOf  
= I/O Configuration (Flash)  
CIOf = VIH = Word mode (x16),  
CIOf = VIL = Byte mode (x8)  
LB#s  
RESET#  
= Hardware Reset Pin, Active Low  
CIOf  
WP#/ACC  
= Hardware Write Protect/  
Acceleration Pin (Flash)  
VCC  
f
= Flash 3.0 volt-only single power sup-  
ply (see Product Selector Guide for  
speed options and voltage supply  
tolerances)  
VCC  
VSS  
NC  
s
= pSRAM Power Supply  
= Device Ground (Common)  
= Pin Not Connected Internally  
8
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
ORDERING INFORMATION  
The order number (Valid Combination) is formed by the following:  
Am49DL32x 70  
B
G
T
I
T
TAPE AND REEL  
T
S
=
=
7 inches  
13 inches  
TEMPERATURE RANGE  
Industrial (40°C to +85°C)  
I
=
SPEED OPTION  
See Product Selector Guideon page 5.  
BOOT CODE SECTOR ARCHITECTURE  
T
B
=
=
Top sector  
Bottom sector  
PROCESS TECHNOLOGY  
0.17 µm  
G
=
PSEUDO SRAM DEVICE DENSITY  
32 Mbits  
B
=
AMD DEVICE NUMBER/DESCRIPTION  
Am49DL32xBG  
Stacked Multi-Chip Package (MCP) Flash Memory and SRAM  
Am29DL32xG 32Megabit (4 M x 8-Bit/2 M x 16-Bit) CMOS 3.0 Volt-only, Simultaneous Operation  
Flash Memory and 32 Mbit (2 M x 16-Bit) Pseudo Static RAM with Page Mode  
Valid Combinations  
Valid Combinations  
Order Number Package Marking  
Valid Combinations list configurations planned to be supported in vol-  
ume for this device. Consult the local AMD sales office to confirm  
availability of specific valid combinations and to check on newly re-  
leased combinations.  
Am49DL322BGT70  
Am49DL322BGT85  
Am49DL322BGB70  
Am49DL322BGB85  
Am49DL323BGT70  
Am49DL323BGT85  
Am49DL323BGB70  
Am49DL323BGB85  
Am49DL324BGT70  
Am49DL324BGT85  
Am49DL324BGB70  
Am49DL324BGB85  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
T,S  
M49000000J  
M49000000K  
M49000000L  
M49000000M  
M49000000N  
M49000000O  
M49000000P  
M49000000Q  
M49000000R  
M49000000S  
M49000000T  
M49000000U  
July 19, 2002  
Am49DL32xBG  
9
P R E L I M I N A R Y  
needed to execute the command. The contents of the  
MCP DEVICE BUS OPERATIONS  
register serve as inputs to the internal state machine.  
The state machine outputs dictate the function of the  
device. Tables 1-2 lists the device bus operations, the  
inputs and control levels they require, and the result-  
ing output. The following subsections describe each of  
these operations in further detail.  
This section describes the requirements and use of  
the device bus operations, which are initiated through  
the internal command register. The command register  
itself does not occupy any addressable memory loca-  
tion. The register is a latch used to store the com-  
mands, along with the address and data information  
Table 1. Device Bus OperationsFlash Word Mode, CIOf = VIH  
Operation  
(Notes 1, 2)  
WP#/ACC  
(Note 4)  
DQ7–  
DQ0  
DQ15–  
DQ8  
CE#f CE1#s CE2s OE# WE#  
Address  
LB#s UB#s RESET#  
(Note 7)  
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
H
H
L
Read from  
Flash  
AIN  
DOUT  
DOUT  
L
L
H
L
X
X
X
X
H
L/H  
H
L
AIN  
DIN  
DIN  
Write to Flash  
Standby  
L
H
H
(Note 4)  
VCC  
±
VCC ±  
H
H
H
L
X
X
X
X
X
X
X
X
X
X
H
H
High-Z  
High-Z  
High-Z  
High-Z  
0.3 V  
0.3 V  
VCC  
±
VCC  
±
Deep Power-down  
Standby  
0.3 V  
0.3 V  
H
H
H
H
X
X
X
X
X
X
Output Disable  
L
L
H
H
L/H  
L/H  
L/H  
High-Z  
High-Z  
DIN  
High-Z  
High-Z  
X
(Note 7)  
H
H
H
H
H
H
L
Flash Hardware  
Reset  
X
L
X
H
X
L
X
X
X
X
X
L
(Note 8)  
(Note 7)  
(Note 8)  
(Note 7)  
H
L
Sector Protect  
(Note 5)  
SADD, A6 = L,  
A1 = H, A0 = L  
VID  
Sector  
Unprotect  
(Note 5)  
H
SADD, A6 = H,  
A1 = H, A0 = L  
VID  
DIN  
DIN  
L
H
X
L
X
X
X
X
(Note 6)  
(Note 6)  
X
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
L
H
L
Temporary  
Sector  
Unprotect  
VID  
X
X
X
High-Z  
DOUT  
High-Z  
DOUT  
DIN  
DOUT  
DOUT  
High-Z  
DIN  
L
H
L
L
L
AIN  
Read from pSRAM  
Write to pSRAM  
H
H
L
L
H
H
L
H
L
H
H
X
X
H
L
L
AIN  
DIN  
X
H
L
L
High-Z  
DIN  
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.5–12.5 V, VHH = 9.0 ± 0.5 V, X = Don’t Care, SA = pSRAM Address Input, Byte Mode,  
SADD = Flash Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Other operations except for those indicated in this column are  
inhibited.  
5. The sector protect and sector unprotect functions may also be  
implemented via programming equipment. See the “Autoselect  
Mode” section.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same  
time.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain  
protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or  
unprotected using the method described in “Autoselect Mode”. If  
WP#/ACC = VHH, all sectors will be unprotected.  
3. Don’t care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC  
= VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by  
40%.  
7. Data will be retained in pSRAM.  
8. Data will be lost in pSRAM.  
10  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 2. Device Bus OperationsFlash Byte Mode, CIOf = VIL  
Operation  
(Notes 1, 2)  
WP#/ACC  
(Note 4)  
DQ7–  
DQ0  
DQ15–  
DQ8  
CE#f CE1#s CE2s OE# WE#  
Address  
LB#s UB#s RESET#  
(Note 7)  
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
H
H
L
Read from  
Flash  
AIN  
DOUT  
L
L
H
L
X
X
X
X
H
L/H  
High-Z  
High-Z  
H
L
AIN  
DIN  
Write to Flash  
Standby  
L
H
H
(Note 4)  
VCC  
±
VCC ±  
H
H
H
L
X
X
X
X
X
X
X
X
X
X
H
H
High-Z  
High-Z  
High-Z  
High-Z  
0.3 V  
0.3 V  
VCC  
±
VCC  
±
Deep Power-down  
Standby  
0.3 V  
0.3 V  
H
H
H
H
X
X
X
X
X
X
Output Disable  
L
L
H
H
L/H  
L/H  
L/H  
High-Z  
High-Z  
DIN  
High-Z  
High-Z  
X
(Note 7)  
H
H
H
H
H
H
L
Flash Hardware  
Reset  
X
L
X
H
X
L
X
X
X
X
X
L
(Note 8)  
(Note 7)  
(Note 8)  
(Note 7)  
H
L
Sector Protect  
(Note 5)  
SADD, A6 = L,  
A1 = H, A0 = L  
VID  
Sector  
Unprotect  
(Note 5)  
H
SADD, A6 = H,  
A1 = H, A0 = L  
VID  
DIN  
L
H
X
L
X
X
X
X
(Note 6)  
(Note 6)  
X
(Note 8)  
(Note 7)  
(Note 8)  
H
H
H
L
H
L
Temporary  
Sector  
Unprotect  
VID  
DIN  
X
X
X
High-Z  
DOUT  
DOUT  
DOUT  
L
H
L
L
L
AIN  
Read from pSRAM  
Write to pSRAM  
H
H
L
L
H
H
L
H
L
H
H
X
X
High-Z  
DOUT  
DIN  
H
L
High-Z  
DIN  
L
AIN  
DIN  
X
H
L
L
High-Z  
DIN  
H
High-Z  
Legend: L = Logic Low = VIL, H = Logic High = VIH, VID = 11.512.5 V, VHH = 9.0 ± 0.5 V, X = Dont Care, SA = pSRAM Address Input, Byte Mode,  
SADD = Flash Sector Address, AIN = Address In, DIN = Data In, DOUT = Data Out  
Notes:  
1. Other operations except for those indicated in this column are  
inhibited.  
5. The sector protect and sector unprotect functions may also be  
implemented via programming equipment. See the Autoselect  
Modesection.  
2. Do not apply CE#f = VIL, CE1#s = VIL and CE2s = VIH at the same  
time.  
6. If WP#/ACC = VIL, the two outermost boot sectors remain  
protected. If WP#/ACC = VIH, the two outermost boot sector  
protection depends on whether they were last protected or  
unprotected using the method described in Autoselect Mode. If  
WP#/ACC = VHH, all sectors will be unprotected.  
3. Dont care or open LB#s or UB#s.  
4. If WP#/ACC = VIL , the boot sectors will be protected. If WP#/ACC  
= VIH the boot sectors protection will be removed.  
If WP#/ACC = VACC (9V), the program time will be reduced by  
40%.  
7. Data will be retained in pSRAM.  
8. Data will be lost in pSRAM.  
July 19, 2002  
Am49DL32xBG  
11  
P R E L I M I N A R Y  
An erase operation can erase one sector, multiple sec-  
FLASH DEVICE BUS OPERATIONS  
Word/Byte Configuration  
tors, or the entire device. Table 3 indicates the address  
space that each sector occupies. Similarly, a sector  
addressis the address bits required to uniquely select  
a sector. The Flash Command Definitionssection  
has details on erasing a sector or the entire chip, or  
suspending/resuming the erase operation.  
The CIOf pin controls whether the device data I/O pins  
operate in the byte or word configuration. If the CIOf  
pin is set at logic 1, the device is in word configura-  
tion, DQ15DQ0 are active and controlled by CE#f  
and OE#.  
The device address space is divided into four banks. A  
bank addressis the address bits required to uniquely  
select a bank.  
If the CIOf pin is set at logic 0, the device is in byte  
configuration, and only data I/O pins DQ7DQ0 are  
active and controlled by CE#f and OE#. The data I/O  
pins DQ14DQ8 are tri-stated, and the DQ15 pin is  
used as an input for the LSB (A-1) address function.  
ICC2 in the DC Characteristics table represents the ac-  
tive current specification for the write mode. The Flash  
AC Characteristics section contains timing specifica-  
tion tables and timing diagrams for write operations.  
Requirements for Reading Array Data  
Accelerated Program Operation  
To read array data from the outputs, the system must  
drive the CE#f and OE# pins to VIL. CE#f is the power  
control and selects the device. OE# is the output con-  
trol and gates array data to the output pins. WE#  
should remain at VIH. The CIOf pin determines  
whether the device outputs array data in words or  
bytes.  
The device offers accelerated program operations  
through the ACC function. This is one of two functions  
provided by the WP#/ACC pin. This function is prima-  
rily intended to allow faster manufacturing throughput  
at the factory.  
If the system asserts VHH on this pin, the device auto-  
matically enters the aforementioned Unlock Bypass  
mode, temporarily unprotects any protected sectors,  
and uses the higher voltage on the pin to reduce the  
time required for program operations. The system  
would use a two-cycle program command sequence  
as required by the Unlock Bypass mode. Removing  
VHH from the WP#/ACC pin returns the device to nor-  
mal operation. Note that VHH must not be asserted on  
WP#/ACC for operations other than accelerated pro-  
gramming, or device damage may result. In addition,  
the WP#/ACC pin must not be left floating or uncon-  
nected; inconsistent behavior of the device may result.  
See Write Protect (WP#)on page 19 for related in-  
formation.  
The internal state machine is set for reading array data  
upon device power-up, or after a hardware reset. This  
ensures that no spurious alteration of the memory  
content occurs during the power transition. No com-  
mand is necessary in this mode to obtain array data.  
Standard microprocessor read cycles that assert valid  
addresses on the device address inputs produce valid  
data on the device data outputs. Each bank remains  
enabled for read access until the command register  
contents are altered.  
Refer to the Flash Read-Only Operations table for tim-  
ing specifications and to Figure 14 for the timing dia-  
gram. ICC1 in the DC Characteristics table represents  
the active current specification for reading array data.  
Autoselect Functions  
Writing Commands/Command Sequences  
If the system writes the autoselect command se-  
quence, the device enters the autoselect mode. The  
system can then read autoselect codes from the inter-  
nal register (which is separate from the memory array)  
on DQ15DQ0. Standard read cycle timings apply in  
this mode. Refer to the Autoselect Mode and Autose-  
lect Command Sequence sections for more informa-  
tion.  
To write a command or command sequence (which in-  
cludes programming data to the device and erasing  
sectors of memory), the system must drive WE# and  
CE#f to VIL, and OE# to VIH.  
For program operations, the CIOf pin determines  
whether the device accepts program data in bytes or  
words. Refer to Flash Device Bus Operationsfor  
more information.  
Simultaneous Read/Write Operations with  
Zero Latency  
The device features an Unlock Bypass mode to facil-  
itate faster programming. Once a bank enters the Un-  
lock Bypass mode, only two write cycles are required  
to program a word or byte, instead of four. The  
Byte/Word Program Command Sequencesection  
has details on programming data to the device using  
both standard and Unlock Bypass command se-  
quences.  
This device is capable of reading data from one bank  
of memory while programming or erasing in the other  
bank of memory. An erase operation may also be sus-  
pended to read from or program to another location  
within the same bank (except the sector being  
erased). Figure 21 shows how read and write cycles  
12  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
may be initiated for simultaneous operation with zero  
RESET#: Hardware Reset Pin  
latency. ICC6f and ICC7f in the table represent the cur-  
rent specifications for read-while-program and  
read-while-erase, respectively.  
The RESET# pin provides a hardware method of re-  
setting the device to reading array data. When the RE-  
SET# pin is driven low for at least a period of tRP, the  
device immediately terminates any operation in  
progress, tristates all output pins, and ignores all  
read/write commands for the duration of the RESET#  
pulse. The device also resets the internal state ma-  
chine to reading array data. The operation that was in-  
terrupted should be reinitiated once the device is  
ready to accept another command sequence, to en-  
sure data integrity.  
Standby Mode  
When the system is not reading or writing to the de-  
vice, it can place the device in the standby mode. In  
this mode, current consumption is greatly reduced,  
and the outputs are placed in the high impedance  
state, independent of the OE# input.  
The device enters the CMOS standby mode when the  
CE#f and RESET# pins are both held at VCC ± 0.3 V.  
(Note that this is a more restricted voltage range than  
VIH.) If CE#f and RESET# are held at VIH, but not  
within VCC ± 0.3 V, the device will be in the standby  
mode, but the standby current will be greater. The de-  
vice requires standard access time (tCE) for read ac-  
cess when the device is in either of these standby  
modes, before it is ready to read data.  
Current is reduced for the duration of the RESET#  
pulse. When RESET# is held at VSS±0.3 V, the device  
draws CMOS standby current (ICC4f). If RESET# is  
held at VIL but not within VSS±0.3 V, the standby cur-  
rent will be greater.  
The RESET# pin may be tied to the system reset cir-  
cuitry. A system reset would thus also reset the Flash  
memory, enabling the system to read the boot-up firm-  
ware from the Flash memory.  
If the device is deselected during erasure or program-  
ming, the device draws active current until the  
operation is completed.  
If RESET# is asserted during a program or erase op-  
eration, the RY/BY# pin remains a 0(busy) until the  
internal reset operation is complete, which requires a  
time of tREADY (during Embedded Algorithms). The  
system can thus monitor RY/BY# to determine  
whether the reset operation is complete. If RESET# is  
asserted when a program or erase operation is not ex-  
ecuting (RY/BY# pin is 1), the reset operation is com-  
pleted within a time of tREADY (not during Embedded  
Algorithms). The system can read data tRH after the  
RESET# pin returns to VIH.  
ICC3f in the table represents the standby current spec-  
ification.  
Automatic Sleep Mode  
The automatic sleep mode minimizes Flash device en-  
ergy consumption. The device automatically enables  
this mode when addresses remain stable for tACC  
+
30 ns. The automatic sleep mode is independent of  
the CE#f, WE#, and OE# control signals. Standard ad-  
dress access timings provide new data when ad-  
dresses are changed. While in sleep mode, output  
data is latched and always available to the system.  
ICC5f in the table represents the automatic sleep mode  
current specification.  
Refer to the pSRAM AC Characteristics tables for RE-  
SET# parameters and to Figure 15 for the timing dia-  
gram.  
Output Disable Mode  
When the OE# input is at VIH, output from the device is  
disabled. The output pins are placed in the high  
impedance state.  
Table 3. Device Bank Division  
Bank 1  
Device  
Bank 2  
Sector Sizes  
Part Number  
Megabits  
Sector Sizes  
Megabits  
Eight 8 Kbyte/4 Kword,  
seven 64 Kbyte/32 Kword  
Fifty-six  
64 Kbyte/32 Kword  
Am29DL322G  
Am29DL323G  
Am29DL324G  
4 Mbit  
28 Mbit  
Eight 8 Kbyte/4 Kword,  
fifteen 64 Kbyte/32 Kword  
Forty-eight  
64 Kbyte/32 Kword  
8 Mbit  
24 Mbit  
16 Mbit  
Eight 8 Kbyte/4 Kword,  
thirty-one 64 Kbyte/32 Kword  
Thirty-two  
64 Kbyte/32 Kword  
16 Mbit  
July 19, 2002  
Am49DL32xBG  
13  
P R E L I M I N A R Y  
Table 4. Top Boot Sector Addresses  
Sector Address  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
A20A12  
Address Range  
SA0  
SA1  
000000xxx  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
000000h00FFFFh  
010000h01FFFFh  
020000h02FFFFh  
030000h03FFFFh  
040000h04FFFFh  
050000h05FFFFh  
060000h06FFFFh  
070000h07FFFFh  
080000h08FFFFh  
090000h09FFFFh  
0A0000h0AFFFFh  
0B0000h0BFFFFh  
0C0000h0CFFFFh  
0D0000h0DFFFFh  
0E0000h0EFFFFh  
0F0000h0FFFFFh  
100000h10FFFFh  
110000h11FFFFh  
120000h12FFFFh  
130000h13FFFFh  
140000h14FFFFh  
150000h15FFFFh  
160000h16FFFFh  
170000h17FFFFh  
180000h18FFFFh  
190000h19FFFFh  
1A0000h1AFFFFh  
1B0000h1BFFFFh  
1C0000h1CFFFFh  
1D0000h1DFFFFh  
1E0000h1EFFFFh  
1F0000h1FFFFFh  
200000h20FFFFh  
210000h21FFFFh  
220000h22FFFFh  
230000h23FFFFh  
240000h24FFFFh  
250000h25FFFFh  
260000h26FFFFh  
270000h27FFFFh  
280000h28FFFFh  
290000h29FFFFh  
2A0000h2AFFFFh  
2B0000h2BFFFFh  
2C0000h2CFFFFh  
2D0000h2DFFFFh  
2E0000h2EFFFFh  
2F0000h2FFFFFh  
000000h07FFFh  
008000h0FFFFh  
010000h17FFFh  
018000h01FFFFh  
020000h027FFFh  
028000h02FFFFh  
030000h037FFFh  
038000h03FFFFh  
040000h047FFFh  
048000h04FFFFh  
050000h057FFFh  
058000h05FFFFh  
060000h067FFFh  
068000h06FFFFh  
070000h077FFFh  
078000h07FFFFh  
080000h087FFFh  
088000h08FFFFh  
090000h097FFFh  
098000h09FFFFh  
0A0000h0A7FFFh  
0A8000h0AFFFFh  
0B0000h0B7FFFh  
0B8000h0BFFFFh  
0C0000h0C7FFFh  
0C8000h0CFFFFh  
0D0000h0D7FFFh  
0D8000h0DFFFFh  
0E0000h0E7FFFh  
0E8000h0EFFFFh  
0F0000h0F7FFFh  
0F8000h0FFFFFh  
100000h107FFFh  
108000h10FFFFh  
110000h117FFFh  
118000h11FFFFh  
120000h127FFFh  
128000h12FFFFh  
130000h137FFFh  
138000h13FFFFh  
140000h147FFFh  
148000h14FFFFh  
150000h157FFFh  
158000h15FFFFh  
160000h167FFFh  
168000h16FFFFh  
170000h177FFFh  
178000h17FFFFh  
SA2  
SA3  
SA4  
SA5  
SA6  
SA7  
SA8  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
14  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 4. Top Boot Sector Addresses (Continued)  
Sector Address  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
A20A12  
Address Range  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
110000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
8/4  
300000h30FFFFh  
310000h31FFFFh  
320000h32FFFFh  
330000h33FFFFh  
340000h34FFFFh  
350000h35FFFFh  
360000h36FFFFh  
370000h37FFFFh  
380000h38FFFFh  
390000h39FFFFh  
3A0000h3AFFFFh  
3B0000h3BFFFFh  
3C0000h3CFFFFh  
3D0000h3DFFFFh  
3E0000h3EFFFFh  
3F0000h3F1FFFh  
3F2000h3F3FFFh  
3F4000h3F5FFFh  
3F6000h3F7FFFh  
3F8000h3F9FFFh  
3FA000h3FBFFFh  
3FC000h3FDFFFh  
3FE000h3FFFFFh  
180000h187FFFh  
188000h18FFFFh  
190000h197FFFh  
198000h19FFFFh  
1A0000h1A7FFFh  
1A8000h1AFFFFh  
1B0000h1B7FFFh  
1B8000h1BFFFFh  
1C0000h1C7FFFh  
1C8000h1CFFFFh  
1D0000h1D7FFFh  
1D8000h1DFFFFh  
1E0000h1E7FFFh  
1E8000h1EFFFFh  
1F0000h1F7FFFh  
1F8000h1F8FFFh  
1F9000h1F9FFFh  
1FA000h1FAFFFh  
1FB000h1FBFFFh  
1FC000h1FCFFFh  
1FD000h1FDFFFh  
1FE000h1FEFFFh  
1FF000h1FFFFFh  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
8/4  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH). The bank address bits are A20A18 for  
Am29DL322GT, A20 and A19 for Am29DL323GT, and A20 for Am29DL324GT.  
Table 5. Top Boot SecSi Sector Addresses  
Sector Address  
Sector Size  
(x8)  
(x16)  
Device  
A20A12  
(Bytes/Words)  
Address Range  
Address Range  
Am29DL322GT, Am29DL323GT,  
Am29DL324GT  
111111xxx  
256/128  
3FE000h3FE0FFh 1F0000h1FF07Fh  
July 19, 2002  
Am49DL32xBG  
15  
P R E L I M I N A R Y  
Table 6. Bottom Boot Sector Addresses  
Sector Address  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
A20A12  
Address Range  
SA0  
SA1  
000000000  
000000001  
000000010  
000000011  
000000100  
000000101  
000000110  
000000111  
000001xxx  
000010xxx  
000011xxx  
000100xxx  
000101xxx  
000110xxx  
000111xxx  
001000xxx  
001001xxx  
001010xxx  
001011xxx  
001100xxx  
001101xxx  
001110xxx  
001111xxx  
010000xxx  
010001xxx  
010010xxx  
010011xxx  
010100xxx  
010101xxx  
010110xxx  
010111xxx  
011000xxx  
011001xxx  
011010xxx  
011011xxx  
011100xxx  
011101xxx  
011110xxx  
8/4  
000000h001FFFh  
002000h003FFFh  
004000h005FFFh  
006000h007FFFh  
008000h009FFFh  
00A000h00BFFFh  
00C000h00DFFFh  
00E000h00FFFFh  
010000h01FFFFh  
020000h02FFFFh  
030000h03FFFFh  
040000h04FFFFh  
050000h05FFFFh  
060000h06FFFFh  
070000h07FFFFh  
080000h08FFFFh  
090000h09FFFFh  
0A0000h0AFFFFh  
0B0000h0BFFFFh  
0C0000h0CFFFFh  
0D0000h0DFFFFh  
0E0000h0EFFFFh  
0F0000h0FFFFFh  
100000h10FFFFh  
110000h11FFFFh  
120000h12FFFFh  
130000h13FFFFh  
140000h14FFFFh  
150000h15FFFFh  
160000h16FFFFh  
170000h17FFFFh  
180000h18FFFFh  
190000h19FFFFh  
1A0000h1AFFFFh  
1B0000h1BFFFFh  
1C0000h1CFFFFh  
1D0000h1DFFFFh  
1E0000h1EFFFFh  
000000h000FFFh  
001000h001FFFh  
002000h002FFFh  
003000h003FFFh  
004000h004FFFh  
005000h005FFFh  
006000h006FFFh  
007000h007FFFh  
008000h00FFFFh  
010000h017FFFh  
018000h01FFFFh  
020000h027FFFh  
028000h02FFFFh  
030000h037FFFh  
038000h03FFFFh  
040000h047FFFh  
048000h04FFFFh  
050000h057FFFh  
058000h05FFFFh  
060000h067FFFh  
068000h06FFFFh  
070000h077FFFh  
078000h07FFFFh  
080000h087FFFh  
088000h08FFFFh  
090000h097FFFh  
098000h09FFFFh  
0A0000h0A7FFFh  
0A8000h0AFFFFh  
0B0000h0B7FFFh  
0B8000h0BFFFFh  
0C0000h0C7FFFh  
0C8000h0CFFFFh  
0D0000h0D7FFFh  
0D8000h0DFFFFh  
0E0000h0E7FFFh  
0E8000h0EFFFFh  
0F0000h0F7FFFh  
8/4  
SA2  
8/4  
SA3  
8/4  
SA4  
8/4  
SA5  
8/4  
SA6  
8/4  
SA7  
8/4  
SA8  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
SA9  
SA10  
SA11  
SA12  
SA13  
SA14  
SA15  
SA16  
SA17  
SA18  
SA19  
SA20  
SA21  
SA22  
SA23  
SA24  
SA25  
SA26  
SA27  
SA28  
SA29  
SA30  
SA31  
SA32  
SA33  
SA34  
SA35  
SA36  
SA37  
SA38  
SA39  
SA40  
SA41  
SA42  
SA43  
SA44  
SA45  
SA46  
SA47  
011111xxx  
100000xxx  
100001xxx  
100010xxx  
100011xxx  
100100xxx  
100101xxx  
100110xxx  
100111xxx  
101000xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
1F0000h1FFFFFh  
200000h20FFFFh  
210000h21FFFFh  
220000h22FFFFh  
230000h23FFFFh  
240000h24FFFFh  
250000h25FFFFh  
260000h26FFFFh  
270000h27FFFFh  
280000h28FFFFh  
0F8000h0FFFFFh  
100000h107FFFh  
108000h10FFFFh  
110000h117FFFh  
118000h11FFFFh  
120000h127FFFh  
128000h12FFFFh  
130000h137FFFh  
138000h13FFFFh  
140000h147FFFh  
16  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 6. Bottom Boot Sector Addresses (Continued)  
Sector Address  
Sector Size  
(Kbytes/Kwords)  
(x8)  
(x16)  
Address Range  
Sector  
A20A12  
Address Range  
SA48  
SA49  
SA50  
SA51  
SA52  
SA53  
SA54  
SA55  
SA56  
SA57  
SA58  
SA59  
SA60  
SA61  
SA62  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
101001xxx  
101010xxx  
101011xxx  
101100xxx  
101101xxx  
101110xxx  
101111xxx  
111000xxx  
110001xxx  
110010xxx  
110011xxx  
110100xxx  
110101xxx  
110110xxx  
110111xxx  
111000xxx  
111001xxx  
111010xxx  
111011xxx  
111100xxx  
111101xxx  
111110xxx  
111111xxx  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
64/32  
290000h29FFFFh  
2A0000h2AFFFFh  
2B0000h2BFFFFh  
2C0000h2CFFFFh  
2D0000h2DFFFFh  
2E0000h2EFFFFh  
2F0000h2FFFFFh  
300000h30FFFFh  
310000h31FFFFh  
320000h32FFFFh  
330000h33FFFFh  
340000h34FFFFh  
350000h35FFFFh  
360000h36FFFFh  
370000h37FFFFh  
380000h38FFFFh  
390000h39FFFFh  
3A0000h3AFFFFh  
3B0000h3BFFFFh  
3C0000h3CFFFFh  
3D0000h3DFFFFh  
3E0000h3EFFFFh  
3F0000h3FFFFFh  
148000h14FFFFh  
150000h157FFFh  
158000h15FFFFh  
160000h167FFFh  
168000h16FFFFh  
170000h177FFFh  
178000h17FFFFh  
180000h187FFFh  
188000h18FFFFh  
190000h197FFFh  
198000h19FFFFh  
1A0000h1A7FFFh  
1A8000h1AFFFFh  
1B0000h1B7FFFh  
1B8000h1BFFFFh  
1C0000h1C7FFFh  
1C8000h1CFFFFh  
1D0000h1D7FFFh  
1D8000h1DFFFFh  
1E0000h1E7FFFh  
1E8000h1EFFFFh  
1F0000h1F7FFFh  
1F8000h1FFFFFh  
Note: The address range is A20:A-1 in byte mode (BYTE#=VIL) or A20:A0 in word mode (BYTE#=VIH). The bank address bits  
are A20A18 for Am29DL322GB, A20 and A19 for Am29DL323GB, and A20 for Am29DL324GB.  
Table 7. Bottom Boot SecSi Sector Addresses  
Sector Address  
Sector Size  
(x8)  
(x16)  
Device  
A20A12  
(Bytes/Words)  
Address Range  
Address Range  
Am29DL322GB, Am29DL323GB,  
Am29DL324GB  
000000xxx  
256/128  
000000h0000FFh  
00000h00007Fh  
July 19, 2002  
Am49DL32xBG  
17  
P R E L I M I N A R Y  
Table 8. Top Boot Sector/Sector Block Addresses  
for Protection/Unprotection  
Autoselect Mode  
The autoselect mode provides manufacturer and de-  
vice identification, and sector protection verification,  
through identifier codes output on DQ7DQ0. This  
mode is primarily intended for programming equip-  
ment to automatically match a device to be  
programmed with its corresponding programming al-  
gorithm. However, the autoselect codes can also be  
accessed in-system through the command register.  
Sector/  
Sector  
A20A12  
Sector Block Size  
SA0  
000000XXX  
64 Kbytes  
000001XXX,  
000010XXX  
000011XXX  
SA1SA3  
192 (3x64) Kbytes  
SA4SA7  
SA8SA11  
0001XXXXX  
0010XXXXX  
0011XXXXX  
0100XXXXX  
0101XXXXX  
0110XXXXX  
0111XXXXX  
1000XXXXX  
1001XXXXX  
1010XXXXX  
1011XXXXX  
1100XXXXX  
1101XXXXX  
1110XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
To access the autoselect codes in-system, the host  
system can issue the autoselect command via the  
command register, as shown in Tables 15 and 16. This  
method does not require VID. Refer to the Autoselect  
Command Sequence section for more information.  
SA12SA15  
SA16SA19  
SA20SA23  
SA24SA27  
SA28SA31  
SA32SA35  
SA36SA39  
SA40SA43  
SA44SA47  
SA48SA51  
SA52SA55  
SA56SA59  
Sector/Sector Block Protection and  
Unprotection  
(Note: For the following discussion, the term sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table  
8).  
111100XXX,  
111101XXX,  
111110XXX  
SA60SA62  
192 (4x64) Kbytes  
SA63  
SA64  
SA65  
SA66  
SA67  
SA68  
SA69  
SA70  
111111000  
111111001  
111111010  
111111011  
111111100  
111111101  
111111110  
111111111  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
18  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 9. Bottom Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
diagram. This method uses standard microprocessor  
bus cycle timing. For sector unprotect, all unprotected  
sectors must first be protected prior to the first sector  
unprotect write cycle.  
Sector/Sector Block  
Size  
Sector  
A20A12  
SA70  
111111XXX  
64 Kbytes  
The device is shipped with all sectors unprotected.  
111110XXX,  
111101XXX,  
111100XXX  
It is possible to determine whether a sector is pro-  
tected or unprotected. See the Autoselect Mode  
section for details.  
SA69-SA67  
192 (3x64) Kbytes  
SA66-SA63  
SA62-SA59  
SA58-SA55  
SA54-SA51  
SA50-SA47  
SA46-SA43  
SA42-SA39  
SA38-SA35  
SA34-SA31  
SA30-SA27  
SA26-SA23  
SA22SA19  
SA18-SA15  
SA14-SA11  
1110XXXXX  
1101XXXXX  
1100XXXXX  
1011XXXXX  
1010XXXXX  
1001XXXXX  
1000XXXXX  
0111XXXXX  
0110XXXXX  
0101XXXXX  
0100XXXXX  
0011XXXXX  
0010XXXXX  
0001XXXXX  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
256 (4x64) Kbytes  
Write Protect (WP#)  
The Write Protect function provides a hardware  
method of protecting certain boot sectors without  
using VID. This function is one of two provided by the  
WP#/ACC pin.  
If the system asserts VIL on the WP#/ACC pin, the de-  
vice disables program and erase functions in the two  
outermost8 Kbyte boot sectors independently of  
whether those sectors were protected or unprotected  
using the method described in Autoselect Mode. The  
two outermost 8 Kbyte boot sectors are the two sec-  
tors containing the lowest addresses in a  
top-boot-configured device, or the two sectors contain-  
ing the highest addresses in a top-boot-configured  
device.  
000011XXX,  
000010XXX,  
000001XXX  
SA10-SA8  
192 (3x64) Kbytes  
If the system asserts VIH on the WP#/ACC pin, the de-  
vice reverts to whether the two outermost 8 Kbyte boot  
sectors were last set to be protected or unprotected.  
That is, sector protection or unprotection for these two  
sectors depends on whether they were last protected  
or unprotected using the method described in Autose-  
lect Mode.  
SA7  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
000000111  
000000110  
000000101  
000000100  
000000011  
000000010  
000000001  
000000000  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
8 Kbytes  
Note that the WP#/ACC pin must not be left floating or  
unconnected; inconsistent behavior of the device may  
result.  
Temporary Sector/Sector Block Unprotect  
The hardware sector protection feature disables both  
program and erase operations in any sector. The hard-  
ware sector unprotection feature re-enables both  
program and erase operations in previously protected  
sectors. Note that the sector unprotect algorithm un-  
protects all sectors in parallel. All previously protected  
sectors must be individually re-protected. To change  
data in protected sectors efficiently, the temporary  
sector un protect function is available. See Temporary  
Sector/Sector Block Unprotect.  
(Note: For the following discussion, the term sector”  
applies to both sectors and sector blocks. A sector  
block consists of two or more adjacent sectors that are  
protected or unprotected at the same time (see Table  
8).  
This feature allows temporary unprotection of previ-  
ously protected sectors to change data in-system. The  
Sector Unprotect mode is activated by setting the RE-  
SET# pin to VID (11.5 V 12.5 V). During this mode,  
formerly protected sectors can be programmed or  
erased by selecting the sector addresses. Once VID is  
removed from the RESET# pin, all the previously pro-  
tected sectors are protected again. Figure 1 shows the  
algorithm, and Figure 25 shows the timing diagrams,  
for this feature.  
Sector protection and unprotection can be imple-  
mented as follows.  
Sector protection and unprotection requires VID on the  
RESET# pin only, and can be implemented either  
in-system or via programming equipment. Figure 2  
shows the algorithms and Figure 26 shows the timing  
July 19, 2002  
Am49DL32xBG  
19  
P R E L I M I N A R Y  
Figure 1. Temporary Sector Unprotect Operation  
START  
RESET# = VID  
(Note 1)  
Perform Erase or  
Program Operations  
RESET# = VIH  
Temporary Sector  
Unprotect Completed  
(Note 2)  
Notes:  
1. All protected sectors unprotected (If WP#/ACC = VIL,  
outermost boot sectors will remain protected).  
2. All previously protected sectors are protected once  
again.  
20  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
START  
START  
Protect all sectors:  
The indicated portion  
of the sector protect  
algorithm must be  
performed for all  
PLSCNT = 1  
PLSCNT = 1  
RESET# = VID  
RESET# = VID  
unprotected sectors  
prior to issuing the  
first sector  
Wait 1 µs  
Wait 1 µs  
unprotect address  
No  
First Write  
No  
First Write  
Cycle = 60h?  
Temporary Sector  
Unprotect Mode  
Temporary Sector  
Unprotect Mode  
Cycle = 60h?  
Yes  
Yes  
Set up sector  
address  
No  
All sectors  
protected?  
Sector Protect:  
Write 60h to sector  
address with  
A6 = 0, A1 = 1,  
A0 = 0  
Yes  
Set up first sector  
address  
Sector Unprotect:  
Wait 150 µs  
Write 60h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Verify Sector  
Protect: Write 40h  
to sector address  
with A6 = 0,  
Reset  
PLSCNT = 1  
Increment  
PLSCNT  
Wait 15 ms  
A1 = 1, A0 = 0  
Verify Sector  
Unprotect: Write  
40h to sector  
address with  
A6 = 1, A1 = 1,  
A0 = 0  
Read from  
sector address  
with A6 = 0,  
A1 = 1, A0 = 0  
Increment  
PLSCNT  
No  
No  
PLSCNT  
= 25?  
Read from  
sector address  
with A6 = 1,  
Data = 01h?  
Yes  
A1 = 1, A0 = 0  
No  
Yes  
Set up  
next sector  
address  
Yes  
No  
PLSCNT  
= 1000?  
Protect another  
sector?  
Data = 00h?  
Yes  
Device failed  
No  
Yes  
Remove VID  
from RESET#  
No  
Last sector  
verified?  
Device failed  
Write reset  
command  
Yes  
Remove VID  
Sector Unprotect  
Algorithm  
from RESET#  
Sector Protect  
Algorithm  
Sector Protect  
complete  
Write reset  
command  
Sector Unprotect  
complete  
Note: The term sectorin the figure applies to both sectors and sector blocks.  
Figure 2. In-System Sector/Sector Block Protect and Unprotect Algorithms  
July 19, 2002  
Am49DL32xBG  
21  
P R E L I M I N A R Y  
(ACC) and unlock bypass functions are not available  
SecSi (Secured Silicon) Sector Flash  
Memory Region  
when programming the SecSi Sector.  
The SecSi Sector area can be protected using one of  
the following procedures:  
The SecSi (Secured Silicon) Sector feature provides a  
Flash memory region that enables permanent part  
identification through an Electronic Serial Number  
(ESN). The SecSi Sector uses a SecSi Sector Indica-  
tor Bit to indicate whether or not the SecSi Sector is  
locked when shipped from the factory. This bit is per-  
manently set at the factory and cannot be changed,  
which prevents cloning of a factory locked part. This  
ensures the security of the ESN once the product is  
shipped to the field.  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then follow the in-system  
sector protect algorithm as shown in Figure 2, ex-  
cept that RESET# may be at either VIH or VID. This  
allows in-system protection of the without raising  
any device pin to a high voltage. Note that this  
method is only applicable to the SecSi Sector.  
Write the three-cycle Enter SecSi Sector Region  
command sequence, and then use the alternate  
method of sector protection described in the Au-  
toselect Mode.  
AMD offers the device with the SecSi Sector either  
factory locked or customer lockable. The fac-  
tory-locked version is always protected when shipped  
from the factory, and has the SecSi Sector Indicator  
Bit permanently set to a 1.The customer-lockable  
version is shipped with the unprotected, allowing cus-  
tomers to utilize the that sector in any manner they  
choose. The customer-lockable version has the SecSi  
Sector Indicator Bit permanently set to a 0.Thus, the  
SecSi Sector Indicator Bit prevents customer-lockable  
devices from being used to replace devices that are  
factory locked.  
Once the SecSi Sector is locked and verified, the sys-  
tem must write the Exit SecSi Sector Region  
command sequence to return to reading and writing  
the remainder of the array.  
The SecSi Sector protection must be used with cau-  
tion since, once protected, there is no procedure  
available for unprotecting the SecSi Sector area and  
none of the bits in the SecSi Sector memory space  
can be modified in any way.  
The system accesses the SecSi Sector through a  
command sequence (see Enter SecSi Sector/Exit  
SecSi Sector Command Sequence). After the system  
has written the Enter SecSi Sector command se-  
quence, it may read the SecSi Sector by using the  
addresses normally occupied by the boot sectors. This  
mode of operation continues until the system issues  
the Exit SecSi Sector command sequence, or until  
power is removed from the device. On power-up, or  
following a hardware reset, the device reverts to send-  
ing commands to the boot sectors.  
Hardware Data Protection  
The command sequence requirement of unlock cycles  
for programming or erasing provides data protection  
against inadvertent writes (refer to Tables 15 and 16  
for command definitions). In addition, the following  
hardware data protection measures prevent accidental  
erasure or programming, which might otherwise be  
caused by spurious system level signals during VCC  
power-up and power-down transitions, or from system  
noise.  
Factory Locked: SecSi Sector Programmed and  
Protected At the Factory  
Low VCC Write Inhibit  
When VCC is less than VLKO, the device does not ac-  
cept any write cycles. This protects data during VCC  
power-up and power-down. The command register  
and all internal program/erase circuits are disabled,  
and the device resets to reading array data. Subse-  
In a factory locked device, the SecSi Sector is pro-  
tected when the device is shipped from the factory.  
The SecSi Sector cannot be modified in any way. The  
device is available preprogrammed with a random, se-  
cure ESN only.  
quent writes are ignored until VCC is greater than VLKO  
.
In the Top Boot device the ESN will be at addresses  
1FF000h1FF007h in word mode (or addresses  
3FE000h3FE00Fh in byte mode).  
The system must provide the proper signals to the  
control pins to prevent unintentional writes when VCC  
is greater than VLKO  
.
Customer Lockable: SecSi Sector NOT  
Programmed or Protected At the Factory  
Write Pulse GlitchProtection  
Noise pulses of less than 5 ns (typical) on OE#, CE#f  
or WE# do not initiate a write cycle.  
If the security feature is not required, the SecSi Sector  
can be treated as an additional Flash memory space,  
expanding the size of the available Flash array. The  
SecSi Sector can be read any number of times, but  
can be programmed and locked only once, and cannot  
be erased. Note that the accelerated programming  
Logical Inhibit  
Write cycles are inhibited by holding any one of OE# =  
VIL, CE#f = VIH or WE# = VIH. To initiate a write cycle,  
22  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
CE#f and WE# must be a logical zero while OE# is a  
This device enters the CFI Query mode when the sys-  
tem writes the CFI Query command, 98h, to address  
55h in word mode (or address AAh in byte mode), any  
time the device is ready to read array data. The sys-  
tem can read CFI information at the addresses given  
in Tables 1013. To terminate reading CFI data, the  
system must write the reset command. The CFI Query  
mode is not accessible when the device is executing  
an Embedded Program or embedded erase algorithm.  
logical one.  
Power-Up Write Inhibit  
If WE# = CE#f = VIL and OE# = VIH during power up,  
the device does not accept commands on the rising  
edge of WE#. The internal state machine is automati-  
cally reset to reading array data on power-up.  
COMMON FLASH MEMORY INTERFACE  
(CFI)  
The system can also write the CFI query command  
when the device is in the autoselect mode. The device  
enters the CFI query mode, and the system can read  
CFI data at the addresses given in Tables 1013. The  
system must write the reset command to return the de-  
vice to the autoselect mode.  
The Common Flash Interface (CFI) specification out-  
lines device and host system software interrogation  
handshake, which allows specific vendor-specified  
software algorithms to be used for entire families of  
devices. Software support can then be device-inde-  
pendent, JEDEC ID-independent, and forward- and  
backward-compatible for the specified flash device  
families. Flash vendors can standardize their existing  
interfaces for long-term compatibility.  
For further information, please refer to the CFI Specifi-  
cation and CFI Publication 100, available via the  
World Wide Web at http://www.amd.com/prod-  
ucts/nvd/overview/cfi.html. Alternatively, contact an  
AMD representative for copies of these documents.  
Table 10. CFI Query Identification String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
10h  
11h  
12h  
20h  
22h  
24h  
0051h  
0052h  
0059h  
Query Unique ASCII string QRY”  
13h  
14h  
26h  
28h  
0002h  
0000h  
Primary OEM Command Set  
15h  
16h  
2Ah  
2Ch  
0040h  
0000h  
Address for Primary Extended Table  
17h  
18h  
2Eh  
30h  
0000h  
0000h  
Alternate OEM Command Set (00h = none exists)  
Address for Alternate OEM Extended Table (00h = none exists)  
19h  
1Ah  
32h  
34h  
0000h  
0000h  
July 19, 2002  
Am49DL32xBG  
23  
P R E L I M I N A R Y  
Table 11. System Interface String  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
VCC Min. (write/erase)  
0027h  
1Bh  
1Ch  
36h  
38h  
D7D4: volt, D3D0: 100 millivolt  
V
CC Max. (write/erase)  
0036h  
D7D4: volt, D3D0: 100 millivolt  
1Dh  
1Eh  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
0000h  
0000h  
0004h  
0000h  
000Ah  
0000h  
0005h  
0000h  
0004h  
0000h  
VPP Min. voltage (00h = no VPP pin present)  
V
PP Max. voltage (00h = no VPP pin present)  
Typical timeout per single byte/word write 2N µs  
Typical timeout for Min. size buffer write 2N µs (00h = not supported)  
Typical timeout per individual block erase 2N ms  
Typical timeout for full chip erase 2N ms (00h = not supported)  
Max. timeout for byte/word write 2N times typical  
Max. timeout for buffer write 2N times typical  
Max. timeout per individual block erase 2N times typical  
Max. timeout for full chip erase 2N times typical (00h = not supported)  
Table 12. Device Geometry Definition  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
27h  
4Eh  
0016h  
Device Size = 2N byte  
28h  
29h  
50h  
52h  
0002h  
0000h  
Flash Device Interface description (refer to CFI publication 100)  
2Ah  
2Bh  
54h  
56h  
0000h  
0000h  
Max. number of byte in multi-byte write = 2N  
(00h = not supported)  
2Ch  
58h  
0002h  
Number of Erase Block Regions within device  
2Dh  
2Eh  
2Fh  
30h  
5Ah  
5Ch  
5Eh  
60h  
0007h  
0000h  
0020h  
0000h  
Erase Block Region 1 Information  
(refer to the CFI specification or CFI publication 100)  
31h  
32h  
33h  
34h  
62h  
64h  
66h  
68h  
003Eh  
0000h  
0000h  
0001h  
Erase Block Region 2 Information  
Erase Block Region 3 Information  
Erase Block Region 4 Information  
35h  
36h  
37h  
38h  
6Ah  
6Ch  
6Eh  
70h  
0000h  
0000h  
0000h  
0000h  
39h  
3Ah  
3Bh  
3Ch  
72h  
74h  
76h  
78h  
0000h  
0000h  
0000h  
0000h  
24  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 13. Primary Vendor-Specific Extended Query  
Addresses  
(Word Mode)  
Addresses  
(Byte Mode)  
Data  
Description  
40h  
41h  
42h  
80h  
82h  
84h  
0050h  
0052h  
0049h  
Query-unique ASCII string PRI”  
43h  
44h  
86h  
88h  
0031h  
0033h  
Major version number, ASCII  
Minor version number, ASCII  
Address Sensitive Unlock (Bits 1-0)  
0 = Required, 1 = Not Required  
45h  
8Ah  
0004h  
Silicon Revision Number (Bits 7-2)  
Erase Suspend  
0 = Not Supported, 1 = To Read Only, 2 = To Read & Write  
46h  
47h  
48h  
49h  
4Ah  
4Bh  
4Ch  
8Ch  
8Eh  
90h  
92h  
94h  
96h  
98h  
0002h  
0001h  
0001h  
0004h  
Sector Protect  
0 = Not Supported, X = Number of sectors in per group  
Sector Temporary Unprotect  
00 = Not Supported, 01 = Supported  
Sector Protect/Unprotect scheme  
04 = 29LV800 mode  
00XXh  
(See Note)  
Simultaneous Operation  
00 = Not Supported, X= Number of Sectors in Bank 2 (Uniform Bank)  
Burst Mode Type  
00 = Not Supported, 01 = Supported  
0000h  
0000h  
Page Mode Type  
00 = Not Supported, 01 = 4 Word Page, 02 = 8 Word Page  
ACC (Acceleration) Supply Minimum  
4Dh  
4Eh  
4Fh  
9Ah  
9Ch  
9Eh  
0085h  
0095h  
000Xh  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
ACC (Acceleration) Supply Maximum  
00h = Not Supported, D7-D4: Volt, D3-D0: 100 mV  
Top/Bottom Boot Sector Flag  
02h = Bottom Boot Device, 03h = Top Boot Device  
Note:  
The number of sectors in Bank 2 is device dependent. Am29DL322 = 38h, Am29DL323 = 30h, Am29DL324 = 20h.  
July 19, 2002  
Am49DL32xBG  
25  
P R E L I M I N A R Y  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device  
operations. Tables 15 and 16 define the valid register  
command sequences. Writing incorrect address and  
data values or writing them in the improper se-  
quence resets the device to reading array data.  
command returns that bank to the erase-sus-  
pend-read mode. Once programming begins,  
however, the device ignores reset commands until the  
operation is complete.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command  
must be written to return to reading array data. If a  
bank entered the autoselect mode while in the Erase  
Suspend mode, writing the reset command returns  
that bank to the erase-suspend-read mode.  
All addresses are latched on the falling edge of WE#  
or CE#f, whichever happens later. All data is latched  
on the rising edge of WE# or CE#f, whichever hap-  
pens first. Refer to the pSRAM AC Characteristics  
section for timing diagrams.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the banks to read-  
ing array data (or erase-suspend-read mode if that  
bank was in Erase Suspend).  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. Each bank is ready to read array data  
after completing an Embedded Program or Embedded  
Erase algorithm.  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and device codes,  
and determine whether or not a sector is protected.  
Tables 15 and 16 show the address and data require-  
ments. The autoselect command sequence may be  
written to an address within a bank that is either in the  
read or erase-suspend-read mode. The autoselect  
command may not be written while the device is ac-  
tively programming or erasing in the other bank.  
After the device accepts an Erase Suspend command,  
the corresponding bank enters the erase-sus-  
pend-read mode, after which the system can read  
data from any non-erase-suspended sector within the  
same bank. After completing a programming operation  
in the Erase Suspend mode, the system may once  
again read array data with the same exception. See  
the Erase Suspend/Erase Resume Commands sec-  
tion for more information.  
The autoselect command sequence is initiated by first  
writing two unlock cycles. This is followed by a third  
write cycle that contains the bank address and the au-  
toselect command. The bank then enters the  
autoselect mode. The system may read at any ad-  
dress within the same bank any number of times  
without initiating another autoselect command  
sequence:  
The system must issue the reset command to return a  
bank to the read (or erase-suspend-read) mode if DQ5  
goes high during an active program or erase opera-  
tion, or if the bank is in the autoselect mode. See the  
next section, Reset Command, for more information.  
See also Requirements for Reading Array Data in the  
section for more information. The Flash Read-Only  
Operations table provides the read parameters, and  
Figure 14 shows the timing diagram.  
A read cycle at address (BA)XX00h (where BA is  
the bank address) returns the manufacturer code.  
A read cycle at address (BA)XX01h in word mode  
(or (BA)XX02h in byte mode) returns the device  
code.  
Reset Command  
Writing the reset command resets the banks to the  
read or erase-suspend-read mode. Address bits are  
dont cares for this command.  
A read cycle to an address containing a sector ad-  
dress (SA) within the same bank, and the address  
02h on A7A0 in word mode (or the address 04h on  
A6A-1 in byte mode) returns 01h if the sector is  
protected, or 00h if it is unprotected. (Refer to Ta-  
bles 46 for valid sector addresses).  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the bank to which the sys-  
tem was writing to reading array data. Once erasure  
begins, however, the device ignores reset commands  
until the operation is complete.  
The system must write the reset command to return to  
reading array data (or erase-suspend-read mode if the  
bank was previously in Erase Suspend).  
The reset command may be written between the  
sequence cycles in a program command sequence  
before programming begins. This resets the bank to  
which the system was writing to reading array data. If  
the program command sequence is written to a bank  
that is in the Erase Suspend mode, writing the reset  
Enter SecSi Sector/Exit SecSi Sector  
Command Sequence  
The system can access the SecSi Sector region by is-  
suing the three-cycle Enter SecSi Sector command  
26  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
sequence. The device continues to access the SecSi data is still 0.Only erase operations can convert a  
Sector region until the system issues the four-cycle  
Exit SecSi Sector command sequence. The Exit SecSi  
Sector command sequence returns the device to nor-  
mal operation. Tables 15 and 16 show the address  
and data requirements for both command sequences.  
See also SecSi (Secured Silicon) Sector Flash Mem-  
ory Regionfor further information. Note that a  
hardware reset (RESET#=VIL) will reset the device to  
reading array data.  
0to a 1.”  
Unlock Bypass Command Sequence  
The unlock bypass feature allows the system to pro-  
gram bytes or words to a bank faster than using the  
standard program command sequence. The unlock  
bypass command sequence is initiated by first writing  
two unlock cycles. This is followed by a third write  
cycle containing the unlock bypass command, 20h.  
That bank then enters the unlock bypass mode. A  
two-cycle unlock bypass program command sequence  
is all that is required to program in this mode. The first  
cycle in this sequence contains the unlock bypass pro-  
gram command, A0h; the second cycle contains the  
program address and data. Additional data is pro-  
grammed in the same manner. This mode dispenses  
with the initial two unlock cycles required in the stan-  
dard program command sequence, resulting in faster  
total programming time. Tables 15 and 16 show the re-  
quirements for the command sequence.  
Byte/Word Program Command Sequence  
The system may program the device by word or byte,  
depending on the state of the CIOf pin. Programming  
is a four-bus-cycle operation. The program command  
sequence is initiated by writing two unlock write cy-  
cles, followed by the program set-up command. The  
program address and data are written next, which in  
turn initiate the Embedded Program algorithm. The  
system is not required to provide further controls or  
timings. The device automatically provides internally  
generated program pulses and verifies the pro-  
grammed cell margin. Tables 15 and 16 show the  
address and data requirements for the byte program  
command sequence.  
During the unlock bypass mode, only the Unlock By-  
pass Program and Unlock Bypass Reset commands  
are valid. To exit the unlock bypass mode, the system  
must issue the two-cycle unlock bypass reset com-  
mand sequence. The first cycle must contain the bank  
address and the data 90h. The second cycle need  
only contain the data 00h. The bank then returns to  
the reading array data.  
When the Embedded Program algorithm is complete,  
that bank then returns to reading array data and ad-  
dresses are no longer latched. The system can  
determine the status of the program operation by  
using DQ7, DQ6, or RY/BY#. Refer to the Write Oper-  
ation Status section for information on these status  
bits.  
The device offers accelerated program operations  
through the WP#/ACC pin. When the system asserts  
VHH on the WP#/ACC pin, the device automatically en-  
ters the Unlock Bypass mode. The system may then  
write the two-cycle Unlock Bypass program command  
sequence. The device uses the higher voltage on the  
WP#/ACC pin to accelerate the operation. Note that  
the WP#/ACC pin must not be at VHH any operation  
other than accelerated programming, or device dam-  
age may result. In addition, the WP#/ACC pin must not  
be left floating or unconnected; inconsistent behavior  
of the device may result.  
Any commands written to the device during the Em-  
bedded Program Algorithm are ignored. Note that a  
hardware reset immediately terminates the program  
operation. The program command sequence should  
be reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
Programming is allowed in any sequence and across  
sector boundaries. A bit cannot be programmed  
from 0back to a 1.Attempting to do so may  
cause that bank to set DQ5 = 1, or cause the DQ7 and  
DQ6 status bits to indicate the operation was success-  
ful. However, a succeeding read will show that the  
Figure 3 illustrates the algorithm for the program oper-  
ation. Refer to the Erase and Program Operations  
table in the AC Characteristics section for parameters,  
and Figure 18 for timing diagrams.  
July 19, 2002  
Am49DL32xBG  
27  
P R E L I M I N A R Y  
Any commands written during the chip erase operation  
are ignored. However, note that a hardware reset im-  
mediately terminates the erase operation. If that  
occurs, the chip erase command sequence should be  
reinitiated once that bank has returned to reading  
array data, to ensure data integrity.  
START  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations  
tables in the AC Characteristics section for parame-  
ters, and Figure 20 section for timing diagrams.  
Write Program  
Command Sequence  
Data Poll  
from System  
Sector Erase Command Sequence  
Embedded  
Program  
algorithm  
in progress  
Sector erase is a six bus cycle operation. The sector  
erase command sequence is initiated by writing two  
unlock cycles, followed by a set-up command. Two ad-  
ditional unlock cycles are written, and are then  
followed by the address of the sector to be erased,  
and the sector erase command. Tables 15 and 16  
show the address and data requirements for the sec-  
tor erase command sequence.  
Verify Data?  
Yes  
No  
No  
The device does not require the system to preprogram  
prior to erase. The Embedded Erase algorithm auto-  
matically programs and verifies the entire memory for  
an all zero data pattern prior to electrical erase. The  
system is not required to provide any controls or tim-  
ings during these operations.  
Increment Address  
Last Address?  
Yes  
Programming  
Completed  
After the command sequence is written, a sector erase  
time-out of 50 µs occurs. During the time-out period,  
additional sector addresses and sector erase com-  
mands may be written. Loading the sector erase buffer  
may be done in any sequence, and the number of sec-  
tors may be from one sector to all sectors. The time  
between these additional cycles must be less than  
50 µs, otherwise erasure may begin. Any sector erase  
address and command following the exceeded  
time-out may or may not be accepted. It is recom-  
mended that processor interrupts be disabled during  
this time to ensure all commands are accepted. The  
interrupts can be re-enabled after the last Sector  
Erase command is written. Any command other than  
Sector Erase or Erase Suspend during the  
time-out period resets that bank to reading array  
data. The system must rewrite the command se-  
quence and any additional addresses and commands.  
Note: Seefor program command sequence.  
Figure 3. Program Operation  
Chip Erase Command Sequence  
Chip erase is a six bus cycle operation. The chip erase  
command sequence is initiated by writing two unlock  
cycles, followed by a set-up command. Two additional  
unlock write cycles are then followed by the chip erase  
command, which in turn invokes the Embedded Erase  
algorithm. The device does not require the system to  
preprogram prior to erase. The Embedded Erase algo-  
rithm automatically preprograms and verifies the entire  
memory for an all zero data pattern prior to electrical  
erase. The system is not required to provide any con-  
trols or timings during these operations. Tables 15 and  
16 show the address and data requirements for the  
chip erase command sequence.  
The system can monitor DQ3 to determine if the sec-  
tor erase timer has timed out (See the section on DQ3:  
Sector Erase Timer.). The time-out begins from the ris-  
ing edge of the final WE# pulse in the command  
sequence.  
When the Embedded Erase algorithm is complete,  
that bank returns to reading array data and addresses  
are no longer latched. The system can determine the  
status of the erase operation by using DQ7, DQ6,  
DQ2, or RY/BY#. Refer to the Write Operation Status  
section for information on these status bits.  
When the Embedded Erase algorithm is complete, the  
bank returns to reading array data and addresses are  
no longer latched. Note that while the Embedded  
Erase operation is in progress, the system can read  
data from the non-erasing bank. The system can de-  
termine the status of the erase operation by reading  
28  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
DQ7, DQ6, DQ2, or RY/BY# in the erasing bank.  
program operation using the DQ7 or DQ6 status bits,  
just as in the standard Byte Program operation.  
Refer to the Write Operation Status section for more  
information.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
Once the sector erase operation has begun, only the  
Erase Suspend command is valid. All other com-  
mands are ignored. However, note that a hardware  
reset immediately terminates the erase operation. If  
that occurs, the sector erase command sequence  
should be reinitiated once that bank has returned to  
reading array data, to ensure data integrity.  
In the erase-suspend-read mode, the system can also  
issue the autoselect command sequence. Refer to the  
Autoselect Mode and Autoselect Command Sequence  
sections for details.  
To resume the sector erase operation, the system  
must write the Erase Resume command. The bank  
address of the erase-suspended bank is required  
when writing this command. Further writes of the Re-  
sume command are ignored. Another Erase Suspend  
command can be written after the chip has resumed  
erasing.  
Figure 4 illustrates the algorithm for the erase opera-  
tion. Refer to the Erase and Program Operations  
tables in the AC Characteristics section for parame-  
ters, and Figure 20 section for timing diagrams.  
Erase Suspend/Erase Resume  
Commands  
The Erase Suspend command, B0h, allows the sys-  
tem to interrupt a sector erase operation and then read  
data from, or program data to, any sector not selected  
for erasure. The bank address is required when writing  
this command. This command is valid only during the  
sector erase operation, including the 50 µs time-out  
period during the sector erase command sequence.  
The Erase Suspend command is ignored if written dur-  
ing the chip erase operation or Embedded Program  
algorithm.  
START  
Write Erase  
Command Sequence  
(Notes 1, 2)  
When the Erase Suspend command is written during  
the sector erase operation, the device requires a max-  
imum of 20 µs to suspend the erase operation.  
However, when the Erase Suspend command is writ-  
ten during the sector erase time-out, the device  
immediately terminates the time-out period and sus-  
pends the erase operation.  
Data Poll to Erasing  
Bank from System  
Embedded  
Erase  
algorithm  
in progress  
No  
Data = FFh?  
After the erase operation has been suspended, the  
bank enters the erase-suspend-read mode. The sys-  
tem can read data from or program data to any sector  
not selected for erasure. (The device erase sus-  
pendsall sectors selected for erasure.) Reading at  
any address within erase-suspended sectors pro-  
duces status information on DQ7DQ0. The system  
can use DQ7, or DQ6 and DQ2 together, to determine  
if a sector is actively erasing or is erase-suspended.  
Refer to the Write Operation Status section for infor-  
mation on these status bits.  
Yes  
Erasure Completed  
Notes:  
1. See Tables 15 and 16 for erase command sequence.  
2. See the section on DQ3 for information on the sector  
erase timer.  
After an erase-suspended program operation is com-  
plete, the bank returns to the erase-suspend-read  
mode. The system can determine the status of the  
Figure 4. Erase Operation  
July 19, 2002  
Am49DL32xBG  
29  
P R E L I M I N A R Y  
Table 14. Command Definitions (Flash Word Mode)  
Bus Cycles (Notes 25)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Addr  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data  
Data  
Addr  
Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
Manufacturer ID  
1
1
4
4
RA  
XXX  
555  
555  
RD  
F0  
AA  
AA  
2AA  
2AA  
55  
55  
(BA)555  
(BA)555  
90  
90  
(BA)X00  
0001  
Device ID  
(BA)X01 see Table 15  
SecSi Sector Factory  
Protect (Note 9)  
4
4
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
(BA)555  
(BA)555  
90  
90  
(BA)X03 0082/0002  
Sector Protect Verify  
(Note 10)  
(SADD)  
0000/0001  
X02  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
3
555  
555  
555  
555  
AA  
AA  
AA  
AA  
2AA  
2AA  
2AA  
2AA  
55  
55  
55  
55  
555  
555  
555  
555  
88  
90  
A0  
20  
XXX  
PA  
00  
PD  
Unlock Bypass  
Unlock Bypass Program  
(Note 11)  
2
XXX  
A0  
PA  
PD  
Unlock Bypass Reset (Note 12)  
Chip Erase  
2
6
6
1
1
1
BA  
555  
555  
BA  
BA  
55  
90  
AA  
AA  
B0  
30  
98  
XXX  
2AA  
2AA  
00  
55  
55  
555  
555  
80  
80  
555  
555  
AA  
AA  
2AA  
2AA  
55  
55  
555  
10  
30  
Sector Erase  
SADD  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
CFI Query (Note 15)  
Legend:  
X = Dont care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE#f pulse, whichever happens first.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
SADD = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A20A12 uniquely select any sector.  
BA = Address of the bank that is being switched to autoselect mode, is  
in bypass mode, or is being erased.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE#f pulse, whichever happens  
later.  
Notes:  
1. See Table 1 for description of bus operations.  
11. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
2. All values are in hexadecimal.  
12. The Unlock Bypass Reset command is required to return to  
reading array data when the bank is in the unlock bypass mode.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
13. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
4. Data bits DQ15DQ8 are dont care in command sequences,  
except for RD and PD.  
5. Unless otherwise noted, address bits A20A12 are dont cares.  
6. No unlock or command cycles required when bank is in read  
mode.  
14. The Erase Resume command is valid only during the Erase  
Suspend mode, and requires the bank address.  
7. The Reset command is required to return to reading array data  
(or to the erase-suspend-read mode if previously in Erase  
Suspend) when a bank is in the autoselect mode, or if DQ5 goes  
high (while the bank is providing status information).  
15. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. The system must provide the bank address to obtain the  
manufacturer ID, device ID, or SecSi Sector factory protect  
information. See the Autoselect Command Sequence section for  
more information.  
Table 15. Autoselect Device IDs (Word Mode)  
Device  
Autoselect Device ID  
2255h (T), 2256h (B)  
2250h (T), 2253h (B)  
225Ch (T), 225Fh (B)  
Am29DL322G  
Am29DL323G  
Am29DL324G  
9. The data is 82h for factory locked and 02h for not factory locked.  
10. The data is 00h for an unprotected sector/sector block and 01h  
for a protected sector/sector block.  
T = Top Boot Sector, B = Bottom Boot Sector  
30  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 16. Command Definitions (Flash Byte Mode)  
Bus Cycles (Notes 25)  
Command  
Sequence  
(Note 1)  
First  
Second  
Third  
Fourth  
Fifth  
Sixth  
Addr Data Addr Data Addr Data Addr  
Data  
Addr Data Addr Data  
Read (Note 6)  
Reset (Note 7)  
1
1
RA  
RD  
F0  
XXX  
(BA)  
AAA  
Manufacturer ID  
4
6
4
4
AAA  
AAA  
AAA  
AAA  
AA  
AA  
AA  
AA  
555  
555  
555  
555  
55  
55  
55  
55  
90  
90  
90  
90  
(BA) 00  
(BA) 02  
01  
(BA)  
AAA  
see  
Table 17  
Device ID  
SecSi Sector Factory Protect  
(Note 9)  
(BA)  
AAA  
(BA)  
X06  
82/02  
00  
01  
Sector Protect Verify  
(Note 10)  
(BA)  
AAA  
(SADD)  
X04  
Enter SecSi Sector Region  
Exit SecSi Sector Region  
Program  
3
4
4
3
2
2
6
6
1
1
1
AAA  
AAA  
AAA  
AAA  
XXX  
XXX  
AAA  
AAA  
BA  
AA  
AA  
AA  
AA  
A0  
90  
555  
555  
555  
555  
PA  
55  
55  
55  
55  
PD  
00  
55  
55  
AAA  
AAA  
AAA  
AAA  
88  
90  
A0  
20  
XXX  
PA  
00  
PD  
Unlock Bypass  
Unlock Bypass Program (Note 11)  
Unlock Bypass Reset (Note 12)  
Chip Erase  
XXX  
555  
555  
AA  
AA  
B0  
30  
AAA  
AAA  
80  
80  
AAA  
AAA  
AA  
AA  
555  
555  
55  
AAA  
10  
30  
Sector Erase  
55 SADD  
Erase Suspend (Note 13)  
Erase Resume (Note 14)  
CFI Query (Note 15)  
BA  
55  
98  
Legend:  
X = Dont care  
PD = Data to be programmed at location PA. Data latches on the rising  
edge of WE# or CE#f pulse, whichever happens first.  
RA = Address of the memory location to be read.  
RD = Data read from location RA during read operation.  
SADD = Address of the sector to be verified (in autoselect mode) or  
erased. Address bits A20A12 uniquely select any sector.  
BA = Address of the bank that is being switched to autoselect mode, is  
in bypass mode, or is being erased.  
PA = Address of the memory location to be programmed. Addresses  
latch on the falling edge of the WE# or CE#f pulse, whichever happens  
later.  
Notes:  
1. See Table 1 for description of bus operations.  
11. The Unlock Bypass command is required prior to the Unlock  
Bypass Program command.  
2. All values are in hexadecimal.  
12. The Unlock Bypass Reset command is required to return to  
reading array data when the bank is in the unlock bypass mode.  
3. Except for the read cycle and the fourth cycle of the autoselect  
command sequence, all bus cycles are write cycles.  
13. The system may read and program in non-erasing sectors, or  
enter the autoselect mode, when in the Erase Suspend mode.  
The Erase Suspend command is valid only during a sector erase  
operation, and requires the bank address.  
4. Data bits DQ15DQ8 are dont care in command sequences,  
except for RD and PD.  
5. Unless otherwise noted, address bits A20A12 are dont cares.  
6. No unlock or command cycles required when bank is in read  
mode.  
14. The Erase Resume command is valid only during the Erase  
Suspend mode, and requires the bank address.  
7. The Reset command is required to return to reading array data  
(or to the erase-suspend-read mode if previously in Erase  
Suspend) when a bank is in the autoselect mode, or if DQ5 goes  
high (while the bank is providing status information).  
15. Command is valid when device is ready to read array data or when  
device is in autoselect mode.  
8. The fourth cycle of the autoselect command sequence is a read  
cycle. The system must provide the bank address to obtain the  
manufacturer ID, device ID, or SecSi Sector factory protect  
information. Data bits DQ15DQ8 are dont care. See the  
Autoselect Command Sequence section for more information.  
Table 17. Autoselect Device IDs (Byte Mode)  
Device  
Autoselect Device ID  
55h (T), 56h (B)  
Am29DL322G  
Am29DL323G  
Am29DL324G  
50h (T), 53h (B)  
9. The data is 82h for factory locked and 02h for not factory locked.  
5Ch (T), 5Fh (B)  
10. The data is 00h for an unprotected sector/sector block and 01h  
for a protected sector/sector block.  
T = Top Boot Sector, B = Bottom Boot Sector  
July 19, 2002  
Am49DL32xBG  
31  
P R E L I M I N A R Y  
WRITE OPERATION STATUS  
The device provides several bits to determine the sta-  
tus of a program or erase operation: DQ2, DQ3, DQ5,  
DQ6, and DQ7. Table 18 and the following subsec-  
tions describe the function of these bits. DQ7 and DQ6  
each offer a method for determining whether a pro-  
gram or erase operation is complete or in progress.  
The device also provides a hardware-based output  
signal, RY/BY#, to determine whether an Embedded  
Program or Erase operation is in progress or has been  
completed.  
pleted the program or erase operation and DQ7 has  
valid data, the data outputs on DQ6DQ0 may be still  
invalid. Valid data on DQ7DQ0 will appear on suc-  
cessive read cycles.  
Table 18 shows the outputs for Data# Polling on DQ7.  
Figure 5 shows the Data# Polling algorithm. Figure 22  
in the pSRAM AC Characteristics section shows the  
Data# Polling timing diagram.  
DQ7: Data# Polling  
START  
The Data# Polling bit, DQ7, indicates to the host sys-  
tem whether an Embedded Program or Erase  
algorithm is in progress or completed, or whether a  
bank is in Erase Suspend. Data# Polling is valid after  
the rising edge of the final WE# pulse in the command  
sequence.  
Read DQ7DQ0  
Addr = VA  
During the Embedded Program algorithm, the device  
outputs on DQ7 the complement of the datum pro-  
grammed to DQ7. This DQ7 status also applies to  
programming during Erase Suspend. When the Em-  
bedded Program algorithm is complete, the device  
outputs the datum programmed to DQ7. The system  
must provide the program address to read valid status  
information on DQ7. If a program address falls within a  
protected sector, Data# Polling on DQ7 is active for  
approximately 1 µs, then that bank returns to reading  
array data.  
Yes  
DQ7 = Data?  
No  
No  
DQ5 = 1?  
Yes  
During the Embedded Erase algorithm, Data# Polling  
produces a 0on DQ7. When the Embedded Erase  
algorithm is complete, or if the bank enters the Erase  
Suspend mode, Data# Polling produces a 1on DQ7.  
The system must provide an address within any of the  
sectors selected for erasure to read valid status infor-  
mation on DQ7.  
Read DQ7DQ0  
Addr = VA  
Yes  
DQ7 = Data?  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, Data# Poll-  
ing on DQ7 is active for approximately 100 µs, then  
the bank returns to reading array data. If not all se-  
lected sectors are protected, the Embedded Erase  
algorithm erases the unprotected sectors, and ignores  
the selected sectors that are protected. However, if the  
system reads DQ7 at an address within a protected  
sector, the status may not be valid.  
No  
PASS  
FAIL  
Notes:  
1. VA = Valid address for programming. During a sector  
erase operation, a valid address is any sector address  
within the sector being erased. During chip erase, a  
valid address is any non-protected sector address.  
Just prior to the completion of an Embedded Program  
or Erase operation, DQ7 may change asynchronously  
with DQ0DQ6 while Output Enable (OE#) is asserted  
low. That is, the device may change from providing  
status information to valid data on DQ7. Depending on  
when the system samples the DQ7 output, it may read  
the status or valid data. Even if the device has com-  
2. DQ7 should be rechecked even if DQ5 = 1because  
DQ7 may change simultaneously with DQ5.  
Figure 5. Data# Polling Algorithm  
32  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
DQ6 also toggles during the erase-suspend-program  
RY/BY#: Ready/Busy#  
mode, and stops toggling once the Embedded Pro-  
gram algorithm is complete.  
The RY/BY# is a dedicated, open-drain output pin  
which indicates whether an Embedded Algorithm is in  
progress or complete. The RY/BY# status is valid after  
the rising edge of the final WE# pulse in the command  
sequence. Since RY/BY# is an open-drain output, sev-  
eral RY/BY# pins can be tied together in parallel with a  
Table 18 shows the outputs for Toggle Bit I on DQ6.  
Figure 6 shows the toggle bit algorithm. Figure 23 in  
the Flash AC Characteristicssection shows the tog-  
gle bit timing diagrams. Figure 24 shows the  
differences between DQ2 and DQ6 in graphical form.  
See also the subsection on DQ2: Toggle Bit II.  
pull-up resistor to VCC  
.
If the output is low (Busy), the device is actively eras-  
ing or programming. (This includes programming in  
the Erase Suspend mode.) If the output is high  
(Ready), the device is reading array data, the standby  
mode, or one of the banks is in the erase-sus-  
pend-read mode.  
START  
Table 18 shows the outputs for RY/BY#.  
Read DQ7DQ0  
DQ6: Toggle Bit I  
Toggle Bit I on DQ6 indicates whether an Embedded  
Program or Erase algorithm is in progress or com-  
plete, or whether the device has entered the Erase  
Suspend mode. Toggle Bit I may be read at any ad-  
dress, and is valid after the rising edge of the final  
WE# pulse in the command sequence (prior to the  
program or erase operation), and during the sector  
erase time-out.  
Read DQ7DQ0  
No  
Toggle Bit  
= Toggle?  
During an Embedded Program or Erase algorithm op-  
eration, successive read cycles to any address cause  
DQ6 to toggle. The system may use either OE# or  
CE#f to control the read cycles. When the operation is  
complete, DQ6 stops toggling.  
Yes  
No  
DQ5 = 1?  
Yes  
After an erase command sequence is written, if all  
sectors selected for erasing are protected, DQ6 tog-  
gles for approximately 100 µs, then returns to reading  
array data. If not all selected sectors are protected, the  
Embedded Erase algorithm erases the unprotected  
sectors, and ignores the selected sectors that are  
protected.  
Read DQ7DQ0  
Twice  
The system can use DQ6 and DQ2 together to deter-  
mine whether a sector is actively erasing or is  
erase-suspended. When the device is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
DQ6 toggles. When the device enters the Erase Sus-  
pend mode, DQ6 stops toggling. However, the system  
must also use DQ2 to determine which sectors are  
erasing or erase-suspended. Alternatively, the system  
can use DQ7 (see the subsection on DQ7: Data#  
Polling).  
Toggle Bit  
= Toggle?  
No  
Yes  
Program/Erase  
Operation Not  
Complete, Write  
Reset Command  
Program/Erase  
Operation Complete  
If a program address falls within a protected sector,  
DQ6 toggles for approximately 1 µs after the program  
command sequence is written, then returns to reading  
array data.  
Note: The system should recheck the toggle bit even if DQ5  
= 1because the toggle bit may stop toggling as DQ5  
changes to 1.See the subsections on DQ6 and DQ2 for  
more information.  
Figure 6. Toggle Bit Algorithm  
July 19, 2002  
Am49DL32xBG  
33  
P R E L I M I N A R Y  
cles, determining the status as described in the  
DQ2: Toggle Bit II  
previous paragraph. Alternatively, it may choose to  
perform other system tasks. In this case, the system  
must start at the beginning of the algorithm when it re-  
turns to determine the status of the operation (top of  
Figure 6).  
The Toggle Bit IIon DQ2, when used with DQ6, indi-  
cates whether a particular sector is actively erasing  
(that is, the Embedded Erase algorithm is in progress),  
or whether that sector is erase-suspended. Toggle Bit  
II is valid after the rising edge of the final WE# pulse in  
the command sequence.  
DQ5: Exceeded Timing Limits  
DQ2 toggles when the system reads at addresses  
within those sectors that have been selected for era-  
sure. (The system may use either OE# or CE#f to  
control the read cycles.) But DQ2 cannot distinguish  
whether the sector is actively erasing or is erase-sus-  
pended. DQ6, by comparison, indicates whether the  
device is actively erasing, or is in Erase Suspend, but  
cannot distinguish which sectors are selected for era-  
sure. Thus, both status bits are required for sector and  
mode information. Refer to Table 18 to compare out-  
puts for DQ2 and DQ6.  
DQ5 indicates whether the program or erase time  
has exceeded a specified internal pulse count limit.  
Under these conditions DQ5 produces a 1,indicating  
that the program or erase cycle was not successfully  
completed.  
The device may output a 1on DQ5 if the system tries  
to program a 1to a location that was previously pro-  
grammed to 0.Only an erase operation can  
change a 0back to a 1.Under this condition, the  
device halts the operation, and when the timing limit  
has been exceeded, DQ5 produces a 1.”  
Figure 6 shows the toggle bit algorithm in flowchart  
form, and the section DQ2: Toggle Bit IIexplains the  
algorithm. See also the DQ6: Toggle Bit I subsection.  
Figure 23 shows the toggle bit timing diagram. Figure  
24 shows the differences between DQ2 and DQ6 in  
graphical form.  
Under both these conditions, the system must write  
the reset command to return to reading array data (or  
to the erase-suspend-read mode if a bank was previ-  
ously in the erase-suspend-program mode).  
DQ3: Sector Erase Timer  
Reading Toggle Bits DQ6/DQ2  
After writing a sector erase command sequence, the  
system may read DQ3 to determine whether or not  
erasure has begun. (The sector erase timer does not  
apply to the chip erase command.) If additional  
sectors are selected for erasure, the entire time-out  
also applies after each additional sector erase com-  
mand. When the time-out period is complete, DQ3  
switches from a 0to a 1.If the time between addi-  
tional sector erase commands from the system can be  
assumed to be less than 50 µs, the system need not  
monitor DQ3. See also the Sector Erase Command  
Sequence section.  
Refer to Figure 6 for the following discussion. When-  
ever the system initially begins reading toggle bit  
status, it must read DQ7DQ0 at least twice in a row  
to determine whether a toggle bit is toggling. Typically,  
the system would note and store the value of the tog-  
gle bit after the first read. After the second read, the  
system would compare the new value of the toggle bit  
with the first. If the toggle bit is not toggling, the device  
has completed the program or erase operation. The  
system can read array data on DQ7DQ0 on the fol-  
lowing read cycle.  
After the sector erase command is written, the system  
should read the status of DQ7 (Data# Polling) or DQ6  
(Toggle Bit I) to ensure that the device has accepted  
the command sequence, and then read DQ3. If DQ3 is  
1,the Embedded Erase algorithm has begun; all fur-  
ther commands (except Erase Suspend) are ignored  
until the erase operation is complete. If DQ3 is 0,the  
device will accept additional sector erase commands.  
To ensure the command has been accepted, the sys-  
tem software should check the status of DQ3 prior to  
and following each subsequent sector erase com-  
mand. If DQ3 is high on the second status check, the  
last command might not have been accepted.  
However, if after the initial two read cycles, the system  
determines that the toggle bit is still toggling, the sys-  
tem also should note whether the value of DQ5 is high  
(see the section on DQ5). If it is, the system should  
then determine again whether the toggle bit is tog-  
gling, since the toggle bit may have stopped toggling  
just as DQ5 went high. If the toggle bit is no longer  
toggling, the device has successfully completed the  
program or erase operation. If it is still toggling, the de-  
vice did not completed the operation successfully, and  
the system must write the reset command to return to  
reading array data.  
The remaining scenario is that the system initially de-  
termines that the toggle bit is toggling and DQ5 has  
not gone high. The system may continue to monitor  
the toggle bit and DQ5 through successive read cy-  
Table 18 shows the status of DQ3 relative to the other  
status bits.  
34  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
Table 18. Write Operation Status  
DQ7  
(Note 2)  
DQ5  
(Note 1)  
DQ2  
(Note 2)  
Status  
DQ6  
DQ3  
RY/BY#  
Embedded Program Algorithm  
Embedded Erase Algorithm  
Erase  
DQ7#  
0
Toggle  
Toggle  
0
0
N/A  
1
No toggle  
Toggle  
0
0
Standard  
Mode  
1
No toggle  
0
N/A  
Toggle  
1
Suspended Sector  
Erase-Suspend-  
Read  
Erase  
Suspend  
Mode  
Non-Erase  
Data  
Data  
Data  
0
Data  
N/A  
Data  
N/A  
1
0
Suspended Sector  
Erase-Suspend-Program  
DQ7#  
Toggle  
Notes:  
1. DQ5 switches to 1when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.  
Refer to the section on DQ5 for more information.  
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further  
details.  
3. When reading write operation status bits, the system must always provide the bank address where the Embedded Algorithm  
is in progress. The device outputs array data if the system addresses a non-busy bank.  
July 19, 2002  
Am49DL32xBG  
35  
P R E L I M I N A R Y  
ABSOLUTE MAXIMUM RATINGS  
OPERATING RANGES  
Storage Temperature  
Plastic Packages . . . . . . . . . . . . . . . 55°C to +125°C  
Industrial (I) Devices  
Ambient Temperature (TA) . . . . . . . . .40°C to +85°C  
Ambient Temperature  
with Power Applied . . . . . . . . . . . . . . 40°C to +85°C  
V
CCf/VCCs Supply Voltage  
Voltage with Respect to Ground  
VCCf/VCCs for standard voltage range . . 2.7 V to 3.3 V  
VCCf/VCCs (Note 1) . . . . . . . . . . . .0.3 V to +4.0 V  
RESET# (Note 2) . . . . . . . . . . . .0.5 V to +12.5 V  
WP#/ACC . . . . . . . . . . . . . . . . . .0.5 V to +10.5 V  
All other pins (Note 1) . . . . . . 0.5 V to VCC +0.5 V  
Output Short Circuit Current (Note 3) . . . . . . 200 mA  
Operating ranges define those limits between which the func-  
tionality of the device is guaranteed.  
Notes:  
1. Minimum DC voltage on input or I/O pins is 0.5 V.  
During voltage transitions, input or I/O pins may  
overshoot VSS to 2.0 V for periods of up to 20 ns.  
Maximum DC voltage on input or I/O pins is VCC +0.5 V.  
See Figure 7. During voltage transitions, input or I/O pins  
may overshoot to VCC +2.0 V for periods up to 20 ns. See  
Figure 8.  
2. Minimum DC input voltage on pins OE#, RESET#, and  
WP#/ACC is 0.5 V. During voltage transitions, OE#,  
WP#/ACC, and RESET# may overshoot VSS to 2.0 V  
for periods of up to 20 ns. See Figure 7. Maximum DC  
input voltage on pin RESET# is +12.5 V which may  
overshoot to +14.0 V for periods up to 20 ns. Maximum  
DC input voltage on WP#/ACC is +9.5 V which may  
overshoot to +12.0 V for periods up to 20 ns.  
3. No more than one output may be shorted to ground at a  
time. Duration of the short circuit should not be greater  
than one second.  
Stresses above those listed under Absolute Maximum  
Ratingsmay cause permanent damage to the device. This  
is a stress rating only; functional operation of the device at  
these or any other conditions above those indicated in the  
operational sections of this data sheet is not implied.  
Exposure of the device to absolute maximum rating  
conditions for extended periods may affect device reliability.  
20 ns  
20 ns  
20 ns  
+0.8 V  
VCC  
+2.0 V  
0.5 V  
2.0 V  
VCC  
+0.5 V  
2.0 V  
20 ns  
20 ns  
20 ns  
Figure 7. Maximum Negative  
Overshoot Waveform  
Figure 8. Maximum Positive  
Overshoot Waveform  
36  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH DC CHARACTERISTICS  
CMOS Compatible  
Parameter  
Parameter Description  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VIN = VSS to VCC  
VCC = VCC max  
,
ILI  
Input Load Current  
±1.0  
35  
µA  
µA  
µA  
ILIT  
ILO  
RESET# Input Load Current  
Output Leakage Current  
VCC = VCC max; RESET# = 12.5 V  
VOUT = VSS to VCC  
CC = VCC max  
,
±1.0  
V
VCC = VCC max, WP#/ACC  
= VACC max  
ILIA  
ACC Input Leakage Current  
35  
µA  
5 MHz  
1 MHz  
5 MHz  
1 MHz  
10  
2
16  
4
CE#f = VIL, OE# = VIH,  
Byte Mode  
Flash VCC Active Read Current  
(Notes 1, 2)  
ICC1  
f
mA  
10  
2
16  
4
CE#f = VIL, OE# = VIH,  
Word Mode  
I
CC2f  
CC3f  
Flash VCC Active Write Current (Notes 2, 3) CE#f = VIL, OE# = VIH, WE# = VIL  
15  
30  
mA  
µA  
VCCf = VCC max, CE#f, RESET#,  
Flash VCC Standby Current (Note 2)  
I
0.2  
0.2  
0.2  
5
5
5
WP#/ACC = VCCf ± 0.3 V  
VCCf = VCC max, RESET# = VSS ± 0.3 V,  
Flash VCC Reset Current (Note 2)  
ICC4  
ICC5  
f
f
µA  
µA  
WP#/ACC = VCCf ± 0.3 V  
Flash VCC Current Automatic Sleep Mode VCCf = VCC max, VIH = VCC ± 0.3 V;  
(Notes 2, 4)  
VIL = VSS ± 0.3 V  
Byte  
Word  
Byte  
21  
21  
21  
21  
45  
45  
45  
45  
Flash VCC Active Read-While-Program  
Current (Notes 1, 2)  
ICC6  
f
CE#f = VIL, OE# = VIH  
mA  
mA  
Flash VCC Active Read-While-Erase  
Current (Notes 1, 2)  
ICC7f  
CE#f = VIL, OE# = VIH  
Word  
Flash VCC Active  
ICC8f  
Program-While-Erase-Suspended Current CE#f = VIL, OE#f = VIH  
(Notes 2, 5)  
17  
35  
mA  
ACC pin  
VCC pin  
5
10  
30  
mA  
mA  
V
ACC Accelerated Program Current,  
CE#f = VIL, OE# = VIH  
Word or Byte  
IACC  
15  
VIL  
VIH  
Input Low Voltage  
Input High Voltage  
0.2  
0.8  
V
CC + 0.2  
2.4  
V
Voltage for WP#/ACC Program  
Acceleration and Sector  
Protection/Unprotection  
VHH  
8.5  
9.5  
V
Voltage for Sector Protection, Autoselect  
and Temporary Sector Unprotect  
VID  
VOL  
11.5  
12.5  
0.45  
V
V
Output Low Voltage  
IOL = 4.0 mA, VCCf = VCCs = VCC min  
IOH = 2.0 mA, VCCf = VCCs = VCC min  
IOH = 100 µA, VCC = VCC min  
0.85 x  
VCC  
VOH1  
Output High Voltage  
V
V
VOH2  
VLKO  
VCC0.4  
Flash Low VCC Lock-Out Voltage (Note 5)  
2.3  
2.5  
Notes:  
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at  
VIH  
2. Maximum ICC specifications are tested with VCC = VCCmax.  
3. CC active while Embedded Erase or Embedded Program is in  
progress.  
4. Automatic sleep mode enables the low power mode when  
addresses remain stable for tACC + 30 ns. Typical sleep mode  
current is 200 nA.  
.
5. Not 100% tested.  
I
July 19, 2002  
Am49DL32xBG  
37  
P R E L I M I N A R Y  
pSRAM DC & OPERATING CHARACTERISTICS  
Parameter  
Symbol  
Parameter Description  
Input Leakage Current  
Output Leakage Current  
Test Conditions  
VIN = VSS to VCC  
Min  
1.0  
1.0  
Typ  
Max  
1.0  
Unit  
µA  
ILI  
CE1#s = VIH, CE2s = VIL or OE# = VIH or  
WE# = VIL, VIO= VSS to VCC  
ILO  
1.0  
µA  
Cycle time = Min., IIO = 0 mA, 100% duty,  
CE1#s = VIL, CE2s = VIH, VIN = VIL = or VIH,  
tRC = Min.  
I
CC1s  
Operating Current  
40  
mA  
mA  
Cycle time = Min., IIO = 0 mA, 100% duty,  
CE1#s = VIL, CE2s = VIH, VIN = VIL = or VIH,  
tPC = Min.  
Page Access Operating  
Current  
I
CC2s  
VOL  
25  
Output Low Voltage  
IOL = 1.0 mA  
0.4  
V
V
VOH  
ISB  
Output High Voltage  
Standby Current (CMOS)  
IOH = 0.5 mA  
2
CE#1 = VCCS 0.2 V, CE2 = VCCS 0.2 V  
70  
5
µA  
µA  
IDSB  
Deep Power-down Standby CE2 = 0.2 V  
Input Low Voltage  
0.3  
(Note 1)  
VIL  
VIH  
0.4  
V
V
VCC  
0.3  
+
Input High Voltage  
2.4  
(Note 2)  
Notes:  
1. VCC 1.0 V for a 10 ns pulse width.  
2. VCC + 1.0 V for a 10 ns pulse width.  
38  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH DC CHARACTERISTICS  
Zero-Power Flash  
25  
20  
15  
10  
5
0
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Time in ns  
Note: Addresses are switching at 1 MHz  
Figure 9. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)  
12  
10  
8
3.3 V  
2.7 V  
6
4
2
0
1
2
3
4
5
Frequency in MHz  
Note: T = 25 °C  
Figure 10. Typical ICC1 vs. Frequency  
July 19, 2002  
Am49DL32xBG  
39  
P R E L I M I N A R Y  
TEST CONDITIONS  
Table 19. Test Specifications  
3.3 V  
Test Condition  
70, 85  
Unit  
Output Load  
1 TTL gate  
2.7 kΩ  
Device  
Under  
Test  
Output Load Capacitance, CL  
(including jig capacitance)  
30  
pF  
Input Rise and Fall Times  
Input Pulse Levels  
5
ns  
V
C
L
6.2 kΩ  
0.03.0  
Input timing measurement  
reference levels  
1.5  
1.5  
V
V
Output timing measurement  
reference levels  
Note: Diodes are IN3064 or equivalent  
Figure 11. Test Setup  
KEY TO SWITCHING WAVEFORMS  
WAVEFORM  
INPUTS  
OUTPUTS  
Steady  
Changing from H to L  
Changing from L to H  
Dont Care, Any Change Permitted  
Changing, State Unknown  
Does Not Apply  
Center Line is High Impedance State (High Z)  
KS000010-PAL  
3.0 V  
0.0 V  
1.5 V  
1.5 V  
Input  
Measurement Level  
Output  
Figure 12. Input Waveforms and Measurement Levels  
40  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
CE#s Timing  
Parameter  
Test Setup  
AllSpeeds  
Unit  
JEDEC  
Std  
Description  
tCCR  
CE#s Recover Time  
Min  
0
ns  
E#f  
tCCR  
tCCR  
E1#s  
E2s  
tCCR  
tCCR  
Figure 13. Timing Diagram for Alternating  
Between Pseudo SRAM to Flash  
July 19, 2002  
Am49DL32xBG  
41  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Read-Only Operations  
Parameter  
Speed  
JEDEC  
tAVAV  
Std. Description  
Test Setup  
70  
85  
85  
85  
85  
40  
35  
Unit  
ns  
tRC  
Read Cycle Time (Note 1)  
Min  
Max  
Max  
Max  
Max  
Max  
70  
tAVQV  
tELQV  
tGLQV  
tEHQZ  
tGHQZ  
tACC Address to Output Delay  
CE#f, OE# = VIL  
OE# = VIL  
70  
70  
30  
30  
ns  
tCE  
tOE  
tDF  
tDF  
Chip Enable to Output Delay  
ns  
Output Enable to Output Delay  
ns  
Chip Enable to Output High Z (Notes 1, 3)  
Output Enable to Output High Z (Notes 1, 3)  
ns  
30  
0
ns  
Output Hold Time From Addresses, CE#f or  
OE#, Whichever Occurs First  
tAXQX  
tOH  
Min  
Min  
Min  
ns  
ns  
ns  
Read  
0
Output Enable Hold Time  
(Note 1)  
tOEH  
Toggle and  
Data# Polling  
10  
Notes:  
1. Not 100% tested.  
2. See Figure 11 and Table 19 for test specifications  
3. Measurements performed by placing a 50termination on the data pin with a bias of VCC/2. The time from OE# high to the  
data bus driven to VCC/2 is taken as tDF  
.
tRC  
Addresses Stable  
tACC  
Addresses  
CE#f  
tRH  
tRH  
tDF  
tOE  
OE#  
tOEH  
WE#  
tCE  
tOH  
HIGH Z  
HIGH Z  
Output Valid  
Outputs  
RESET#  
RY/BY#  
0 V  
Figure 14. Read Operation Timings  
42  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Hardware Reset (RESET#)  
Parameter  
JEDEC  
Std  
Description  
All Speed Options  
Unit  
RESET# Pin Low (During Embedded Algorithms)  
to Read Mode (See Note)  
tReady  
Max  
20  
µs  
RESET# Pin Low (NOT During Embedded  
Algorithms) to Read Mode (See Note)  
tReady  
Max  
500  
ns  
tRP  
tRH  
tRPD  
tRB  
RESET# Pulse Width  
Min  
Min  
Min  
Min  
500  
50  
20  
0
ns  
ns  
µs  
ns  
Reset High Time Before Read (See Note)  
RESET# Low to Standby Mode  
RY/BY# Recovery Time  
Note: Not 100% tested.  
RY/BY#  
CE#f, OE#  
RESET#  
tRH  
tRP  
tReady  
Reset Timings NOT during Embedded Algorithms  
Reset Timings during Embedded Algorithms  
tReady  
RY/BY#  
tRB  
CE#f, OE#  
RESET#  
tRP  
Figure 15. Reset Timings  
July 19, 2002  
Am49DL32xBG  
43  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Word/Byte Configuration (CIOf)  
Parameter  
Speed  
JEDEC  
Std  
Description  
70  
85  
Unit  
ns  
t
ELFL/tELFH  
CE#f to CIOf Switching Low or High  
CIOf Switching Low to Output HIGH Z  
CIOf Switching High to Output Active  
Max  
Max  
Min  
5
tFLQZ  
tFHQV  
30  
ns  
70  
85  
ns  
CE#f  
OE#  
CIOf  
tELFL  
Data Output  
(DQ14DQ0)  
Data Output  
(DQ7DQ0)  
CIOf  
DQ0DQ14  
Switching  
from word  
to byte  
Address  
Input  
DQ15  
Output  
mode  
DQ15/A-1  
tFLQZ  
tELFH  
CIOf  
CIOf  
Switching  
from byte  
to word  
Data Output  
(DQ7DQ0)  
Data Output  
(DQ14DQ0)  
DQ0DQ14  
mode  
Address  
Input  
DQ15  
Output  
DQ15/A-1  
tFHQV  
Figure 16. CIOf Timings for Read Operations  
CE#f  
WE#  
The falling edge of the last WE# signal  
CIOf  
tSET  
(tAS  
)
tHOLD (tAH  
)
Note: Refer to the Erase/Program Operations table for tAS and tAH specifications.  
Figure 17. CIOf Timings for Write Operations  
44  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Erase and Program Operations  
Parameter  
Speed  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
Description  
70  
85  
Unit  
ns  
Write Cycle Time (Note 1)  
Min  
Min  
Min  
Min  
70  
85  
tAVWL  
Address Setup Time  
0
ns  
tASO  
tAH  
Address Setup Time to OE# low during toggle bit polling  
Address Hold Time  
15  
ns  
tWLAX  
40  
40  
45  
45  
ns  
Address Hold Time From CE#f or OE# high  
during toggle bit polling  
tAHT  
Min  
0
ns  
tDVWH  
tWHDX  
tDS  
tDH  
Data Setup Time  
Min  
Min  
Min  
ns  
ns  
ns  
Data Hold Time  
0
tOEPH  
Output Enable High during toggle bit polling  
20  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHWL  
tGHWL  
Min  
0
ns  
tWLEL  
tELWL  
tWS  
tCS  
WE# Setup Time (CE#f to WE#)  
CE#f Setup Time  
Min  
Min  
Min  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
0
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tEHWH  
tWHEH  
tWLWH  
tWHDL  
tWH  
WE# Hold Time (CE#f to WE#)  
CE#f Hold Time  
tCH  
tWP  
Write Pulse Width  
30  
35  
tWPH  
tSR/W  
Write Pulse Width High  
Latency Between Read and Write Operations  
Byte  
30  
0
5
tWHWH1  
tWHWH1 Programming Operation (Note 2)  
µs  
µs  
Word  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
tWHWH1  
Typ  
4
tWHWH2 Sector Erase Operation (Note 2)  
Typ  
Min  
Min  
Max  
0.4  
50  
0
sec  
µs  
tVCS  
tRB  
VCC Setup Time (Note 1)  
Write Recovery Time from RY/BY#  
Program/Erase Valid to RY/BY# Delay  
ns  
tBUSY  
90  
ns  
Notes:  
1. Not 100% tested.  
2. See the Flash Erase And Programming Performancesection for more information.  
July 19, 2002  
Am49DL32xBG  
45  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Program Command Sequence (last two cycles)  
Read Status Data (last two cycles)  
tAS  
PA  
tWC  
Addresses  
555h  
PA  
PA  
tAH  
CE#f  
OE#  
tCH  
tGHWL  
tWHWH1  
tWP  
WE#  
tWPH  
tCS  
tDS  
tDH  
PD  
DOUT  
A0h  
Status  
Data  
tBUSY  
tRB  
RY/BY#  
VCC  
f
tVCS  
otes:  
. PA = program address, PD = program data, DOUT is the true data at the program address.  
. Illustration shows device in word mode.  
Figure 18. Program Operation Timings  
VHH  
VIL or VIH  
WP#/ACC  
VIL or VIH  
tVHH  
tVHH  
Figure 19. Accelerated Program Timing Diagram  
46  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Erase Command Sequence (last two cycles)  
Read Status Data  
VA  
tAS  
tWC  
VA  
Addresses  
CE#f  
2AAh  
SADD  
555h for chip erase  
tAH  
tGHWL  
tCH  
OE#  
tWP  
WE#  
tWPH  
tWHWH2  
tCS  
tDS  
tDH  
In  
Data  
Complete  
55h  
30h  
Progress  
10 for Chip Erase  
tBUSY  
tRB  
RY/BY#  
tVCS  
VCC  
f
otes:  
. SADD = sector address (for Sector Erase), VA = Valid Address for reading status data (see Write Operation Status.  
.
These waveforms are for the word mode.  
Figure 20. Chip/Sector Erase Operation Timings  
July 19, 2002  
Am49DL32xBG  
47  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
tWC  
Valid PA  
tWC  
tRC  
tWC  
Valid PA  
Valid RA  
Valid PA  
Addresses  
tAH  
tCPH  
tACC  
tCE  
CE#f  
tCP  
tOE  
OE#  
tOEH  
tGHWL  
tWP  
WE#  
tDF  
tWPH  
tDS  
tOH  
tDH  
Valid  
Out  
Valid  
In  
Valid  
In  
Valid  
In  
Data  
tSR/W  
WE# Controlled Write Cycle  
Read Cycle  
CE#f Controlled Write Cycles  
Figure 21. Back-to-back Read/Write Cycle Timings  
tRC  
Addresses  
CE#f  
VA  
tACC  
tCE  
VA  
VA  
tCH  
tOE  
OE#  
WE#  
tOEH  
tDF  
tOH  
High Z  
High Z  
DQ7  
Valid Data  
Complement  
Complement  
True  
DQ0DQ6  
Status Data  
True  
Valid Data  
Status Data  
tBUSY  
RY/BY#  
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data  
read cycle.  
Figure 22. Data# Polling Timings (During Embedded Algorithms)  
48  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
tAHT  
tAS  
Addresses  
CE#f  
tAHT  
tASO  
tCEPH  
tOEH  
WE#  
tOEPH  
OE#  
tDH  
Valid Data  
tOE  
Valid  
Status  
Valid  
Status  
Valid  
Status  
DQ6/DQ2  
Valid Data  
(first read)  
(second read)  
(stops toggling)  
RY/BY#  
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status  
read cycle, and array data read cycle.  
Figure 23. Toggle Bit Timings (During Embedded Algorithms)  
Enter  
Embedded  
Erasing  
Erase  
Suspend  
Enter Erase  
Suspend Program  
Erase  
Resume  
Erase  
Erase Suspend  
Read  
Erase  
Suspend  
Program  
Erase  
Complete  
WE#  
Erase  
Erase Suspend  
Read  
DQ6  
DQ2  
Note: DQ2 toggles only when read at an address within an erase-suspended sector. The system may use OE# or CE#f to  
toggle DQ2 and DQ6.  
Figure 24. DQ2 vs. DQ6  
July 19, 2002  
Am49DL32xBG  
49  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Temporary Sector Unprotect  
Parameter  
JEDEC  
Std  
tVIDR  
tVHH  
Description  
All Speed Options  
Unit  
ns  
VID Rise and Fall Time (See Note)  
VHH Rise and Fall Time (See Note)  
Min  
Min  
500  
250  
ns  
RESET# Setup Time for Temporary Sector  
Unprotect  
tRSP  
Min  
Min  
4
4
µs  
µs  
RESET# Hold Time from RY/BY# High for  
Temporary Sector Unprotect  
tRRB  
Note: Not 100% tested.  
VID  
VID  
RESET#  
VSS, VIL,  
or VIH  
VSS, VIL,  
or VIH  
tVIDR  
tVIDR  
Program or Erase Command Sequence  
CE#f  
WE#  
tRRB  
tRSP  
RY/BY#  
Figure 25. Temporary Sector Unprotect Timing Diagram  
50  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
V
V
ID  
IH  
RESET#  
SADD,  
Valid*  
Valid*  
Valid*  
Status  
A6, A1, A0  
Sector/Sector Block Protect or Unprotect  
60h 60h  
Verify  
40h  
Data  
Sector/Sector Block Protect: 150 µs,  
Sector/Sector Block Unprotect: 15 ms  
1 µs  
CE#f  
WE#  
OE#  
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0, SADD = Sector Address.  
Figure 26. Sector/Sector Block Protect and  
Unprotect Timing Diagram  
July 19, 2002  
Am49DL32xBG  
51  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
Alternate CE#f Controlled Erase and Program Operations  
Parameter  
Speed  
70  
JEDEC  
tAVAV  
Std  
tWC  
tAS  
tAH  
tDS  
tDH  
Description  
85  
Unit  
ns  
Write Cycle Time (Note 1)  
Address Setup Time  
Address Hold Time  
Data Setup Time  
Data Hold Time  
Min  
Min  
Min  
Min  
Min  
70  
85  
tAVWL  
tELAX  
tDVEH  
tEHDX  
0
ns  
40  
40  
45  
45  
ns  
ns  
0
0
ns  
Read Recovery Time Before Write  
(OE# High to WE# Low)  
tGHEL  
tGHEL  
Min  
ns  
tWLEL  
tEHWH  
tELEH  
tEHEL  
tWS  
tWH  
tCP  
WE# Setup Time  
WE# Hold Time  
Min  
Min  
Min  
Min  
Typ  
Typ  
0
0
ns  
ns  
ns  
ns  
CE#f Pulse Width  
CE#f Pulse Width High  
40  
45  
tCPH  
30  
5
Byte  
Programming Operation  
(Note 2)  
tWHWH1  
tWHWH1  
µs  
Word  
7
Accelerated Programming Operation,  
Word or Byte (Note 2)  
tWHWH1  
tWHWH2  
Notes:  
tWHWH1  
tWHWH2  
Typ  
Typ  
4
µs  
Sector Erase Operation (Note 2)  
0.4  
sec  
1. Not 100% tested.  
2. See the Flash Erase And Programming Performancesection for more information.  
52  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH AC CHARACTERISTICS  
555 for program  
2AA for erase  
PA for program  
SADD for sector erase  
555 for chip erase  
Data# Polling  
Addresses  
PA  
tWC  
tAS  
tAH  
tWH  
WE#  
tGHEL  
OE#  
tWHWH1 or 2  
tCP  
CE#f  
tWS  
tCPH  
tDS  
tBUSY  
tDH  
DQ7#  
DOUT  
Data  
tRH  
A0 for program  
55 for erase  
PD for program  
30 for sector erase  
10 for chip erase  
RESET#  
RY/BY#  
Notes:  
1. Figure indicates last two bus cycles of a program or erase operation.  
2. PA = program address, SADD = sector address, PD = program data.  
3. DQ7# is the complement of the data written to the device. DOUT is the data written to the device.  
4. Waveforms are for the word mode.  
Figure 27. Flash Alternate CE#f Controlled Write (Erase/Program) Operation Timings  
July 19, 2002  
Am49DL32xBG  
53  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
Read Cycle  
Speed  
Parameter  
Description  
Symbol  
Unit  
70  
70  
70  
70  
85  
85  
85  
85  
tRC  
tACC  
tCO  
tOE  
Read Cycle Time  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Access Time  
Max  
Max  
Max  
Max  
Min  
Min  
Min  
Max  
Max  
Max  
Min  
Min  
Min  
Max  
Min  
Chip Enable Access Time  
Output Enable Access Time  
Data Byte Control Access Time  
Chip Enable Low to Output Active  
Output Enable Low to Output Active  
Data Byte Control Low to Output Active  
Chip Enable High to Output High-Z  
Output Enable High to Output High-Z  
Data Byte Control High to Output High-Z  
Output Data Hold from Address Change  
Page Mode Time  
25  
25  
10  
0
tBA  
tCOE  
tOEE  
tBE  
0
tOD  
tODO  
tBD  
20  
20  
20  
10  
70  
30  
30  
10  
tOH  
tPM  
tPC  
Page Mode Cycle Time  
tAA  
Page Mode Address Access Time  
Page Output Data Hold Time  
tAOH  
tRC  
Addresses  
A0 to A20  
tACC  
tOH  
tCO  
CE#1  
Fixed High  
CE2  
OE#  
tOD  
tOE  
tODO  
WE#  
tBA  
LB#, UB#  
tBE  
tOEE  
tBD  
Indeterminate  
High-Z  
High-Z  
D
OUT  
Valid Data Out  
I/O1 to 16  
tCOE  
Notes:  
1. tOD, tODo, tBD, and tODW are defined as the time at which  
the outputs achieve the open circuit condition and are  
not referenced to output voltage levels.  
3. If CE#, LB#, or UB# goes low at the same time or after WE#  
goes low, the outputs will remain at high impedance.  
2. If CE#, LB#, or UB# goes low at the same time or before  
WE# goes high, the outputs will remain at high impedance.  
Figure 28. Psuedo SRAM Read Cycle  
54  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
tPM  
Addresses  
A0 to A2  
tRC  
tPC  
tPC  
tPC  
Addresses  
A3 to A20  
CE#1  
CE2  
Fixed High  
OE#  
WE#  
LB#, UB#  
tOD  
tOE  
tBA  
tBD  
tOH  
DOUT  
tODO  
tOEE  
tAOH  
tAOH  
tAOH  
tBE  
D
OUT  
DOUT  
DOUT  
DOUT  
I/O1 to 16  
tCOE  
tCO  
tAA  
tAA  
Maximum 8 words  
tAA  
tACC  
Figure 29. Page Read Timing  
Notes:  
1. tOD, tODo, tBD, and tODW are defined as the time at which  
the outputs achieve the open circuit condition and are  
not referenced to output voltage levels.  
3. If CE#, LB#, or UB# goes low at the same time or after WE#  
goes low, the outputs will remain at high impedance.  
2. If CE#, LB#, or UB# goes low at the same time or before  
WE# goes high, the outputs will remain at high impedance.  
July 19, 2002  
Am49DL32xBG  
55  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
Write Cycle  
Speed  
Parameter  
Description  
Symbol  
Unit  
70  
70  
50  
60  
60  
85  
85  
60  
70  
70  
tWC  
tWP  
tCW  
tBW  
tAS  
Write Cycle Time  
Min  
Min  
Min  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Write Pulse Time  
Chip Enable to End of Write  
Data Byte Control to End of Write  
Address Setup Time  
Min  
Min  
Min  
Max  
Min  
Min  
Min  
Min  
0
0
tWR  
tODW  
tOEW  
tDS  
Write Recovery Time  
WE# Low to Write to Output High-Z  
WE# High to Write to Output Active  
Data Set-up Time  
20  
0
30  
0
tDH  
Data Hold from Write Time  
CE2 Hold Time  
ns  
µs  
tCH  
300  
tWC  
Addresses  
A0 to A20  
tAS  
tWR  
tWP  
WE#  
tCW  
CE#1  
CE2  
tCH  
tBW  
LB#, UB#  
tODW  
tOEW  
(Note 3)  
(Note 4)  
High-Z  
DOUT  
I/O1 to 16  
tDH  
tDS  
DIN  
I/O1 to 16  
(Note 1)  
Valid Data In  
Notes:  
1. If the device is using the I/Os to output data, input signals of reverse polarity must not be applied.  
2. If OE# is high during the write cycle, the outputs will remain at high impedance.  
3. If CE#1s, LB# or UB# goes low at the same time or after WE# goes low, the outputs will remain at high impedance.  
4. If CE#1s, LB# or UB# goes high at the same time or before WE# goes high, the outputs will remain at high impedance.  
Figure 30. Pseudo SRAM Write CycleWE# Control  
56  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
tWC  
Addresses  
A0 to A20  
tAS  
tWP  
tWR  
WE#  
tCW  
CE#1  
tCH  
CE2  
tBW  
LB#, UB#  
tBE  
tODW  
D
OUT  
High-Z  
High-Z  
I/O1 to 16  
tCOE  
tDS  
tDH  
D
IN  
(Note 1)  
(Note 1)  
Valid Data In  
I/O1 to 16  
Notes:  
1. If the device is using the I/Os to output data, input signals of reverse polarity must not be applied.  
2. If OE# is high during the write cycle, the outputs will remain at high impedance.  
Figure 31. Pseudo SRAM Write CycleCE1#s Control  
July 19, 2002  
Am49DL32xBG  
57  
P R E L I M I N A R Y  
pSRAM AC CHARACTERISTICS  
tWC  
Addresses  
A0 to A20  
tAS  
tWP  
tWR  
WE#  
tCW  
CE#1  
tCH  
CE2  
tBW  
UB#, LB#  
tCOE  
tODW  
tBE  
High-Z  
High-Z  
DOUT  
I/O1 to 16  
tDS  
Valid Data In  
tDH  
DIN  
I/O1 to 16  
(Note 1)  
Notes:  
1. If the device is using the I/Os to output data, input signals of reverse polarity must not be applied.  
2. If OE# is high during the write cycle, the outputs will remain at high impedance.  
Figure 32. Pseudo SRAM Write Cycle—  
UB#s and LB#s Control  
58  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
FLASH ERASE AND PROGRAMMING PERFORMANCE  
Parameter  
Typ (Note 1) Max (Note 2)  
Unit  
sec  
sec  
µs  
Comments  
Sector Erase Time  
0.4  
28  
5
5
Excludes 00h programming  
prior to erasure (Note 4)  
Chip Erase Time  
Byte Program Time  
Accelerated Byte/Word Program Time  
Word Program Time  
150  
120  
210  
63  
4
µs  
Excludes system level  
overhead (Note 5)  
7
µs  
Byte Mode  
Word Mode  
21  
14  
Chip Program Time  
(Note 3)  
sec  
42  
Notes:  
1. Typical program and erase times assume the following conditions: 25°C, 3.0 V VCC, 1,000,000 cycles. Additionally,  
programming typicals assume checkerboard pattern.  
2. Under worst case conditions of 90°C, VCC = 2.7 V, 1,000,000 cycles.  
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes  
program faster than the maximum program times listed.  
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.  
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See Table  
12 for further information on command definitions.  
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.  
LATCHUP CHARACTERISTICS  
Description  
Min  
Max  
Input voltage with respect to VSS on all pins except I/O pins  
(including A9, OE#, and RESET#)  
1.0 V  
12.5 V  
Input voltage with respect to VSS on all I/O pins  
1.0 V  
VCC + 1.0 V  
+100 mA  
V
CC Current  
100 mA  
Note: Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.  
PACKAGE PIN CAPACITANCE  
Parameter  
Symbol  
Parameter Description  
Input Capacitance  
Test Setup  
VIN = 0  
Typ  
11  
Max  
14  
Unit  
pF  
CIN  
COUT  
CIN2  
Output Capacitance  
VOUT = 0  
VIN = 0  
12  
14  
17  
16  
pF  
Control Pin Capacitance  
WP#/ACC Pin Capacitance  
16  
pF  
CIN3  
VIN = 0  
20  
pF  
Notes:  
1. Sampled, not 100% tested.  
2. Test conditions TA = 25°C, f = 1.0 MHz.  
FLASH DATA RETENTION  
Parameter Description  
Test Conditions  
150°C  
Min  
10  
Unit  
Years  
Years  
Minimum Pattern Data Retention Time  
125°C  
20  
July 19, 2002  
Am49DL32xBG  
59  
P R E L I M I N A R Y  
pSRAM DATA RETENTION  
Parameter  
Parameter Description  
Symbol  
Min  
Typ  
Max  
3.3  
70  
Unit  
V
Test Setup  
VDR  
IDR  
VCC for Data Retention  
Data Retention Current  
CS1#s VCC 0.2 V (Note 1)  
2.7  
VCC = 3.0 V, CE1#s VCC 0.2 V  
(Note 1)  
1.0  
(Note 2)  
µA  
tCS  
tCH  
CE2 Setup Time  
0
300  
10  
0
ns  
µs  
ms  
ns  
µs  
CE2 Hold Time  
tDPD  
tCHC  
tCHP  
CE2 Pulse Width  
CE2 Hold from CE#1  
CE2 Hold from Power On  
30  
Notes:  
1. CE1#s VCC 0.2 V, CE2s VCC 0.2 V (CE1#s controlled) or CE2s 0.2 V (CE2s controlled).  
2. Typical values are not 100% tested.  
pSRAM POWER ON AND DEEP POWER DOWN  
CE#1  
tDPD  
CE#2  
tcs  
tCH  
Figure 33. Deep Power-down Timing  
Note: Data cannot be retained during deep power-down standby mode.  
VDD min  
VDD  
tCHC  
CE#1  
tCHP  
tCH  
CE#2  
Figure 34. Power-on Timing  
60  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
pSRAM ADDRESS SKEW  
over 10 µs  
CE#1  
WE#  
Address  
tRC min  
Figure 35. Read Address Skew  
Note: If multiple invalid address cycles shorter than tRC min occur for a period greater than 10 µs, at least one valid address  
cycle over tRC min is required during that period.  
over 10 µs  
CE#1  
tWP min  
WE#  
Address  
tWC min  
Figure 36. Write Address Skew  
Note: If multiple invalid address cycles shorter than tWC min occur for a period greater than 10 µs, at least one valid address  
cycle over tWC min, in addition to tWP min, is required during that period.  
July 19, 2002  
Am49DL32xBG  
61  
P R E L I M I N A R Y  
PHYSICAL DIMENSIONS  
FLB07373-Ball Fine-Pitch Grid Array 8 x 11.6 mm  
62  
Am49DL32xBG  
July 19, 2002  
P R E L I M I N A R Y  
REVISION SUMMARY  
Revision A (March 8, 2002)  
Initial release.  
Revision A+1 (July 19, 2002)  
Table 8. Bottom Boot Sector/Sector Block  
Addresses for Protection/Unprotection  
Added Table.  
Table 12. Command Definitions (Flash Word Mode)  
Table 13. Command Definitions (Flash Byte Mode)  
Modified Note 10. changed 80h to 82h and 00h to 02h.  
Trademarks  
Copyright © 2002 Advanced Micro Devices, Inc. All rights reserved.  
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.  
ExpressFlash is a trademark of Advanced Micro Devices, Inc.  
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.  
July 19, 2002  
Am49DL32xBG  
63  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY